ON THE NUMBER OF ALMOST SPLIT SEQUENCES WITH
INDECOMPOSABLE MIDDLE TERM
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Let A be an artin algebra and mod A the category of finitely genera'ted A-modulgs.
It is well known that almost split sequences with indecomposable middle term exm;;
in mod A, provided A is not semisimple. The first proof was given by Auslapder axi
Reiten [2] for algebras of finite representation type, and the general result is due ;)1
Martinez-Villa [7]. Later, Butler and Ringel gave an explicit method to construct suc
sequences, using so called non-supportive elements [4]. it

The following recent result by Brenner and Krause suggests that almost spll
sequences with indecomposable middle term occur quite frequently [3, 6].

PrOPOSITION 1. Let 00— A5 B— C — 0 be an exact sequence in mod A, ngd;z ’5[
not almost split. Suppose that one of the modules A and B is indecomposable, and tha
S is irreducible. Then C is simple or a(C) = 1.

Recall that given an indecomposable non-projective C in mod A, thgre exists ::2
almost split sequence 0 54 B> C—0 in mod A, which is u.mque ul:i N
isomorphism [2]. The fact that the middle term B is indecomposable is denoted by
(C)=1.

( I)n this note we want to study the cardinality of the set ind! A = {Xeind A | X If“t)}r:e
projective and a(X) = 1}, where ind A denotes a complete set of represe.ntatlves o i
isomorphism classes of indecomposable objects in mod A. Before starting, we shou
formulate the existence of an almost split sequence with indecomposable middle term
as an immediate consequence of Proposition 1.

i t
CoRrOLLARY 2. Let A be a non-semisimple artin algebra. There fexts.ts an e;ais
sequence 0> A5 B> C=0 in modA or modA®™ such thar A is simple,
indecomposable, f is irreducible and C) = 1.

The proof may be found at the end of this note.

. . . . . _ the
We begin our discussion with some notation. Restricting the length of
indecomposables, we define

ind, A = {XeindA|{X) <n} and ind! A = ind* Anind, A

for all neN. We denote by p, the maximal length of an indecomposable projective As :
or A®*-module. We shall also need definitions and eclementary properties of almf;]
split sequences and irreducible maps, for which the reader is referred to [1] and [ i

The following main result relates the cardinalities of ind, A and ind}, A. As usus
the cardinality of a set & is denoted by |Z].
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THEOREM 3. Ler A be an artin algebra. Then |ind, A < 2**Y(Jind*, A| +lind, A{)
Jor all neN, where m — pin.

We postpone a proof of this theorem, and discuss some consequences.

COROLLARY 4. Ler A be an artin algebra. Then the follawing conditions are
equivalent for every infinite cardinal k.

() There exists neN such that find, Al > x.
(i) There exisis neN such that lind! A} > &.

I A satisfies these conditions Sfor some infinite cardinal x, then |ind’ A] = |ind A.
Pr, {’0f~ Condition (i) trivially implies (i). Therefore suppose that |ind, A Zx for
Some infinite cardinal x and some neN. The statement of Theorem 3 implies that

lind;, Al > lind, A} > x holds for m = P n. Moreover, we have |ind! A} > |ind, A| for
all neN, and therefore lind® A} = jind A|. This finishes the proof.
o It would be Interesting to know whether lind! A| = lind A| holds whenever ind A
1 infinite,

We consider now the formula of Theorem 3 in the case that ind, A is finite. There
are two natural questions.

. PROBLEM 1. Does there exist a polynomial p(x) (not depending on A) such that
lind, A| < p(n)(jind’ A| + |ind, AJ) for all neN?

PRORLEM 2. Does jind, A < 2""Yjind, A| hold if ind, A is finite?

Both questions have negative answers, and we provide examples after the
following proof.

Proof of Theorem 3. We fix an artin algebra A and neN. For eack X ‘eind',,/}.
°h°956 an irreducible map f,: X — X’ such that X’ is indecomposable, if this is
possible. Otherwise, et [+ be the zero map X — 0. Denote

2, ={XeindA|Kerf, = A} and Z°={XeindA|Cokerf, =C}

for all 4 and € in ind A. We introduce the following relation on , and 7. Define
X2Yimag 4 if there exists a commutative diagram as below.

0-—+A-———>X‘ﬁ—*X’—‘—’0

1]

g—r A— Y=Y —0
Define x> y i g i5 there exists a commutative diagram as below.

O——-)Y—',—FE)Y’———)C"—')O

L1

0—X X' — C—0

Now recall the following property of a non-split exact sequence 04 Y there
M mod A, which s equivalent to f being irreducible. Given a map v: 4 1,

LYLHXY -0
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exists either a map s: X — ¥ such that v = us or a map ¢: ¥ — X such that u = v (see
[2]). From this fact follows that for two elements X and Yin &, we always haye XzY
or Y > X. Moreover, Y2 Y>> X implies X = Y, since in a commutative diagram

0 —»A——»Xf—beL—)O
|
0—»,”4—4’LX’%>0

all vertical maps are isos. The same holds in 2 Y, and we formulate this as follows.
LEMMA 5. The relation > defines a total ordering on Z, and ¢ for all A and C.

. . i r
As a consequence, one obtains for different elements X, X,,..., X, in some %, 0
€ a chain

X, —bx, o X,
of non-isomorphisms #, With u, u, ... u, # 0. The Harada-Sai lemma states that in 'thls
situation r < 2*_ since {X)) < n for all i (see [5, 8]). Therefore we have the following.

LEMMA 6. 14,| < 2" and |Z€) < 2" for alt A and C.

Now consider the sets .of — {AeindA|Z, # &} and € = {Ceind A|Z° # &).
Recall the well-known fact that for all X in modA, I(Tr DX) < p2 KX ) (see (8).
Applying this formula for Aes and XeZ,, we obtain (TrDA) < pin, 51;1ce
I(4) < (X) < n. Similarly, we have for Ce% and Xe # that /(C) < KTrDX) < pin,
since {(X) < n. Thus we have shown the following.

LemMa 7. (TrDA) < p2n and KC)< pin for all Ae of and Ce%.

We are now able to apply Proposition 1 and its dual version, respectively. We
obtain that

tTr DA Ae/\ind, A} U{C| Ce%\ind, A} < ind! A,

where the index m = p p is justified by Lemma 7. This has the following consequence
for the cardinality of .« and ¢

2
LemMa 8. (o) < lind;, Al +|ind, A and (%] < Jind}, A+ |ind, A, where m = pa™

Now observe that acc

. . ; ition
ording to our construction there 1s the following partiio
of ind, A.

LEMMA 9. ind A = Usew Z) U Ucee o).

To complete the proof of the theorem, we combine this partition of ind, A with

the bounds for (2, |2, | ang €l of Lemmas 6 and 8. Thus we obtain the final
relation for find, A):

lind, A} < 2727|4276 < 2"Yjind}, A} +[ind, A)).
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Exampie I. Letk b nd reN. D
4 1 ¢ a field and 0
folowing quiver with relations. reN. Denote by A, the k-algebra given by the

1
. —ﬁ—P 2’ —ﬁ—) « o b ___ﬁ__}rT 1
O« Oe Qe
Now let p(n) b i
() be an arbitrary polynomial. There exists r&N such that 27 > p()(3r+2)

It is not hard to check that we obtain

lind, A, =2 > p(nN@Gr+2) = p(r)(ind* A +lind; A]).
r 271 cannot be

op=pa=0a=0

This relati .
replace dab;I:nfhows that in the formula of Theorem 3, the facto
y polynomial. Note that ind A, is finite for all .
ExampLE 2. L.
following quive et k be a field and reN. Denote by A the k-algebra wi
/i = T - t
g quiver Q, = ((Q.). (Q,),) and radical square zero: gebra vith the

0,=({12,...1 o2 jlij
We obtain for r > 8 2 116 jE (@)

lind, Al =r*+r>8= 2%ind, Al

The example sh
ple shows that i ca
at in the formula of Theorem 3 the summand jind, Al nnot

be
neglected, even if |ind, A is finite.

T .

o complete this paper we provide the following proof.

Proof o

DOH-injeJ: ti\{ ei‘j’;’”{;’r\ 2. LetAbea non-semisimple artin algebra. There exists a

such that B s indI:: _module A, and we can choose a0 irreducible map f: 4 - B

if a(C) = 1. OthecomPOSable- Denote by C the cokernel of . The assertion follows

irreducible ma /TWIISC’ Proposition 1 states that C is simple. Choose again an
pg: B — Csuch that B is indecomposable. Using the fact that fand

¢’ are irreduci d m
u i
cible, one obtains the following commutative diagram-.

0-—~>A—L>B——-+C——+0

N

0—sA'— B C—0
m Proposition 1 that

Applyin :
ying the duality D: mod A — mod A, we deduce again fro
he desired property,

the exact

sequ Dy , , h
Namely thatqa(elr)liie' )0:1DC > g — DA’ —~0 in mod A% has t
stay at Brandeis
s for their kind
rovided by the

Ackn
OWL .
epGeEmenT. This paper was written during 2
Jander and his colleague

Univers;
hOSpit?ﬁg' vIvtsxlimuld like to thank Maurice AUS
Vsehe ch made this work possible. The financial support WasP
orschungsgemeinschaft.



426 HENNING KRAUSE

References

1. M. AUSLANDER and 1. REITEN, ‘ Representation theory of artin algebras 111", Comm. Algebra 3 (1975)
239-294,
2. M. ACSLANDER and 1. REITEN, *Representation theory of artin algebras 1V, Comm. Algebra 5 (1977)
443-518.
- S. BRENNER, “On kernels of irreducible maps’, preprint ( 1991). .
- M. C.R. Butier and C. M. RINGEL, ‘Auslander-Reiten sequences with few middle terms and
applications to string algebras®, Comm. Algebra 15 (1987) 145-179.
5. M. HarAbA and Y. Sal, “‘On categories of indecomposable modules 1°, Osaka J. Math. 7 (1970)
323-344,
. H. KRAUSE, ‘The kernel of an irreducible map’, Proc. Amer. Math, Soc., to appear.
. R. MARTINEZ-ViLLA, ‘Almost projective modules and almost split sequences with indecomposable
middle term’, Comm. Algebra 8 (1980) 1123-1150.
8. C. M. RiNGFL, ‘Report on the Brauer-Thrall conjectures’, Proceedings of ICRA II, Ottawa 1975,
Lecture Notes in Math. 831 (Springer, New York, 1980) 104136,

W

-~ N

Fakultit fiir Mathematik
Universitit Bielefeld
Postfach 100131

33501 Bielefeld
Germany



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 

