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to describe a conmection between the theory
ups and the Lie theory of semigroups.

11 be one parameler semigroups of proba-
rts. We start by giving the

The purpose of this note is
of probability measures on Lie gro
The objects under consideratiom wi
bility measures on Lie groups and their suppo
basic definitions.

Let G be a connected topological group. A family (ut)t>o of

probability measures on G is called a causs-semigroup, if no M is a

with the usual convolution and lim t_1pt(G\U):O

*

point measure =

’ ut-;.s ut uS 1—o
for every open neighborhood U of the identity in G. The Gauss-semigroup
(Ut)t>0 is called absolutely continuous if each He is absolutely continuous

with respect to a, once and for ever fixed, left Haar measure on G.

ciate with any Gauss-semigroup
of the form:

2

If G is a Lie group we can asso

(
ut)t>o an infinitesimal generator N

] I
N = 2 ax, + X,
AT S

where {X1, Ki<n} is a basis of the Lie algebra L(G) of G, viewed as left

invariant first order dif pair (M,xo), where

ferential operators On G. The

n
M is the Lie algebra generated by {x1,...,xr} and X, = 2 a,x, is called
i=1

the carrier of (u ) . We have (cf.[5i82]):
t oo

THEOREM 1. Let G be a Lie group and (ut)t>o pe a Gauss-semigroup on G with

carrier (M,x ). Then
@ o

(i = -1 ™ is th ¢t of th
) Supp M = (éi1 (GMexp n txo) )™, where Supp W, 1S e support of the

measure g and GM is the amalytic subgroup of G with Lie algebra M.

(i1) (s all s,t>0.
(Supp ut)(Supp us) C Supp B ¢ for s,t> D
It is clear from this theorem that the sets S - (VU Supp u ) are
H,a t>a t

semigroups for any a>0. The semigroups Su a will in general not contain
- ’

the identity and hence are not suited too well to the Lie theory of semigroups
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which studies subéemigroups of Lie groups via their tangent object at the

identity (see below for the precise definitions). But Su =85 does contain
bl

the identity and it will be this semigroup we will concentrate omn.

Let L be the Lie algebra in L(G) generated by {xo, x1,...,xr} and G

the corresponding analytic subgroup of G. We will call a Gauss-semigroup
generating if G = GL' By [8i82] Theorem 2, we know that ut(G\GL) = 0 for
all ©>0. Thus, for the purpose of studying the support behaviour of Gauss-
semigroups, it is no serious loss of generality to assume that G = GL.

It is necessary to have some control over the interjior points int(Su)
of Su in order to apply the techniques developed in [HHL85] and [La86].
We find:

LEMMA 2. Let (pt)t>0 be a Gauss-semigroup with carrier (M’xo) then we have

n
(i1) Sp is equal to the closed subsemigroup § of G generated by exp(M)

(i) The interior int(Su) of § 1iIs dense in §
|3

and exp(]R+xo).
Proof. Note first that Theorem 1] implies that exp(Eﬁxo) is contained in Sp.
Moreover GM is contained in $ as well. In fact, let yeM then
(exp(n'1y)exp((mn)dxo))nc Supp(u.] /m) C S so that the Trotter product
formula shows exp(y) 3; = Su for y smalluenough. Therefore Su contains a
neighborhood of the identity in Gy and hence all of Gy. But by [Js72] the
semigroup S generated by exp(M) and exp(ﬂfxo) satisfies (int(S)Y = § since
M and x_ generate L(G) by our assumptions. Note finally that Theorem 1

shows that suc S = (int(s)) e (int(su))'c S . O
H

Lemma 2 allows us to conclude that S is contained in some maximal subsemi-
n
group Smax of G unless Su =G (cfl[LaB6]). Here by maximality we mean that

Smax ls no group and Smax and G are the only subsemigroups of G containing

S .
max

Now suppose that (ut)t>o is a generating Gauss-semigroup and Su is

t lned in a “laxlulal seml rou S W}llch 1s L =
conta r e e S ? :
g p max p op r ’ 1 max

Recall from Lemma 2 that Gy is contained in § . This implies that
max

-1
a ax
of Smax® NOW Suppose that H is normal in G then L(H) is a subalgebra of

L(G) which contains M and is ad(xo)-invariant. Thus the following remark,
taken from [Si82], shows that (ut)t>o ¢an not be absolutely continuous.

exp(nko) can not be contained in the Broup of units H = § n S
max m

REMARK 3. A Gauss—semigroup is absolutely continuous

if and onlg if the only ad(xo) - invariant subalgebra of
L{G) containing M is all of L{(G). E

We collect the obtained information in

PROPOSITION 4. f (ut)t>o is a generating absolutely continuous Gauss-
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semigroup and Su is a proper semigroup contained in a maximal semigroup S
max

then H = § n S -1 can not be not be normal in G. [J
max max

Maximal subsemigroups of Lie groups may look very different and the theory
describing them is by no means complete, but there are large classes of
groups where they can be handled quite well (cf.[La86],[Hi86a]). The way
these semigroups are described is typical for the Lie theory of semigroups
in so far as it proceeds via their tangent object.

Given a closed subsemigroup S of a Lie group G we define the tangent
cone L(S) of S by L(s) = {x e L(G): exp(IR'x) € S}. It turns out (cf[HL83])
that L(S) is a closed convex cone satisfying

ead(X)L(S) = L(S) for all x £ L(S)n -L(S).

A closed subsemigroup S of a Lie group G is called a halfspace semigroup
if 1.(S) is a halfspace. We give some examples:

The subsemigroup R of non-negative real numbers in R is a halfspace
semigroup in IR. Let Aff' be the group of real 2 x 2 - matrices of the form

a b1
{ :a>01
0 1
L -
and
‘b
AffTt - :a>0,b> o}.
0 1
o P

+
Then Aff'" is a halfspace subsemigroup of Aff .

+
Let S1{2,R)” be the simply connected covering group of+51(2JR) and 0 be
the closed subsemigroup of 51(2,E0~ generated by exp(R"u), exp(Rh) and

exp(lRp) where

0 1 1 0 0 1
b= ’ h = ’ P- 0 0
1 OJ 0 -1
in s1(2,R). Then Q% is a halfspace semigroup in s1(2R)” (cf[HHB5a]).
algebra bounded by a subalgebra

Note that for any half space in a Lie
he simply connected group

there is a closed halfspace semigroup in t onne
corresponding to the Lie algebra whose tangent wedge is just the halfspace

we started with (cf[Hi86b], TLa86}). Moreover this halfspace semig?oup is
maximal and its group of units is the analytic subgroup corresponding to

the hyperplane contained in the halfspace.

We are now ready to prove a converse to Proposition &4 in the case that G

is simply connected:

connected and let (u )y, be 2
bsolutely continuous. Yhen S
whose group of units

PROPOSITION $. sSuppose that G is simply
qenerating Gauss-semigroup which is not a
1s contained in a halfspace semigroup Smax

Sm n s -1 is a closed normal subgroup in G of codimension 1.
ax max
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Proof. Note first that by hypothesis there exists an ad(x )-invariant
subalgebra of L(G) containing M which is not all of L(G). Det P be such
an algebra of maximal dimension. We claim that P must be a hyperplane in
L(G). In fact, suppose that codim(P) > 1 then P + Rx is a subalgebra of
L(G) containing M which is ad(x )~ invariant, but not all of L(G). But on
the other hand we assumed M and®x to generate the whole algebra which
contradicts our earlier statement. Thus P is a hyperplane and by the argu-
ment given above it cannot contain X - Therefore the ad(xo)— invariance

of P shows that P is an ideal in L{(G). Let Gp be the analytic subgroup of
G corresponding to P then GP is the group of units of a maximal halfspace
semigroup smax containing also exp(ﬂl+xo). Since P is an ideal we know

that GP is normal in G. Finally we note that Smax contains exp(P), hence

exp(M), so that Lemma 2 implies that Srnax contains S . D
u

Of course one wonders how serious the assumption in Proposition 5 that G
be simply connected is. Let G be the simply connected covering group of G
and @: G° ~ G be the covering morphism, If (ot)t>o is a Gauss-semigroup

on G with infinitesimal generator N then (wot)t> , consisting of the image
) o

measures, is the Gauss-semigroup on G with infinitesimal generator N. Let
Exp: L(G) ~ G~ be the exponential function for G~ . Then So is the closed

subsemigroup of G* generated by Exp(M) and Exp(R*x ) by Lemma 2. Therefore
o
we get ¢(int(So)) is open dense in S¢o again by Lemma 2. Thus practically

all the information on the support of Gauss-semigroups we can expect to

obtain via the Lie theory of semigroups, we can already get from the simply
connected case.

Proposition 4 and 5 have some immediate consequences. For instance, Pro-
position 5 says that any generating Gauss-semigroup on SI1(2JR)” is abso-
lutely continuous and, since the absolute continuity of a Gauss-semigroup
depends only on its infinitesimal generator, the same is true for S1(2,R).
On the other hand Proposition 4 shows that any generating absolutely
continuous Gauss-semigroup on a nilpotent Lie group satisfies Su = G the

group of units of maximal semi
commutator subgroup (cf[ HHLSS]
known (cf[McSh],[McW83]),

any kind of information on
will yield some informatio

groups in nilpotent Lie groups contains the

}. Of course all of this, and more, is well
but the methods given above are quite general se

e has on the maximal subsemigroups of a Lie group
n on the support of Gauss-semigroups on this group-

Note that for any subsemigroup S of G containing the identity there is a

largest normal subgroup contained in S (cflLa86]). It is denoted by Core(S)-
The core of a elosed semigroup S is closed, so it makes sense to talk about
the reduced pair (GR,SR) where Gg = G/Core(S) and SR = S/Core(S). If S is

a closed halfspace semigroup then we have a complete description of (GR’SR):

THEOREM 6. (cf.[P077]). rLet S be a closed halfspace semigroup in a

connec#ed Lie group G . Then for the reduced pair (G_,5_ ) one of the
following cases occurs: R™R

(i) (¢
(ii) (e
(iii) (¢

R’SR) is topologically isomorphic to (R,R%)
R,SR) is topologically isomorphic to (Aff¥ aff™h)
R’SR) is topologically isomorphic to (s1(z2,r)~,n").
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Theorem 6 tells us that the group of units of a closed halfspace sem}group
S is normal if and only if the reduced pair (GR,SR) is equal to (R,R7).

Thus if we, for some reason, know that any maximal semigrgup S in G has to
be a halfspace semigroup with reduced pair (GR,SR) = (R,R") then Proposition

4 tells us that for any absolutely continuous Gauss-semigroup (ut)t>o the

semigroup S].1 has to be all of G.
In this context we recall the following theorem from [La86]:

THEOREM 7. Let G be a Lie group such that G/Rad(G) is compact, where
Rad(G) is the radical ofG. If S is a maximal subsemigroup of G with
non-empty interior, then § is a halfspace semigroup containing every
semisimple analytic subgroup and for the reduced pair (GR,SR) one of
the following two cases OCcurs

(i) (GR,SR) is topologically isomorphic to (r,R")
(i) (GR,SR) is topologically isomorphic to (aff¥ aff7 ). 0

From this we derive

COROLLARY 8, Let G be a Lie group such that Rad(G) is nilpotent and
G/Rad(G) is compact, then for every absolutely continuous Gauss-
semigrou have § = G.

group (ut)t>o we ha ”

Proof. It remains to show that case (ii) of Theorem / cannot occur. To this
end note that the conjugate of a semisimple analytic subgroup is again semi-
simple so that the subgroup of G generated by all semisimple analytic sub-
groups of G is a normal subgroup and, by Theorem 7, contained in the core

of any maximal semigroup. Thus Gp is nilpotent which excludes case (ii) of
Theorem 7.

Rad(G)) = Rad(L(G)) carries
d G/Rad(G) is compact, then

COROLLARY 9. Let G be a Lie group such that L(
the structure of a complex Lie algebra an
for every absolutely continuous Gauss-semigroup (pt)t>0 we have

S =G,
M

8 we see that any Levi complement of G is contained

Proof. As in Corollary :
p with nonempty interior. Thus G_=

the core C of an arbitrary maximal semigrou ‘ .
G/C = Rad(G)/(Rad(6) N C) and GR contains a halfspace semlgroup. Taking the

that Rad(G) contains a halfspace semi-
group. If we look at the tangent conme of this semigroup it follows from
[HH85b] that it contains the commutator algebra of Rad(L{(G)) because of
the complex structure. Thus Rad(G) n C contains the commutator subgroup of

Rad(G) so that GR is abelian which again excludes case (ii) of Theorem 7.

inverse image in Rad(G) this shows

een said in this note: The supports

Let us draw a short resumé of what has b :
e rise to subsemigroups of the Lie

of the measures in a Gauss-semigroup giv _
groups involved. These semigroups can be studied by methods from the Lie
theory of semigroups. The results will in general not be resu1t§ on the
supports of the single measures but on the semigroups one assocxaFes.to them.
In special cases, however, as in the case of decreasing supports 1t 1§
possible to derive results on the supports of the single measures.

polished exposition of all the re-
thods indicated, but rather I wanted
ne can construct many

It has not been my intention to give &
sults that can be obtained using the me
to explain the methods themselves. It is clear that o
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examples along these lines and it seems reasonable to believe that many
related results could be obtained without a lot of extra effort.

262

REFERENCES
[Bou72] N,
(He77] H.
[HHB5a] J.
[HH85D ]
(HHL85] .
[Hi86a] J
[Hi86b]

[mL83]
[Hoch65] G
[Js72] v,
[Lag86] 7.
[Mc84] M.
[Mcw83] M.
[Po77] D
(sig82] E

Bourbaki, "Groupes et Algébres de Lie II, II1," Hermann, Paris
(1972).
Heyer, "Probability Measures on Locally Compact Groups,"
Springer, Berlin (1977).
Hilgert and K. H. Hofmann, 0ld and New on S$1(2), Manus. Math.
54:17 (1985).

- » Lie Semialgebras are real Phenomena,
Math. Ann. 270:97 (1985).
ﬁ?iéérE:_R. H. Hofmann and J. D. Lawson, Controllability of
Systems on Nilpotent Lie Groups, Beitr. Alg. Geom. 20:185 (1985)

. Hilgert, Maximal Semigroups and Controllability in Products of

Lie Groups, THD Preprint 971 (1986).

==, Infinitesimally Generated Subsemigroups of Lie Groups,
submitted (1986).

. H. Hofmann and J. D, Lawson, Foundations of Lie Semigroups, in:

LNM 998:128 (1983).

« Hochschild, "The Structure of Lie Groups,'" Holden Day, San

Franecisco (1965).

Jurdjevic and H, Sussmann, Control Systems on Lie Groups, J.
Diff. Equ. 12:313 (1972),

BT'EAWESH, Maximal Subsemigroups of Lie Groups that are Total,
submitted (1986),

McCrudden, On the Supports of Absolutely Continuous Gauss
Measures on Connected Lie Groups, Mh. Math. 98:295 (1984). )
McCrudden and R, M, Wood, On the Supports of Absolutely Conti-
nuous Gauss Measures on SL(2,R), in: LNM 1064 (1983).

- Poguntke, Well-Bounded Semigroups in Connected Groups, EEEiEEQEE

Forum 15:159 (1977).

. Siebert, Absolute Continuity, Singularity, and Supports of

Gauss Semigroups on a Lie Group, Mh, Math. 93:239 (1982).



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 

