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We extend the classical concept of a word in an alphabet to that of a word in
a quiver. Then the endomorphisms for such a word are introduced. They form a
monoid which provides some information about recurrence and periodicity of the
fixed word. The properties of this monoid are used to show that for a typical class
of indecomposable modules over a finite dimensional algebras of tame representa-

tion type, the class of their endomorphism rings is a very restricted one. € 1993
Academic Press, Inc.

l. INTRODUCTION

We present a purely combinatorial concept which turns out to be useful
in the representation theory of finite dimensional algebras. First we extend
the classical concept of a word in an alphabet (as discussed for instance in
the book [L] of M. Lothaire) to that of g word in a quiver. Then the
endomorphisms of such a word are defined. They form a monoid which
provides some information about recurrence and periodicity of the fixed
word.

A quiver Q is an oriented graph consisting of a set of vertices Qo and a
set of arrows Q, such that to each arrow « in Q there are attached a
starting vertex s(x) and a terminating vertex 1(x). We add formal inverses
x "' for each arrow x€Q, with (a ') =y s« ")=Hx) and 1z )=
s(x). The set of formal inverses is denoted by Q .

A sequence w=w,w, -1 of arrows and formal inverses is called a
word in Q of length wl=n, if w,, # w, ' and s(w,,,)=rt(w,) hold
for each ie{1,2, . n_ }. The starting vertex and the terminating
vertex of w are denoted by s(w)=s(w,) and H(w)=t(w,), respectively. Let
U=0y---v, be an additionaj word of length m in Q. The composite
PW=0Uy---0,,w - w, is defined by concatenating if this sequence is again
a word in Q. In addition we need for each vertex x in Q the word e, of
length Je.| =0 with sle)=x=t(e,). The composite e, w =w and we, =W,
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;espect'ively, for a word w is defined if s(w)=x and H{w)=Xx, respectively
r~‘:Csat1§ﬁed. We denote by Q* the set of all words in Q. ,
onsider for some word a=a, ---a, of length n>0

cr(a)z{l_1 Zligla T(a):{ll anegl,
1 — 1> - a, et/ g

and ¢ =41 _ )
WS ab =a,'-a I E_xtend this for e, by a(e,)=1({e,)=0and e '=e..
obtain factors, quotients and divisors of a word w as follows: )

Fac(w)= {(x,a, y)eQ*x 0* X Q* | w=xay},
Quot(w) = {(x, a, y)e Fac(w) | t{x) < 0,0(y)=0} and
Div(w) = {(x, a, y)€ Fac(w) | t(x) >0, a(y) <0}

W . .
i te denote by 7(x) = a the projection of a factor 2= (x, a, ¥). Now we may
ntroduce the set of endomorphisms of a word:

End(w) = {(@,, ¢,) € Quot(w) x Div(w) | (@) =n(@,)
orm(e,)=m(e,) '} u {0}

Together with the composition which will be defined in the next section the

endomorphisms form a monoid.
Let k be a field. We state the main result on the k-algebra k End(w)

\gv?tl}?rateq by the monoid End(w). By the latter we mean the k-vector space
basis End(w)\{0}, endowed with the induced multiplication.

. 1;HEOREM . Let w be a word in a quiver and let k be a field Then the
algebra k End(w) generated by the endomorphisms of w is local. For a
factor algebra A of k End(w) which is generated by 1wo elements and a
natural number n the following hold:

(a) The dimension dim, A/rad" A is bounded by 2n° —2n+ 1.
; (b) If A and k{x.y)/(x,y)" are isomorphic, then n<3. Here
(X, v'> denotes the free associative k-algebra with 1wo generators.
Let M be a monoid, rad M the subset of non-invertible elements, and

rad” M = (rad M)". We call M local if only the unit is invertible and if the
set (),.nrad” M consists of precisely one clement. The combinatorial

version of the result goes as follows:
ord in a quiver. Then the monoid End(w) of

ctor monoid M of End(w) which is
| number n the following holds :

THEOREM 2. Let w be a W
e - -
ndomorphisms of w is local. For a fa
generated by two elements and a natura
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(a} The cardinality card(M/rad” M) is bounded by 2n* —2n+ 2.

(by If M and M{x, v)/rad” M{x, y> are isomorphic, then n<3.
Here M {x, y ) denotes the free monoid with two generators.

The motivation to study End(w) comes from representation theory of
algebras. Let k be a field. There is a canonical way to associate with each
word w in a quiver Q a module M(w) over the path algebra kQ (cf. 7.1).
We now follow Wald an Waschbiisch as well as Crawley-Boevey, who

showed that the set End(w)\{0} forms a basis of the endomorphisms of
M(w) (cf. [WW, C]).

COROLLARY 1. Let k be a field and let w be a word in a quiver Q. If
M(w) denotes the associated module over the path algebra kQ, then the
endomorphism algebra of M(w) and k End(w) are isomorphic:

End,, (M{w)) =k End(w).

In particular, for a factor algebra A of End,, (M(w)) which is generated by
two elements and a natural number n, the statements (a) and (b) of
Theorem 1 hold.

Modules of the form AM(w) occur in the classification of indecomposable
modules over string algebras (see [BR]), therefore also in the case of
special biserial algebras: Each indecomposable module over a string
algebra A is either a string module or a band module. The string modules
correspond to modules of the form M(w) for certain words in the quiver
@, of the algebra. The band modules only occur in homogeneous tubes of
the Auslander-Reiten quiver /", of A. String algebras are tame algebras (in
the sense of [D]). Therefore we may conclude that an important class of
tame algebras shows also a “tame” behaviour with respect to the
endomorphism rings of their indecomposable modules. In contrast wild
algebras behave accordingly “wild.” For instance, Brenner has shown in
[B] that for 4 =4k(x, ») each finite dimensional k-algebra may be realized
as the endomorphism algebra of some A-module.

We now give an outline of this paper. In Section 2 we complete the
notation and show that End(w) 1s a local monoid and k End(w) is a
local k-algebra. Since Theorem 1 treats factor algebras of k End(w) which
are generated by two clements, we have to consider for pairs («, ) of

endomorphisms the generated submonoid {a, B> < End(w). In particular
we are interested in some bound of

¢al2 f) =card(<a, f)\rad"<a, B)

since dim, A/rad” 4 < ¢, (2, B)

holds for a factor algebra A4 which is
generated by « and g,
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. As a first result we obtain in Section 3 a 13-dimensional algebra which
is impossible as factor algebra of k End(w). Then there follows a distinction
of endomorphism pairs between reducible and non-reducible pairs.
Non-reducible pairs elude a unified treatment. Therefore three cases have
to been considered separately.

WiFh each reducible pair (a, f)—apart from some exceptions—1s

assoqated a simple pair (g, fo) of transformations. In Section 4 we
describe two operations r, and r, which reduce a simple pair (%, Bo)
successively to a minimal pair (2, B.). Reversely one obtains from the
knowledge of (o, B,> inductively a precise description of {ag, Boy. In
particular the inequality ¢, (%o, Bo) Sn7/2+n/2 holds.
. In Section § we finish the proof of both theorems. A reducible pair (2, B)
s considered as an extension e(%y, Bos & Js P> g) of the pair (%, B,) which
is determined by four integral parameters. These parameters lead to a
fu.rther distinction between strongly and weakly reducible pairs. We begin
with the proof of part (a) of Theorem | For weakly reducible pairs the
description of {a,, o> in the previous section yields an approximation of
(o, B> and we obtain the estimate ¢, (% By<2n®—2n+1. In the strongly
reducible case such an estimate by a polynomial of degree 2 1s impossible.
Therefore we use another concept. To prove part (b) of Theorem | we
combine several results and techniques which emerge from part (a).

Section 6 is devoted to three examples. They illustrate the proofs as well
as the quality of the bounds in both theorems.

In Section 7 we discuss the application to representation

condensed in the Corollary 1.

The paper is the translated version of the author’s doctoral thesis.
He thanks Claus M. Ringel for many helpful discussions. It was his
(provocative) question whether string algebras are wild in the naive sense
which stimulated this work. The author was partially funded by the

Deutsche Forschungsgemeinschaft.

theory which is

2. THE MONOID End(w)}

Let Q be a quiver. Words in O as well as their factors and endomorphisms
were already defined in the introduction. We now complete the notation. In
particular the composition in End(w) wiil be defined. As a first result we
obtain a description of the powers «" (reN) of an endomorphism

« € End(w) and we show that End(w) is a local monoid.

2.1. Let w be a word in Q and let a=(a,,a, d2) and f=1(b,, b, b:)
respectively, be factors of w. The set Fac(w) is partially ordered by

(al,a,az)S(bl,b,bz)a-la,-lzlb,-l for ie{l,2}.
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The union of « and B is defined by

avu ff=min{ye Fac(w) | a<y, f<y1

The factors x and B are connected if

S={yeFac(w)|y<x,y<p}# .

In the latter case ¥ N = max S denotes the intersection of % and B.
A factor 2 =(a,, a, a,) of w may be visualised by the following diagram:

F— : | —

a) a 25

The line corresponds to w and the partition into three parts reflects the
length of the words «,,a and a, in Q* To compare different factors

it usually suffices to present the projections according to their relative
position:

x

p

axu f

xan ff —

Let ¢ be an additional word in Q and suppose y=(c,, ¢, ¢,) € Fac(v). If
v=7(f), then the composition of v and B is defined as follows:

}‘ * ﬁ: (bIC] » Oy CZbl)'

It 1s obvious that X< holds if and only if there exists a factor
%4 € Fac(n(f)) (uniquely determined by « and f§) such that x = a, * f.
For a factor x the length is defined by |n(x)] and we also use

1 B .
r =(a,' a ' q, "Ye Fac(w ).

2.2. For we Q* let

Trans(w)= {(p,,0)e Fac(w) x Fac(w) | m(@,)=n(ep,)
orn(o)=mn(p,) '} u {0}

be the set of rransformations
of Trans(w). We introduce
®=(p,, p,):

of w. The endomorphisms of w form a subset
the following notions for a transformation
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1 (@) =1(®,),

The signum of ¢ is sgn(@) = { -1 else

The rank of @ is tk(¢) = |@.|-

The support of ¢ is supp(@) =@,V ¢,

The shift of @ is |@| = [x'{ — x| and |l =1 x| —Ix| 1], respectively, if
¢,=(x,a,y)and ¢, = (x",a, y)

The image of a € Fac(w) 18 29 = (2, ) 5" * 0, if A<,

The preimage of a € Fac(w) is a@ 1 (a, Y @, xS,

The composition of two transformations @, W e Trans(w) is defined as
follows:

oY = {(“‘P_'a ay) o={(p.eh=W,¥) and x= @, N Y, exXists,

0 else.

The sets Trans(w) and End(w) are closed under the composition which is

obviously associative. _ .
The following diagrams illustrate the composition, assuming that
sgn(¢p)=1=sgn(y). The marks at the ends of each line help to distinguish

between quotients and divisors:

@ - —
Q, -
-—
Y —_— <
(pllj - _—
2 -~
Q- R

Note that the partial order on Fac(w) induces one on the transfor.ma-
tions of w (cf. 5.1). With respect to this partial order the endomorphisms

are maximal.

23, LEMMA. Let a=d, ---d,€Q% with n=lal and let peN. The

following are equivalent:

(1) There exist x,, X,€Q* and reN such that a={(x,x;)x, and

lele = p_
(1) Itisp<n and a,, ,=a; for LSIsSB—P
(iii) There exist b, x, Y€ Q* such that a = xby, xb=by and

x| =yl =p.
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Proof. (i)=-(ii) and (ii)=>(iii) are clear. We show (iii)= (i} by
induction on n. First assume |b| < |x|. Take x, =& and x,e O* such
that x = x x,. From xb= by follows x| x,x, = xb= by = x, y which implies
y=x,x,. Therefore a=xby = (x,;x,)’x, and the assertion is shown. Now
assume |b| > |x{. From xb = by follows b = xb' for some b’ € Q*. Therefore
xxb'=xb=by=xb'y, ie. xb'=5"y. By induction a’=xb’y has the form
a'=(x,x;)"x; with x=x,x,. Since a=xa =(x,x;)""'x, the proof is
complete.

A word a in Q is called p-periodic if it satisfies one of the equivalent
properties (i}-(iii). A factor « of a word in Q is p-periodic if the projection
n(a) 18 p-periodic.

24. LemMA.  Let ae Q* and p, ge N such that |a| = p+q. If a is p- and
g-periodic, then a is a ged(p, q)-periodic word.

Proof. We may assume p > ¢. Then a is of the form a = xa’ with x| =p
and x=(x,x,)"x; with |x,x,|=¢. The assumption |a| = p+gq and the
p-periodicity of a imply a = xx, x,a" for some a”. Applying the g-periodicity
gives a={x,x,) x,x,v,a". Therefore one obtains xX,x,=x,x,; and the
assertion is an immediate consequence of the following lemma.

LEMMA. Let a, be Q* such that ab=ba. Then there exist xeQ* and
r, s € N such that a=x", b= x*.

Proof. We may assume |a| > |b| and use induction on |al. Since ab = ba
there exists @'€ O* with a=ba’. This implies ba'b = ab = ba = bba’ and
therefore a'b=ba’ holds. By induction one gets a’=x" and b=x". The
assertion follows from a=bpg’ = x"*+.

2.5. LemMa.  Ler xe End(w) and suppose 21 # 1, o> #£0,
(a) [t issgn(ay=1.
{(b) Suppose reN and 2" £0. Then supp(a”) = supp(a), rk(a’)=
tk(z) —(r—1)|la}| and |2"| =r |a].

(¢) The support supp(a) of a is ||a||-periodic and [supp(a)| = rk{a) +
2|l holds.

(d) Let beN such that supp(a) is b-periodic with |«}| =rb for some

reN. Then there exists B e End(w) which is uniquely determined by a and b
such that o= p".

Proof. Fix a,

00) =(x,a, y),2,=(x',a, y’) and assume without any
restriction |x| > 0.
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(a) Suppose sgn(a) is negative, ie. a' = a~'. That implies (x,na,) "
=a,na,, and therefore 2= (%, N, a,na,). We conclude a=1 since
Quot{w) ~ Div(w) = {(1, w, 1)}. Contradiction.

(b) Suppose a=ba, =a,b’ with |a;| = (r— 1) ). The definition of
the composition in End(w) combined with part (a) yields immediately that
o =(B,, B,) is of the form B,=(x, b, a, y) and B,=(x'ay, b, ') The
assertion follows from that description.

{c) According to part (a) a'=a holds. Since |x| =0 there are
x”, y"e Q* with x'=xx" and y=y"y’. Thus n(supp(a)) = ay” = x"a with
|¥'| = ||| = |x”| and the property (iii} in Lemma 1.3 is satisfied. Since also
lsupp{a)| = |a| + | ¥"| part (c) is complete.

(d) According to part (¢c) a has the form o,=(x,q, ¥y
%= (xx", a, y'). Applying the b-periodicity of supp(«) there are b, x, ye Q*
with by = ay” = x"a=xb and | j| =b=%]. We obtain f by B,=(x, b, ¥¥'),

Bt = (XX_T, 5, y')

26. Let M be a monoid, 1.e., a set endowed with an associative multi-
plication and a unit 1e M. Let 1#xe M be an element such that
XX = X, = XX, holds for all xe M. Then x, is called the zero element of M
and is denoted by 0. Let the radical rad M of M be the set of non-invertible
elements of M. One defines inductively rad"*' M =rad” Mrad M and
obtains the following descending chain of ideals in M:

M =rad® M 2rad’ Morad’ M.

For xe M
xe(),.nrad" M,

(x)=1"
Y= \max{neN,| xerad" M}  elsc

denotes the length of x in M. The monoid M 1s ca}led_ local
M=rad MU {1} holds and if the set [),.nrad"M has precisely one
element. For a subset XS M we denote by (XD the smallest submonoid

of M containing X.
LemMma. Let M be a finite monoid and suppose that for all xe M\{1} the

set {ne M | x"#0)} is finite. Then M is local.

Proof. Obviously 1 1s the only invertible elemept. We claim that
rad"+' M —rad” M implies rad” M ={. The assertion would lze an
immediate consequence since M is finite. Therefore suppose raan =
rad” M rad M and choose a minimal X crad”M such that rad” M=
X rad M. Let x,€ X. There is X, e X and xerad M such that xp=X; X. The
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minimality of X implies x,=x, and therefore xXo=xox" for all neN.,
According to the assumption we obtain x,=0. Thus rad” M = 0 holds and
the proof is complete.

Now we combine the previous lemma with Lemma 2.5(b).

PROPOSITION.  Let w be a word in a quiver. Then End(w) is a local
monoid.

2.7. Let M be a monoid with 0 and let H< M be closed under multi-
plication. Given a field k, the k-algebra generated by H is by definition the
k-vector space kH= @ cerj0) kKx endowed with the induced multi-

plication; i.e., base elements are multiplied as in M, identifying zero in M
and kH.

LEMMA. Let M be a local monoid

(@)  The k-algebra kM is local with radical rad” kM = k rad” M ,neN.

(b) Let A be a k-algebra with rad” A =0 and let p:kM— A be a
surjective homomorphism. Then there is a subset X <rad M \rad® M such
that {@(x)+rad’> 4 |{xe X} forms a k-basis of rad A/rad® A. The radical
rad” 4, re Ny is generated over k by {o(x)| xerad’{X)}). In particular
lo(x) | xe CXONrad"(X >} generates A over k.

The proof is straightforward.

3. NON-REDUCIBLE PAIRS OF ENDOMORPHISMS

Throughout the mnext sections we consider pairs o« and f of
endomorphisms since Theorem 1 treats factor algebras of k End(w)
generated by two elements, Applying Lemma 2.7 together with Proposi-
tion 2.6 we reduce Theorem 1 to statements about the submonoid
{2 B> <End(w) generated by « and B. As a first result we obtain in

Section 3.4 a 13-dimensional algebra which cannot be realised as a factor
of kK End(w).

3.1. Let o, fe End(w). The pair (x, B) is called reducible if
(i) **#0, xBx#0, sgn(f) =1, |2 |8l <0, and
(i) Bl = Jall, if g7 #0.

The purpose of this section is to prove the following proposition. We
collect all cases which elude a unified treatment in the context of simple
and reducible pairs (cf. Sections 4 and 5).
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ProPOSITION. Let a, ferad\rad® End(w) such that neither (a, f§) nor
(B, ) is reducible. Then

card({a, BO\rad"¢a, BY) <20 —=2n+ 1.
holds for all ne N.

32. Lemma. Let o, ferad End(w) with o> #0 and B2 #0.

(a) Suppose |supp(a) A supp(B)| = llal + || Bll. Then supp(a) = supp(f).

(b) Suppose supp(a)=supp(p). Then there exist y€ End(w) and
r, €N such that x=y', f=7"

Proof. (a) By Lemma 2.4 and Lemma 2.5 supp{«) and supp(ff) are
both |«|- and | B]-periodic. Now assume supp(x) # supp(f), say s=
supp(x) N supp(p) # supp(«). Then there is y=(x, ¢, y) e Fac(n(supp(2)))
such that s =17 * supp(a) with |x| >0 or |y|>0. Without any restriction

assume |x| > 0. By assumption |c|= s| = |IBIl, i.e., ¢ 18 of the form ¢=¢'¢c”
with |¢'| = ||f|. Since feEnd(w} we conclude t{(x)#t(xc’). But that

contradicts the ||B]-periodicity of xcy = n(supp(«)) and supp(x)= supp(ff)
1s shown.

(b) Let ¢ = gcd(fjall, |8). We infer from Lemma 2.4 and Lemma 2.5
that supp(a) is c-periodic. Suppose |laf =cr and | pli= cs. Using
Lemma 2.5(d) there exists y € End(w) such that a=7" and f=7".

3.3. An endomorphism x € End(w) is called primitive if « =" for some

BeEnd(w) and neN implies n=1.
LEMMA. Let o, fe End(w) be primitive and suppose o™ =p"#0 for a
pair m,ne N. Then a=p and m=n hold.

Proof. Combine Lemma 2.5(b) and Lemma 3.2
definition.

b) with the previous

w) equivalent if x=[= 0 or

This lemma motivates us to call a, B€ End( _
+ #£0 and f=7"#0.

if there are v End(w) and r, s€ N such that &=

3.4. PropOSITION. Let o, ferad End(w) with «>#0, B>#0, and
1Bl = ||al|. Then a and B are equivalent or afra =0 for all n>2.

Proof. Assume af"a#0. Choose 7 < (apx), with 7| =0 Then
ya < supp(a) N supp(f) and yap” < supp(a) ~ supp(B). Therefore

supp(at) ~ supp(B)l = [yx v yafTl = 18”1 =n 118l
>2 (1Bl = lall + 115l

holds for 7> 2 and a and § are both equivalent by Lemma 32

582a/64,2-6
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COROLLARY. Let k{x,y> be the free associative k-algebra in two
generators and let A be the following factor algebra:

A=k{x, yy/I  with I=(x% p° xyx, yxy)+ (x, y)’.

For a word w in a quiver there is no surjective homomorphism from k End(w)
to A.

Proof. Assume there is a surjective homomorphism ¢ : k End(w) - 4.
By Lemma 2.7 there exist «, ferad End(w)\rad? End(w) such that
{@(a) +rad” 4, @(f)+rad® 4} forms a basis of rad 4/rad? 4. Now rad* 4
is generated by {@(xfi*x), o(Ba’f)} over k and is 2-dimensional. On the
other hand af’x =0 or Bx®f =0. This contradiction finishes the proof.

3.5. LEMMA. Let o, f e rad End(w) with 2% #0. Suppose « and § are not
equivalent and supp(f) <supp(x). Then rk(f) < ||a].

Proof. We consider two cases.
1. p?#0. Applying Lemma 2.5(c) which says

Isupp(a) N supp(B)| = [supp(B)| = || B]] + rk(B),

the assertion is an immediate consequence of Lemma 3.2.

2. B*=0. Fix B,=(x,b,y), f,=(x,b,)) and we may assume
|81 > 0. Suppose rk(f) > ||x|.. Since f>=0 we know |8 > rk(f). Thus there
is ne€ N such that |B|=n jjaf +r and 0<r<|al. Suppose y =y, y, and
X'=x3x} with |p|=n|a=]|x}|. Then we obtain an endomorphism
7= 7570 bY 7= (x, by\, y,) and y,= (x}, x}¥, y') since supp(a) is [lal-
periodic. According to this construction rk(y) = |||, supp(y) < supp() and
72 #0. Applying the first case x and y are equivalent. Since §=17" also

and f are equivalent. This contradicts the assumption and the lemma is
proven.

3.6. LEMMA.  Let o, Be End(w) and suppose B2 =0 and |a| |f] > 0. Then
Bx"B =0 hols for all ne N.

Proof. Let neN and x=f,n(2"),. f2=0 implies that §, and B, are

not connected. Since {«| |#| >0 also xa” and f. are not connected. There-
fore fx"f =0 is shown.

3.7. LEMMA.  Ler a, fe End(w) be non-equivalent and suppose affn” #0
Jor some neN. Then gapx #0 for some @ € End(w) implies ¢afo” ' #0.

Proof. We show (2fx), = (xfa”~'),. Then the assertion is an obvious
consequence. Start with u=(af),Na,. According to Lemma 3.5 |ul=
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rk(afx) < |all. The description of "' and «" in Lemma 2.5 yields
u< (" '), since u and (a"), are connected by assumption. Therefore

(afx), = (aBa” '), holds.

3.8. LeMMA. Ler a, fe End(w) with sgn(a) =1 and sgn(f)= — 1. Then
afa”fa =0 holds for all neN.

Proof. Let neN and assume afax"pa#0. According to Lemma 3.7
v =afa"Ba" ' £0 with y=afa" . Applying the assumptions about «
and B we obtain sgn(y)=—1 or rk(y)=0. Both contradict y>#0 by
Lemma 2.5. Therefore afo”ffo. =0 holds.

-?’-9. Given two factors x=(a,, a, a;) and B=(b;, b, b,) in Fac(w), we
write x < 8 if |o;1 > |b,| for ie {1,2}.

Lemma. Let o, feEnd(w). If x,<f, (x,<B,) then there exisis
o' € End(w) such that a =o' (x=px').

Proof. Choose o« = (2,, 2,7 ") or a'= (2B, 2,), respectively.

3.10. LEMMA. Let a, ferad End(w) be non-equivalent such that %% #0,
2 .. _ . O
B2 #0 and | B|| = |la||. In addition suppose xfa=0, if |2l 1B <0.

(a) If supp(x) # supp(a) N supp(f), then aff =0 or fa=0.

(b) If supp(a)=supp(a)supp(f), then afx=0. Moreover if
a¢ rad® End(w), then aff =0 or fa=0 or aff? = pra=0.

Proof. We may assume |2 > 0.

(a) Take y=(c,, ¢ 2)€E Fac(n(supp(a))) with supp{(x) N supp(ﬁ) =
7 * supp(a). The assumption implies |c,| >0 or |¢,| > 0. Let us consider the
case |¢,| >0, the second case being analogous.

1. || |B] > 0. Suppose B #0. Then, by definition, f§, and x, are

connected and |« || >0 yields

Isupp(a) A supp(F)l = 181l + 1B, Aol + Nl = 1BI+

By Lemma 3.2 « and f are equivalent. Contradiction. Therefore Pa=01s
shown.

2. |al |B] <0. Suppose «f #0. Using the
1Bl = |l and |c,| #0 we obtain (af), <2,
Contradiction. Thus «f =0 is shown.

(b) Fix y=(c,, ¢, ¢;) € Fac(z(supp($))) with supp(a) =7 * supp(£).
|a} 11 >0 immediately

assumptions x| |B] <0,
That implies xfx#0.

1. |aj |l >0. Suppose afa0. Then
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implies [supp(«) N supp(f)| = ||« + ||B]| + ||«]. Again by Lemma 3.2 « and
f are equivalent and that contradiction finishes the proof of afx=0. To
prove the second part first suppose |c,| =0 or |c,| =0. Since rk(x) < ||B]
holds by Lemma 3.5 8, and «, or 8, and «, respectively are not connected.
Therefore fx=0 or 2f=0. Now suppose |c,|#0 and c,| #0. Using
|¢;| #0 and the assumption « ¢ rad? End(w) combined with Lemma 3.9 one

obtains |cf + [laff < ||B]. Now from rk(x) < ||8] follows f%x = 0. We use an
analogous argument for a8 =0.

2. |a| |BI <0. By assumption only the second part has to be shgwn.
First observe that afix =0 already implies |supp(a)! < |Bll. The condition
a ¢ rad”® End(w) combined with Lemma 3.9 yields jc;| < |8l for ie {1,2}.

From |¢/| <] and |supp(a)| < 8| follows aff*=0. Analogously one
obtains f?x =0,

3.11. The following proposition combines the results of 3.6, 3.8, and 3.10.
PROPOSITION.  Ler  a, f e rad End(w)\rad? End(w) be two different

endomorphisms such that neither (x, §) nor (B, a) is reducible. Then one of
the following cases holds:

(i) at=p%=0.
(11) aff =0.
(i) fa=0.

(1i1) B =afa"Ba=0 for all ne N.
(iii") 2’ = Baf"af =0 for all ne N.
(iv)  afx=apf?=p2%=0.
(V) Paf=Ba’=a’f=0

302 LeMMA.  Let M= M{x, v) be the free monoid with generators X
and y. Suppose the ideal T< M is generated by one of the following sets:

Ry ={x? y?!,
Ry={xyx, x3?%, pix},
Ry= {3} u {xpxyx | reN},
Ry={xy’x|reN}u {px 1y reN}.
Then card(M/I'rad” M/I) <21 — 25 4 | Jor all ne N,
Proof. Let I< M be an ideal and neN. Then

M/I\rad" M/I={xe M/I| xe M\(I'urad” M)},
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::: clonsider f?r each R, the generated ideal I, (1< /<4) and write down
elements of M, = M\(/,urad” M). In particular btai
the bound card MJ,-S 2’ 2n+ 1. ’ e optaim card o, and

M, ={(xy) |0<2i<n}u{(yx)]1<2i<n}
U{(xy)x|0<2i<n—1}u {(yx)y|0<2i<n—1;

card M, =2n—1

M,={x"|0<i<n}u{y|1<i<n]
ulxyli<i<n—1}u{x'|1<i<n—1}
iy 1<i<n—2}

card M, =5n—8, if n>3

M,={x|0<i<n}u{pxy|1<i<n—2}
U {xiyx’ |0, j20,i+j<n—1}
w{yxiyxi i jz 1 i+ j<n—2}
uixiyxy i je i+ j<n—2}
u{}’.ri}’xf’|i,j?l,i-!—j<n——3}

card M, =2n"—10n+ 19, if n>4

M4={x"|0€i<n}u{}-”'|1$i<n}
u{x‘j”li,j;l,i+j<n}u{y"xv"!i,j?l,i+j<n}
U lyixy i jz it j<n—1}

card M, =3/2n>—1/2n+4, if n>2

Proof of Proposition 3.1. Let a and B be as in the statement of the
Pr_Oposition 31, We infer from Proposition3.11 that <x, B> is an
epimorphic image of M{x, y /I, where the ideal I is generated by one of
the R. (1 <i<4). Therefore the assertion is an immediate consequence of

the previous lemma.

4. SIMPLE PAIRS OF TRANSFORMATIONS

) of endomorphisms we will associate a
s out to be simple in most cases
B, later will serve as an

With each reducible pair (=, §
pair (x,, B,) of transformations which turn
(cf. section 5). The generated submonoid {2,

approximation of {a, §).
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4.1. Let a, f € Trans(w). The pair («, f#) is called simple if
(1) gz:,é(), B?EO, BZZO’ Sgn(ﬂ): 1,
(i) supp(a)=supp{f), || {f] <0 and afx e End(w).
In this section we provide a construction which allows to reduce a simple
pair (2, #) to a minimal pair (x«,, #,) by iterating two operations. On the

other hand one obtains from {«,,f,> inductively a precise description of
{a, B5. In particular we deduce the following result:

PROPOSITION.  Let (2, 8) be a simple pair in Trans(w). Then for ne Ny

card(rad”{a, fO\rad" (o, BO)<n + 1.
Remark. The bound is best possible (cf. Example 6.1).

42. LemmA.  Let (a, B) be a simple pair in Trans(w).
(a) Then rk(B) < |jal|.

(b) Let a™f---Pa"=a™f---Ba™ #0 for n, .., n, and let m, ..., M,
in No. Then r=s and n,=m, for ie {1, .. r}.

Proof. (a) Let c=supp(a)=supp(f) and let w’'=n(c) be the projec-
tion. We restrict « and f to w’, ie, we consider a’ = {(«,)., («,).) and
B =((B,)., (B,).) in Trans(w'). (Here y=7_ *c is defined for y<c in
Fac(w) as in 2.1.) Since Bz € End(w) and «'f'a’ € End(w’) respectively o’
and ' lie in End(w’). Now the assertion immediately follows from
Lemma 3.5 since rk(f)=rk(f') < {|a'|| = |jx|.

(b) Using (a) the assertion follows by induction on r.

The previous Lemma justifies the following convention for a simple
pair (x, f): Let M{x, B> be the free monoid in x and B and let
T=71,,4: M{x B> — Trans(w) be the map induced by t(x) =« and =(f)=F-
Then we may identify the set {xe M{x 5| t(x) #0} via 1 with
T{a, B> ={a, B> {0} < Trans(w).

4.3. LeMMA. Let (x, B) be a simple pair in Trans(w).

(@) Let n=max{reN,| 2 2£0}. Then o, = ((2"*")
and B, =(B,27", B,) lie in Trans(w) and (

3 _
ay =0.

o (an+})sa)
ay, B,) is a simple pair. Moreover

o (b) Suppose Baf #0. Then a, =afa and B, = ((Ba),n B, B, (2h)s)
lie in Trans(w) and (x,, B,) is a simple pair.

The simple properties of (x,, f,) follow from those of (a, ). Therefore
we omit the details. We denote in part (a) by r,.(a, B)=(a,, f§,) the n-trun-
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cation of («, f) and in part (b) by r(z, §)={(a,, B,) the simple reduction of
(2, B). As an example choose w=(x"'yx~!x~'y)*x~! in the quiver with

one vertex and two arrows x and .

W DEGPEPRIPEGPEPIIGPIPE GO IRE P SRS SRR P8 S8
(2, B) -
ry(a, f) -
rro(a, B) -

A simple pair (a, B) is called minimal if a® = Baff =0. These notions lead to
the following result:

4.4. LeMMA. Let (o, B) be a simple pair in Trans(w). Then there exist a
minimal pair (a,, 8,) in Trans(w) and integers Ny, .., n, € Ny such that

(ala ﬁ]):rn,rrn,_l ”'rngrrnl(a? ﬂ)
the previous lemma

Proof. Tterate the operations r, and r described in
until the resulting pair is minimal.

4.5. Let &, f e Trans(w). An ¢lement me€ {a, B is called maximal for the
pair (a, B} if

(1) m#0 and
(i) me (a, B x{a, f> holds for all x€ (a, B> with x#0.

LeMMma.  Let («, ) be a minimal pair in Trans(w).

(a) Suppose |afia| || >0. Then there exisis seN such that (2fz) is

maximal for the pair (a, f).
(b)  Suppose |afa| |2 <O. Then there exists s eN
maximal for the pair (2, B).
Proof. According to the definition of a minimal pair fa"f =0 holds for
all ne N, with n # 2. Application of the assumptions about |xfx| shows for
maximal m e (a, B> that either me 2*<(%, Bya* or meafa B P holds.

such that a(afx) 2 is

4.6. We fix some notations for the rest of Section 4. Let M=M<a, B>

be the free monoid and let G{a B> be the free group In 2 andl[z
where M(ax, B> is regarded as a subset of G{a, f). Furthermore I€
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(B?)= M{x, B> be the ideal generated by p° M= M\($°), D{x, =
aMp o Mpa and D'(a, B) =aM pa. We define two maps, the second one
depending on ne Ng:

p’ pn:M<cxiﬂ ﬁl>_}G<aﬂ 6>

Let p be the multiplicative extension of the following map defined on

120, B}

play)=afa,  p(B)=a”".

For x=a{'f"al" - B} with reNy, ny, n,eNy, n,e N (I<i<r—1),
meN (1<i<r) let

p (Y):anq)+nﬂm1an1+n _'_ﬁm,an,+n
1A% .

LEMMA. Let p and p, be the maps as defined above.

(@) Let x, yeMlay, B> Then p,(xp)=p,(x)a "p,(y) with
palX)a", a7 "p, (y)e M{a, B).
(

b) Let xeD{ay, B,>. Then p(x)e M{x, B>.

(¢} Let x,x,,x,e M, B,> and suppose x,x,xx,eD'{a;, B>
Then p(x;)e M{a, B for ie {1,2}.

Proof. (a) and (b) are obvious. (c¢) follows from (b).

4.7. LEMMA.  Let (%, B) be a simple pair in Trans(w) and let (x,, f,)=
rola ). Given xe M{x, B, then xe T<a,, B,> and p,(x)e T{a, ) are
equivalent; in which case p,(x)= xx" holds in Trans(w).

Proof. We prove the assertion for ve M<{x,, f,> by induction on
the length /(x) of x. Assume that xe T'(a,, §,) or p (x)e T<{a, §> holds.
For l{x)<1 the assertion is clear. Therefore suppose x = x, x, With
0</l{x)<l(x) for ie{1,2}. Then there exist vie M{a, B such that
Palxy)=y 2" and p,(x;)=a"y,. That implies p,(x)= y,a"v, by Lem-

ma 4.5(a). By induction y,a” = x, 2" and 2"y, = x,a" lie in Trans(w). Now
we Inteprete

- L Moy e 1 n —_
=X 00 =0y, =y,a"y,=p,(x)

in Trans(w) and distinguish between x e T<{a, B,> and p,(x)e T<a, B>-
The first case implies p,(x)e T¢a, B> since x, < («"),. In the second case

the assertion xe T'(x,, 8, is obvious from p.(x)=xa" This finishes our
proof.
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48. Lemma. Let (%, f) be a simple pair in Trans(w) and let
(2, Br)=r(a, B).
(a) Suppose xeT<a,B). Then there exists x' eaffT{a, B> P such
that x' £0 and x' e T{a, B> xT<{a, ).

(b) Given xea, M{x,, f,> %, then x€ Ty, B> and p(x) e T2, i
are equivalent, in which case p(x)=Xx holds in Trans(w).

Proof. (a) Suppose xeT<{a« 8> has the form x=pfy for some
yeT<a, B> Then afy#0 since B,<a,. Using analogous arguments
x=yB, x=ay and x=ya’, respectively, for some ye T{x, B> imply
yPo#£0, afa’y #0 and ya’fu#0, respectively. Therefore {a) is shown.

(b) Let xea, M{a,,fB,>a, and x¢€ Tay, B> or p(x)eT<a, B)
Choose x'ea, M<{a,, B pa, of maximal length /(x’) such that p(x")=
X' £0 holds in Trans(w) and some x, € M{ay, B exists with x=x'x,. We
claim x=x'. First suppose x,ea; M{ay, By)- Then x'a, = p(x")afx=
p(x'a,), but that contradicts the maximality of /(x'). Therefore suppose
x,ef, M{x,, B,>. Then x,€fo M, g,> and X' %, =p(x)fr=
p(x'fB,a,) since yf, o, = yfx holds for yeFac(w) with y < (2,), N (fra,),.
Thus x = x’ is shown by the maximality of /(x).

49 PROPOSITION. Let (%, ) and (o, B1) be simple pairs in Trans(w)
and suppose that m, is maximal for (a, B1)

(@) If (a,, B.)=ra(2 B), then m=p,(m) s maximal for (a, B).
(b) If (x,, B.)=rl, B), then m=p(m,;) is maximal for {2, B).

eTla > by Lemma 4.7. Now

Proof. (a) First of all m=p,(m)
{x, B> has to be shown.

suppose xe T<{a, . Then meT<a, O xT |
Suppose x=a" famf--- . It suffices to show the assertion for

X =g Bam . far~ fat with | = max(n;, n) for i€ {1,r} because
x'eT{x B> xT<a, B> and v £0. Note that X £0 follows from
("), ~ B, = (™), P, and ﬁ,n(a"]_,:ﬁ,m(cx"’)x. We have x'=p,(}) for
}"=0£’1' R - A i ---ﬁla’; - By Lemma 4.7 ye IRC T I and applying
the maximality of m, there are yy, )2€ T<{a,, By with my= 1332 That
implies m = p, (m,) = pp(31) 2 ¥ "pu(y2) b Lemma 4.6(a) where
paly)a" a "p,(y:)e T<a B> holds. That finishes part (2)

(b) It is obvious that m,ea, T<a, Br? %1 and therefore
m=p(m,)e T{a, §) by Lemma 4.8(b). Now suppose Y€ T<{x By and
meT{a B> xT{x, fy has to be shown. According to Lemma 4.8’(3)
there is x e afT<a B fa with 0+#x e€T(xp ';CT<053 B>. :If X'=
afa™ B ... Ba™ P, then x' =p(y) holds for y=alﬁl‘qlﬁ;--—ﬁ{11 with
L=1 if n,=1, and [,=0, if n,=2 (1<i<r). Applying Lemma 3.8(b)
yeT<a,, ;> holds and since m, is maximal there exist ¥, Y2 €
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T <oy, fy) withm, =y, yy,. That implies m = p(m,) = p(y,) x'p(y,) where
p(y.)e T<a, B holds for ie {1, 2} by Lemma 4.6(c). Therefore the proof is
complete.

4.10. We fix for the rest of this section M = M<a, B, D= D_(_cx, $> and
the maps p and p, are defined on M by «, =«, 8, = B. In addition let

0p: M{a, B> —G{a, B
be the multiplicative extension of the following map defined on {«, 8}:

5ﬂ(a):anﬁa5 6”(ﬁ)=a_l'

LEMMA. Let xe D and ne N,,.

(@) Iris p,p(x)=96,,,(x)a".

(b) Let a, b, yeD with y=axb. Then there exist a',b €D with
5n+1(}')=a'p,,p(x)b'.

Proof. (a) The assertion follows for x=a"f§..-fa™e D by induction
on r.

(b) Choose a'=9,, ,(a), P’=a"5,,,(h) and use part (a).
4.11. For ny, n,, .., n,e N, define

c(ng) = 2" and ¢(ny, ny, .., n,) = Oy, -+ 0,,0, (1), if =1

Now fix some ng, ny,..,n,e N with t>2. We use the following notation:

(,:C(novnls"'vnr)! a:(‘(lvn}r-"unr)s b:C(lsn2—17n33---9nt) and p=
fta™b), g=1a).

LEMMA.  Let ng,n,,...,n,eN and t > 2. Then

(a) c=(a"b)",
(b) abe Ma and
(c) aeb(fx) 'M.

Proof. The assertion immediately follows by induction on ¢ using the
multiplicativity of §,,.

PROPOSITION.  Let ng, ny, ... n,e N and consider Jor ne N the set

T,={xeM|c(ng, n,, .., n)eMxM,l(x)=n)}.
Then card T, <n+ 1 holds.
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Proof. Again we prove by induction on r. The case t<1 is trivial
Therefore suppose > 1. We only use the properties (a), (b), and (¢) of ¢
in the previous lemma. By (a) and (b) there exist a,e M for 1<i<p—¢q
with ce Ma,a and [(a;)=1i For 0<isp—4¢ let b,e M such that ceb; M
and /(b,)=i. In addition let b _, =g

. n<p. Let xeM with ce MxM and [(x)=n. Part (a) provides
x,,x,eM with a"ba"b=x,xX,. Without any restriction assume
I{x,) < p. We consider three cases for I{x,). Ifl(x}2p—4 then we obtain
a"e MxM for m=n,+ 2 from (b) and (c). For l(x;x)s<p— 2a"e MxM
follows from (c). Otherwise it 1s n=>¢ and x has the form a;ab, for
some ie{l,.,n—q+1}. By induction card T, <n+ 1 follows for n<gq
since a™ = c(m, ny, .., n,). For n=4g observe that a” is a g-periodic word,
and therefore card{xe M | a" € MxM, J(x)=n} <gq holds. Thus card T, <
g+n—qg+1)y=n+1

2. n>p. By (a) the word ¢ 18 p-periodic. Therefore card 7, <
p<n+ 1l

Proof of Proposition 4.1.  Let (2, f) be simple. There exist #,, ..., 1,€ No
by Lemma 4.4 such that (x, B)=r, 1 (@ B) 1S minimal. Applying
Lemma 4.5 there is s N such that a;(af,%,)%; 0f (2,8,2,) is maximal
for (a,, B,). Following our convention In 42 we consider T(x, B =

(o, B340 as a subset of M= M<{a, . In particular
rad"¢a, fy\rad"*Hx, py < {xe M| I(x)=n}.

Now let m be maximal for (%, f). We combine the formulas of Proposj-
tion 4.9 for the recursive calculation of m with Lemma 4..10 apd obtain
cs+2,n,+1L,n+1,...n+ 1)e MmM. Now the assertion 1s an immediate

consequence of Proposition 4.11.

5. REDUCIBLE PAIRS OF ENDOMORPHISMS

In this section we complete the proof of both theorems. With each
reducible pair (., ) we associate a second pair (2o, o) of transformat_lons
and consider (a, f) as an extension (&, f) = e(%o, Boiin J» P-4) determined
by four integral parameters. First we prove part (a) of Theorem 1. For. SO
called weakly reducible pairs we can use the results of the previous section

whereas strongly reducible pairs have to be considered separately. The

proof of part (b) is based on work already done for part (a).
51. Let w be a word in O The set Trans(w)\{0} is partially ordered by

(s, a,)é(ﬁs,ﬁ,)f:aséﬁs and =P
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for two transformations «, feTrans(w)\{0}. For a<f fix (.as.)ﬁ_;:
(x, a, y)e Fac(n(f,)) with i = |x| and J=1»|. We denote by f8 ='e(9c, I, j) the
extension of « by i and j. This extension is uniquely determined by the
triple (2, i, j):

p——
=
—
o
-

I
{ —

3.2. Let the pair («, 8) in End(w) be reducible and let a=xfx. Then
102(0,1*1uas,a,uasoc), Bo=(a,x, a2 ")

belong to Trans(w). The pair (a,, fiy) is called the reduced pair corre-
sponding to (%, ). It is %, <« and Bo< B. Moreover (x,, ) is a simple
pair if «330. Let i, j, P: 4€Ng such that x=e(x,, i, j) and B=e(fo, P, q)
Then we write (x, §) = e(x,, Boi i, js p. q). We call (x, B) strongly reducible
if max(p, g)> ||| or max(, j) > 2 ||lz||. Otherwise (, B) is called weakly
reducible. In 6.2 and 6.3 are given concrete examples.

53. LEMMA. Let (x, B) be reducible in End{w) such that (a, )=
(%o, Boi i, j p. q). Suppose x, § ¢ rad? End(w). Then:

(a) min{i, p)=0. (") min(j, g)=0.
(d) g2 Bl if i> |af. (6) p=|IBIL, if j> ||«
() j=llzl. if p> |8y, () iz al, if g>1IB].

Proof. (a) Let m = min(, P). From e(x,f,,, m 0) < 2fx and
% fo%o = 2fx we infer m =0,

(b) Suppose i> x| and 4 <[ifll. Then B, <x, holds which implies
ferad® End(w) by Lemma 3.9, Contradiction.

(¢} Suppose p> I8 and < |«|. Then %, < fi, holds which implies
xerad® End(w) by Lemma 3.9. Contradiction.

(a’}(c’) and (a)}-(c) are symmetric.

5.4. LEMMA.  Let (a, §) be reducible in End(w) and let (ay, f,) be the
corresponding reduced pair.

(@) Ler |B| < lx|l. Then a5 =0.

(b)  Let 23=0. Then there

is re N such that (a, Bo) 2, is maximal for
(20, Bo). In particular card(rad”

<a05 B0>\radn+ l<a0, ﬁ0>)~€,n+ 1.
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Proof. (a) Byt ‘tion i 2 .
%, yiclds a(g) :) N y the definition in 3.2 f*= 0 and therefore the definition of
(b) The assertion follows directly from the definition of 2, and fy.

C0r5.5. LEM.MA. Let {(a, B) be reducible in End(w) and let (2, o) be the
‘ i‘;?pondmg reduced pair. Furthermore let x=amp---Paela B with
€N, (1<i<r) and let 0# yeTrans(w) such that y<x and

1,5\<\{(%)s n; #0, _<{(9‘0)z n,#0,
Bo). m=0 B n=0.

Then xq= a7 By Boaly #0 holds with v < xo and l(xq) < I(x).

0

Proof. We use induction on r. The initial step r <2 is clear. Therefore

su i i
y glpose r>2. Then n, =1 Using the assumptions about y, and ), s
as afa = oy fox, One obtains

z=y, (B2 )= v (B < (20)e 0 (Bo)s-

?p(plz induc:ion to y, = (r,,2) and y> = (z, y,). We obtain = =

;avse C:() oy )= y (Pory)~ " which implies xo#0 and y= iy <x I

o rlansfer Lemma 4.2(b) to (a9, Bo) WE obtain [(xg)=(Xin)+{r— 1) for

lex? ength in (ay, Bo>- Therefore (3 n)+{r— 1)< I(x) holds for the
gth in ¢a, # and the proof of this jemma is complete.
5.6. LEyMA. Let (x, f) be reducible in End(w) with (% f)=

e(ay, Bos i, j, p,q). Let m, neN, and x € <2, B>.

jsn lall. Then there exist I, seNg

(a) Let p=q=0 and i<m lall,
and r<m, S Moreover,

;’”d X € (oy. Boy such that x=axy
(X) 2 1(xy)+r+ s holds.

(b) Let i=j=0 and p<m 1B, g<n |B|. Then there exist r, s€ Ny
;’"d xg€ {ay, B> such that X= Brx,f and r<t s<m. Moreoter,
(xX)=l(x,)+r+s holds.

(c) Let j=p=0,i<m
reN, and x,€ {0y, Bo) SUC
r<n. Moreover, 1(x) > l(xo) +r holds.

(¢)) Let i=¢=0, j<mlal, p<nlbi
exist reN, and x,€ {otgs Bo? such that x=Xg
with r < n. Moreover, I(x)=1{x0) +T holds.

Proof. (a) For xe{a) the assertion 1

hall, g<n Bl and | B = liall. Then there exist
h that x=0a"Xg with r<m, or x=fx, with

and ||ﬁ||2HaH. Then there
o with r<m, or -'f=x05r

s trivial. Otherwise choose
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r,s€ Ny and x"e (a, B> with x=45"x'a" such that r and s are minimal with
respect to

r<{(“0)5 x'eot(d, ﬁ>9 X 13‘<{(1())1 xle<1’ ﬁ>1’
TESUB, ey T SV, xedn fOB

The assumption about i and j guarantee that r <m and s <n. Moreover
[(x)Zr+1(x")+s5. Now the assertion follows by Lemma 5.5, applied to
y={xa" x, 27" x.

(b) First we claim || > ||l«)|. Since i=j=0 it is x=a,. Suppose
1B <ll]. Then a® =2} =0 follows by Lemma 5.4(a). This contradicts the
fact that («, B) is reducible and therefore 1Bl = l|a|l is shown. Now we use
similar arguments as in (a) changing the roles of x and 8.

(¢) If xe (x> U {B) the assertion is trivial. Otherwise first obser_ve
that B, na,< (%), and «,nB, < (B5), holds. Therefore there exist
xpeayu{f> and x'e {a, §5 with

(29), X' €ala, ),
(Bo), x"€fla f).

Let x;=2" or x;, =#" and assume r to be minimal. Then r <m or r<n

respectively.  Also I(x)2r+1(x’) holds. The assertion follows from
Lemma 5.5, applied to y = (xexy, x,)< X',

X=x,x and xsxlé,{

(c’) Follows by symmetry from (c).

57. LeMMA. Let a, ferad End(w)\rad” End(w) and let (o, f) be
reducible with (x, )= e(2o, Boi i, j, p.q). Fix neN and for a,be % p)

consider the set
M, (a, b)= {axbe Trans(w) | x e {ay, B>, Hx)+ 1(a)+ () <n).
@) If Bl <|lzl, then
Ca, Brirad”(a, B
- {oz"ﬁ(a/i’)*"ac’feTrans(w) | ris SENG, 1, <2, r + 1+ 25 +r,<n
u{a’iOgrSmin(3,n—l)} and
card(<x, B>\rad"¢a, B5)<3n+ 1.
(b) If p=qg=0 and max(i, j) < |lafi, then
(o, fo\rad"(a, B
gM,,(l,l)uM,,(a,1)uM,,(1,a)uM,,(a,a) and
card(<a, B )\rad"¢a, B5) < 2n? —2n+ 1.
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(¢c) If i=j=0 and max(p,q)<|Bl, then

(o, foNrad™{x, B
S;M,,(l,l)uM,,(ﬁ,l)uM,,(l,ﬁ)uMn(ﬂ,ﬁ) and

card((a, BO\rad"(a, BY)<2n® —2n+1.
(d) If j=p=0,i<2 || and ¢ <|pl, then

Ca, foN\rad"(a, B
EM,,(I,1)uM,,(a,1)uM,,(ﬁ,1)uM,,(a2,1) and
card(<z, B \rad"(a, fO)<2n* =2n+ 1.
(d) Ifi=qg=0, j<2|a| and p<|IBl, then

(a, BO\rad"(a,
=M, (1, 1)yuM,(1,2)uM,(L x)uM,(1, fuM,(], x%) and

card({a, fO\rad" (o, fy)<2n* —2n+ 1.

Proof. (a) According to the definition in 3.1 it is f*=0. Therefore
maX(P,ql<|lﬁ||. Moreover max(i, j)< [« holds by Lemma 5.3 since
o, B¢ rad? End(w). There are the following cases:

1. p=g=0. The assertion follows from Lemma 5.6(a) and
Lemma 5.4.

' .2- p#0. By Lemma 5.3(a) it is i=0. Therefore %N f,= (20), " B,
WP‘Ch implies x2f =alf=0 by Lemma 5.4(a). Moreover i=0. j <[] and
22 =0 yields 2° = 0. The assertion follows immediately.

3. ¢#0. This case is symmetric to the previous one.

For (b)-(d") the description of {x, f)\rad"<a. B> follows from Lemma 5.6.
The pair (2, ) is simple or a2 =0 holds. Therefore Proposition 4.1 and

Lemm.a 54 show card M, (a,b)<m*/2+m/2 for m=n—I{a)—1(b)
Applying this result several times we obtain the bound for card(<x, B

rad"(a, ).

Ezfch weakly reducible pair (2, B)
previous lemma. Therefore we may conclude:

satisfies one of the conditions in the

ProposiTION. Let a, ferad End(w)\rad”* End(w) and let (2, B) be

weakly reducible. Then the following holds for n€ N:
card({a, B \rad"<{a, BY)<2n*—2n+ 1.
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Remark. Let a, ferad End{w)\rad” End(w) and let (a. f) be strongly
reducible. In general there is no polynomial bound of degree 2 for
card(<{a, pO\rad"(a, B>) (cf. Example 6.2). Nevertheless Lemma 5.6(c)

and 5.6(c’) respectively yield the bound card(<a, f>\rad"{a, )< 1/3n* +
n’ +2/3n.

5.8. PROPOSITION. Let the factor algebra A=k End(w)/I be generated
by two elements. Suppose that given two endomorphisms a, B € rad End(w)\
rad” End(w) such that a=a+1 and f= B + I generate the algebra A, the
pair (x, ) or (B,x) is strongly reducible. Choose «, e rad End(w)\
rad’ End(w) in such a way that (%, B) is strongly reducible and {d. B}
generates the algebra A. Then af™*'a = Ba’f =0 holds for ail re N.

Proof. Assume the strongly reducible pair (x, f)=e(%g, Bos s /> P q)
generates 4. The relation af" " '2=0 is clear from Proposition 3.4. To
prove the second relation we consider our cases:

l. g>|Bl. Let (n+1)||B|=g>n|pl|. First of all j=p=0 by
Lemma 5.3. That implies fo = fay=yp" with v=((2,),8 ", (), "€
End(w). By assumption there are pairwise different x,e<a, B> and &,€k*
(I</<m) such that =3, ¢, x,. Note that x, B for all / since otherwise
{2, 7} would generate A although neither (%, 7) nor (y, a) is reducible by
|2t |7] > 0. Now suppose the assertion is not true and choose r € N minimal
such that fx"f#0. It is f&'B =3, ¢, %, Ba" 'B. We claim x, "o’ ~ ‘B e for
all /. Then we are done since that contradicts our assumption. If r > 1, then
X, "a""'Be I holds by the minimality of r. If r = 1, then x, §"* ' e I follows

from 2/t =0 and " =0 respectively. The relations 2> =0 and "> =0
are a consequence of Lemma 5.6(c).

2. p>{Bll. Analogous to the first case.

3. g<|B] and i>2|«|. As in the first case j=p=0 by Lemma 5.3.
Therefore xf = af, = 72> with 7 = ((B,).a . (B,),x *)e End(w). By
assumption there are pairwise different x,€{a, B> and &, ek* (1<l<sm)
such that 7 =3, £, %,. Note that x, # B for all  since otherwise {4, 7} would
generate A although neither (2, 1) nor (7, a) is strongly reducible by y* = 0.
Now suppose the assertion is not true and choose ne N, maximal such
that pa"fa" #0 for some re N. It is fa’fa" = >, & Bar 'k a" 2 We claim
Px""'x,a"* 2l for all I As before that contradiction would finish this
case. If r>1, then B~ 'x, 2" 2e [ follows from the maximality of » and
from fa™+?=par*2 =0 respectively. If r =1, apply to x,e (B the fact that
by ¢<I|fl °=0. Therefore also fx,a"*>=0 holds. If x,¢ {f, we ust
again the maximality of n and o’ *2

2 = fa’ =0, respectively, to obtain
Bx,' a" el

4. p<|Bll and j>2 |«|. Analogous to the third case.
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59. Proof of Theorem 1. First combine Proposition 2.6 and Lem-
ma 2.7(a) to obtain that kK End(y}is a local algebra. Let A=k End({w)/] be
a factor algebra generated by two elements and let meN. Choose
%, Be rad End(w)\rad? End(w) such that A is generated by {a+1 B+ I}.

(a) By Lemma 2.7(b)

dim, A/rad" A < card({a, po\rad”{a, f7)

holds_and the assertion follows from the propositions in 3.1, 5.7, and 5.8
combined with Lemma 3.12.

(b) Suppose n>3. We may assume without any restriction that

A= A=k{x, v)/(x, y). Lemma 2.7(b) yields

x,x,x;#0  forall triples x; € (o, B} (i€ {1,2,3})

Therefore the pair («, ) or (8, x} 18 reducible by Proposition 3.1. Suppose
(«, B) is reducible with (2, B)=e(%> Bo: i J. o q)- We claim
0<pg<[pi and i=j=0. (1)

_0 and 2,0 B, =20 )

Assume p=0. Then 2f*=0 holds since i
> (. The rest of state-

Therefore p>0 is shown. Similiarly one obtains g
ment (1) is done by Lemma 5.3. Now we claim

p>lal.

Since (x,, B,) is simple (1) implies

(20)] = ISupp(ﬁo)l =2rk(fy)+ P T4~ I:NaY:EE (3)

|supp(a)| = [supp

Moreover «° 0 and §° # 0 yields by Lemma 2.5

supp(a)| =3 |« and B0 B = 1B (4)
Lemma 4.2 states that
k(o) < Il )
and part (1) implies that
4<IBl. (©

582a/64,2-7
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Parts (3)-(6) show (2) and we obtain from (2) (2fa), < f,. Thus t.here exists
7 € End(w) such that xfx = 8y by Lemma 3.9. This relation implies that

dim, (rad” A/rad* 4) <dim, (rad® A/rad* A)

which contradicts our assumption 4 ~ 4. Now the proof of the theorem is
complete.

Proof of Theorem 2. Using Proposition 2.6 the monoid End(w) is lo_cal.
One obtains parts (a) and (b) immediately from Theorem 1 since a surjec-
tive homomorphism End(w)-> M induces a surjective homomorphism
k End(w) > kM of k-algebras where cardinality and k-dimension of
M{x, y) and k<{x, y), respectively, correspond to each other.

Remarks. (a) In Example 6.1 we provide for ne N a word w, such that

End(w,)/rad” End(w,) is generated by two elements and card(End(w, )/
rad” End(w,)) =n%*/2 4+ n/2 + 1 holds.

(b) Example 6.3 illustrates the proof of part (b). In particular we see
that the bounds in part (b) of Theorem 1 and Theorem 2 are best possible.
If for two endomorphisms g, B erad End(w)\rad? End(w} the factor
monoids {a, f>/rad"{a, 8> and M<x, yy/rad” M{x, y) are iSOfHOfphl_C
then n<4 according to Proposition 3.4, Example 6.3 shows that n=4 is

possible.
6. EXAMPLES

The following examples are based on the quiver Q with one vertex and
tWo arrows, ie., Q= {x, y}. We fix some ne N.

6.1. EXAMPLE. Consider w,=(x"'y)x~!for reN, and w=w,. Let

i

Bi=(w,1,1), and g = (1, 1, w).
Then 2= (x,, 2,) and B=(8,,B,) belong to End(w) with

as=(l,w,,_l,yx"), 0!=(,’C'7[}’,W,, i 1),

End(w)={a'| 0<i<n} U {aifo’| 0<i,j<n}u{0},
End(w)\rad” End(w) = {a']0<i<nlu {a'Ba/ |0<i+j<n—1},
dim, (k End(w)/rad” k End(w))

= card(End(w)/rad” End(w)) — 1 =n?/2 + n/2.

The pair (a, B) is simple and Tn-2(a, B) is minimal if n> 2.
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6.2. ExaMpLE. Consider v=(x"'y)"x 'and w=x""yv"* ! Let
a=(Luvyx ),  a=(x"'y00")
B,=(x 'yo,0", 1) and  B,=(x"'p0"0)
Then « = (a,, «,) and f=(B,, B,) belong to rad End(w)\rad? End(w) with

(o, By ={a'|0<i<n+1}u{fapa’| 0<i, jI<n]

U et pa’ | 0<i<n}u {0},
(o, BO\rad"Ca, B> = {af | 0<i<n}u {fo/Ba’ | 0<i+j+l<n—1},
card(<a, B \rad"<a, B)=1/6n"+5/6n.

The pair («, ) is strongly reducible if n>2. Let (a2, fo) be the corre-
sponding reduced pair. Then (, f) = (%, Bo; e[|, 0, 0, n || Bl ). We choose
n =72 for illustration:

—

o

oG
>___-—————<
; N e—
(aos ﬁo) ]

] — -3 -3 -2 f = 2‘3
6.3. EXAMPLE. Consider v=x""px "yx )X and w=1r". Let

a,=(x " Zpx Tyx yx Ly 3y vx ),
x, = (vx 2y, x Cyxipxs 3ox lyx yx ),
B, = (v, v% 1), and  B,=1(1,r%0)
Then a=(x,, a,) and B=(B,. B.) belong to rad End(w)\rad® End(w). Let
M be the monoid in two generators. Then
(o, py/rad®(a, o= M/rad* M.

The set 7= (End(w)\{2a, B>V rad® End(w) is an ideal in End(w) and

End(w)/] = M/rad’ M.

The pair (a, f) is weakly reducible and (a, ﬁ)=€(ao, B0:0,0, 181 -1,
I8l — 1) holds for the corresponding reduced pair (%o, Bo)-
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7. WORDS AND MODULES
7.1. Let Q be a quiver and denote by
Q" ={a,a,---a,e Q* | a;eQforallijule e Q* | xeQ,)

the set of parhs in Q. The path algebra kQ of Q is defined as the k-vectqr
space with basis Q*. The product of two pathes in kQ is by definition their
composite in O* if this is defined, otherwise it is zero.

Given a word w in Q we now define the kQ-right module M = M(w)
associated with w. Let M be the k-vector space with basis {m, | 0<i<|w| )
It suffices to explain the multiplication m-r for me M and rekQ if we
restrict to base elements m, for m and to paths of length 0 and 1 for r. First
consider w=e¢_ for some X€Q, and put

mo ryFr=e
mO = v
else.

Otherwise let 1w =1p, 1, ... W, be a word of length n> 0 and define

m, i#0and x = r(w),),
m;-e, = m i——-Oandx:S(W,-),

0 clse,

m;, A=W, 0,
Mi-a=<m, x=w 1

0 else.

Now we quote in a slightly more general form a result of Wald and
Waschbiisch as well a5 of CrawleyﬁBoevey:

PROPOSITION.  Ler 4 =kO/I be a k-algebra and let w be a word in the

quiver Q. If the associated kQ-module M(w) satisfies M(w)-1=0 t’?m
denote by M the induced A-module, The Jollowing algebras are isomorphic:

End, (M)~ End,, (M(w)) >k End(w).

Proof. The Theorem in [C] provides an explicit vector space

1Isomorphism which Iespects the composition defined in End(w) and the
usual one in Ende(M(w)),

Proof of Corollary 1. Combine the proposition with Theorem 1.
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