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Group theoretical aspects of
Godel’s cosmological model

Joachim Hilgert

About thirty years after Einstein had found his equations for gravitational fields Godel
published a solution of these equations, which, when interpreted as a cosmological model,
allowed travelling into the past (cf. [G649]). It was the first model in which this property
is not a consequence of trivial topological reasons. Even though Godel’s model has been
rejected as a realistic one for various physical reasons there is a continuing interest in it
(cf. [MaST7], [Le90 ]). The aim of the present article, which is based on a lecture I gave at
the Godel-Gesellschaft in December 1990, is to provide an elementary description of this
model and a geometric explanation of the possibility of time travel.

Einsteins equations describe the connection of the geometry of the four dimensional
sparce time continuum M and the distribution of mass therein. Here geometry essentially
means the way of measuring “distances™ in the space-time continuum. If two points
r and y are close together, choosing appropriate coordinates r = (zg,3,%2,23) and
v - (u..¥1,Y2.¥3), one approximately has

3
dist(z,y)? = (z0 — v0)° - Z(xi )
I=1
Thi <YLows that the relativistic “distance™ does not have the properties of the usual
teuciidean) distances. The following figure illustrates the existence of points with negative
or rero square distance from a given point.

Figure 1
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If one collects all these “infinitesimal” pictures for all points of the space-time one
obtains a family of double cones D, one in each tangent space T, M, given as

D: ={veT:M=R*v'g,v =0},

where f; is a symmetric 2 x 2-matrix depending on z € M (cf. Figure 2).

Figure 2

In mathematical terms: we have a four dimensional manifold with a Lorentzian metric.

of zero length, i.e. ponting in the direction of the double cone and no particle can be
accelerated to more then speed of light. This means that the worldline of a particle can
only have tangents within the double cone.

. We require our model M to be time orientable, which simply means that we have
4 consistent and continuous way of choosing one half of the double cone D, as the cone

pointing into the future at z. The closed convex hull of the chosen half of D, will be
denoted by C,. Then massive particles must have worldlines w

of C;. Such curves we call timelike future directed.

In this context time-travel means: There exist closed timelike (future directed)
cuz;ves: Such curves can be manufactured by Wrapping up a space-time model, such as
[R* with the metric given above (i.e. Minkowsk; space), in an appropriate way (cf. Figure
3).

This is an exarpple of the trivial topological reasons referred to above. Godel’s model M
as a manifold simply is IR*. In the coordinates r = (z

ith tangents in the interior

0,%1,%2,Z3) the metric is given by

2 T 6211
ds® =(drg +e 'dr,)? — —2-dz§ —dz? — dz?
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Figure 3
or, what is the same, by
1 0 e 0
0 -1 0 0
Be=len 0 2

Godel shows the existence of closed timelike curves in this space-time using the explicit
coordinate transform

(zo,21,22,23) = (t,7,0.9)

defined via

et = cosh 2r + (cosy)sinh2r

He asserts that with this transform one obtains a new metric
4(dt? — dr? + (sinh® r — sinh® r)d? + 2V2(sinh? r)dodt — dy?),

from which one can easily deduce that for large enough R the circle

is a closed timelike curve (cf. Figure 4)
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Figure 4

Apart from the technicalities in checking the above formulae there remains the
question what this transformation reall

vields an explanation of the coordinate transformation.

First we note that there exists a four di

mensional group G of isometries of M. In
fact. if we embed M into IR® via 7 (z,1)

» then the group consisting of the matrices

10 0 0 «
01 0 o0 »
(a,b,c, d):=]0 0 et 0 ¢
00 0 1 4
00 0 o 1

with a,b,¢,d € IR acts freely on M. This means that the map AMasb,cdy: M — M defined
by matrix multiplication with (a,b,c,d) is fixed point free whenever {a,b,c,d) #(0,0,0,0).
Moreover the action is transitive, i.e. the point (0,0,0,0) can be moved to any other point

in M using one of the transformations ’\(a,b,c,d)- Note that these maps are differentiable
as maps from IR to IR* with derivative

dA\abc,a) =

OO
[ B oo B ST o)
1]

[~
o
—-_0 OO

Now a simple matrix multiplication shows that

t
d'\(a,b,c,a)ﬂ(o,o,0.0)df\(a,b,c,d) = Blap,c.d)s
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which shows that the group acts by isometries since Aa,b,e,0)(0,0,0,0) = (a,b,¢,d).

‘ In order to explain how group theory yields closed timelike curves we consider yet
- ‘another space-time model N. As a manifold it is simply the product of SL(2, IR) and
IR. Here SL(2,IR) denotes the group of real 2 x 2-matrices of determinant one. The
determinant is a quadratic form on the space M(2, IR) of all 2 x 2-matrices which clearly
is left and right inva riant under the action (matrix multiplication) of SL(2, IR). Thus the
determinant defines an SL(2, IR)-biinvariant metric on M(2, R) via

Ba(Y,Y) = det(Y).

The tangent space of SI(2, IR) in the unit matrix is the set sl(2, IR) of 2 x 2-matrices of
trace zero. For such a matrix we have det(Y') = —2tr(Y'2), so that on sl(2, IR) our metric
takes the form

1 0 O
0 -1 0
0 0 -1

when expressed with respect to the basis

(50) (04) (o)

The invariance now shows that the signature is the same at all points of SL(2, IR) and
thus we have constructed a Lorentzian metric on SL(2,IR). Taking the direct product
with the metric —dy? on IR we obtain an invariant Lorentzian metric on the space-time
(which at the same time is a group) N.

The Gauss-algorithm shows that any element of SL(2,IR) can be written in a
unique way as the product of a rotation and an upper triangular matrix, that is

coss  sins et v
(—sins coss) ( 0 e“")
(in Lie group theory this is called the Iwasawa decomposition). Therefore SL(2,R) can
be covered by H := IR x IR? = {(s,u,v)}. If we denote the group of rotations by K and
the subgroup of upper triangular matrices in SL(2, IR) by B then the group K x B acts
on the Lorentz manifold SL(2, IR) via ((k,b),A) + kAb~! by isometries. Moreover the

action is free and transitive as one sees from the above product decomposition. Note that
one use the covering map

(5,1,0) o coss sIins et v
. —sIns Ccoss 0 e

to lift the Lorentzian metric of SL(2,IR) to H and furthermore to obtain a free and
transitive action of IR x B by isometries on H. If one now takes the direct product
with IR one finds IR x B x IR acting freely and transitively by isometries on the simply
connected covering space N = H x IR of N.
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At this point one should note that the group IR x B x IR is 1somorphic to the
group G introduced earlier. In fact, G is easily seen to be the direct product of IR? with
a non-abelian two dimensional simply connected Lie group and there is, up to 1somorphy,
only one such group. Thus using such an isomorphism we can identify M and N as
manifolds. Both spaces are endowed with an invariant Lorentzian metric. Thus in order to
check whether the metrics on the two spaces correspond to each other one only needs two
compare them at one point. This means that we do not explicitly need the isomorphism
between the groups G and IR x B x IR but only the derivative at one point. In group
theoretical terms, we need the isomorphism on the Lie algebra level. The Lie algebra g of
G, or what is the same, the tangent space at (0,0,0,0) consists of the matrices

060 0 0a
00 0 0 b
(a,bc,d)):=]0 0 b 0
00 0 0d
00 0 01

whereas the Lie algebra g* of IR x B x IR is the space of triples (s, F,y) with upper
triangular matrices F of trace zero. For any pair (a,<) of non-zero real numbers the map

fosb.ed) = (e, (0 %)

Is an isomorphism g — g'. From the product decomposition of SL(2, IR) we see that as
a tangent space to N the Lie algebraof IR x B x IR is isomorphic to sl(2, IR) x IR via

(5 2)w= (2 )

Thus the derivative of the map identifying the manifolds M and N at (0,0,0,0)
by

is given

(a,b,c,d) s (( b ‘m*”) d).

—aa b

If we now calculate the metric induced o

. n IR* by the metric on sl(2, IR) x IR via this
derivative we find

2
(aa + %c)2 - %cz -~ 42

which for a = 32£ and v = /2 reduces to

1 1

2 2_2_12

2(a+c) 5¢ b° — d°.
On the other hand Gadel’s metric on IR? ig given by

(a+¢)? - %cz — b — 4%
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This means that instead of considering the metric on N defined using the determinant
and given by the matrix

1 0 O
0 -1 0
0 0 -1

with respect to basis of si(2, IR) described above, we have to use the metric which is given
by the matrix

2 0 0
0 -1 0
0 0 -1

on sl(2, IR). Note that the cone defined by this metric is invariant under rotations of the

form
U v . cost sint u v cost —sint
w —-u —sint cost w —u sint cost /]~

Therefore our given metric on N is not only invariant under the action of K x B x IR
but also under left multiplication with elements from SL(2, R).

What we have achieved by now is the following: we have identified Godel’s model
with a covering of SL(2, R) x IR equipped with a metric which is invariant under left
multiplication with elements from SL(2,IR). But for the elements of SL(2,IR) we have
a polar decomposition: each matrix can be written as the product of a rotation from K
and a positive definite symmetric matrix (this is called the Cartan decomposition in Lie
group theory). On the other hand any positive symmetric matrix takes on the form

cosy sing r 0 COSp —sine
Are = | _sin 0 L/ \si '
@ cosyp - siny  cos¢
The decomposition
cost sint A
—sint cost /T "¥

then yields new coordinates (t,r,0,y) for N, and hence for M , 1n which the circles
t = 0,r = R,y = 0 for large enough R are closed timelike curves. To prove this one
only needs to calculate the derivative %Am, of such a circle, transport it bac k to the

identity via A7 %Amﬁ and then calculate the square length of the result with respect to

our metric on sl(2, IR). One obtains

(r2 + %)(1 - cos? () ”2}' sin4(<p)) — 21+ cost(y) -2+- sin4(<,o))

which is positive for large enough r.

We have thus given a group theoretical construction of a coordinate transformation
which enables us to explicitly write down timelike closed curves for Godel’s space-time
model. But still this construction was particular for the special given model. What is
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remarkable is that the group theoretical approach can be used to find a testing method
for the existence of closed timelike curves in much more general models, provided there is
a group G acting on them freely and transitively by isometries.

The strategy is as follows (cf. [HHL89], [HH90]). One identifies M with the group
G and constructs a subsemigroup S of G as the endpoints of piecewise differentiable
timelike (or lightlike) future directed curves. It is then possible to show that there exist
closed timelike curves if and only if § = G. Thus one needs a criterion for the semigroup
S to be contained in a proper maximal subsemigroups of G. For a certain class of groups
(the ones which are compact modulo its radical) one can read this off from the position of
the cone C inside the Lie algebra g of G. To be precise, G admits closed timelike curves if
and only if the interior of C intersect each hyperplane in g which is a subalgebra. For the
Godel space-time this criterion can be applied and shows the existence of closed timelike
curves since each hyperplane in g which is a subalgebra contains either Rzo + Rz3 or
IRz,. Thus we can assert the possibility of time travel without resorting to the SL(2, R)
version of the model. On the other hand the space-time N with the original metric coming
from the determinant does not admit closed timelike curves.

Finally we note that the analysis carried out in this article can be reversed and then

together with the general method outlined above yields results about the controllability of
systems in reductive Lie groups.



(9]

J.Hilgert 11

References

[G549]

[HE73]
[HH90)
[HHLSY)
[Le90]
[Mas7]

[RST75)

Godel, K., An Example of a new type os Cosmologiacal Solution of Ein-
stein’s Field Equations of Gravity, Reviews of modern Physics 21(3)
1949, 447-450.

Hawking, S., and G.F. Ellis, The large scale structure of space- time,
Cambridge University Press 1973.

Hilgert, J., and K.H. Hofmann, On the causal structure of homogeneous
manifolds, 1990, to appear in Math. Scand.

Hilgert, J., K.H. Hofmann and J.D. Lawson, Lie Groups, Convez Cones,
and Semigroups, Oxford University Press 1989.

Levichev, A.V., On the causal structure of left invariant Lorentzian metrics
on the group M, x IR?, Sib. J. Math.31(4) 1990, 93-101 (Russian).

Malament, D., A note about closed timelike curves in Godel space-time,
J. Math. Phys. 28(10) 1987, 2427-2430.

Ryan, M.P., and L.C. Shepley, Homogeneous Relativistic Cosmologies,
Princeton University Press 1975.

Received Dec 12, 1990

Mathematisches Institut

Universitat Erlangen-Nirnberg

Bismarckstrafle 11

DW-8520 Erlangen

Electronic Mail: hilger@cnve.rrze.uni-erlangen.dbp.DE



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 

