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ABSTRACT. Let 0 — 4 — B £ C — 0 be a short exact sequence in the
category of finitely generated modules over an artin algebra. Suppose also that
the map g is irreducible. Following a conjecture of Brenner, we discuss the
property of the indecomposable module A to be the starting term of an almost
split sequence with indecomposable middle term.

Let A be an artin algebra over a commutative artin ring R and denote
by mod A the category of finitely generated A-modules. In [AR2] Auslander
and Reiten introduced the notion of an irreducible morphism. They define a
morphism g: B — C in modA to be irreducible if g is neither a split mono
nor a split epi and if, for any factorization g = £ g, either g is a split
mono or g, is a split epi. The following numerical invariant is defined for an
indecomposable noninjective A-module 4. Let 0 = 4 — E — TrDA — 0 be
an almost split sequence. Then a(TrDA) denotes the number n of summands
in a decomposition of E = [[]_, E; into indecomposable modules. It is obvious
from the definition that an irreducible map is either a mono or an epi. Moreover
the kernel 4 of an irreducible epi is indecomposable [AR2]. Now Brenner
conjectured some years ago that such a kernel satisfies a(TrDA) = 1. The
main purpose of this note is to establish the following result, which has been

obtained independently also by Brenner in [B].

Theorem. Let 0 — A — B 5 C — 0 be an exact sequence in mod A which is
not almost split. Suppose that one of the modules B and C is indecomposable
and that g is irreducible. Then o(TrDA) =1 if A is not simple.

Let 1 > | be a natural number. The following example shows that o(TrDA)
= n can occur for simple A. Let k be a field and consider the algebra A =
klxv, ..., x:1/(x1, ..., xn)?. Denote by S the unique simple A,-module and
let I be its injective envelope. Then the exact sequence 0 — S—-I1-1/S-0
satisfies the assumptions of the Theorem and o(Tr DS)=n.

It is possible to describe in some detail the irreducible map g if o(TrDA4) >
1. These results are collected in Corollary 3.4 and for self-injective algebras
in Corollary 3.5. The obvious question—which indecomposable noninjective
modules 4 with o(TrDA) = | actually occur as kernel of a nontrivial irre-

ducible map—is answered in Proposition 3.7.
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58 HENNING KRAUSE

As a consequence of the Theorem one obtains the existegc; of almqst split se-
quences with indecomposable middle term for any nonsemlslmple artin algebra.
Different proofs have been published by Auslander and Reiten [AR2] (fqr al-
gebras of finite representation type), Martinez-Villa [M]Z and Butl.er and Rlnggl
[BR]. We point out that in fact mod A has as many nomsomorphm almc_)st. split
sequences with indecomposable middle term as there are nomsomorphw inde-
composables if A is of strongly unbounded representation type (i.e., for some

n € N there are infinitely many nonisomorphic objects in mod A of length n)
[K].

1. IRREDUCIBLE MAPS AND THEIR CONTEXT

We start with some notation and recall definitions. For A-modules X and
Y we often write (X, Y) instead of Hom, (X, Y). Denote by P(X,Y) C
Hom, (X, Y) the maps which factor through a projective module. The elements
of Hom,(X,Y) = Hom, (X, Y)/P(X,Y) form together with the induced
composition the morphisms of the category mod A, which has the same objects
as mod A. Dually mod A is defined modulo the injective modules.

The usual duality of modR is given by D = Homg( , I), where I is an in-
jective envelope of R/rad R. The functor D induces a duality between mod A
and mod A° . The transpose is denoted by Tr and defines a duality between
mod A and mod AP .

We use the classical notation and compose maps from right to left. In that
way the group Hom, (X, Y) becomes an End,(Y)- End, (X)-bimodule.

Let C be a A-module. A map g: B — C is defined to be right almost
split if it is not a split epi and if €very map X — C which is not a split
epi, factors through g . Note that C is indecomposable if there exists a right

& for an endomorphism b €

all a nonzero map g: B —» C
© eXists a nonzero map g': B’ — C such that
[€8'): BI]B' — C is minimal right almost split. Let 0 ~ 4~ B £ C - 0 be
an exact sequence. The sequence js by definition almost split if g is minimal
right almost split. We call such a sequence partial right almost split if g is
paxjtial right almost split. Of course there is also the dual notion of left almost
split maps, including their variatiops, Almost split maps and sequences were

introduced by Auslander and Reiten. We refer to their papers for existence
proofs and properties.

The following well-known characterization
dual pendant will be used throughout this pa

The proof is straightforward (modulo the e
and may be found in [AR2].

of an irreducible map as well as its
per without any further reference.
Xistence of almost split sequences)

Propoﬁtion L1 For q nonsplit exact sequence (0 — 4 7, B 5 C 0 the
Jollowing are equivalent:

(1) The map 8 is irreducible,

(1) Given a map q: 4 ., y there exists either @ map s- x _, B such that
S=saoramap i By such that a = ¢f |

Ifin addition ¢ s indecomposable, then the above is equivalent to:
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(iii) There exists a map g': B' — C such that [gg']: B][ B’ — C is mini-
mal right almost split.

For convenience we restate the definition of a partial right almost split se-
quence using Proposition 1.1.

Lemma 1.2. For an exact sequence 0 — A — B % C — 0 the following are
equivalent:
(i) The sequence is partial right almost split.
(ii) The sequence is not almost split, C is indecomposable, and g s irre-
ducible

It is interesting to note that a partial right almost split sequence iS not
uniquely (up to isomorphism) determined by its end terms. Consider, for ex-
ample, the algebra A = k(x, y)/(x%, y*, xy) over a field k. Denote by S
the unique simple A-module and let I be its injective envelope. The module
I/S decomposes, say I/S = S][A4, and Extj(I, 4) contains two nonisomor-
phic partial right almost split sequences. However, a partial right almost split
sequence x € Exti(C, A4) is unique up to isomorphism, if End,(C) is a divi-
sion ring.

Let M be a module over an arbitrary ring. We call a submodule W C M a
waist of M if U C W or W C U for every submodule U C M. Note that,
in contrast to the usual definition, the trivial submodules are also waist.

The following proposition which is also due to Auslander and Reiten is an
immediate consequence of characterization (ii) in Proposition 1.1

Proposition 1.3. Ler 0 — A4 L. B & C — 0 be exact and suppose that g is
irreducible.
(a) The module A is indecomposable. - _
(b) The Enda(X)-module Im(f, X) C Homp(4, X) is a waist for every
A-module X .

2. THE BIMODULE ASSOCIATED WITH AN IRREDUCIBLE MAP

Given an irreducible epi B — C with kernel A4, an analysis of the End, (C)-
End, (Tr DA)-bimodule Hom,(TrDA4, C ) will be of importance for the proof
of the Theorem. The corresponding result is Proposition 2.6, but we need some
preparations. Let us first recall a very useful result of Auslander [A, III, Theorem

4.1], which lies at the heart of the theory.

Proposition 2.1. Let x: 0 — A L, B 2 C — 0 beexact. For every A‘-madule _X
there is an isomorphism Coker(f, DTrX) = D Coker(X , g) which is functorial
in X and x.

For a proof we have to refer to [4]. The following two consequences are
essentially contained in [AR1] and [A], respectively.

Proposition 2.2. Let X and C be A-modules. There are isomorphisms
a: Exth(C, D TrX) 5 DHom, (X, €)
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and
fB: Exty(C, D TrX) S DHom,(DTr X, DTr(C)

which are functorial in X and C such that for x € Exty(C, DTrX) the fol:
lowing diagram commutes (where I denotes the injective envelope of R/rad R):

Hom,(X,C) -,

IlDTr l
S B(x)
Hom,(DTr X, DTrC) 22, 4

Proof. Choose an exact sequence 0 — Kk 2, P2 C - 0 with projective P.
Then Coker(f, )= Extf\(C, ) and Coker( , g) =Hom,( , C). From Propo-
sition 2.1 we obtain an isomorphism Exty(C, DTr X ) = DHom,(X, C),
which is functorial in X and C. This proves the existence of « . The isomor-
phism S is obtained by composing o with the inverse of the functorial iso-
morphism D(DTr): DHomu(DTr X, DTrC) = DHom,(X, C). The com-
mutativity follows immediately from the construction of f .

Lemma 2.3. Ler x: 0 — DTrX EA BE o 0 be exact and denote by ay =

a(x) and By = B(x) the maps corresponding to x under the isomorphisms of
Proposition 2.2

(@) Let U C Hom, (X, C) be an End, (X)-submodule. Then U C Kerax
i uc Im(X, g).

(b) Let U Homp(DTr X, DTr C) be gn End, (D Tr C)-submodule.
Then U CKerf, if UC Im(f, DTrC).

Proof. (a) Since the isomorphism o of Proposition 2.2 is functorial in C , We

have for 1 € Hom, (X, C) that axHom, (X, u) = a(Ext) (u, D Tr X)(x)) = 0
iff e Im(x, &) . Therefore o (U) = (ax Hom, (X, u))(idy) = 0 for u €
Im(Y, ¢) and hence Im(Xx, g) € Kera, . Now suppose U ¢ Im(X, g), say
u € U\NIm(Y, g). Then ac(ut) = (a, Hom, (X, u))(t) # 0 for some ¢ €

End,(X) and therefore U ¢ Kera, , since U is a submodule. This finishes
the proof.

(b) Dual to (a).

Lemma24. Ler 0 pTry 2 BLC -0 pe partial right almost split. There
1s.an Enda(DTr C)-submodule U € Homy(DTr X, DTrC) such that U isa
waist and radU = Im(f, DTrC ) C U is a maximal submodule.

Proof. We infer from the isomorphism (DTrX, DTr C)/Im(f,DTrC) =
DUC, ©)/mm(C, ¢)) of Proposition 2 1 that the socle of (DTrX, DTrC)/

Im(f, DTrC) over Endy(DTr(C) is simple, since C is indecomposable. Now
define U by

U/Im(f, DTr C) = soc((

The properties of U stated
a waist by Proposition 1.3.

DTrXx, DTrC)/Im(f, DTrC)).
above follow from the fact that Im(f, DTrC) is
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Lemma 2.5. Let x:0 — DTrX - B4 C — 0 be partial right almost split.
There is an End, (C)-submodule V C Hom, (X, C) with the following proper-
ties:
(i) V and radV are waists, and radV C V is a maximal submodule.
(i) radV CIm(X, g) and V ¢ Im(X, g).

Proof. We fix the isomorphism
t=DTr: Hom, (X, C) S Homy(DTr X, DTrC)

which is End, (C)-linear, if we consider the ring isomorphism DTr: End, (C)
2 End,(DTrC) as identification. Now define V' = t~!(U), where U denotes
the image of the End, (D TrC)-module U of the previous lemma under the
canonical map Hom,(DTrX, DTrC) — Homy(DTr X, DTrC). This is an
End, (C)-submodule of Hom, (X, C). Let us verify each of the properties
stated above.

(i) Follows immediately from Lemma 2.4 since 7 1s an isomorphism.

(ii) Denote by a, and g, the elements of DHom,(X, C) and
DHom, (D Tr X, DTrC), respectively, which correspond to x under the iso-
morphisms of Proposition 2.2. Recall that ay = fiT. First we show rad V' C
Im(X, g). By Lemma 2.3 radU = Im(f, DTrC) C Kerf.. Therefore
rad V = t~!(radU) C Kera,. Now radV is also an End,(X)-submodule
of Hom,(X, C) since it is a waist over End,(C) by part (i). Therefore
radV C Im(X, g) by Lemma 2.3. Following the same line of arguments, one

obtains V' ¢ Im(.X, g) from the fact that U ¢ Im(f, DTrX).

Proposition 2.6. Let 0 - DTrX — B £, C — 0 be partial right almost split.
There exists an element v € Hom, (X, C)\\Im(X, g) such that for every u €
Hom, (X, C)\Im(X, g) there is some ¢ € End,(C) with v =cu.

Proof. We apply Lemma 2.5. Choose any v € V\Im(X, g). Then
u ¢ Im(X, g) implies V¥V C End,(C)u
and therefore v = cu for some ¢ € End,(C).

3. PROOF OF THE THEOREM

We proceed in four steps. Proposition 3.1 may be regarded as a first approx-
imation of the final Theorem. I learned it from S. Brenner. It will be qo‘mbined
with our previous results from the second section to obtain Prop_osmon 3.2.
The next step is a direct application of that proposition, which provides a Qrgof
of the Theorem for most situations. The last step is the proof of Proposition
3.6, which covers the remaining case. The latter proof gives a rather fii'fferent
approach and is independent from the second section, whereas Proposition 3.1

is also used.

Propesition 3.1. Ler x: 0 — A4 L, B4 C -0 bean exact sequence tyhich is. not
almost split. Suppose that B or C is indecomposable and that g s irreducible.

Suppose also that
0— A L] E[]F b5l rrpa—0



62 HENNING KRAUSE

is an almost split sequence with E # 0.

(a) There exists amap s: E — B such that f = sa.

(b) There exists a map u: TrDA — C such that ub' = 0 and u ¢
Im(Tr DA, g).

Proof. (a) Assume there is no s with f = sa. We seek a contradi.ction. Sincq
g 1s irreducible there exists t: B — E such that g = ¢ f and ¢ is a split epi
because a is irreducible. We consider two cases:

If B is indecomposable, then the map ¢ is an iso. Therefore we obtain
f =1t"'a, which contradicts our initial assumption.

s &'
Now suppose that C is indecomposable. Let 0 — DTrC — B[[B' =S

C — 0 be almost split. Note that g # 0 since x is not almost split. Then
there is the following commutative diagram;:

0—-—>A—~—>DTrC—>B’——>O

[ | E

0 — a1 p 2 __ 4
|| K
LN E

Neither 4 — DTrC nor the com
contradicts the fact that 4 1S irr
complete.

(b) This an immediate consequence of part (a) since we have a commutative
diagram of the following form:

(4] , 1Y)
0 — 4 220, E[IE

— TrD4A — 0

I lrs 0] lu

0 —— L. p _£ —_

position DTrC —» B — E splits. Th@s
educible, and therefore the proof of (a) 18

Proposition 3.2. Ier 0 —, 4 /. BE&C 0 pe partial right almost split, and
Suppose that o(TrDA4) > 1.

(@) There is a factorization S =
through a projective module.
(b) The module 4 s simple.

ba such that a is irreducible and p factors

Proof. (a) Let 0 — 4 - [ HE “5 1epy 0 be almost split with

nonzero £ and E'. Applying Proposition 3.1, we obtain maps u,u €
Hom,(TrD4, C)\ Im(TrD4, g) such that up' — 0 = u'b. By Proposition
2.6 there exist ¢, ¢

€ Endy(C) such that v = ¢y ¢ Im(TrDA, g) and
cu—-c'u' € P(TrDA, C)

. - We have vb' = 0 and vp — (cu—c'u)b e P(E, C).
Therefore there exists p € P(E, B) such that vp — &P . Now consider the
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following pullback diagram:

0 A B Xc TrDA -2 TrDA —— 0
[ | E
0 A T B —f, ¢ —0

Since v[b b’'] = g[p 0], there exists i: E[[E’ — Bx¢TrDA such that [b 5] =
si and [¢0] = ti. The map i is a split mono because [b b'] is irreducible
and s does not split. Moreover i is an iso since E[[E’ and B xc TrDA
have same length. Therefore we obtain the following diagram, which finishes
the proof of part (a):

0 4 el ENE 2% Trp4a —— 0
I | E
0 y A f, B £, ¢ —0

(b) Let S be a simple submodule of 4 and let s: 4 — A/S be the canon-
ical map. Since s is not a mono we obtain from the characterization (1) 1n
Proposition 1.1 a map r which makes the following diagram commute:

4 B

|| Ir

A — A)S — 0

We use the factorization f = pa of part (a). The composition rp factors
through a projective and this gives a map ¢ such that rp = st. Hence s =
rpa = sta, which implies s = 0 since fa is nilpotent. We conclude that 4 =5

is simple.

Lemma 3.3. Ler 0 — A — B % C — 0 be exact. Suppose that B is indecom-
posable noninjective and that g is irreducible. Then there exists a partial right

almost split sequence 0 - A — B’ 5 C'-0.

a ] ,

K , 15 5]
Proof. There is an almost split sequence 0 — B 40 E1IE - TrDB: -
0 such that @ = g. The kernel of the partial right almost split map &' is
isomorphic to 4. Therefore we may choose g’ =b'.

Proof of the Theorem. Let 0 - A — B £, C — 0 be as in the statement of the
Theorem. We want to show that a(TrD4) = 1 if A4 is not simple. This follows
from Proposition 3.2 combined with Lemma 3.3 for indecomposable C and
for indecomposable noninjective B. The remaining case of an indecomposable

Injective B is covered by Proposition 3.6.

Corollary 3.4. Let 0 — 4 L, B & C — 0 be an exact sequence in mod A which
is not almost split. Suppose that one of the modules B and C is indecomposable
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and that g is irreducible. If o(TrDA) > 1, then the following three cases are
possible:

(1) A is torsionless (submodule of a projective) and f factors through a
projective module. - ‘
(11) A is torsionless, B is isomorphic to an indecomposable summand of
rad P for some indecomposable projective P', ar?d C decomposes.
(ii1) A is not torsionless, B is indecomposable injective, and C decomposes.

Proof. We use part (a) of Proposition 3.2. If C is indecomposable, thenbvlve
obtain case (i). Now suppose that C' decomposes and B is indecomposable.

If B is injective we obtain case (i) or (iii). Otherwise there is an almost split
sequence
i 2]

0-8 % C[[¢'~TrDB -0,
which gives the following diagram:
0 —— 4 J—» B ‘£ ., —s 0

s |

By Proposition 3.2 f* — qp for two maps p: 4 — p and ¢g: P — C" where
P is projective. In particular 4 is torsionless. We claim that C’ is projective,
if the map f allows no factorization through P. This would lead to case (1),
since g’ is irreducible and therefore a mono onto a summand of rad C’ (see
[AR2]). To show that ¢’ s projective we consider a map p’': B — P such that
p =p'f, which exists by our assumption that S does not factor through_ p-
Therefore f' = qr’f. It is not hard to see that gp’ needs to be irreducible.
The map p’ is not a Spit mono, again since S/ does not factor through P.
Therefore ¢ is a split epi and (' is projective,

Corollary 3.5, Lot A pe 4 self-i
C — 0 be an exact sequence in mod A, which is not
one of the modules B and ¢ is indec
the following conditions are equivale

() a(TrDA) =n.

(i) A is simple and rad P/ soc P decomposes into n summands, where P
denotes the projective cover of 4.

(1) 4 is simple and rad I/ soc/ decomposes into n summands, where 1
denotes the Injective envelope of 4.

jective or iIsomorphic to the radical of
Proof. Recall that for self-injective A the Syzygy functor Q: modA — modA
1 an equivalence, Therefore the conditions (i), (ii), and (ii1) are equivalent for
simple A, since we have rad P/soc P = Q(E) and Q(radI/socl) = DTrE,
where E denotes the middle term of an almost split sequence 0 - 4 — E —
TrD4A -0,

Now assume that o(Tr DAY=n>1. The proof is complete if we show that
A 1s simple and that B=p or g~ rad

P for some indecomposable projective
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P . First consider the case that C is indecomposable. Therefore Proposition 3.2
applies. Thus A is simple and we obtain an indecomposable projective module
P such that pa # 0 fortwomaps a: A — P and p: P— B. Themap g isan
injective envelope, which implies the existence of b: B — P with a = bpa. We
conclude that dp is an isomorphism and therefore B has an injective summand
isomorphic to P. Consequently C = P/soc P, since up to isomorphism P —
P/soc P is the unique irreducible map starting in P (see [AR2]). A length
argument shows that actually B = P. If C is not indecomposable, then B
is indecomposable and noninjective by our assumptions. The construction of
Lemma 3.3 combined with our previous argument shows that B = rad P for
some indecompsable projective module P.

To finish the proof of the Theorem we reproduce some arguments of Martinez-
Villa (see {M]).

Proposition 3.6. Let x: 0 — A — B 5 C — 0 be an exact sequence. Suppose
that A is nonsimple, B is injective, and g is irreducible.

(@) If 0> A— E[JF b2V T DA — 0 is an almost split sequence, then b
or b is an epi.

(b) If x is not almost split and B or C is indecomposable, then a(TrDA)
=1.

Proof. (a) Let § be a simple submodule of 4 and choose any nonzero s €
Hom, (TrDS, TrDA) = Hom,(S, 4) # 0. We claim that s is an epi. This im-
mediately implies that b or &’ is an epi, since there existsamap [ ]: TrDS —
EIE’ such that s = br+ bt and br #0 or b'r #0.

Now let X be the cokernel of s and fix an exact sequence Tr DS = Tr DA 4
X — 0. We apply DTr and obtain @ = DTrs, v = DTr¢ with vu = 0.
Therefore vi = pi for some map p: I — DTrX if i:§ — I denotes an
injective envelope of S. Now assume vu # 0. Then vu is a mono and we
obtain a map ¢q: DTrX — I such that i = qvu. Therefore [ 1sa summand of
DTr X, which is impossible. We conclude that vu = 0. This implies Kerv # 0
since % # 0. Therefore v factors through B since g is irreducible. Hez}ce
U =0 and ¢ = 0. Finally this implies ¢t = 0 since TrDA has no projective
summand. Thus we have shown that X = Cokers = 0.

(b) Combine pait (a) with Proposition 3.1.

Let us now answer the question of when a module A4 satisfying a(TrD4) = 1
1s the kernel of a nontrivial irreducible map.

Proposition 3.7. Let 0 — A — E — TrDA — 0 be an almost split sequence with
indecomposable E . Then the following are equivalent:

(1) The module E is not injective.
(i) There exists a partial right almost split sequence 0—-A—-B-C-0.

(iii) There exists an exact sequence 0 — A — B L C — 0 which is not
almost split such that one of B and C is indecomposable and g is

irreducible.

Proof. That (i) implies (ii) is a special case of Lemma 3.3, and (ii) trivially
Implies (iii). It remains to show that (i) is a consequence of (iii). Therefore
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let 0— AL B2 C_ 0 bean exact sequence as in (iii). We assume1 ﬁ'
to be injective and seek a contradiction. The map f factors through tpe € S
almost split map 4 — E, which we denote by a. On the other hand, a factor

through f since E is injective. We obtain the following commutative diagram
with exact rows:

o J

7

n | |

O————»ALE——»TrDA——»O

The vertical compositions are 1somorphisms since a is an in_jectlve enveloge
of A. In fact each of the vertical maps is an isomorphism since B or C is

f p 8
indecompsable. But this contradicts the fact that the sequence 0 - 4 L B %
C — 0 is not almost split.

Remark. 1f an almost split sequence 0 — 4 — E — TrDA — 0 has an injective
middle term, then TrDA is simple (see [AR1]).
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