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Elet G be a Lie group, 8 its Lie algebra and exp: g =G the associated exponential
T}Illctlon. A contr.ol system on G consists of a family 7 of vectorfields on G.
¢ sct of _endpomts of continuous paths in G, starting at the identity, which
z;lre piecewise integral curves for elements of % is called the reachable sct of
{1}. The system is called controllable if the reachable set is all of G. We call
the control system left invariant if it consists of left invariant vectorfields. Thus
such a control system simply is a subset x of g. It is well known (cf. [JST2,
JK 81]) that in order to study controllability properties of such systems it is
enough to consider the closed convex cone generated by x-
_ SQ let C be a closed convex conein g which we will assume to have non-empty
Interior. Then the associated left invariant control-system is controllable if and
only if thc closed semigroup S(C) generated by exp C is all of G (cf. Corollary
VL1.17 in [HHL89]). In this case we call C controllable in G. If G is simply
connected we omit the reference to G. We will give a simple geometric character-
isation of controliability in the case that G is reductive, C 18 pointed, i.e. satisfies
Cn —C=10),and is invariant under the adjoint of K where NAK is an Iwasawa
decomposition of G.

There are several contexts in which the controllability problem described

Vig0] Vinberg poses it as an open problem for simply con-
cones in order 1o characterise

Lie groups. Olshanskii gave
d sufficient condition for €
C one even has

above occurs. In [
nected simple Lie groups and Ad G-invariant
what he calls continuous invariant orderings of
a solution in [OL.82]. He found a necessary an
to satisfy S(C)+G. In addition he showed that for such a

(*) C={X6g|expm+xc5(cn.

In general the cones satisfying () are exactly the cones occuring as tangent
cones of subsemigroups of G. We call such cones global in G. Again we omit
thc_:. reference to G if G is simply connected. In [Ne90b] Neeb extended Olshan-
skii’s characterization of controllability to the case of Ad G-invarant pointed
cones in semisimple Lie groups and the globality result to the case of simple
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Lie groups and Ad K invariant pointed cones. Both papers, [O182] and [Ne90b]
make heavy use of semisimple structure theory and are to a large extend compu-
tational.

Our approach is more geometric. In fact, the key idea is to describe a reduc-
tive group as a homogeneous space of a group with co-compact radical and
then use the theory of maximal subsemigroups in such groups which can be
reduced to simple linear algebra. Implicitly this way of viewing a reductive
group is (for G=SL(2, R)) contained in [G649] where the first simply connected
space time model violating causality was developed. It should be noted here
that the study of causal structures is essentially the same as the study of control
Systems on Lorentzian manifolds,

Now let G be a reductive group and NAK an [wasawa decomposition of
G. If C is an Ad K-invariant pointed cone with non empty interior, averaging
aver Ad K (which is compact) yields elements in (int C)~ Z (f) where Z (f) denotes
the center of . Thus at least for semisimple groups with finite center C is always
controllable in G. Therefore we will restrict ourselves mostly to the case of
simply connected groups (cf. also [Ne90c¢]).

The basic observation in this paper is that the group G,=NA x K acts
transitively on G via (na,k)-g=nagk~'. This action allows us to identify G
and G, as manifolds and hence gand g,=(n+a)x I as vector spaces.

Lemma | Let G be a reductive Lie group and NAK an Iwasawa decomposition
of G. Let G, be the group NAx K. If C is an Ad(K)-invariant cone in g, then
Cis global in G if and only if Cis global in G,.

Proof. G, operates freely and transitively on G via (na, k)-g=na gk™!. The left
invariant cone field C ¢ 0n G generated by C is by hypothesis also right invariant
with respect to translations from K, ie. invariant under the action of G,. Identify-
ing G and G, as manifolds we obtain a left invariant cone field Cina,y=Clrax-1

on G, which is generated by C. Now the claim follows from Corollary VI.1.17
in [HHL 89]. [

Remark 2 The proof of Lemma 1 even shows that the closed semigroups generat-

ed by expg; C and eXpg, C coincide as sets when we identify G and G, as mani-
folds.

Lemma 1 shows that in order to check the globality of an Ad(K)-invariant
cone in G it suffices to check it in G,. But G, is compact modulo its radical
and thus, for simply connected G,, the maximal subsemigroups are known once
one has determined all the hyperplanes in its Lie algebra (n+a)@t which are
subalgebras (cf. Corollary VI.5.2 and Corollary V.54 in [HHL 897).

Lemma 3 Let g be a reductive Lie algebra with Iwasawa decomposition n+a+1
=g and g,=(m+ a)®E. Then the intersection A(g,) of all hyperplanes in g, which
are subalgebras is equal to W ®F where ' denotes the commutator.

Proof. We use notation of [Hof90] and note first that the s-radical of g, 1s
all of g, since g, does not contain an isomorphic copy of sl(2,IR). We note
further that g,=n@F and consequently g =n'@t. The subalgebra n is the
sum of one dimensional a-modules, hence g,/g”-modules, Finally we remark
that the image of a@dZ (9) in g./q} is a Cartan algebra of g,/g” which has trivial
intersection with (3./6,Y. Here Z(q) denotes the center of g which is contained
in I. Now the claim follows from Recipe (a) and Proposition 6 in [Hof90]. [J
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According to Theorem 20 in [Hof90] there are two families of hyperplane subal-
gebras in g,. The first family consists of all hyperplanes containing n+t. The
second consists of hyperplanes which contain the preimage of a Cartan algebra
of _ga/g;’. Note that Z(H)=Z(f g) 1s contained in any such preimage. If now
C is an Ad(K)-invariant cone in g then averaging over K shows that Z (Hn
int C+ g provided that int C is non-empty which we always assumed. Thus
the only hyperplane subalgebras which can possibly miss int C are the ones
containing n. Now Corollary VI.5.2 in [HHL89] (cf. also Theorem 1.18 in

[HI90]) together with Remark 2 yields

Theorem 4 Let G be a simply connected reductive Lie group with Iwasawa decom-
position NAK and C an Ad(K)-invariant convex cone in g satisfying Co —C= 10}
and int C+&. Let S(C) be the closed semigroup generated by exp C. Then the
following assertions hold.

(i) If (int Cyn (n+F)== 2 then S(0)=G.
(ii) If CA(n+1)= {0} then S(C) satisfies

C={XeglexpR" X< S(O)},

e Cis global.
(iii) If @+ (C nn+T)\{0}céC then S(O)SG.

The Controllability Theorem IIL5 of [Ne90b] is a consequence of our theorem
since it says - for a special [wasawa decomposition — that $(C)=G if and
only if the dual cone C* of C intersects the annihilator (f +a+w?* of ' +a+n
trivially which by the Hahn Banach theorem is equivalent to int Cn
(! +a+mn)+o. But in the special situation of [Ne90b] this is equivalent to
int C A (F + )+ & (cf. Theorem I1L7 of [Ne90bD).

It is easy to write down examples of cones which are neither global nor
controllable. Take for instance a product of a global and a controllable cone.
On the other hand their are situations in which S(O)#G automatically _implles
the globality of C. This is for instance the case if g is simple as we will now

explain.

Note that in the situation of Theorem 4 S(C)*G implies (int(C+1INn
(M+1)=g so that Remark 2 applied to C+ 1 shows that S(C+f’)#G.'If now
q is simple an easy argument using a Cartan decompositiqn of g (pf. [N;‘)Ob].
proof of Theorem II1.7) shows that C+t is global. This tn turn 15 equivalent

to C being global as is shown by the very general Proposition II‘I.S from
[Ne90a]. Thus our theorem also yields a characterisation of the global invariant

cones in simple Lie algebras.

Finally we remark that Theorem 1.18 in [HH® . le out
non-global cones which are not controllable provided one 1Mposes additiona

conditions on the geometry of the cone. SO for. instance any Ad K—ipvapant
Lorentz cone C in a semisimple Lie algebra without s1(2, R )-factors is either

global or controllable.

HH90] can be used to rule out
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