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The endocategory of a module *

HENNING KRAUSE

Dedicated to the memory of Maurice Auslander

Given a ring A we introduce the endocategory £y of a A-module M. It is
an abelian subcategory of Mod(I') where [' = Ends (M)°?, and &£y is con-
structed in such a way that it is the smallest abelian subcategory of Mod(I")
containing M regarded in the natural way as a I-module and all the endo-
morphisms of M induced by multiplication with an element from A. The
first aim of this paper is to discuss some basic properties of this category.
For instance, we show that &y, reflects various properties of the module M
which are related to purity. Another aim is to give a functorial description
of the Ziegler spectrum of A which is, by definition, a representative set of
indecomposable pure-injective A-modules, together with a topology intro-
duced by Ziegler {14]. We shall also discuss the relation between certain
right and left A-modules which arises from the well-known duality between
the categories of finitely presented functors from mod(A°?) and mod(4), re-
spectively, into the category of abelian groups. In fact, this duality induces a
bijection M +— DM between certain subsets of the Ziegler spectra of A and
A°P, respectively, which has been studied by Herzog [6] using positive primi-
tive formulas, and by Crawley-Boevey {1] using characters. The functoriality
of this bijection is expressed by dualities between the endocategories &y and
Epn- A final example illustrates these dualities as well as their limitations,

This paper is dedicated to the memory of Maurice Auslander. In fact,
the material presented here depends in an essential way on homological and
categorical techniques and ideas that indelibly bear his mark.
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420 HENNING KRAUSE
1. Preliminaries

Let C be a skeletally small pre-additive category. A (right) C-module is
an additive functor from C° into the category Ab of abelian groups and
we denote by Mod(C) the category of all C-modules. Recall that M <
Mod(C) is said to be finitely presented provided that there exists an exact
sequence [[;L; Hom( , X;) = I}, Hom(,Y;) - M — 0 in Mod(C), and M
is finitely generated if it is a quotient of a finitely presented module. The
full subcategory of all finitely presented C-modules is denoted by mod(C).
It is an additive catgory with cokernels, and C is called coherent if mod(C)
is abelian. Given a ring A we shall view A as a category with one object
and we define Cy = mod(A°?)°P. Note that this category is coherent. The
fully faithful functor

Mod(A) = Mod(Cy), M~ M@, —

will play an important role in our considerations. An exact sequence () —
L =M — N — 0in Mod(A) is said to be pure-ezact if its image

0——>L®A—h—>M®A———>M®A———>O

under this functor is exact and M € Mod(A) is pure-injective if M @, —
is injective. Finally, recall that there is a well-known duality d: mod(C,) —
mod(Cxe» ) given by

d(M)(X) = Hom(M, X @, —).

Thus mod(C4) has sufficently many projectives which are the functors
Homy., (Y, ), ¥ € mod(A°), and sufficently many injectives which are the
functors X ®, —, X € mod(A) [5].

We continue with some general facts. Recall that a full subcategory
S of an abelian category A is a Serre subcategory provided that for any
exact sequence 0 = X =¥ — Z — 0 in A the object Y belongs to S iff
X and Z belong to S. For any Serre subcategory S of A one can form the
quotient category A/S which is abelian and admits an exact quotient functor
¢:A — A/S with Ker(q) = S [4]. The functor ¢ is characterized by the
property that any exact functor f: 4 — B between abelian categories with
Ker(f) = S induces, up to isomorphism, a unique faithful and exact functor
f: A/S — B such that f = foq. The subcategory S is called localizing if ¢
has a right adjoint.

Suppose now that C is a skeletally small pre-additive category which is
coherent, e.g. C = Cy. Let § be a Serre subcategory of mod(C) and denote

by S the full subcategory of Mod(C) which consists of all direct limits lim X
with X; € S for all 4.
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Lemma 1.1 The subcategory § is localizing and the quotient functor
q:Mod(C) — Mod(C)/:S‘+ has the following properties.

(1) Let M € Mod(C) with Hom(S,M) = 0. Then M is injective iff
q(M) is injective. In that case q induces an isomorphism Hom(X, M) —
Hom(g(X),q(M)) for every X € Mod(C).

(2) The composition of ¢ with the inclusion mod(C) = Mod(C) induces

a fully faithful and ezact functor mod(C)/S — Mod(C)/g which makes the
following diagram of canonical functors commutative.

mod{C) — mod(C)/S

l l

Mod(C) % Mod(C)/S
Proof: Tor a proof see [9].

We shall also need the well-known fact that Mod(C) has injective en-
velopes. Moreover, Mod(C)/§ has injective envelopes provided that S is a
localizing subcategory.

2. The endocategory

Let M be a A-module and let I' = End, (M)°P. Identifying End(M ®, —)°°
in Mod(Cy) with T' we obtain a contravariant functor

hayri mod(Cy) = Mod(T), X — Hom(X, M ®, -)

which is easily seen to be exact. We denote by Sy the kernel of hy; which is
a Serre subcategory. The endocategory £y of M is, by definition, the image
of the induced functor mod(Cs)/Sy — Mod(I') and we shall assume that
this subcategory of Mod(T") is closed under isomorphisms. The next lemma
is a reformulation of this definition.

Lemma 2.1 The funcor hy induces a duality mod(Ca)/Sy — Enr which
makes the following diagram of functors commutative.

IIlOd(CA‘) — mod(CA)/SM — gM
Mod(Ch) %+ Mod(Ca)/Sy ™ ZH* ™ Moa(T)

Proof: We use Lemma 1.1. The isomorphism End(M @, —) = End{q(M @,
—)) allows to identify I' and End(q(M ®4 —))°°. The assertion then follows
from this lemma and the definition of £y.

Recall that an abelian subcategory of an abelian category is a subcategory
which is abelian and has an exact inclusion functor.
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Proposition 2.2 The endocategory €, has the following properties.

(1) € is an abelian subcategory of Mod(I') which is closed under iso-
morphisms.

(2) Ear contains M and Endg,, (M) contains the image of the canonical
morphism A — Endr(M).
Moreover, €y is a subcategory of any other category £ which satisfies (1) —

(2).

Proof: mod(Cy) is the free abelian category over A, i.e. any functor A — &
to an abelian category extends uniquely to an exact functor mod(Cy) — &
[5, Lemma 1]. Applying this fact to the canonical functor A — Mod(T),
A — M, the assertion follows.

We list some further properties which follow immediately from the defi-
nition.

Proposition 2.3 (1) £y consists precisely of all cokernels of morphisms
Homy (¢, M) with ¢ in mod(A).

(2) Eur consists precisely of all kernels of morphisms M ®, 1 with 9 in
mod(A°P),

(3) Every object in €y is a subguotient in Mod(T') of some finite coprod-
uct M™.

Proof: Use the fact that mod(Cy) has sufficently many injectives and pro-
jectives.

Our discussion suggests the following definition. A pair M and N of
A-modules is called purely equivalent provided that S v = Sn.

Lemma 2.4 The following are equivalent.

(1) M and N are purely equivalent.

(2) Homy(p, M) is an epi iff Homy (o, N) is an epi for every ¢ in
mod({A).

(3) M @44 is a mono iff N ®, 1 is a mono for every 1 in mod(A°P).

Proof: Use the fact that mod(C,) has sufficently many injectives and pro-
jectives.

Proposition 2.5 Let M and N be A-modules which are purely equivalent.
Then there is an equivalence e:Ey — En which 8, up to isomorphism,
uniquely determined by functorial isomorphisms

e(Hom, (X, M)) = Hom, (X, N) and e(MQRrY)ZN®L\Y
for all X € mod(A) and Y € mod(A°®).
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Proof: The assertion follows from Lemma 2.1.

The endocategory &y is intimately related to the collection of subgroups
of finite definition which correspond to M. Recall that for X € mod(A)
a subgroup of finite definition of Hom, (X, M) is the image M, of a map
Homy (¢, M) arising from a morphism ¢: X — Y in mod(A). The sub-
groups of finite definition form a lattice in Homy (X, M) which we denote
by Latt, (X, M).

Proposition 2.6 (1) The lattice of subobjects of Homy (X, M) in £y coin-
cides with Latts (X, M).

(2) Every object in Eyr is isomorphic to Homy (X, M)/M,, for some X €
mod(A) and some M, € Latts (X, M).

Proof: Use Proposition 2.3.

The next few results show that the endocategory & reflects various
properties of the module M which are related to purity.

Proposition 2.7 M is pure-injective if and only if for every X € &y and
for every codirected family (X;)icr of subobjects of X in E the canonical
map X — }i_n_lX/X,- in Mod(T') is an epi.

Proof : Adapt the argument of [8, Corollary 7.4].

Recall that M is &-pure-injective if any coproduct []; M is pure-injective.
It is well-known that M is L-pure-injective iff the descending chain condition
holds in Latts (A, M). Thus we obtain the following characterization.

Corollary 2.8 M is -pure-injective if and only if £y is artinian, i.e. any
object in £y 1s artinian.

A module M is called endofinite if M is of finite length in Mod(T'). It
has been shown by Crawley-Boevey that M is endofinite iff ascending and
descending chain condition hold in Latty (A, M) [1, Proposition 4.1]. This
has the following consequence.

Corollary 2.9 M is endofinite if and only if Eur is a length category, i.e.
any object in Ep 1s of finite length.

The next result gives a condition which guarantees that £, is a full
subcategory of Mod(T').

Theorem 2.10 If M is endofinite, then &y is the full subcategory of all
subquotients in Mod(I') of finite coproducts M™.
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Proof: Suppose that M is endofinite. Using the argument of [1, Propo-
sition 4.1] it can be shown that every T-submodule of Hom, (X, M) is a
subgroup of finite definition. Thus &£, consists of all subquotients of finite
coproducts M™. It remains to prove that &, is a full subcategory. We shall

.
use the quotient functor ¢: Mod(C,) — Mod(C4)/Sy. By Lemma 1.1 and
Lemma 2.1 the subcategory &), is full iff the functor

Hom( ,q(M ®, —)):Mod(Cy)/Syr — Mod(T)

is full when it is restricted to the objects ¢(X) with X e mod(Cy). Applying
the argument of [12, Lemma 4.1] the assertion follows from the fact that
q(M ®, —) is an injective cogenerator and that Hom(g(X),q(M @, —)) =
Hom(X, M ®4 ) is finitely generated over End(q(M ®; —))°" 2 T' for each
X € mod(CA)

3. Ziegler’s topology

Let C be a skeletally small pre-additive category. A set of indecomposable in-
jective C-modules which meets each isomorphism class exactly once is called
the spectrum of C and is denoted by sp(C). The Ziegler spectrum Zsp(A) of
a ring A is by definition a set of indecomposable pure-injective A-modules
which meets each isomorphism class exactly once. Thus we may assume that
the functor M — M ®, — identifies Zsp(A) with sp(Cy) since any injective
Ca-module is isomorphic to M ®, — for some M € Mod(A). In [14] Ziegler
introduces a topology on the set Zsp(A). We obtain this topology as follows.

Let C be a skeletally small pre-additive category which is coherent, e.g.
C = Ca. For a subset U of sp(C) denote by Z() the Serre subcategory of
mod(C) formed by the objects X € mod(C) satisfying Hom(X,U) = 0. For
a subcategory S of mod(C) let Y(8§) = {M € sp(C) | Hom(§, M) = 0}.

Lemma 3.1 The assignment
U U = TE(U)

15 a closure operator on the spectrum sp(C) of A, i.e. the subsets U C sp(C)
satisfying U = U form the closed sets of a topology on sp(C).

Proof: 1t is easily checked that § = 0, & C I and if = I{. It remains to show
that U Ull, = Uy Ull,. From T(U, Ul,) C E(Uh) N Z(U,) it follows that
U, Ul CU, Uld,. Now choose M € sp(C) such that M ¢ U; Ull,. We clairm
that this implies M ¢ U; Ulf,. From the definitions one obtains non-zero
morphisms ;: X; — M such that X; € L(l;). We have Im(¢p;) NIm(ipy) # 0
since M is indecomposable injective. Choosing U C Im(p;) NIm(yp,) finitely
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generated one can find finitely generated submodules ¥; C X; such that
¢;(Y;) = U. We obtain the following exact commutative diagram where the
vertical morphisms are the canonical monos.

¥1
@]nun - U =0

R

0 — SoXx, B oM

The morphisms t; being epis we find finitely generated submodules W; of
W such that o;(W;) =Y. Let X =Y, [[ Y2/ [f’bl] (Wy + W,). We have X €
mod(C) since mod(C) is abelian and it is easily checked that Hom(X, M) # 0.
On the other hand X € Z(U,Ul,) since X is a quotient of each Y;. Therefore
M ¢ U, UlU, and the proof is complete.

It has been observed by 1. Herzog [7] and M. Prest that Ziegler’s closed
sets in Zsp(A) are in bijective correspondence to Serre subcategories of
mod(C,). In our context this observation takes the following form.

Theorem 3.2 There is a bijective inclusion reversing correspondence be-
tween Serre subcategories of mod(C) and closed subsets of sp(C}. The cor-
respondence is given by

S T(S)  and U SU).

Proof: We check that the assignments are inverse to each other. Given
a Serre subcategory S of mod(C) the subcategory T = S of Mod(C) is
localizing by Lemma 1.1 and therefore the pair (7,F) with F = {X |
Hom(S, X) = 0} forms a hereditary torsion theory for Mod(C). Moreover,
the set T(S) = F Nsp(C) cogenerates F since the quotient Mod(C)/ S is
locally finitely presented [9]. It follows that 3.T(S) = S, Conversely,
ToX(U) = U is clear since U is closed.

4. Duality

We combine the correspondence I — X(U) between closed subsets of
Zsp(A) and Serre subcategories of mod(C,) with the duality d:mod(Cy) —
mOd(CAOP).

Proposition 4.1 There is a unique inclusion preserving bijection U —
D(U) between the closed subsets of Zsp(A) and Zsp(A°?) such that
Z(DMU)) = d(Z(H)).
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We shall use this fact to construct a homeomorphism between certain
subsets of the Ziegler spectra of A and A°P_respectively.

Suppose there is given a pair of topological spaces X and ) and an
inclusion preserving bijection I D(U) between the closed subsets of X
and J, respectively. Recall that a point M is isolated provided that {M} is
open. We call a point M in X or Y reflezive provided that M is isolated in
its closure {M} and D({M}) contains also an isolated point, say N. The
point N is uniquely determined by M and we call DM = N the reflection
of M. Denote by R(X) and R()) the set of reflexive points in X and ),
respectively, equipped with their induced topology.

Lemma 4.2 Reflection, the map which sends M to DM, is a homeomor-
phism between R(X) and R(Y) satisfying D* = id.

Proof: The reflection of a reflexive point M is again reflexive and satisfies
DDM = M. Thus D is a bijection between R(X) and R()) satisfying
D? = id. Let U be a closed subset of R(X), say U = VNR(X) for some closed
subset V of X. It is easily checked that {DM | M € U} = D(V)NR()
since M € U iff the closure of M in X is contained in V. This shows that D
is continuous and the proof is complete.

We call a pair of modules M € Mod(A) and N € Mod(A°P) purely
opposed provided that Sy = d(Sy,).

Lemma 4.3 The following are equivalent.
(1) M and N are purely opposed.
(2) Homy (¢, M) is an epi iff o ®x N is a mono for every ¢ in mod(A).
(3) Homyer (¢, N) s an epi iff M@, is a mono for every 1 in mod(A°P).

Proof: The proof is analogous to that of Lemma 2.4.

Proposition 4.4 Let M € Mod(A) and N ¢ Mod(A°P) be modules which
are purely opposed. Then there is q duality e:Epy — Ex which is, up to
isomorphism, uniquely determined by functorial isomorphisms

e(Homy (X, M)) =X @\ N  and e(Ma, Y) = Homyo (Y, N)
for all X € mod(A) and Y € mod(A°P).

Proof:  The duality d:mod(C,) — mod(Cper) induces a duality
mod(Ca)/Sy — mod(Cxer)/Sy. The assertion then follows with Lemma 2.1.

We mention two properties which are preserved by the above duality.
Here anns (M) denotes the annihilator of a A-module M.
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Proposition 4.5 Let M € Mod(A) and N € Mod(A°®) be modules which
are purely opposed.

(1) Lattaes (A, N) = Latty (A, M)°P.

(2) annper (N) = anny (M),

Proof: Use Proposition 4.4 and Proposition 2.6.

Our discussion suggests the following defimtion. An indecomposable
pure-injective A-module is called finitely reflexive provided that M is iso-
morphic to a point in Zsp(A) which is reflexive with respect to the topologies
of Zsp(A) and Zsp(A°?). We include the following property.

Lemma 4.6 Let M € Zsp(A) and suppose that M is isolated in its closure
{M}. Then any point N € Zsp(A) is purely equivalent to M if and only if
N=M.

Proof: If N and M are purely equivalent, then {N} = {M}. In particular,
N € {M}. On the other hand, M ¢ {N} for N # M since M is isolated in

{M}. Thus N = M.

The next result summarizes our discussion. It extends Herzog’s elemen-
tary duality [6] (see also [11]).

Corollary 4.7 The map which sends M to DM is a homeomorphism be-
tween the sets of reflezive points in Zsp(A) and Zsp(A°P), respectively, sat-
isfying D* = id. A reflezive point M € Zsp(A) has the following properties.

(1) Any point N € Zsp(A) is purely equivalent to M if and only f N =
M.

(2) Any point N € Zsp(A°?) is purely opposed to M if and only if N =
DM.

(3) There 1s a duality e:Epr — Epy which is, up to isomorphism,
uniquely determined by functorial isomorphisms

e(Hom, (X, M)) = X @ DM and e(M ®, Y) = Homye: (Y. DM)
for all X € mod(A) and Y € mod(A°P).

In view of the preceding result there are two natural questions.

— Which points in Zsp(A) are reflexive?

— Which properties of M and DM, respectively, are preserved by the
duahty Ev — EDM?
We devote the rest of this paper to a discussion of these problems. Note
that a first answer is given in Proposition 4.5.
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5. Simply reflexive modules

We use the endocategory to introduce a class of indecomposable pure-
injective modules. We start with some technical lemmas. To this end fix an
indecomposable pure-injective A-module M with I' = End, (M)°P.

Lemma 5.1 Let X € mod(Cy) and suppose that hy(X) is simple in &y,

Then the quotient functor ¢: Mod(Cy) — Mod(CA)/S; sends X to a simple
object and M ®, — to an injective envelope of q(X).

Proof: "The object g(X) is simple precisely if for any exact sequence 0 —
— —
X' = X = X" = 0 either X' € Sy or X" € Sy Writing X' = lim X,
as a direct limit of all its finitely generated submodules we obtain induced
sequences 0 — X; = X — X/X; — 0 in mod(Cs) since Cy is coherent.
Now, for any i either X; € Sy or X/X; € S, since ¢(X) is simple in
mod(Ca)/S» by assumption and Lemma 2.1. If X/X; € Su for some i,
then X" € Sy, since X” is a quotient of X/X;. Otherwise all X; € Sj; and

—
therefore X' € Sp. Thus ¢(X) is simple. If ¢ € Hom(X, M ®, —) is a
non-zero morphism, then ¢(p) # 0 by Lemma 1.1. Thus ¢(M ®, —) is an
injective envelope of ¢(X) since ¢(M ®, —) is indecomposable injective.

Lemma 5.2 Let N be an injective envelope of a simple object X in any
abelian category and let ¥ = End(N)°P,

(1) Y = Hom(X, N) is a simple ©-module.

(2) The functor Hom( , N) induces an isomorphism

End(N)/rad(End(N)) & End(X) = Ends(Y)°P.
Proof: Straightforward.

Lemma 5.3 The following are equivalent for an object S in E,y.
(1) S is simple in Eyy.
(2) S is simple in Mod(T).

Proof: Clearly, S = hp(X) is simple in £, if it is simple in Mod(T"). The
other direction follows from Lemma 5.1 and Lemma 5.2.

We call an indecomposable pure-injective module M simply reflezive
provided that &£, contains a simple object.

Proposition 5.4 The following are equivalent for an indecomposable pure-
njective A-module M.

(1) M is simply reflezive.

(2) There exists a map X = Y in mod(A) such that the cokernel of the
induced map Hom(Y, M) — Hom(X, M) is a simple End, (M)°P-module.
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Proof: The assertion follows from Lemma 5.3 since the objects in £y are
precisely the cokernels of maps Hom(i, M) arising from a map ¢ in mod(A)
by Proposition 2.3.

Proposition 5.5 Any simply reflexive module is finitely reflexive.

Proof: We shall identify Zsp(A) = sp(Cs). Also, we keep the notation of
Lemma 5.1. Now suppose that M € Zsp(A) is simply reflexive. Consider the
oper set U = {N € Zsp(A) | Hom(X, N) # 0} and note that T(Sy) is the
closure of {M}. Using the fact that an injective envelope of g(X) is unique
up to isomorphism it follows from Lemma 5.1 that UNY(S m) = {M}. Thus
M is isolated in its closure. Applying the same argument one shows that
the intersection of {N € Zsp(A%®) | Hom(d(X),N) # 0} with D(Y(Sn))
contains precisely one point. Thus M is reflexive.

Proposition 5.6 Any indecomposable L-pure-injective module is simply re-
flexive.

Proof: Let M be E-pure-injective. The endocategory &y is artinian by
Corollary 2.8 and therefore £y contains a simple object.

Having shown in Proposition 2.2 that the endocategory of a module M is
determined by End, (M) and its action on M, we obtain now some converse.

Proposition 5.7 Let M be an indecomposable pure-injective A-module and
suppose that M is simply reflezive. Then the endomorphism ring Ends (M)
is, up to isomorphism, uniquely determined by the endocategory Ens.

Proof: We use the fact that Mod(Cx)/Su is equivalent to the category
Lex((mod(Cy)/Sa)°P, Ab) of left exact functors (mod(Ca)/Sa)°F — Ab [9].

Thus Mod(Cs)/Su is equivalent to Lex(&p, Ab) by Lemma 2.1. Taking a

simple object S € €y the functor Hom(S, ) is simple in Lex(€y, Ab) and

therefore an injective envelope N of Hom(S, ) corresponds to g(M ®, —)
-

under an equivalence Lex(Ex, Ab) — Mod(Ca)/Ss by Lemma 5.1. Using
Lemma 1.1 we deduce that End(V) and End, (M) are isomorphic and the

assertion follows.

Example 5.8 (1) A point M € Zsp(A) is simply reflexive iff it is reflexive in
the sense of Herzog [6]. It follows from Corollary 4.7 that M — DM induces
a bijection between the isomorphism classes of simply reflexive right and left
A-modules which coincides with the duality studied by Herzog [6].

(2) The preceding result shows that any endofinite point M € Zsp(A) is
reflexive. It follows from Corollary 4.7 that M +— DM induces a bijection
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between the isomorphism classes of indecomposable endofinite right and left
A-modules which coincides with the duality studied by Crawley-Boevey [1].

(3) Let A be an artin algebra which has Krull-Gabriel dimension in the
sense of Geigle, e.g. a tame hereditary algebra [3]. Then it can be shown
that any point in Zsp(A) is simply reflexive. Thus Zsp(A) and Zsp(A°P) are
homeomorphic.

(4) Let M € Zsp(A) be simply reflexive. Suppose also that M is a
A-T-bimodule and that I € Mod(T) is an injective cogenerator. Then it is
shown in [10] that DM is isomorphic to a direct summand of the A°?-module
HOmp (M, I)

To formulate the next result we denote for an indecomposable pure-
injective A-module M by A(M) the factor ring End, (M)/rad(End, (M)).
Note that A{M) is a division ring since End, (M) is local.

Theorem 5.9 If M is simply reflexive and S € &£y is any simple object,
then
A(M)Op = El’ldgM (S) = Endp(S)

Proof: We use Lemma 5.1 and its notation. In particular we suppose that
S = hy(X) is simple. Thus the radical factor of End(g(M ®, —)) is iso-
morphic to End{¢(X)) by Lemma 5.2 since g(M ®, —) is an injective en-
velope of the simple object ¢(X). The following isomorphisms End, (M) =
End(M ®, —) = End(¢(M ®, —)) then show that A(M)°® = End;,, (S)
since End(¢(X))°® = End,,,(S) by Lemma 1.1 and Lemma 2.1. Inparticu-
lar Endg,, (S) = Endp(S) follows from Lemma 5.9.

Corollary 5.10 If M € Zsp(A) is simply reflexive, then A(DM) =
A(M)oP.

Remark 5.11 The preceding result can be derived from a result of Herzog
[6]. It shows that Crawley-Boevey’s notion of generical wildness is right-left
symmetric [1].

Theorem 5.12 If M € Zsp(A) 1s endofinite, then
EndEndAop (DM op (DM) = EndEndA(M)"P (M)Op-
In particular, Endser (DM) and Ends (M) have isomorphic centers.

Proof: The endocategories & v and Epy are full subcategories of
Mod(End, (M)°?) and Mod(End s (DM)°?), respectively, by Theorem 2.10.
Using the duality £y — £p,, the assertion follows. The statement about
the centers is a direct consequence since for any A-module M the center of
End, (M) and Endgag,(aye» (M) coincide.
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6. An example

We present a local two-sided artinian ring and describe explicitly the en-
docategory of the indecomposable endofinite module M = 4A and its dual
DM. The author is indebted to M. Schmidmeier for suggesting this ex-
ample. It shows that even for an indecomposable endofinite A-module M
the endomorphism rings Endye. (DM) and Ends(M)°P are not necessarily
isomorphic.

Let T be a skew field and B a T-T°°-bimodule. Denote by X* =
Hom¢(X,T) the dual of any X € mod(T). Let A = T x B be the triv-
ial extension which is a local ring, and let I' = T x B**. Then I = (4A)*
is a minimal injective cogenerator for Mod(A) and End,(I) = T [2]. Now
suppose that A is two-sided artinian. It follows that M = 4A is endofinite
and DM = Homy (A, I) = I since Ender (M) = A [1]. Tt is easily checked
that the endocategory of M is mod(A) and that the duality £y — Epu
is given by X — Hom,(X,I). Returning to the bimodule B let us as-
sume that #(Br) = 1 and £((B**)7) = 2. Such a bimodule exists accord-
ing to a result of Schofield [13]. We obtain £(Ay) = €(Tr) + £(Br) = 2
and (7)) = (Tr) + 4(B™)r) = 3. Therefore I' = Endy(DM) and
A = Endj.r (M) are non-isomorphic rings and we have shown that, in
general, the duality M — DM does not share the usual properties of a
duality between right and left modules.
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