Applications of Lie semigroups in analysis

Joachim Hilgert

This survey is an attempt to point out how the Lie theory of semigroups occurs in
more classical parts of analysis. This means that I want to describe situations where
semigroups and/or their tangent objects have actually been used to solve problems
which did not arise in the semigroup context. The diversity of those applications
made it necessary that I restricted myself to presenting the semigroup tools together
with a short indication how they are applied rather than the application in full detail.
To compensate for this I have included a fairly long list of references.

Analytic continuation of unitary representations

The abstract setting for this section will be the following. Let G be a Lie group and
7: G — U(H) a unitary representation, i.e., a group homomorphism into the group
of unitary operators U(H) of a Hilbert space ‘H such that the map GxXH — H
defined by (g, f) +— w(g)f is continuous. From 7 we want to construct

m: T — C(H),

where
— C(H) is the semigroup of contractions, i.e., norm decreasing maps H — 'H

— T is a complex manifold and 7 is holomorphic as a vector valued map
— @ is the Shilov boundary of I" and 7 is an analytic continuation of 7
— I'is a semigroup and 7 is a representation of I'.

1. The metaplectic and the oscillator semigroup

Before we go into more theoretical aspects of the analytic continuation we describe
a few relevant examples. Our first example has been studied by various physicists
in the context of nuclear models. The objects of interest for these physicists were
a class of integral operators on the Bargman-Fock space F, of entire functions

on C” with the L2-norm given by the measure du(() = 7~"e¢ ¢d(. The key
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observation was that these integral operators formed a semigroup, so the deterrm-
nation of a matrix semigroup for which the integral operators form a repre§entat10n
would be useful in replacing calculations with operators by simple matrix calcu-
lations. At least up to constants one could do that for a subsemigroup of the
complex symplectic group. In [17] KraAMER, MosHINsKY and SELIGMAN showed that
it is possible to extend the Projective representation of Sp(1,R) on the Bar.gmann-
Fock-space defined by the uniqueness of the canonical commutator relations [2]
to a subsemigroup with interior in Sp(1,C) and applied this representation to the

We call a function op C" of Gaussian type if it is of the form ¢ — e~ 2¢"AC where
A'is a symmetric complex matrix. Note that such functi
all of C". Further we call a function of Gaussian type on Cn

a Gaussian function
if it belongs to the Bargmann-Fock Hilbert space Fn. Let

be an element of 5, the Siegel dom

ain of complex Symmetric 2n x 2n-matrices
such that X*X <1, Then we set

A'.’((C,J) = e"%(CtAC+2CtBE+B*Da) _ e__%thv,

where v = (¢!, 5. The corresponding kerne| operator

fo (¢ /C KX 0) fwrdu()

will also denoted by Ky, i.e., we have

Kx f(¢) = . e-%(CtAGZC'BG@‘Dmf(w)d“(w).
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Let X, Y € Q,, and
(A BYy,_(4 B
X=(p D)’Y‘(Bt D)’

then we have
1

KxoRy= ——Kz: Fo — Fn
(det(1 — AD))*
where
g A+ (BA — AD)~'ABY)* ~B(1 - AD)"'B 3 )
"\ -BA-A4D)"'B* D+ (B'DA - AD)"'B)")"

Here C* = 3(C + CY).

In [2], BARGMANN gives a realization of the projective representation of the sym-
plectic group coming from the Stone-von Neumann Theorem via kernel operators
on F,,. He does not use Sp(n, R) but the isomorphic group G = U(n, n)NSp(n, C).
Note that GG is the set of all complex 2n X 2n-matrices of the form

s=(5 %)

where A and B are n X n-block matrices, which satisfy

AA* - BB* =1
A'B=B'A

or, equivalently,
A*A-B'B=1
A'B=B*A.

From this it follows that A is invertible and that the matrices EA__' and -A"'B
are symmetric. It is shown in [2], §3 that the projective representation of G on ¥,

is given by g — Fo(¢,w), where

Fy(¢ D) = €' BATI AT BT AT T AT B,
g\he -

This means that F, is a kemel operator of Gaussian type with matrix

xo- (B 4.
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In [5] Bruner and Kramer formally extend these? kernels by §imply replaqr;g
B by an arbitrary C' and then find conditions in which the 'resultmg kernels ylel
decent operators. The result is that it makes sense to wnte. the above formula
for a subsemigroup of contractions in the complex symplectic group, where the
hermitean form which is being contracted is not a positive definite one. More

precisely, if V' is a complex vector space and B:VxV — C g nondegenerate
hermitian form, we call

Se={g € GI(V): B(gv, gv) < B(v,v) Vv € vV}

the semigroup of B-contractions. s tangent wedge L(Sg) = {z € gl(V):ef'e C
Sp} is then given by

L(SB) = {z € glV): B(zv,v) + B(v,zv) < 0}. (1.1)

(See [11].) Note that the interior 5% of Sp is given by the above formula with <

replaced by <. Now we can describe our subsemigroup of Sp(n, C) and its relation
to the Gaussian kerne] operators (see [9]).

Lemma L1. Ler B:C" x " C be the hermitign form given by the matrix

(=10
L= ( 0 1)
and Sy the semigroup of B-contractions. Then

o o) e,

defines a map o Dy — 80

B Where D = {X ¢ Qp,,: det(B) # 0}. The map ¢ is
invertible with inyerse U1 5% — Dy given by

w2 p)=- (4 Y.

Proposition 1.2, (i) The ser Sh =

GK¢ of Gaussign kernel ope

homomorphism o Sf) — §3.
(i) The set

Sa={(cKy) e Sh:c? = det(~B)},



Lie semigroups in analysis 31

where

A B
X=(p p)
is a subsemigroup of Sg and the semigroup homomorphism ¢: Sq — S% is a double
covering, L

The proposition above shows that the double covering of S% together with its
canonical map into So can be viewed as an example of our abstract setting as
stated at the beginning of this section. Following Bruner we call this semigroup
the metaplectic semigroup.

Another example of a semigroup extension, which arises in a similar way, and
in fact turns out to be essentially the same, can be found in Howe’s paper [14]. His
goal, however, is purely mathematical, namely the proof of certain estimates for
symbols of pseudo-differential operators. On the other hand the actual application
of the resulting semigroups is also of a technical nature. Here, too one considers
certain integral operators, this time on L?(R™), and shows that they can be viewed
as a representation of a semigroup. The algebraic structure of this semigroup, or
rather a simple extension of this semigroup, is then what is used in the proof of
the estimates. Again we give the precise definitions.

We call a function on R" a function of Gaussian type if it is of the form
£~ e~ 1€"4€ where A is a symmetric complex matrix. It is integrable if the
real part of A is positive definite. We call a function of Gaussian type a Gaussian
Junction if it is integrable or, equivalently, if the real part of A is positive definite,
i.e., if A belongs the generalized Siegel upper halfplane Sy.

Let Sy, be the Siegel upper halfplane of complex symmetric 2n X 2n-matrices

with positive definite real part and let
(A B
X=(g p)
be an element of S,,,. Then we set

(ELAER2E Byn D) _ e~ v Xv

1

Kx(E,m=e

where v* = (¢!, ). Again the corresponding kernel operator

fro (6 | Kx(&mfmdn)

Rn

will also be denoted by Kx, i.e., we have

Kxf(©= f e~ HE AGET BT f) iy,
Rﬂ
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As in the previous case one derives the semigroup property from the multiplication
law of the integral operators (see [14], 3.2.2).

LelX,YESZn
(A By, _(4 B
X=(j D)’Y“(Bt D)’

then we have

(2m)"

KX o KY = =
det(D+A)5

Kz *(R™) — LR

where

- (A ~BD+AT'BY _BD+ i) 1B
~BD+N)'B* D-BuD+ A1 |

: ' lectic semigroup it is possible to find a smaller
semigroup by restricting the scalars to certain square roots depending on the kernel.

A B
Do={x=(4 D) €Smidet B2},

Then the sets S5 = {(cky) e GKg: X € D,} and

Stw={(cKx) € §%: 2 = det(~;i)},
i

where



Lie semigroups in analysis 33
Proposition 1.3. ([14], 13.2) Let v = (¢!, ') and

X:(A B)GSzn.

Bt D
Then
_ @mE
AP0 et Dyt X
with

-~ (A—(B—imD YB' —ir) —A+(B—im)D(B" +in) P
X (—A+(B+i7r)D“(Bt—i7r) A—(B+i7r)D—1(Bt+m))€ n:

We denote the map X — X by 7:Som — San.

Proposition 1.4. ([14], §7 and [13]) Let § (R™) be the space of Schwartz functions
on R*" then

2
- (SRM™), xp) — (S(R™), 0)
Is an involutive algebra isomorphism, where %, denotes twisted convolution, i.e.,

By xw Fa(v) = f Fiw)Fy(v — w)e ™ TV dw
R

with
0 1
=5 o)
and o the composition of integral operators on L*R™).

This now shows that the Weyl transform yields a canonical isomorphism
p: (GKr, *tw) = (GKRr, 0).

For the semigroup of Gaussian functions with twisted convolution we can give a

subsemigroup via squareroots and a double covering onto a semigroup Of'contrac~
plectic group. Unfortunately the construction is not as

tions in the complex sym )
p y group. We have to consider

straightforward as in the case of the metaplectic semi
the operator Cayley transform defined by

cop(@ =@+ Dz =D’
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1 _ —
whenever the inverse of T — 1 exists. We note that (x+1z -1 1

@+ -H' -@-Dlr- 1)~ =2(x—1)7" so that we can apply the Cayley
. _
transform twice.

Remark 1.5. Set D.={z € g(V):det(z — 1) # 0}.

() i De— De is the identity.

(i) S% < D ' o -
(i) e LSEN D. — SN D, is a bijection.

Now we consider the hermitean form Bg on C" given by the matrix

ir=i( % o)

The subsemigroup of Sp(n, C) consisting of all elements which are contractions

w.rt. Br will be denoted by Sp,. Note that it follows from (1.1) that the edge
of L{Spg) is sp(n.R). In fact we have

Br(X v, v) + Br(v, Xv) = 2Re(Bg(v, Xv)) = 2Re(iv* J Xv).

Lemma 1.6, The map 3:Mat(2n,C) — Mat(2n, C) defined by 3(X) = ~LJX

induces a linear isomorphism 3: Sy, — intL(Sgg) which maps the set Diw =
[X € 8y,:det(X +inJ)# 0} onto D, (see Remark 1.5). g

Now we are ready to describe Howe’s semigroup.

Proposition 1.7. ({14}, §12) The ser wa = {(cKx) € .GKR'- X €Dp}isa sub-
semigroup of (GKg. 1) and the map (¢, X) v cop(~=J X) induces a semigroup

homomorphism S;,. — Sg_. Moreover the set

det( X +ind
Stw={(cKx) € Sy = _‘_’_(_(_2_7;).2%12}

is a subsemigroup of S8

: tw and the semigroup homomorphism cyy, © 3. St — SBa
is a double covering.

Howe calls the semigroup S;,, the oscillator semigroup and gives various references
to work which comes close to defining this semigroup. A remarkable feature of this
semigroup is that it contains many classical operators. The Shilov boundary of the
the oscillator semigroup is the double covering of the real symplectic group, i.e.,
the metaplectic group, but it is not trivial to show that the semigroup representation
is an analytic continuation of the metaplectic representation. One way of doing
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this is to use the fact that the oscillator semigroup is isomorphic to the metaplectic
semigroup. The isomorphism is given via the isometry U: L*(R") — F,, given by
(see [1, 2})

Uf(Q)= - U(C, &) f(&)dg,
where

U, &)= W—%e-%(CZHEZHﬁCtﬁ.

This isometry leads to a map U,, ,, from (GKR, o) to (GK¢, ) which, on the level
of matrices is given by a: X — c,,(X) ™!, a bijection from S, to Q,, with inverse
Y — —cop(Y). It turns out that the maps a: Sy, — £y, and p: Sy — 8oy, induce
bijections a: D, — Dgq and g: Dy — D,, Tespectively.

Note that the map #: S, — S, given by

8(cKx) = 21 cKarx

is an automorphism. If we now denote by 6 the multiplication by 27 we can de-
scribe the interplay of the metaplectic and the oscillator semigroup by the following
commutative diagram with bijective vertical maps.

B . Cop o
(GA’R, *fw) 2 Stw R Dtuy —_— lnt L(SBR) e SBR

Lp Lp Lp
(G ’R,O) Q So — ng
To 16 1 | ¢geo
(GA’Ra o) 2 So — Do
l Un.n l Un.n l a ‘
(GKcyo) 2 Sa — Da - S

The only map that has not been described before is Cgeo, @ geOMmelric Cla),{e).
transform, i.e., an inner automorphism of Sp(n, C) given by cge0(g) = hogh,  with

"":%(i L)

Added in proof. The Fock realization of the oscillator semigroup h-as been studied
independently by FoLLAND (cf. G. B. Foliand, Harmonic analysis in Phase space,

Ann. Math. Studies 122, Princeton Univ. Press,1989).

2. Hardy spaces and realization of the holomorphic discrete series

group with finite center. A central object of the har-

Let G be a semisimple Lie _
} regular representation of G

monic analysis for G is the decomposition of the (left
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on LHG) into a direct integral of irreducible representations. The representations
which occur in the regular representation come in finitely many series. These Series
are in one-to-one correspondence with the conjugacy classes of Cartan subgroups
of G. In [8] GeLraND and GINDIKIN put forth a program to realize these representa-
tions on spaces of holomorphic functions on certain complex domains associated
to the conjugacy classes of Cartan subgroups in a natural way. Their approach 1s
as follows.

Suppose that G is contained in a complex Lie group G¢ with Lie algebra gc.
the complexification of g = L(G). Further let o be the involutive automorphism of
(i whose set of fixed points is G. Now let H L ..., H" be a set of representatives
for the conjugacy classes of Cartan subgroups of G. These Cartan subgroups have
complexifications H, which are defined by L(H?) = L(H 1y g. Note that for

each HJ we find a complementary group H; in [ & defined by

Hj={ge H.:ao(py=g""}.

It turns out that U§=1 GH;G = G¢. In order to obtain a disjoint union one
has to replace H; by certain “Weyl chambers”. One can show [40] that these
“Weyl chambers” are of the form expic;, where c; is an open convex cone in
the L%e algebra bi of Hi. The sets G(expic;)G are open in G¢. They are the
d?matn§ mentioned above. The space H(c;) of holomorphic maps on the domain
Glexpic;)G consists of all holomorphic maps f: G(expic;)G — C which satisfy

sup ] —tp 2
91 €G h€expic; G‘f(gl glg)‘ dg < 00, (21)

GeLranp's and GINDIKIN'S paper contains no proofs, and it took nine years until
t_here appeared a paper, {40}, providing proofs for some of their claims. STANTON
its author,- showed that in the case that H; is a compact Cartan sub.group an(i
(; ;1 a Cehr-tam Weyl chambf::r,‘ the space above is indeed non-empty. In order t0
% 0\2‘ t _lj }l}e( ?;;rove(; that it is possil?le to analytically continue the representations
Ih)\‘ ») of the holomorphlc discrete series from G to Glexpic;)G and
’ Oerr‘lm'cak(:iul.ated that all 'the matrix units g (m(g)v, w)y, for v,w E]’H ) are
domalirrileto l‘f:’hﬁg:ih)-e Nel;tiler. GELFAND jdnd GiNDikiN nor STANTON noticed that the
ubsemigroup of G Y;ﬂh ytically Coptmusad the holomorphic discrete series was a
1982 o wm{;( o c. Theone who did notice that was G.I. O’suanskil. As early as
com];lete N [hg:lto z; vSersmn of the Gelfand-Gindikin program which was far more
in a Russian proceed; TANTON (see [31]). Unfortunately, his work only appeared
describe OL'SHANsm}SES v;)(lume and therefore was virtually inaccessible. Let us
The fins hsomation & ‘t:lor (note th.at he uses the right regular representation).
where W is an invart at the d‘m}am G(expic;)G can be written as G(expiW®)

an invariant (under inner automorphisms) convex cone in g with
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interior W, But it is known from earlier work of OL'sHanskii’s [28] that this set
is an open subsemigroup of G. We denote it by T°(W) and its closure by I'(W),
Now we can replace the definition of H(c;) given above by saying, a holomorphic
mapping f: (W) +— C belongs to H = H(W) if

T — ] gy < 5o, 22)

Note that in this formulation we can understand the definition of H(1) not only
as an analogue of the classical Hardy spaces [41], but even as a generalization.
In fact if we set G = R and W = R* then G¢ is C and I"°(W) the upper half
plane. Thus the inequality above is just the defining inequality of the classical
Hardy space. We note at this point that one of the strong points of OL'SHANSKII's

treatment of the Gelfand-Gindikin program is its flexibility.
It is easy to see that one has a representation of ['(W) on H(W). In fact, for

f € HW) and v € T(W) we define a function 7(y)f on I'°(W) by the formula

TN = fn)-

Theorem 2.1. The following statements hold under the present circumstances:

(i) H(W) is a Hilbert space w.r.t. the norm ||-||x. | |
(i) There exists an isometry I: H — L*(G) such that for an arbitrary function

f € H and an arbitrary sequence 1,7z, ... in I°(W) which converges to 1,
the sequence {v; f} converges to I f w.r.. the metric of LA(G).

(i) T commutes with right translations from G, i.e., IT(g) = R(g)1. ,

(V) T () is a holomorphic representation of the semigroup T°(W) on H(W). O

Up to this point it is not yet clear whether all these statements are trivial, ie.,
whether H(IW') is non-empty. But OL'sHANSKii also computes the image of 1. We
have to introduce some more notation in order to describe the result. Let = be an
arbitrary unitary representation of the group G on any Hilbelrt space H To each
X € ig one can associate the operator 7(X) on M which is determined by the

condition
w(expitX) = Expitr(X), Vi€R.

Note that here Exp is a formal expression which really means that i@(X ) is the
infinitesimal generator of the unitary one parameter group t = w(m?xp it X). We
say that (X ) < 0 if the spectrum of the operator m(X) is conta-mf‘:d n the halfline
(=00,0]. Finally we say that the representation m is W -admissible if m(X) <0

for all X €W,
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Theorem 2.2. I(H) is the biggest R(G)-invariant subspace of L such that the
corresponding unitary representation is W-admissible. 3

Ov-suanskii also gave a characterization of those representations which are W-
admissible with respect to some invariant cone W. They are exactly the highest
weight representations (see [15], [28]). If W is the minimal invariant cone in g
then the V¥ -admissible representations which occur in the regular representation
are exactly the representations from the holomorphic discrete series. Analogous

results are possible also for certain non Riemannian symmetric spaces (see the
work of OLarsson and @rsTeD [24], [25] as well as [12]).

3. The analytic continuation procedure

We now give a more detailed description of OL'sHANSKIT's analytic continuation
procedure. If G is a Lie group and S is a subsemigroup of G then the tangent
object L(S) (according to {11]) is a Lie wedge in g = L(G) which means that it
is a closed convex cone which is invariant under the inner automorphisms of the
form ¢ 7 with r contained in the edge L(S) N ~L(S) of L(S). If now G is a real
Lie group inside a complexification G¢ and S is a subsemigroup of G'¢ containing
(v then L(S) is of the form g +:W where W is a wedge in g which is invariant
under all inner automorphisms of g. Ovrsuanskii showed in [28] that for simple g
Fhe semigroup generated by L(5) is just the product (expiW)G where this product
1s even a direct product of topological spaces. The same result is true for solvable
groups.

In this section we consider the following situation. Let G be a complex Lie
group with Lie algebra g and g be a real form of go. We assume that G,
the una?ytic subgroup of G with Lie algebra g, is closed. Let W be a proper
generating invariant cone in g such that the set T(W) = (expiW)G is a closed
subsemigroup of G¢. Moreover we assume that the map GxW — T(W), defined
by (‘g..z‘) — (expur)g is a homeomorphism and even a diffeomorphis’m when
restqcted to G X 1'1"’. Fipally we assume that there exists a (real) automorphism
:re ;tfgi-;} wgl'mse differential is the complex conjugation of gc with respect to the
_ Let 7 E — U(H) be a unitary strongly continuous representation and H> the
set of (- -vectors for 7. Then for any z € g the mapping ¢: t ~ w(exptz) is a
snongly continuous unitary one-parameter group in H so that by Stone’s Theorem
there is a unique, densely defined, skew adjoint, infinitesimal generator —iH for
0. On ‘H™> this generator is given by dn(z) where dr:g — L(H™) is m: Lie
algebra representation associated with 7. This infinitesimal representation extends
to the universal enveloping algebra U(gc) of gc and we set

C(m) = {y € g:(idn(y) | ) <O VE € H®) (3.1)
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where ( | ) is the inner product on H. In other words C(w) is the set of elements
of g for which idn(x) is negative (see [6], Section 4.1). The elements of C(r)
will be called negative elements.

Proposition 3.1. C(x) is a closed convex cone in g which is invariant under Ad G,

0

For our invariant cone W in g we denote the set of all unitary representations
7 G — U(H) for which W consists of negative elements by A(W).

Definition 3.2. Let S be a semigroup with unit and *: S — S a bijection such that
s*F = 5 and (5187) = 52 ® for all s , 51,52 € S. Then ! is called an involution on S
and the pair (S,%) is called a semigroup with involution.

If H is a (complex) Hilbert space and C(H) = {T' € B(H): ||T|| < 1} is the
set of all contractions on 'H then (C(H),*) is a semigroup with involution, where
T is the adjoint of T w.r.t. the inner product on H. We provide I'(W) with an
involution setting ¢* = a(¢)~! for all g € G¢. The only thing we have to do

in order to verify that ¥ is an involution of ['(W) is to show that it leaves I"(EV)

invariant. But this follows from ((exp :zf)g)tt = 0((exp :E)g)_I = ((CXP —l“)g) =
9 '(expz) € T(W).

Now suppose that # € A(W). Then for any x € W the operator idn(z)
generates a selfadjoint contraction semigroup (see [6], Theorem 4.6) which we
denote by t +— T,(¢).

Definition 3.3. Let (S.*) be a topological semigroup with involution, then a
semigroup homomorphism p: S — C(H) is called a contractive representation of
(S,F) if it preserves the involution and is continuous w.r.t. the weak operator
topology on C(H). A contractive representation is called irreducible if there is no
closed non-trivial subspace of H which is invariant under p(S).

A contractive semigroup representation p: T(W) — C(H) is called hqlomgrphic
if the map p Irwye is holomorphic (for the definition of holomorphy in Hilbert-
(Banach) spaces see [42], Section 4.4).

We want to construct a holomorphic representation of I'(W) starting from a
representation © € A(W). The definition of the analytic continuation is straight-
forward. In fact, for v = (exptx)g € T(W) we define 7(7) = Tm(t)w(g).. Then
we get a strongly continuous map 7:I'(W) — C(H) which preserves the 1nvoh.1ﬁ
tions. The problem now is to show that 7 has all the desired properties. The main
problem is to show the holomorphy. _ .

First one notes that if f: (W) — C is continuous and f [row)o is holomorphic
such that f vanishes identically on G, then f = 0. Then one has to use NELSON’s

theory of analytic vectors (see [42]).
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Lemma 3.4. There exists a neighborhood UoflinGeanda holomorphic mapping

7ol — H for each ¢ € H, where H is a dense subspace of H consisting of
analytic vectors, such that

T(g)=n(g) forallge GNY. 0

Lemma 3.5. The following assertions hold:
(1) TOE=Te(y) forall v € TWYNU, & € H*.
(i) 4~ T(y)E is holomorphic for all £ € H and v € T(W)? NU4.

(iif) The map v — 7(y)§ is real analytic on T(W)Y° for all £ € H”, where HY is
the set of analytic vectors in 'H for .

(iv) The map ~ + 7(7) is holomorphic on r(Wwhe. O

Theorem 3.6. Let 7 € A(W) then w extends uniquely to a holomorphic represen-
tation T of T(W").

Proof. We know that the map v — 7(7) is holomorphic on T'(W)° and extends
. Moreover we know T(y%) = 7(7)*. If now g € G is fixed then v — 7(7g) and
-+ 7(7)7(g) are holomorphic on T(W)° and coincide on G. Thus we have

T(vg) = T(w(g) = T(y)7(g).

Now we fix v, € T(W) and consider v = T(v,7) as well as v — 7{yo,)T(7)-
Again we know that both maps are holomorphic on T(W)° (since T(W)” is 2

§emigrogp ideal in I‘(W)) and by the above they agree on (. This shows that 7
is a semigroup homomorphism. The uniqueness of the extension is clear. O

It is also possible to prove a converse of Theorem 3.6. Note first that the restriction

to C;‘ of a holomorphic representation is always a unitary representation. In fact
we have:

Remark 3.7. Let (.S,ﬁ) be a semigroup with involution and p: § — C(H) a con-
tractive representation. Set H = {s € S:s*s = s*s = 1} then H is a subgroup of

S and the restriction of p to H is a strongly continuous unitary representation.

Theorep 38. Let 7 be a holomorphic representation of T(W) then any x € W is
a negative element for = = 1 |, so that 1 € AW).

Proof. If x € W we consider the map

z += 7(exp 2ix) = 7 (exp(i Re zz) exp(— Im zx))



Lie semigroups in analysis 41

for Rez > 0 and the hypothesis says that it is holomorphic for Rez > 0. On
Re z = 0 this map is just it — 7(exp—tz) = m(exp —tz). Since T(!) = 7()*
we know that 7{exptir) is self adjoint for ¢ > 0. If dr(ix) is the infinitesimal
generator of 7(exptix) then we see that dr(ix) = idw(x) and the claim follows. (]

Analytic extensions of semigroup representations

OvL'suanskii’s original interest in semigroups did not come from the Gelfand-
Gindikin program. It rather occurred to him that he could use semigroups in
the study of representations of infinite dimensional analogues of certain classical
groups. A key ingredient in his “semigroup method” is again an analytic con-
tinuation procedure — this time from a representation of a local semigroup to a
representation of a related Lie group. This procedure is due to two physicists,
LuscHer and Mack [22], and can be viewed as an extension of the Hille-Phillips

Theorem for one parameter semigroups.

4. Representations of infinite dimensional classical groups

The purpose of OvusHanski’'s work (see [26], [27], [32]) is to determine those
unitary representations of the infinite dimensional groups SOg(p,oc), U(p, o),
Sp(p, 00) for p =0, 1,2, ... which are admissible in a sense to be specified below.
In order to simplify notation we restrict ourselves to the case U(p, o0). This group
can be realized on the complex Hilbert space [>(N) as a subgroup of the set of
invertible operators preserving the (non-definite} inner product J(§, &) = (¢, &) =
6= = |€p|2 +[Eps1 |*+... We denote by G(n) the group of all such operators
that preserve all but the first n elements of the canonical basis of I>(N). Then we

define
G=Up0o) = | 6m.

neN

Further we let G,, be the subgroup of G consisting of all operators which fix the
first n basis vectors. If now 7 is a unitary representation which is continuous w.r.t.
the inductive limit topology, i.e., when restricted to the G(n), and H the Hilbert
space on which the m(g) operate, then we denote by H,, the space of vectors in H
which are fixed by the elements 7(g) with g € Gr. The representation 7 is called
admissible if the space Hoo = Unen Ha is dense in H. Ol’shanskii shows that
this is equivalent to continuity w.r.t. the norm topology on g.

If one views the elements of G as infinitely large matrices it is clear what it
means to associate to g € G(k) its left upper corner of size n. We denote this map
by 6,, and note that its image is contained in the semigroup I'(n) of J-contractions,
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where J is the hermitean form from above but restricted to the span of the first n
basis vectors. More is true:

Lemma 4.1. For k large enough we have

(i) 0,(G(k) =T(n).

() If g1, 90 € G(k), then 0(g1) = 0(g,)
wv € G, (k)y=Gk)n Gn.

(i) The map 6,,:G(k) — I'(n) is proper and open. L]

if and only if g, = ugv for some elements

Next we assume that 7 is an admissible re

H,, is non-zero. Let FoiH — H,, be the orthogonal projection and C(H,) the
semigroup of contractions o Hp, w.rt. the Hilbert inner product. The lemma

above now guarantees the existence of a continuous map 7,:I'(n) — C(H,,)
defined by 7, (9(9)) = Pam(g)|y, .

presentation of G and 7 is so large that

Theorem 4.2, T T(n) — CH,) isa holomorphic semigroup representation. []

Note that we are i the following situation, (7 — Gl(n,C) is a Lie group with
involution ¢(2) = — X! ywhere 1 denotes the adjoint w1 the form J. Let
8+ ={r € g:do(z) = tr} and H = {9 € G o(9) = g},. Further C = {rega=

e, (r&.&) <0 VéeCn = P(t,... )} C g is an Ad H-invariant cone and I'(n)
has g, + (" as tangent cone.

.Let 8" =g.+ig_and Suppose that * denoteg the simply connected Lie group
with L(G*) = 8. In our case we

_ have g* = u(p, g) @ u(p, ¢) so that we may view
g as a part, the diagonal, of g

dr(iz) = idp(zr) Yy e C
and

dn(r) = dp(z) Vz ¢ g..
We ought 10 note here that
l

potheses. In particular it woylq be sufficient 1o
(n).

If .one applies the Liischer Mack theorem to all the 7, I'(n) — C(H,,) then one

TG ) — U (Hy) for large 5, These representations may
fepresentation 7*: g* _, 17 (H), where G* = Unen G- Tt
i g of holomorphy of the fepresentations 7,
et | Sequences of natyrg] numbers (roughly to be interpreted as highest
1ghts for the subgroups U(oo) x U(oo) of Gg*). Finally one notes that with the
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embedding G C G* one has m = 7*|g so that = can also be described in terms of
the sequences mentioned above (see [32]).

Laplace transforms

It is well known that the Fourier transform as an integral operator on R has a
group theoretical interpretation. The generalizations of the Fourier transform to Lie
groups play an important role in (non-commutative) harmonic analysis. Whereas
the Laplace transform, an integral operator on the semigroup R*, is also important
in classical analysis, until recently there seems to have been no attempt to generalize
it to a wider class of semigroups. We will describe below some work of Mizony
(see [23]) and Faraur (together with the physicist Viani, see [7]) which can be
viewed as first steps in this direction.

5. Semigroup theoretical interpretation of special functions

Let G/H be a symmetric space and G = K AN the Iwasawa decomposition of
G. Consider the boundary K /M of the Riemannian symmetric space G /K, where
M is the centralizer of A in K. Note that K/M = G/P with P = MAN the
corresponding minimal parabolic subgroup. This shows that G operates on K /M.
Now let O be open in K/M and set

S(0)={g€G:g” O C O}

It is clear that S(C) is a semigroup. If O is an H-orbit we can consider the
image measure du on (O of the Haar measure dh on H. The Poisson kernel

Po: S(O)x 0 — R* is defined by

d(g™ "y pu(m)
Fo(g,m = _%;Xn_)—

for g € S(O)and p € O.

-1
Proposition 5.1. (a) Po(g1g2,n) = Polgr, N FPolg2, 91 1)

(b) Po(h,n)=1forall h€ HneO. 0
This proposition shows that for any @ € C
o) fm) = Polg,m* flg™"m .1)
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defines a representation of S(0) on the space of functions on €. If the function
Ta(g)l € LYO, dp) then we set

B(o,g)= / (rol @) 5.2
O

Remark 5.2. Let 7,(g)1 € LY(O,dy) for all g € S(O)°, then
(a) ®(a,q)=D(a,highy) forall hy,hy € H. -
(b) ® (e, g)®(a, ) = [ @, ghg)dh.

Now we assumne that the open semigroup S(QO)° admits a Cartan decomposition
5(0)’ = HSGH (5.3)

where S4 C A and the Haar measure of G on S(O)° decomposes as dg =

dhdv(s)dh. Then the second formula from Remark 5.2 with s;,s, € S% can
be written as

O (a,5)P(a, 8) =

K(sy, 52, 5)® (a, 8)du(s), (5.4)
5%

for some kernel function K. Now we can define a convolution product and a
spherical Laplace transform by

frogls) = / 0 f K(s1, 52, 9)[(s1)g(s2)du(s,)du(5) (5.5)

for f.g € C2(59) and

Lo(fia)= | f(s)D (e, s)du(s) (5.6)
So

A
for all o with (mo(s)1) € LYO, dv) for all s € S(O)°. We obtain

Proposition 5.3. Let f, g € C(S9) then

Lo(f *o g)e) = Lo(f)a)Lolg)a). o

With this purely formal machinery at hand we can indicate Mizony’s results. They

are of a fairly technical nature, so0 we give just one theorem omitting some details.
For the full story we refer 1o [23 ].
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Theorem 5.4. Let G = SOy(1,n) and H = SOy(1,n — 1) then 59 can be identified
with the positive reals such that

du(t) = ————dt.
V)= -

The function ® (a, t) can be defined for o = p— 1A where p = 1-2_—1 and ImA > p—1.
The @ («,-) are exactly the Jacobi functions of the second kind. O

Finally we note that Mizony also gives an inversion formula for the spherical
Laplace transform in the case G/H = SOgy(1,7)/SOp(1,n — 1).

6. Ordered spaces and partial diagonalization of integral operators

Let X = G/H be a symmetric space with an invariant ordering <, i.e., z < y implies
gz < gyforall g € G. We assume that the intervals [y, z] ={z € X1y < z < r}
are compact. A kernel K(z,y) on X is called a Volterra kernel if it is continuous
on I' = {(x,y):y < z} and vanishes outside I. We denote the set of all Volterra

kernels by V(X). The product of two Volterra kemnels is given by

KlﬁK2(x9y): Kl($7z)K2(zay)dz- (61)

ly.x]

A Volterra kernel is called invariant if K(g-z, g-y) = K(z, y) forall z,y € X. The
set of invariant Volterra kernels is denoted by V(X )%. Note that V(X) as well as
V(X)* form an algebra under . o o
Let z, be a base point of X fixed by H. Then we can identify an invariant
Volterra kernel with a function f:G — C which is continuous on S =.{g €
G:gx, > T, }, vanishes outside S and is bi-invariant under H. Using this one

finds

Proposition 6.1. V(X)" is commutative. O

(O) satisfying the various hypotheses from

Now we suppose that S is of the type S g the
oming from invariant Volterra kernels can

the previous paragraph. Then the fx ¢
be viewed as functions on S3.

K, be Volterra kernels and fx, and fx, the associated

Proposition 6.2. Ki, '
position 6.2. Let K, lie in the domain of the spherical

functions on 8. Suppose that fk, and fk,
Laplace transform, then

Lo(fx)Lol(fKk) = Lo(frk,)- O
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Now suppose that G acts on R* and that R* is ordered by a proper generating
cone. Consider the integral equation

Alu, v} = B(u, v) +/ N(u,u YA, v)du' (6.2)
Rk

: k
where A, B and N are Volterra kemnels with respect to the ordered space R*. We
make the following assumptions:

1) The equation (6.2) is G-invariant, where & acts simultaneously on the two
variables,

2) For all u and v under consideration (this may be less than R*) the interval

lv.u] is contained in a union of G-orbits U,ep G-up, such that the isotropy
group of u, is H for all p € P,

3) As a measure Space we can write

UGuw=pPxg/
peEP

with a finite measure dp on P,
) The orderings of U,

(¢.) = v then » > !
Then we can write

e Guy and G/H are compatible, ie., if u = (p,x) >

/ Now AW Od = / / N((p,2), (¢, ')A, '), (g, y))dz'dp’
SRy rJaig

= /I ) /[ ]N((p, WL 2 NAW, 2, (g, y)de' dpf
y.r

= /p i\'}).]}’:‘4p"q(.’1,"y)dp’

where -\p.p’(-r- r'y = N((p x
that \',  and A
of the compatibj
and A

). (0, x')) and A, (o' ¥) = A(p',2),(q,y)). Note
r'.q &€ G-invariant kernels. They are Volterra type kernels because
.hly (the continujty condition has to be weakened a little since N p.p
p'.q MAY Jump 1o zero within I). Thus we finally may rewrite (6.2) as

vo’o(fa,, )dp' (6.3)

nced partial diagonalization For a concrete ex I i
. ample involvin
G/H = SOo(l,n)/SOO(l,n =~ 1) we refer to (7). P :
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Differential equations and causality

Semigroups can be used in the study of the causal structure of homogencous
manifolds. Viewing causal (or timelike) paths as solutions of certain differential
inclusions this can certainly be viewed as a part of analysis. On the other hand the
methods involved are more geometrical than analytical in nature and moreover quite
similar to the methods which come from the interplay between Lie semigroups and
geometric control theory. Thus for this topic we only refer to the original papers
[19, 20], [10], [18] and Kupka’s article in these proceedings.

7. Stability of causal differential equations

In this section we describe a theorem of Panertz on the asymptotic behaviour of
certain differential equations. It has been used in the context of quantization for
curved space-times (see [35}, [36], [38] and [39]). We include this theorem because
the infinite dimensional analogue of the invariant cone in sp(n, R) plays a decisive
role in it and note in passing that also the invariant cones in su(2,2) show up in the
further development of Pangrrz’ theory as Killing vectors for positive conserved

(Noether) quantities (see [38]).
Let H be a real Hilbert space with inner product (-,-). Fora given complex

structure J on M, i.e J = J¢ and J* = I, we set
wy(v,w) = (v, Jw)
and

(v, w>J = (U, w) + ’in(L’, -w)

s0 that (H, (-,-).,) is a complex Hilbert space with respect 0 the complex structure
J. Note that w is a symplectic form on H. We set

Sp(H) = {g € GI(H):g' Jg=J}
and
wﬂﬂ={X€BUﬂuﬁJ+JX=O}
Consider the equation

%un=Ammn

where A(f) € Sp(H) and v(t) € H, and the corresponding operator equation

d
L o) = ABDS@). (7.1)
ﬁ&w 0)S()
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. . . on
The following theorem of Pankrrz gives sufficient conditions for a unique solutio
of (7.1) to exist and show a decent asymptotic behaviour,

Theorem 7.1. Let A:R — ¢ = {X € sp(H):w(Xv,v) 2 0Vv € H} be a
strongly continuous and norm bounded map such that

/ ) 1A jdt < 2.

-0

Then (1.1) has a unique solution 5t[~00,00] — Sp(H) with S(—o0) = | aig
(S + 1) is invertible for all t.

Note that (" is invariant under the adjoint action of Sp(H). The operator S = S(c0)

s interpreted as a scattering operator. The proof of Theorem 7.1 shows that it is
the Cayley transform of ap eleme

various quantization procedures
one also wants to know the degree of uniqueness of such a .J’,

Theorem 7.2. I ¢; A,SY be as above and assume that

/ Adt e 0 = {X e SP(H): w5 (Xw, v) > k|| Yo € H for some k > 0}.

Then Y ¢ (0

The last statement of Theorem 7.2

is related to the fact t
conjugate under Sp(H) to a skew

hat each element of C° is
hermitean operator.
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