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Abstract: Multisoliton manifolds are characterized as symplectic prime ideals of th.e
symplectic Lie algebra module generated by symmetries and mastersymmetries. This

identification allows an explicit construction of the tangent bundle of the multisoliton
manifolds.

1 Introduction

We consider a so called completely integrable evolution equation u; = K(u) on some
manifold M of functions u = u(%),# €R™. Then, as usual, {13] a multisoliton manifold

1s defined by reduction with respect to a sequence of symmetry generators Ko(u), K1(u),
K3(u),.... That means the submanifold

N
My = {u|there are a, such that Z a, K,(u) = 0} . (1.1)
n=0
is the N-soliton manifold. This manifold is invariant with respect to u; = K(u). In or-
der that this definition makes Sense we require for the manifold M that a nondegeneracy

condition, for a suitable symplectic form, must be fulfilled. This condition will be given
later on.

This paper is concerned with the following

Problem: Find an explicit construction of the tangent bundle T'M ~nof Mn.

By explicit we mean that a base for the tangent vectors of My should be given in

terms of the field variable 4 and not in terms of asymptotic data. This is an interesting
problem because it turns oyt that

® in case of finite dimensional M N the explicit knowledge of TMy gives a direct and

purely algebraic way to find the action-angle representation of u, = K(u) on My
(see [11],[14]),

o we obtain in a simple and transparent way explicit formulas for quantities of phys-
ical relevance (see [11]),

e this yields methods of direct linearizatio
with one independent var
for My is equivalent to a

‘ n for large classes of nonlinear equalfi?ﬂs
table less. This results from the fact that the condition
requirement of the following (or similar) form

Ko Kl KN

o= |0 foe K (12)
KN Ky - Koy
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where the a1,...,an have been eliminated. Since mastersymmetries carry over
({10) to this reduction, we casily obtain the recursive structure for the symmetry

group of these equations (1.2),

e that the construction of the tangent space proves to be equivalent to a spectral res-
olution of the recursive structure of the symmetry group. Hence, the construction
of TMy vields a direct method to determine the eigenvectors of the recursion op-
erator (if such an operator exists) and to find solutions of the so called interacting

soliton equations (see [9]).

2 Hereditary algebra

We assume that in the Lie algebra of vector fields we have Ko, Ki,Kz,...and 70,71, 72, - -
such that
[I{m Km] =0, [Tm Km] = (m + p)I{rH-m’ [Tm Tm] = (m - n)'rn+ms (2'1)

where p is some constant number. The K, ate called symmetries and the 7, are called
mastersymmetries. The algebra HER(Kn, 7m) spanned by the Kn, T is called a heredi-
tary algebra. This because the formal operator @ defined by

&K, = Kpy1 and @7 = Tmt for all m,n eN. (2.2)

[7] (see also [6]). Up to now, such a hereditary

is a hereditary operator as defined in ;
ble systems, even those where no local recursion

algebra is known for all completely integra
operator has been found.

Remark 1 : [i should be observed that hereditary algebras have a simple struclure since

there is a canonical representation of such an algebra in an operalor algebra of certain
first order differential operators (in one variable). To see this consider

d

T — z"“"l:i—, K, — 2" .
z

(2.3)

Then this defines a Lie algebra homomorphism inlo the algebra given by operalor com-

mutaiion.

Furthermore, we assume that a symplectic operator J {from tangent bundle to cotangent
bundle) is known such that all J K, are closed {i.e. do have potentials). This is the same,
as saying that the K, are hamiltonian with respect to J. Recall that an operator J 18
said to be symplectic if the two-form w given by w(G,,G2) = (JGy,G2) is closed. Here
{, ) denotes the evaluation between tangent and cotangent spaces. We assume that for
all u € M the form w is nondegenerate with respect to HER(Kn, Tm ), 1.€. if for some
fixed H we have w(H,G) =0VG € HER(Kn, Tm) then H = 0. ‘

In addition, and for simplicity, we require that ro defines a scaling for J, i.e. Ly J =
M\J, where L., is the usual Lie derivative with respect to 7o (see [16]). Of course, we

allow the case A = 0. Now, there are essentially two cases:

Non-hamiltonian case: For all, except at most one 7, We have L, (J) # 0.

Hamiltonian case: L, J =0 for all n.
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In the first case the operators @, = J~1L,_(J) are recursion oper.ators and the heredlta;y
structure of the algebra implies that these operators are he.red‘ltary. Furthermore, ; e
formal recursion operator ®, defined in HER(K,,,7,m), then is given by one of +f.hese e
In addition, from the antisymmetry of J, we obtain that the t‘ranspose.(.] ‘I>)_ of a(,J;I:Z,
is equal to (®*J). All known completely integrable'a systems in 141 dm'lenml(:nl, p to
form the Benjamin-Ono equation and the intermediate long wave eguatlon, e'lct)ng. °
this category. Obviously, the scaling number A must be equal to zero in the hamiltonia
cas?i‘he second case applies to the (241)-dimensional cases, as wel! as to equations like
the Benjamin-Ono equation and the intermediate long wave equation. These two cta}fes
are mutually exclusive insofar as whenever we have L., J # 0 for more thafl one n ben
we may define a recursion operator and restrict our attention to the hereditary czlxlge 'lia
generated by that operator. Examples for such hereditary algebras can be found easily
i e literature ([5],{21,[8)). ] )
" t‘ifl\/ehnow int.rcfc[lchz lsEJi]t)abie scalar quantities Py, Py, P,,.... In the non-hamiltonian
case we define these to be

Po = (JKn,m0) . (24)

And in the hamiltonian case we define the P, to be the potentials of the covector fields
JK,.

Now, using the symmetry relation J& = ®+J for the recursion operator, we find in
the non-hamiltonian case (see also [1 1])

Prin = {JKn,7m) for all m,n €N . (25)

Then (by simple application of Lie-derivatives) one finds for the grad.ients VP, of the
Fu that, as applications on HER(K.,, 7,), we have the following equality

VP =(n+p+NJK, . (2:6)

Hence we may assume, without loss of generality, that the K, have been chosen in such
a way that this holds. This is possible because either it is really true or we may redefine
the K, by that relation without changing the crucial commutation relations (2.1).

In the hamiltonian case, where VP, = JK,, one should observe that locally all the
n have potentials Q,,. Furthermore the Poisson brackets

{Qm, P} = (VP, J71VQ,) = (J K, Tim) (2.7)
are homomorphically mapped by J=1V into the vector field brackets
I7V{Qm, Pa} = [1im, K] (2.8)
Since [, K] = (n + P)Knym = (n+ p)J 'V P, .. we obtain

(VPa,Tim) = (n + p)Poyrm. (2.9)

Hence, for both cases we have the crucial relation

(VPi,Tm) = (n+ p+ A) Paym. (2.10)
Of course, in the hamiltonian case ) is equal to zero.
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In both cases we trivially have for all m and n that

(VP Km) =0, (2.11)

i.e. the P, all are conserved quantities for the flows u¢ = Kn(u).

Consider the algebra F of polynomials in the variables < J1n, T > and < J K, Tn >
(n,m arbitrary). These fields we call scalars. Recall that by the Lie derivative a homo-
morphism from HER(Ky, Tm) into the derivations on F is given. Hence we can make
out of the Lie algebra HER(Kn, Tm) a suitable Lie algebra module by allowing that its
elements are multiplied by any element in F. This Lie algebra module we denote by
Mj(Ky,7m). The index J reminds us that this depends on the symplectic operator J.
Modules constructed in this way via a symplectic form we call symplectic Lie algebra
modules.

3 Ideals and invariant submanifolds

Since ideals play a central role in any algebraic structure we study them now for M, =
M (K, Tm). Recall that a sub-Lie algebra L of My is said to be a Lie ideal (or ideal
for short) if [L, H] € £ whenever L € £ and H € M. Invariance with respect to My
is defined in terms of Lie derivatives, in directions given by elements of M, so ideals of
M are invariant by definition. In F we are also interested in ideals G which are invari-
ant with respect to My, ie. f FEG H € M then Ly F € G. One of the important
nontrivial observations is that the symplectic form w makes in a canonical way out of

ideals £ in M invariant ideals Fg in F:
Fo ¥ (L B e L, HEMy}. (3.1)
On the other hand, invariant ideals G in F define ideals Lg in My by
Lo % {Le Mylw(L, H)€G for all H € My} . (3.2)

Obviously, £ C Lx, and LF, defines a completion, or hull operation, for £. If an ideal
L is complete, i.e. if L = Lr, then we call it a symplectic ideal. In the same way we
can define for the invariant ideals in F a kernel operation. So, for an invariant ideal §
in F, we define the kernel to be F¢,. Again we call G a symplectic ideal if G = Fg,.
Obviously, there is a one-to-one correspondence between symplectic ideals in M, and
those in F.

There is a maximal abelian ideal A in My, namely the vector fields spanned by the
K, alone and admitting coefficients which are polynomials in the Py alone. Observe that
this ideal is mapped, via w(-, M), onto those elements which depend on the P, alon.e.

We may as well restrict our considerations to abelian ideals and deﬁn.e an abelian
symplectic ideal either by intersection of symplectic ideals with the ma.J.n'mai abelian
ideal or by taking the completion only within the abelian ideals, both definitions amount
to the same.

Let us now turn our attention to invariant submanifolds of M, invariance again meant
with respect to HER(Kn,Tm). Since the symplectic form was assumed to be nondegen-
erate we have

Remark 2 : The zero sets of symplectic ideals in M and the zero sets of their corre-

sponding symplectic ideals in F coincide.
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An important role is played by the zero sets of prime ideals, these we call soliton mani-
folds,

4 Zero sets of symplectic ideals

In this section we carry out the construction of zero sets of symplectic ideals. For Previty
we restrict our considerations to abelian ideals. But indeed, the construction is very
similar for nonabelian ones.

First we need some considerations from linear algebra. Consider the space Coo of
sequences in some vector space. Denote by §: coo — coo the shift operator, that is

(9'0,‘11,92,---) R (91,92,93,...) . (4.1)

We call a vector §'= (gq, 91,92, -..) N-cyclic if there is some polynomial Pol(S) of degree
N such that

Pol(S)§=0 (42)

and such that N is the minimal degree of a polynomial having that property. The roots
of the polynomial Pol(£) we call the characteristic roots of this N-cyclic vector. ’

We study the invariances of the manifold of N-cyclic vectors. By definition this
manifold is invariant under application of any polynomial in the shift operator itself.
And, let E(X),A €R be the following group of operators

E(A
(90,91, ¢2,...) 5 (20,exp(X)q1, exp(2))q,, exp(3X)gs, ...) (4.3)

then SE()) = exp(A)E(A)S. Hence, application of E()) also leaves the manifold of
N-cyclic vectors invariant. This because in (4.2) application of E(X) to ¢ can be com-
pensated by replacing S by exp(—A)S, thus amounting only in a change of the coefficients
of the polynomial, or a change of the characteristic roots: {,, — exp(A)é,.

Using suitable infinitesimal generators of these invariances we find that when ¢ is
N-cyclic, then all vectors of the form

((k + Q)Qk, (k +a+ 1)Qk+1:(k +a+ 2)q,§+2, ) (44)

are tangential to the manifold of N-cyclic vectors at the point §, and this for all a. _
For the construction of the symplectic hull of some ideal £ in M; we proceed in

the following way: Take some L € L, construct the minimal invariant ideal Gr in F

such that Gr, > w(L,M;). Then take Lg, , which must be the minimal symplectic ideal

sels of symplectic ideals. A subset G of some symplectic ideal is said to be basic for G if

any u with F(u) = 0 for all F ¢ § is automatically in the zero set of G. In the same way
we define basic sets for ideals in M},

Rem.ark 3 : Let G be the smallest invariant ideal containing G. Then G is basic if and
only if {u|G(u) = 0} is invariant,

In order to treat the hamilt
suitable coefficients
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o = { 1 in the non-hamiltontan case
(n+p+ )1 in the hamiltonian case

Now, start with an abelian ideal £ in M and fix some element L € L. L can be written

as
N

L=) ontntmKnim (4.5)

n=0

where the a, are polynomials in the P’s, and where we may assume that ap, ay are not
equal to zero. For convenience we introduce the polynomial PolL(§) = —gané". The
foots-of this characteristic polynomial we call the roois of L. We consider 6; the smallest
invariant ideal containing w(L, M) and we use = for equality modulo Gr. By taking
scalar products with J7. we obtain

N
Y anPatmir =0 for allr. (4.6)
n=0
This we can write equivalently as
Pol(S)S™P =0 (4.7)

i.e. the vector S™P is N-cyclic modulo Gr. This gives a linear dependence between each
set of consecutive set of N + 1 vectors out of {SmP,§™+ P,S™H2P, .} or

Py Piyr o Peyn
- Pey1 Pey2 0 Prannr
detl (P)=| . _ _ =0 forall k>m. (4.8)
Pean Peyian 0 Prron

Comparison between (4.6) and (4.8) shows that the (—1)"*!an, which have to be poly-
nomials in the P’s, must be equal, up to some factor modulo Gy, to the subdeterminant
of detX ( P) which arises by canceling the first column and the n-th row. And this then
yields that all detf(f"),k > m are elements of G, and that G is the smallest ideal

containing these determinants.
Observation 1 : The set {detf(ﬁ)lk > m} is basic for Gr.

For the proof of that statement observe that that detf(f’.(u)) — 0 for all k > m is equiv-
alel,l:' to the fact that S™P is N-cyclic. So the common zero set M of the determinants
detN (P),k > m can be represented as

M = {u|S™ B(u) is N — cyclic} , (4.9)

anifold is invariant. For that we have to show that
cyclic vector S™ P(u) in direction of either K; or 7;
manifold of N-cyclic vectors.
direction Kj 1s zero and that

and it remains to prove that this m
the directional derivative of some N-

results in a tangential vector, at the point S"‘ﬁ(u), to the
But that is trivial now, since the directional derivative in

in direction 7; yields a vector of the form (4.4).
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Reformulation of that result in terms of linear dependence shows that any set of
determinants in Gy which has as consequence the linear dependence of the coll_mm vectors
of (4.8) (for all k > m) must be basic again. As consequence of this we obtain

Observation 2 : The vector field

TmKm P e PN
7m+1-1{m+1 P"f+z Tt Pm+.N+l (4.10)
7m+NI(m+N Pm+l+N e Pm+2N

is basic for the ideal £ generated by (4.5).

This is a trivial consequence of the fact that w(-, M) maps this vector field into a basic
set of the corresponding symplectic ideal in F. Looking now for prime ideals, we find by
some elementary considerations that their zero sets are given by the basic fields of the
form (4.10) in case m = 0. Hence these are the "multisoliton manifolds’ defined in (1.1).
However, it should be observed that at that point it was neither clear that these sets are
invariant with respect to the ’s nor that they are zero sets of ideals, even prime ideals.
Consider again the L given by (4.5), then our representation by N-cyclic vectors
yields in addition a complete description of the dynamics of the roots of L. Observe
that these roots are equal to the characteristic roots of the polynomial Polr(S) (in the
shift operator) and that in addition we have given a representation of the directional
derivatives with respect to K j»Tj n terms of infinitesimal invariances of the manifold ?f
-cyclic vectors, and that we know the effect these invariances have on the characteristic
roots of the corresponding shift operator. Gathering all this we obtain

Observation 3 : Let y be in the zero set of the determinant (4.10) and consider the
flows

U, = Kj(‘u), Uy, = ‘rJ(u) (411)
then for the roots of u we have the dependence
Enlt1,t2) = 1264(0,0) . (4.12)

So, whenever the £'s are the spectral points of some spectral problem, then the K's are
defining isospectral flows and the T’s are non-isospectral (in the sense of [3],[4] or [12])-

5 Applications

Here we sketch some applications. Consider the multisoliton manifold My as defined in
(1.1). Then we know that the K,, and Tm are tangential to that manifold. Since the

whol.e ideal generated by the linear dependence as required in (1.1) vanishes on My we
obtain that the vector fields given by the columns of

7oKy 1k, 07295
_ K K K
detN(K)= ‘1’1. 1 ‘)’2‘ 2 "YN+1. N+1 (5.1)
INKN Ny KNy - YNeNKNiN
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are linear dependent. Hence, the u € My are solutions of the the equation given by
detN (K) = 0. If that is a differential equation with respect to some independent vari-
able, say z, then we may rewrite it as a several-component evolution equation (with the
evolution parameter now z instead of t). In general the 7’s are fields depending on z
explicitly, hence they give rise to symmetries now depending explicitly on the evolution
parameter, this because they are tangential at My . So they may serve as mastersymme-
tries for these newly formulated evolutions and we can carry over the whole hereditary
structure to these equations. How that has to be done for the vector fields is described
in [10]. In addition we need a hamiltonian formulation for these equations, but this is
easily found from the fact that these new flows follow from a variational principie (for
the determinants in (4.8)). So the flows, obtained by putting (5.1} (or similar determi-
nants) equal to zero, are again completely integrable and their recursive structure can be
computed from the information of this paper. Since these then give additional tangent
fields (by iterating the arguments of the present paper) we find the whole tangent bundie
for My.

Another application is the following:
Take the multisoliton manifold My as described herein by an abelian ideal L. Then

consider the corresponding (eventually nonabelian) ideal generated by taking all of its
symplectic hull Lx,. In the non-hamiltonian case this really is a bigger ideal than £
whereas it is equal to £ in the hamiltonian case. But in any case it must be zero on Mn
since w is nondegenerate (remark 2). In the non-hamiltonian case we obtain from that
an explicit linear dependence on My between the 7’s. In the non-hamiltonian case this

yields [11] for all m €N

Tm Pm-H st Pm+N
Tm+1 Prmsz -+ Pains1
. i . =0on My . (5.2)
TmtN Pmprgn 0 Pma2n

This relation indeed has a couple of nontrivial consequences. It yields the complete
spectral resolution of the recursion operator on Mn (see [11] and {17]).

To carry over this method, to obtain a similar result for the hamiltonian case, one
needs an additional assumption, namely the existence of a mastersymmetry of second
order. Such a higher order mastersymmetry is given in all hamiltonian cases known to
the author. To be explicit: In the hamiltonian case one usually finds a hamiltonian field
Z fulfilling (in case p €N)

[Z,K.)=(n+p)(n+p— 1)Kn_p+(n+p)7n - (5.3)
Finding such a field one easily constructs an extension of the ideal G to some ideal N
(nonabelian) such that N vanishes on the zero set of G. This is done by taking the .sca.lar
products between the abelian ideal Ly and the field Z. These scalar products obviously

vanish on My. Then the smallest invariant ideal is taken which contains these fields,

and from there one goes to the corresponding nonabelian symplectic ideal in My, which

by remark 2 vanishes again on the manifold My. o
Other applications of the theoretical foundations presented in this paper are the al-

gorithms for finding symmetry groups (see [18]) and maps between the action variables
and the angle variables of the restrictions to these invariant manifolds (see [1])-
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