Radon transform on halfplanes via group
theory

Joachim Hilgert*

1 A suitable double fibration

Consider the halfplane X = {(a,b) € R?|a > 0} as a subset of {(a,b,1) € R®} and

the group
a 0 0
G = {(a,ﬂ,‘y) = (ﬁ 1 'y) EGL(3,R)|G>0}
0 0 1

which acts transitively on X via

(e, 8,7) ® (a,b) = (aa,af + b+ 7).
The stabilizer of zg := (1,0) is

Hx = {(1,8,-B) € GIB € R} = R.

Let = be the set of halflines in X which end in 8X = {0} x R. Such a line is
uniquely determined by its intersection with @X and its slope. More precisely, for

v,w € R we consider the halfline L., = {(t,v + tw)|t > 0}. Then we can identify
Z with R x R via L, «— (v,w). Note that the affine action of G on X induces a

transitive action of G on Z. It is given by

+
(a,8,7)0 (0) = (047,225,

This time we set £o := (0,0) € = and note that the stabilizer & is
H_-__—__ = {(0,0,0) € Gla > 0}
Now we have the desired double fibration, which will give us the Radon transform
TX N\ =
G/HX:X EzG/HE‘,

where rx(a,83,7) = (a,B +7v) and r=(a,8,7) = (1, E)'
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2 The Radon transform

We use the following left invariant Haar measures on G, Hy and H=:

da da
d:uG(ahBaY) = 'a_dﬂd7, d:u‘Hx(lvﬁa 0) = dﬁ? d}iHE(O’,D,U) = E—

and define the Radon transform and its dual as
RIgHz) = [ f(ghHx)dus(h) Vf € Co(X)

and
Ro(glx) = Daly) [ s(ghHz)dunc(h) Vo € C2).

Explicitly we find

Rf(v,w) = /R" fla,v+ a'w)%E
+

and

Rola,b) = < fR &(v,

Note that R and R are dual to each other:

. d
/R R f(a,b)Ré(a,b)—aEdbz/RfRRf(v,b)gb(v,b)dvdb_

b—wv
a

Jdv = fR (b — av,v)dv.

3 Plane waves and a Fourier transform

A horocycle in X is an orbit of conjugate of H=. The set of horocylces coincides
with Z. For each v € X we define 2 pencil P, of horocyles via

CE€P, ifandonlyif ¢= (v, w).

For z € X and € € P, we define the complez distance dy(z,£) to be the (unique)
element (1,3,0) € A := {(1,8,0) € G'} such that (1,8,0)Gz € £. Letz = (a,b) € X
and v € R then there exists a unique £, € P, such that z € €z.v- 1t satisfies

dU(zU’El‘,v) =(l,v+ b-v

,0).

We. define our plane waves associated toa A € ar , where a is the Lie algebra of 4,
which can be identified with R,and vin R:

€xry(a,b) = eldvt e ),
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Proposition.

1. ey, is a joint eigenfunction for all D € D(X), the invariant differential oper-
ators on X.

2. ey, is constant on the hine § for each £ € P,.

3. exu{gz) = e,\AG(g),g_l‘,,(x)e,\,,,(ga:g) for g € G,z € X and X € ay;, where the
action of G on X is given by (e, 3,7)v=v+7.

Proof. Consider the normal subgroup P := {(a,,0) € G} and note that G is the
semidirect product of P and Hy. Then [1], Theorem IL.4.9, tells us that D(X) is,
as a vector space, isomorphic to I{p), the space of Hx-invariants in the symmetric
algebra S(p) of the Lie algebra p of P. The group P is itself a semidirect product of
the normal subgroup A with Hz. Thus we may view the vector space p as a direct
summand of a with the Lie algebra of H=. A simple calculation using the coadjoint
action and the identification of the symmetric algebra with the polynomials on the
dual shows that the Hy-invariants in S(p) are just the elements of S(a). The
theorem quoted above now yields that D(X) is generated by -(%. This proves the
first claim. The second claim is proved by a straightforward verification. The cocycle
condition {rom the last claim can also be verified by an elementary calculation.

It can be shown that the cocycle condition from the above proposition is closely
related to unitary representations of G which are induced from characters of A.
These representations are not irreducible, a fact that is reflected in some indetermi-
nacy properties if the Fourier transform associated to our plane waves. We define

the Fourier transform as
Fxf(hgA) = [\ f(@)e_izag(e)-r oP(2)drx (),

where gP € 80X is the g-translate of 0 € 8X. Identifying G/A = Hx H= with
RY x R via
(@, —70,7) = (L, =7:7)(2,0,0) = (&, 7);

this reads . v da
Fefvan) = [, [ Sapeetrt b
+

Note that Fy f(}, a,7) does not depend explicitly on A, 7 and o but only on a(:\,‘y)
and a). Therefore we write Fx f(A,7) = Fx (X, 1,7) and introduce the map Fxf:
R x R* — C defined by

F 1 b1 Limby+ra)
Fx f(r,m) = ./R: /Rf(?‘";);e K dbda.
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We note Fx f’(X,7) = e *™MN Fy f((),7),)), where f*(a,b) := (1/a)f(a,b), and
define f € Co(R x R)

- el _ v
f(t,’t))z{}f(t’ t) :Zg

o

Then i )
(5)2]})\'.’-(?’ 77) = (fﬁ%f)('f', 77),

where FR2 denotes the Fourier transform on R2.

4 Inversion and Plancherel formula
We can write the Fourier transform using the Radon transform

-;E‘Xf((’\?’”s‘x) = ]:R(Rf('y’ ))(A)

Define an operator A on the Schwartz functions S(R) via

20 Fr(A9)(r) = |7|FR(¥)(7)
and use to define an operator A on suitable functions in to variables by
(Ap)(r,5) = A(g(r,))(s).

Hereafter, [ denotes integration over R, and [T denotes integration over Ry.

Proposition. Let f € C2®(X). Then

fla,b) = a-1 /(ARf)(b + r,—g)dr.

Proof. Note first that
fla,b) =a™'f(a=!, —a1p)
= [ J(Fram (€ r)eE- Dgdr
= (TTlr—)yff(FRfo)(af-Jr br,r)ededr
= oy J JIEFRar ))((a + abr)g, ar€)eitdgdr,

where F denotes the Fourier transform.

We express the Fourier transform in terms
of the Radon transform

TRarS(etabr)garg) = [ [+ f(1b4 1 4 2)giortrdeyy
— fRf(b + %,z)ei“"&dz
= FR(RF(b+1,-))(~arg)
= T R(RAB+ L, - 2))(0).
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This implies
f(a,b) —2;7” €l FR(RA(b+ 3, ~ ) (E)e defy
= [T FRIARSYb+ ——))(E)e"de
= ffﬁl (FROARDb+2,-3)) (D
AR b+ b -2,
Note that the last integral in the above calculation is justified by this very calcula-
tion. It follows from the homogeneity properties of A that

(ﬁﬂﬂnénb)*llARﬂn ).

Thus ‘
oV [ARF(b+ L —5)E

a' [ARf(b+ r,—L)dr
(RoAoRf)a,b).

f(a,b)

ool

The square root A:=A7 of Ais given by \/iTFfR(f\”ﬁb)(S) = |5|%-7:R('/’)(5) and

we set Ao(r,s) = A(d(r,))(s)-

Theorem.
1. f(a,b) = RA?Rf(a,b) for f € C&(X)-
2. Ao R can be extended to an 1someiry L*(Ry xR, %‘—db) — LR x R,drds).

3. RA is the adjoint of AR in the L*-sense.

Proof. The first part is immediate with the above proposition. The second part is

shown by the following calculation
[ IARS(rs)Pdsdr = J [IR(RS(r,)(s)"dsdr
= L [ [IFRARS(r, DNE £)|*dgdr
= r‘*zf“f”fn, (Rf(r, ))(f)lzdfdr
= oo [ [ IEIFR(RAAr ))(r~tE)Eir|~*dEdr
= '—_’ffflfoRf(fa r=1E)P|r| €l dEdr
= “I [ |-7:R,<Rf(7"f )| |€|d€dr
—-fflft s)|2dtds
= [T Ffa )l dtds
= ff+|f(t 8§ ds.
For the last claim we only have to recall from Section 1 that R
of each other.

and R transposes
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