ON THE NUMBER OF ALMOST SPLIT SEQUENCES WITH INDECOMPOSABLE MIDDLE TERM

HENNING KRAUSE

Let Λ be an artin algebra and mod Λ the category of finitely generated Λ -modules. It is well known that almost split sequences with indecomposable middle term exist in mod Λ , provided Λ is not semisimple. The first proof was given by Auslander and Reiten [2] for algebras of finite representation type, and the general result is due to Martínez-Villa [7]. Later, Butler and Ringel gave an explicit method to construct such sequences, using so called non-supportive elements [4].

The following recent result by Brenner and Krause suggests that almost split sequences with indecomposable middle term occur quite frequently [3, 6].

PROPOSITION 1. Let $0 \to A \xrightarrow{f} B \to C \to 0$ be an exact sequence in mod Λ , which is not almost split. Suppose that one of the modules A and B is indecomposable, and that f is irreducible. Then C is simple or $\alpha(C) = 1$.

Recall that given an indecomposable non-projective C in mod Λ , there exists an almost split sequence $0 \to A \to B \to C \to 0$ in mod Λ , which is unique up to isomorphism [2]. The fact that the middle term B is indecomposable is denoted by $\alpha(C) = 1$.

In this note we want to study the cardinality of the set $\operatorname{ind}^1 \Lambda = \{X \in \operatorname{ind} \Lambda \mid X \text{ non-projective and } \alpha(X) = 1\}$, where $\operatorname{ind} \Lambda$ denotes a complete set of representatives of the isomorphism classes of indecomposable objects in $\operatorname{mod} \Lambda$. Before starting, we should formulate the existence of an almost split sequence with indecomposable middle term as an immediate consequence of Proposition 1.

COROLLARY 2. Let Λ be a non-semisimple artin algebra. There exists an exact sequence $0 \to A \xrightarrow{f} B \to C \to 0$ in $\text{mod } \Lambda$ or $\text{mod } \Lambda^{\text{op}}$ such that A is simple, B is indecomposable, f is irreducible and $\alpha(C) = 1$.

The proof may be found at the end of this note.

We begin our discussion with some notation. Restricting the length of the indecomposables, we define

$$\operatorname{ind}_n \Lambda = \{X \in \operatorname{ind} \Lambda \mid l(X) \leq n\} \quad \text{and} \quad \operatorname{ind}_n^1 \Lambda = \operatorname{ind}^1 \Lambda \cap \operatorname{ind}_n \Lambda$$

for all $n \in \mathbb{N}$. We denote by p_{Λ} the maximal length of an indecomposable projective Λ or Λ^{op} -module. We shall also need definitions and elementary properties of almost
split sequences and irreducible maps, for which the reader is referred to [1] and [2].

The following main result relates the cardinalities of ind_n Λ and ind_m Λ . As usual, the cardinality of a set \mathcal{X} is denoted by $|\mathcal{X}|$.

THEOREM 3. Let Λ be an artin algebra. Then $|\operatorname{ind}_n \Lambda| \leq 2^{n+1} (|\operatorname{ind}_m^1 \Lambda| + |\operatorname{ind}_1 \Lambda|)$ for all $n \in \mathbb{N}$, where $m = p_{\Lambda}^2 n$.

We postpone a proof of this theorem, and discuss some consequences.

Corollary 4. Let Λ be an artin algebra. Then the following conditions are equivalent for every infinite cardinal κ .

- (i) There exists $n \in \mathbb{N}$ such that $|\operatorname{ind}_n \Lambda| \ge \kappa$.
- (ii) There exists $n \in \mathbb{N}$ such that $|\operatorname{ind}_n^{i} \Lambda| \ge \kappa$.

If Λ satisfies these conditions for some infinite cardinal κ , then $|\operatorname{ind}^1 \Lambda| = |\operatorname{ind} \Lambda|$.

Proof. Condition (ii) trivially implies (i). Therefore suppose that $|\operatorname{ind}_n \Lambda| \ge \kappa$ for some infinite cardinal κ and some $n \in \mathbb{N}$. The statement of Theorem 3 implies that $|\operatorname{ind}_m^1 \Lambda| \ge |\operatorname{ind}_n \Lambda| \ge \kappa$ holds for $m = p_\Lambda^2 n$. Moreover, we have $|\operatorname{ind}^1 \Lambda| \ge |\operatorname{ind}_n \Lambda|$ for all $n \in \mathbb{N}$, and therefore $|\operatorname{ind}^1 \Lambda| = |\operatorname{ind} \Lambda|$. This finishes the proof.

It would be interesting to know whether $|\operatorname{ind}^1 \Lambda| = |\operatorname{ind} \Lambda|$ holds whenever $\operatorname{ind} \Lambda$ is infinite.

We consider now the formula of Theorem 3 in the case that $\operatorname{ind}_n \Lambda$ is finite. There are two natural questions.

PROBLEM 1. Does there exist a polynomial p(n) (not depending on Λ) such that $|\operatorname{ind}_n \Lambda| \leq p(n)(|\operatorname{ind}^1 \Lambda| + |\operatorname{ind}_1 \Lambda|)$ for all $n \in \mathbb{N}$?

PROBLEM 2. Does $|\operatorname{ind}_n \Lambda| \leq 2^{n+1} |\operatorname{ind}_1 \Lambda|$ hold if $\operatorname{ind}_n \Lambda$ is finite?

Both questions have negative answers, and we provide examples after the following proof.

Proof of Theorem 3. We fix an artin algebra Λ and $n \in \mathbb{N}$. For each $X \in \operatorname{ind}_n \Lambda$, choose an irreducible map $f_X \colon X \to X'$ such that X' is indecomposable, if this is possible. Otherwise, let f_X be the zero map $X \to 0$. Denote

$$\mathscr{X}_A = \{X \in \operatorname{ind} \Lambda \mid \operatorname{Ker} f_X = A\}$$
 and $\mathscr{X}^c = \{X \in \operatorname{ind} \Lambda \mid \operatorname{Coker} f_X = C\}$

for all A and C in ind A. We introduce the following relation on \mathscr{X}_A and \mathscr{X}^c . Define $X \geqslant Y$ in \mathscr{X}_A if there exists a commutative diagram as below.

$$0 \longrightarrow A \longrightarrow X \xrightarrow{f_X} X' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow Y \xrightarrow{f_Y} Y' \longrightarrow 0$$

Define $X \ge Y$ in \mathcal{X}^c if there exists a commutative diagram as below.

$$0 \longrightarrow Y \xrightarrow{f_Y} Y' \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow X \xrightarrow{f_X} X' \longrightarrow C \longrightarrow 0$$

Now recall the following property of a non-split exact sequence $0 \to A \xrightarrow{x} X \xrightarrow{f} X' \to 0$ in mod Λ , which is equivalent to f being irreducible. Given a map $v: A \to Y$, there

exists either a map $s: X \to Y$ such that v = us or a map $t: Y \to X$ such that u = tv (see [2]). From this fact follows that for two elements X and Y in \mathcal{X}_A we always have $X \geqslant Y$ or $Y \geqslant X$. Moreover, $X \geqslant Y \geqslant X$ implies X = Y, since in a commutative diagram

$$0 \longrightarrow A \longrightarrow X \xrightarrow{f_X} X' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow X \xrightarrow{f_X} X' \longrightarrow 0$$

all vertical maps are isos. The same holds in \mathcal{X}^c , and we formulate this as follows.

LEMMA 5. The relation \geqslant defines a total ordering on \mathcal{X}_A and \mathcal{X}^c for all A and C.

As a consequence, one obtains for different elements X_1, X_2, \ldots, X_r in some \mathcal{X}_A or \mathcal{X}^C a chain

$$X_{i_1} \xrightarrow{u_1} X_{i_2} \xrightarrow{u_2} \dots \xrightarrow{u_{r-1}} X_{i_r}$$

of non-isomorphisms u_i with $u_1 u_2 \dots u_r \neq 0$. The Harada-Sai lemma states that in this situation $r < 2^n$, since $l(X_i) \leq n$ for all i (see [5, 8]). Therefore we have the following.

LEMMA 6. $|\mathcal{X}_A| < 2^n$ and $|\mathcal{X}^C| < 2^n$ for all A and C.

Now consider the sets $\mathscr{A} = \{A \in \operatorname{ind} \Lambda \mid \mathscr{X}_A \neq \emptyset\}$ and $\mathscr{C} = \{C \in \operatorname{ind} \Lambda \mid \mathscr{X}^c \neq \emptyset\}$. Recall the well-known fact that for all X in $\operatorname{mod} \Lambda$, $l(\operatorname{Tr} DX) \leqslant p_{\Lambda}^2 l(X)$ (see [8]). Applying this formula for $A \in \mathscr{A}$ and $X \in \mathscr{X}_A$, we obtain $l(\operatorname{Tr} DA) \leqslant p_{\Lambda}^2 n$, since $l(A) \leqslant l(X) \leqslant n$. Similarly, we have for $C \in \mathscr{C}$ and $X \in \mathscr{X}^c$ that $l(C) \leqslant l(\operatorname{Tr} DX) \leqslant p_{\Lambda}^2 n$, since $l(X) \leqslant n$. Thus we have shown the following.

LEMMA 7. $l(\operatorname{Tr} DA) \leq p_{\Lambda}^2 n$ and $l(C) \leq p_{\Lambda}^2 n$ for all $A \in \mathscr{A}$ and $C \in \mathscr{C}$.

We are now able to apply Proposition 1 and its dual version, respectively. We obtain that

$$\{\operatorname{Tr} DA \,|\, A \in \mathscr{A} \setminus \operatorname{ind}_1 \Lambda\} \cup \{C \,|\, C \in \mathscr{C} \setminus \operatorname{ind}_1 \Lambda\} \subseteq \operatorname{ind}_m^1 \Lambda,$$

where the index $m = p_{\Lambda}^2 n$ is justified by Lemma 7. This has the following consequence for the cardinality of \mathcal{A} and \mathcal{C} .

Lemma 8. $|\mathcal{A}| \leq |\operatorname{ind}_m^1 \Lambda| + |\operatorname{ind}_1 \Lambda| \text{ and } |\mathcal{C}| \leq |\operatorname{ind}_m^1 \Lambda| + |\operatorname{ind}_1 \Lambda|, \text{ where } m = p_\Lambda^2 n.$

Now observe that according to our construction there is the following partition of ind, Λ .

Lemma 9.
$$\operatorname{ind}_n \Lambda = (\bigcup_{A \in \mathscr{A}} \mathscr{X}_A) \dot{\cup} (\bigcup_{C \in \mathscr{C}} \mathscr{X}^C).$$

To complete the proof of the theorem, we combine this partition of $\operatorname{ind}_n \Lambda$ with the bounds for $|\mathscr{X}_A|$, $|\mathscr{X}^c|$, $|\mathscr{A}|$ and $|\mathscr{C}|$ of Lemmas 6 and 8. Thus we obtain the final relation for $\operatorname{lind}_n \Lambda$!

$$|\operatorname{ind}_n \Lambda| \leq 2^n |\mathcal{A}| + 2^n |\mathcal{C}| \leq 2^{n+1} (|\operatorname{ind}_m^1 \Lambda| + |\operatorname{ind}_1 \Lambda|).$$

EXAMPLE 1. Let k be a field and $r \in \mathbb{N}$. Denote by Λ , the k-algebra given by the following quiver with relations.

Now let p(n) be an arbitrary polynomial. There exists $r \in \mathbb{N}$ such that $2^r > p(r)(3r+2)$. It is not hard to check that we obtain

$$|\mathrm{ind}_r\Lambda_r|\geqslant 2^r>p(r)(3r+2)=p(r)(|\mathrm{ind}^1\Lambda_r|+|\mathrm{ind}_1\Lambda_r|).$$

This relation shows that in the formula of Theorem 3, the factor 2^{n+1} cannot be replaced by any polynomial. Note that ind Λ_r is finite for all r.

Example 2. Let k be a field and $r \in \mathbb{N}$. Denote by Λ_r the k-algebra with the following quiver $Q_r = ((Q_r)_0, (Q_r)_1)$ and radical square zero:

$$Q_r = (\{1, 2, ..., r\}, \{\alpha_{ij} : i \to j \mid i, j \in (Q_r)_0\}).$$

We obtain for $r \ge 8$

$$|\operatorname{ind}_2 \Lambda_r| = r^2 + r > 8r = 2^3 |\operatorname{ind}_1 \Lambda_r|.$$

The example shows that in the formula of Theorem 3 the summand $|\inf_{m}^{1} \Lambda|$ cannot be neglected, even if $|\inf_{n} \Lambda|$ is finite.

To complete this paper we provide the following proof.

Proof of Corollary 2. Let Λ be a non-semisimple artin algebra. There exists a non-injective simple Λ -module A, and we can choose an irreducible map $f: A \to B$ such that B is indecomposable. Denote by C the cokernel of f. The assertion follows if $\alpha(C) = 1$. Otherwise, Proposition 1 states that C is simple. Choose again an irreducible map $g': B' \to C$ such that B' is indecomposable. Using the fact that f and g' are irreducible, one obtains the following commutative diagram.

$$0 \longrightarrow A \xrightarrow{f} B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \parallel$$

$$0 \longrightarrow A' \longrightarrow B' \xrightarrow{g'} C \longrightarrow 0$$

Applying the duality $D : \text{mod } \Lambda \to \text{mod } \Lambda^{\text{op}}$, we deduce again from Proposition 1 that the exact sequence $0 \to DC \xrightarrow{D_{0}'} DB' \to DA' \to 0$ in $\text{mod } \Lambda^{\text{op}}$ has the desired property, namely that $\alpha(DA') = 1$.

Acknowledgement. This paper was written during a stay at Brandeis University. I should like to thank Maurice Auslander and his colleagues for their kind hospitality which made this work possible. The financial support was provided by the Deutsche Forschungsgemeinschaft.

References

- M. AUSLANDER and I. REITEN, 'Representation theory of artin algebras III', Comm. Algebra 3 (1975) 239–294.
- M. AUSLANDER and I. REITEN, 'Representation theory of artin algebras IV', Comm. Algebra 5 (1977) 443-518.
- 3. S. Brenner, 'On kernels of irreducible maps', preprint (1991).
- M. C. R. BUTLER and C. M. RINGEL, 'Auslander-Reiten sequences with few middle terms and applications to string algebras', Comm. Algebra 15 (1987) 145-179.
- M. HARADA and Y. SAI, 'On categories of indecomposable modules 1', Osaka J. Math. 7 (1970) 323-344.
- 6. H. Krause, 'The kernel of an irreducible map', Proc. Amer. Math. Soc., to appear.
- R. MARTÍNEZ-VILLA, 'Almost projective modules and almost split sequences with indecomposable middle term', Comm. Algebra 8 (1980) 1123–1150.
- C. M. RINGEL, 'Report on the Brauer-Thrall conjectures', Proceedings of ICRA II, Ottawa 1979, Lecture Notes in Math. 831 (Springer, New York, 1980) 104-136.

Fakultät für Mathematik Universität Bielefeld Postfach 100131 33501 Bielefeld Germany