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A CONVEXITY THEOREM FOR BOUNDARIES
OF ORDERED SYMMETRIC SPACES

JOACHIM HILGERT

ABSTRACT.  We consider a class of real flag manifolds which occur as Fiirstenberg

boundaries of ordered symmetric spaces and study the image of associated momentum

maps. The presence of the order structure is responsible for much stronger convexity
properties than in the general case.

1. Introduction. After Kostant’s seminal paper [Ko73], in which he studied con-
vexity properties of Iwasawa projections and adjoint orbits of compact groups, many con-
vexity theoremns appeared and proved useful in a wide variety of mathematical disciplines

like harmonic analysis, topology or Lie theory (cf. [AL92], [At82], [vdB8&6], [BFR90],
[BR91.]. [CDMS8], [Du83), [GuSt82], [Kig4), [LRO11, [Ne91], [Ne93), [Pa84], [Wig9]).

Ich in a suitable sense js compatible with the
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Kihler, hence symplectic. The group we let act on the complex flag manifold is a com-
pact form for the isotropy group of the symmetric space we started out with. Then the
result is that the momentum map restricted to the real flag manifold has a compact con-
vex image. This may be viewed as an extension of Duistermaat’s theorem for these flag
manifolds to a non-abelian group action. On the other hand it is not true that the image of
the complex flag manifold under the momentum map is convex (and hence not equal to
the image of the real flag manifold). The cases covered by our theorem include the real
Grassmannians sitting inside the complex Grassmannians with the action of the unitary
group and Herman’s convexity theorem (cf. [Wo72]) which asserts that hermitean sym-
metric spaces may be realized as bounded convex domains. Even though the statement of
our theorem makes sense for more general classes of symmetric spaces, counterexamples
show that it in general becomes false in the absence of an order structure.

Let X = G/H be a pseudo-Riemannian symmetric space, i.e., G is a reductive group
and H an open subgroup of the group G’ if fixed points of an involutive automorphism
7: G — G. Then there exists a Cartan involution §: G — G which commutes with 7. Let
g8 = h+q = t+ p be the eigenspace decompositions of the Lie algebra g of G with
respect to 7 and 6 for the eigenvalues 1 and —1. We assume here that G is contained in
a complexification G¢. Then the space X carries a G-invariant infinitesimally generated
order structure (cf. {01a90]) if and only if it is of regular rype, which means that the
centralizer of {X cpng:[X,pNg] = {0}} in g is equal to p N q. In this case any
maximal abelian subspace a of p M g is also maximal abelian in p and g and one finds
an element X, € a such that spec(ad Xo) = {—1,0, 1} and the centralizer of X, in g is
Zy(Xo) = N E+qNp =: go. Consider the system A := A(g, a) of restricted roots
for the pair (g, a). It can be split up into compact and non-compact roots according to
Ao := {a € A : a(Xp) = 0} and A, := {a € A 1 a(Xp) # 0}. The condition on the
spectrum of ad X, ensures that A, = A_jUA;, where Ayy := {a € A= alXo) = +1}
and U denotes disjoint union. We may and will assume that we have an ordering on A
such that A, C A* and any non-compact positive rootis larger than all the compact roots.

Furthermore we set

n; := Z ga, i= %I,
acA;

and note that

a€Ag

where g is the root space for o and m = 3¢(a) is the centralizer of a in f. Then P .=
o + 1, is a maximal parabolic subalgebra and the H-orbit in the flag manifold G/ P,
where P is the subgroup corresponding to P, plays the role of the Fiirstenberg boundary
for the positive domain in the ordered symmetric space X (cf. [FHO92]).

We assume that G is contained in a simply connected group G with Lie algebra
gc = g ® C. Then G/P may be viewed as a connected component of the set of real
points in the complex flag manifold G¢ /Pc, where P is the parabolic subgroup of Ge
corresponding to the complexification F¢ of . Note that G/ P¢ is a compact Kahler
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manifold. For a suitable compact form U of G the group U acts on G¢ / P¢ by Kihler
isomorphisms. Thus we have a moment map ®: G /Pc — u*, where u is the Lie algebra
of U and u* its dual (cf. [At82]). If we restrict the action to some subgroup of U then
the corresponding moment map is Just ® followed by the canonical projection onto tl-le
dual of the Lie algebra of the subgroup. We will show below that U may be chosen in
such a way that uy = uNfheisa compact form of h. We consider the moment map
®y: G /Pc — ug for the corresponding subgroup of U. Then our convexity result is

THEOREM 1.1. (i) ®y(G/P) is a convex set,

(ii) ®y:HP P — } is a diffeomorphism onto the interior of ®y(G/P) in the real

vector space spanned by ®y(G/ P). .

The proof of Theorem 1.1 rests on the fact that one can view the real flag manifold
G/ P as sitting in a real projective space derived naturall

y from a suitable highest weight
representation of G {cf. Proposition 2.4).

I would like to thank the referee for the simple argument leading to the proof of The-
orem L.1(i1) which replaces a tedious SI(2)-reduction from an earlier version,.

2. Flag manifolds and moment maps.
of gc. Let t be a maximal abelian subalgebra
gebra of g¢. Consider the root system A(gc,

The algebrau = t +ip is a compact form
of Il containing ia then t is a Cartan subal-

te). Similarly to the case of A we decompose
Alae.1p) as
Mdc.te) = A_ (g, te)UAo(qe, te)UA(ae, te)
and set
Pei= 3 g
A€AL (geate)
and

c o A
ACholac.te)

= (fE +phoN q.
/.1.)C 4 a projective variety (¢f. [BES9)). To this end we note
Sive system A*(gc,, o) of A(gc, t¢) which contains A{(gc., t¢c)

i mtof Aige, te) is larger than any element of Ag(qc, tc). In fact,

Now we have P = th+p,and P
We want to realize G
first that we may find a po

root. which we denote by 3. Then 3= INAy(gc, tc) is abasis for Aj(ac, tc). As usual
we define elements H; €t for JeA .

(8¢, tc) via
B(H.H;) = BH) VH ¢ te,
where B is the Killing form. Then we have

Ia:

I
B
l



A CONVEXITY THEOREM 749

and the Killing form induces Euclidean inner products (-, -) on tg and its dual fg which
allows us to identify these to spaces. The co-roots 3 € tg are given by

(A B)

MB) =22 VA Ety.
D =268 ’
Define an element Ao € t3 via
v |0 for BeXp
M@ =1 for 3 = Bo.

REMARK 2.1. X = Q“'z“j—")Xo €aCtg=tp

PROOFE. Note first that RXg C a C tg is orthogonal to ex, R3 C tg NI, 5], But
these two sets span t g so the definition of g says that RX, = R)A. Since 8o € A1(gc, tc)
we now have

(B, Ao)

(B0, Bo)”

Let 7: gc — gl(V) be the holomorphic representation with highest weight Ao and vg
a highest weight vector. The representation 7 can be integrated to a holomorphic rep-
resentation of Ge which we also denote by 7. If P(V) is the complex projective space
associated with V and [v] the line through v € V' \ {0}, then, using Remark 2.1, we see
Pc = {g € G¢ : g - [vol = [wol} where g - [v] denotes the action induced on P(V) by
. Therefore G¢ / P¢ gets identified with the orbit Gg - [ve] which is a projective variety.
Therefore we may realize G/ P as the G-orbit of [vg] in P(V).

(Bo. Xo) = Bo(Xe) = 1 = Xo(B) = 2

LEMMA 2.2. There exists a real form Vg of V containing vo which is g-invariant.

PROOF. Wehaveq = n_j+go+t = n_ +8(ng)+m+a+nand P = f(np)+m+a+n,
where 1 is the sum of the root spaces for the & € A} and n = np +ny. Let U(g) be the
universal enveloping algebra of g and set Vg 1= U(g)vp. Note that Rvp is a weight space
for a so that PCvy C Cvy is possible only if W(G(no))m = {0} and m(n)vo = {0}. Note
that m C £ N gy C f¢ is orthogonal to Xp with respect t0 the Killing form. Tl.lerefore
we even have m C [f¢, 5] which shows that w(xn) annihilates vo since Ap vanishes on
all the 3 with 3 € Ao(ge, te). But then the Poincaré-Birkhoff-Witt Theorem shows that
U(g)vy M Cvy = Ry and hence Vi is a proper subspace of V. It obviously is g-invariant
and since Vig+iVg and VgNiVy are g -invariant we have Ve+iVg = Vand VRNiVy = {0}

) ] n
which proves our claim.

From Lemma 2.2 we see that the orbit G- [vg] is contained in the real projective space
P(Vk) which is the set of real points with respect to the complex conjugation on P(V)

induced by the real form Vg of V.

REMARK 2.3. m(gX)v = m(X)¥, where v +— ¥ denotes the complex conjugation on
V with respect to Vg and o is the complex conjugation of g¢ with respect to g. |

Let ¢ also denote the involutive automorphism of U(gc) induced by o:g¢c — 8c.
Then Remark 2.3 shows that o induces v — ¥ via@ - vo = a(a@) - vo for all a € U(gc)-
Moreover we find g7y = o(g) - vo forall g € Gg. Thus Ge - [vo] N P(V) corresponds
to the fixed point set of the involution (still denoted by o) induced on G¢ /Pc by 0.
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PROPOSITION 2.4.  The reql flag manifold G | P may be vie'wed asa conn;ctj;i ’;;Z:x
ponent of the set of fixed points (Ge/Pe) := G- [vp] MP(Vw) in G¢ / P for the
conjugation g on Ge / Pg induced Jfromo: G — Gg.

PROOF.  We have seen above that ¢ - [vo] is contained in (G, /Pc)° . But
o1 (Ge - [vol) = (p_ + £C + PO v =p_ -y

i i d and
so that the real dimensions of (Ge/Pe)” and G/P agree. Since G is connecte :
(Ge/PeY is G-invariant, this implies the claim.

. . . . ].Ch
REMARK 2.5, We can choose 3 U-invariant Hermitian inner product (-|-) on V wh
is real on Vy and satisfies

(vlw) = (Re v|Rew) + (Im V[ Imw) — i(Re v Imw) + i(Im v| Rew),

where Re and Im denote the real and imagi
conjugation. In particular we have

(7)) = (v]w). =

The inner product () induces a Fubini-Study metric on P(V) and then U acts on
P(V) preserving the Kihler Structure. Restrict the Kahler metric to G - [vo] then U also
preserves the Kahler structure of Ge/Pe. Using the fact that the embedding G¢ /Pc —
P(Vyis U-equivariant, it js tasy to see that the moment map for the action of U on G¢ /Pe

ts just the restriction of the moment map for the action of U/ op P(V) (cf. [GeSe87,§3]).
But the fatter is given by @: P(V) — =

(CD([V]),X) = jM_

(viv)
REMARK 2.6, ([7]) — —ad([v}).
Remark 2.6 shows that the image of G /Punder @ an
elements of and uj respectively. If we identify y*
W =hNt+ipn b) so that Dy, restricts to 3 map ¢

[ ]
d @y consists of purely imaginéry
With u then u; gets identified with
b°G/P— i(pNp).
i Strongly orthogonal
a symmetric pair of Hermiij
respect to ¢ i given by or
gf = f( + p(‘ where

roots.  Consider the c-duat
an type (cf. [Ola91)).
= 70 and a Cartan de

a° = b+iq of q. Then (g",T). is
The complex conjugation 7 of g W“_h
Composition of 4° compatible with 7 is

£ 3=f)ﬂf+i(qﬂp)
and

P = bMp +igny,
‘,Vc denote the corresponding Cartay, involution by g Note here that the complexifica-
Homs f " and g agree oty s rotation is compatible with the one from Section 2.
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Let ¥ be a maximal system of strongly orthogonal roots in A;(gc, tc) which is in-
variant under —7 (¢f. [Ola91, §3]). We can choose root vectors E, for u € Aj(gc, tc)
satisfying

TE,L[ = ET s UE;,L = Eiﬂ! [E,usE—H] = .lj"
Set
E, if—tu=p

b=\ E,+rE, if—mu#p,

X, = E, +nE, and Xp = fiﬂ + nE,,. Then according to [Ola91, Lemma 3.3], the set

b= > RX,

per
is a maximal abelian subspace in p¢ and

by = N = 3 RX,

pe¥
is maximal abelian in § M p.

LEMMA 3.1. Let 4 € Ai(gc, tc) then

o (TE v if it = o
TV =\ (E +Envo if —Ti # 1.

PROOE  This is an immediate calculation using 7E, = E_, and 7(p,)vo = {0}. =
LEMMA 3.2. Let R be the group generated by ¥ in it* then R( A*(gc. te) =W

PROOF, This is clear, since the elements of V are long roots and orthogonal. .

PROPOSITION 3.3. (D([P(U(bh)m)) C iby.

PROOE. Let

Vh = Z V/\n+ﬂ’
HER

where the V' are the weight spaces, then U(by)vp C Vy since by © Z#@p'(gfc‘ +4¢")-
Lemma 3.2 implies T(X)V, L V; forall X € gr, i ¢ WU Y because weight vectors
for different wei ghts are orthogonal. This in turn shows that

fb(iP(Vh)) C (uﬁ > (g€+gg“))L =i+t

pEAt(gc.te N\

On the other hand we have <I>([P(U(bf,)vo)) - CI)([F’(VR)) C ip, which proves the claim. »
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LEMMA 34, Letp:u* — iby be the canonical projection then
(i) poD([vp]) = 0.
{ii) pod®([vy))is surjective.

PROOE. (i) . [ )
(po®(Ivol), X,,) = im =0
(vo|vp)
(ii)
. ; d R)v0 + (X, o) v + (R, )vo )
<podq)([v0])(7r(Xﬂ)v0), X)) =i ()30 p

Yt =0 (vo + (X, o vo + IW(X#)VO)

= 2i(m(&,)vo| (R, o)

B {0 ) if p #
- 2iH7T(Xu)VOH2 iftp =y
This proves the claim since P- NP = {0} and hence m(X,,)vo does not vanish. =
4. Torus actions and projections.

Let t; be a maximal abelian subalgebra of u
containing ib°. Consider the torus Ty

corresponding to t, and the associated moment
map @.: G¢ /P — t2. Let W, be the Weyl group of the root system A; 1= A(Q& (tﬁ)C)
and A, an extremal weight of 7 with fespect to (ty)c then [GeSe87, §5], implies that
D.(Gy /P) = conv(W, . ),), where conv(Wy - A,) is the (closed) convex hull of the Weyl
group orbit W, - \,. Let now Ty, be the torus belonging to ibg and ®,: G, /Pc — iby the
corresponding moment map, then @, = p o D, =pod.

Note that o], = —jq. Moreover o replaces the Kihler form on P(V) by its conjugate.
Therefore o is antisymplectic and We may apply [Du83, Theorem 2.5], to G/ P with the
torus action 7y, x G /P, — Ge/Pg. The result s that Pu(Ge /Pc) = ®W(G/P). Let By

en [Du83, Proposition 4.2), implies
(I)b(G/P) = q)b(B{, “[voD)

since Lemma 3.4 says that [vy] is a regular point of ®, (Note that BT-@ is the
closure of B, . fvo)). Combining these facts with Proposition 3.3 we obtain

PROPOSITION 4.1, @B, ) = OBy Tvol) == Do(By - Tvo]) = ®L(G/P) =
Pu(Ge [ Pe) and this set i € images under ®, of the T),-fixed points
inG/Pp.

PrROOE. Aj} that remajpg
Note that determ;
decomposition of n
Consider the acti

to be noted is By - [y,] C P(U(b, o). .
ning the T,-fixed pointsin P(V)isthe

with respect to 7.
onofnonA: C it’

Same as determining the weight
= it, given by

X =Y0nX) vx ¢ (ty)c
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(cf. [Wa72, p.25]). Then (A.,7) is a normal o- system of roots (¢f. [Wa72,
Lemma 1.1.3.6]).

REMARK 4.2. LetY € A,. Then the following statements are equivalent

(D) ny=—.

(2) b C kern. »

Fory € A, with 1y # —7 set ¥ = (¥ + 7). Then, according to Araki’s Theorem
(cf. [Wa72, Proposition 1.1.3.1]), the set

A ={F:ver,M# -7}

is a root system (in fact a system of restricted roots) in (b°)", whose Weyl group W, is
generated by the reflections at the hyperplanes ker Y1b® = ker YMb¢. Moreover Satake’s
Theorem (¢f. [Wa72, Proposition 1.1.3.3]) shows that

Wz = {W (Bo)* TwE Wﬁ, W(bc) g bC}

If now p,: it? — (b*)* is the canonical projection then [Ne91, Theorem 11.15], shows
p:(conv(W; . ,u)) = conv(Wﬁ )

if 4 € (b¢)*. In fact, more is true
PROPOSITION 4.3.  Let pu € it] then p;{conv(W, - W) = conv(W; - p:(1).

PROOF. Let w € W, and w € W; be such that w((b‘)*) = (b9)* and w|peyr = W
Then the orthogonality of w shows that also i(f€ M t,)* is stable under w and hence w
commutes with 7. But this shows

pa () = w( 5+ 1)) = WA

Now the proof of [Ne91, Theorem II.15] yields the desired formula. "

We will use [Ne91, Theorem II.15], once more. Note first that b°
the sense of [Sch8&4, §71. But then {Sch84, Proposition 7.2.1], shows that Ay := {“|bn :
k€A, iy, # 0} is a root system in by whose Weyl group Wp is naturally identified
with Nk (by) / Zg(bg). Moreover it is shown in loc. cit. that each element of W, can be
obtained from an element of W; via restriction. This means that we may apply [Ne91,

Theorem 11.15], to obtain

is h-maximal in

p(conv(Wn - ) = conv(Wy - 1)
for 4y € b}. Note that on (b°)"* the projection p is given by p +— %(‘u + mz_ But then
the same argument as in the proof of Proposition 4.3 shows that p(conv(Wn . p,)) =

conv(W, - p(u)).
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THEOREM 44. [et A: € it} be an extremal weight for m. Then ®,(G/P) =
conv(Wb -p(A:)).
PROOF.
Dy(G/P) = Dy (Gg/Pe)

=po PG /Pg) = p(conv(W: . )\:))
= p(conv(;-p,01))

= conv(Wb . p()\;)),

s ]
Since pop, = p.

y be viewed as a restricted root in A(b, by) since b, be-

um of joint ad by-eigenspaces. Thus W, is contained in
the Weyl group Wy of A(h, by) which in turn can be identified with N(KH)O(bf,)/Z(KH)u(bb_)’
where Ky := KM H is the maximal compact subgroup of H contained in U and (Kn)o 15
its connected component, This proves

LEMMA4S. W, = w, = Nk (05) ) Zi, . (By). "

5. The convexity theorem, Consider the Cartan decomposition H = KBy (K)o
of H and note that (Ku)o C P so that the U-equivariance of @ implies

DH - [vg]) = D(KuBy, - [v]) = Ad (K D(By, - [v)).
Analogously, we have

PoH - Tvo]) = Ad"(K ) (8, - v} = Ad* (Ki)@, (B, - [v)).
We set
D= Ad*(KH)q)b(G/P) Ci(hNp)~.

Let i1 € D then conv(Ad*(KH)u) cD.

PROOE. et e conv(Ad*(K H),u) then p’ corresponds to an element of i(f M p) so

that there exists an element k ¢ Ky such that Ad* (k' € iby. Let [v] € G /P be such
that 4 = D([v]) then

LEMMA 5.1

p(conv(Ad*(KH)p)) = conv(p(d)(KH . [V()])))

C conv(‘bb(G/P))
= (Db(G/P) D
and hence Ad* (k) = p(Ad"(k)u’)
PROPOSITION 5.9 Dy (G/P)
PROOE.  we have
HEBWG/P) C iy

€ D. Thus we have u' e AdK,)D = D. =
= Oy(H - [w]) = p.

Seen already that p - Py(H - Tvp]) C Dy (G/P). Conversely let
M Py, then the

e exists a k ¢ Ky such that Ad* (k) € ibg. But then
Ad* (k) ¢ jpr

v ®(G/P)C dy6/p) C p
and hence ;; ¢ Ad* (kD C D,
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THEOREM 5.3. D is convex.

PROOE.  We know from Theorem 4.4 and Lemma 4.5 that ®,(G/ P) = conv(Wy - o),
where po = p(A.) for a suitable A. € it}. But then Lemma 5.1 implies

D = Ad*(Kn)®y(G/ P)
= Ad*(Ky) conv(Wy, - 1)
C conv(Ad*(Kn) - o)
CD.

THEOREM 5.4. The map @y HP/P — i(hMp)*isa diffeomorphism onto the image
which is open and coincides with the interior of ®(G/P) in i(h N p)".

PROOF. A simple computation like that in Lemma 3.4(ii) shows that the map ®,,: By-
[vo] — ib} has a bijective differential everywhere. The image of this map is convex hence
simply connected. Therefore the map has to be surjective and thus a diffeomorphism. =

We note at this point that one can now use the arguments of {[Wo72, Section 4], to

write ®g,(G/ P) as the unit ball with respect to a suitable operator norm.

6. Examples. We illustrate our results with the simplest family of examples, the
ones which have the GraBmannians G,(R") as flag varieties G /P. In this case the group
G is Sl(n, R). We assume without loss of generality that 7 < 2p and view the elements of
G and its Lie algebra as blockmatrices with blocksize according to the partition (p, n—p)

of n. Let By be the (p) X (n — p)-matrix with entries
L 1 fori=]
Y710 fori#j.

. . 0 By 0 of
Then the image of @, is a cube which one obtains from | pr 5 | upon the action o
0

the respective Weyl group and consequently

D(G/P) = {(h“;—rg“ ggh) g €0(P),heO@hBe (Db(G/P)}
which is linearly isomorphic to the set of linear contractive mappings from € to C? with
the usual norm. For more details see the seminar report [Hi92].

A prominent class of examples for spaces of regular type is the class of spaces Hc /H,
where H is the group of symmetries of a Hermitian symmetric domain and H¢ a complex-
ification of H. In this case our results can be viewed as 2 symplectic interpretation (and

proof) of Herman's convexity theorem which says that Hermitian symmetric spaces of

non-compact type can be realized as convex domains. We leave the details to the reader

{(cf. [Wo72]). _
We conclude with a counterexample which indicates the role of the ordering for the

convexity of the moment map. Consider again spaces of type Hc /H but this time we
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don’tinsist on H being the group of symmetries of a Hermitian symmetric space. In ;ZCZ
We restrict our attention to the case 4 — Gl(n + 1, R), and H?; = Gl(n + 1., C) embedde:
as the diagonal in G¢ = Gl(n+1,C) xGl(n +1, C). As maximal parabolic we choose

-
P — {(g VD) egl(n-i—l,C):aEC,vEC"}-

Then G/P = P(C") and Ge/Pc = P(C") x P(C") and a compact form of HeisU@m+ 1).
The moment map Dy: Ge/Pe — un + 1) associated with this action is

‘ i ZiZ WiWg )
q)h((ZO el zy)wg et Wn)) = 5 (m + m Jk=0,..n

and when restricted to G /P

q)h((ZO Leel Zn)) == | Z(RCZJ'Z;()-
k=0 Zk!

Whereas the image is a disk for = |
be seen from a somewhat tedj

plane.

(Hermitian!), it is non-convex forn = 2. This can
Ous computation using affine coordinates on the projective
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