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THE RING MACHINE

Burkhard MONIEN, Oliver VORNBERGER

Universitdt Gesamthochschule Paderborn,
Postf. 1621, 4790 Paderborn, FRG

Abstract. A ring-structured network of asynchronous processors is constructed with personal
computers (SIRIUS I). Each computer in the ring has its own microprocessor, local memory
for code and data, and can communicate via two serial ports with its neighbours, i.e. can
exchange information with its predecessor and its successor in the ring. This distributed
system allows the parallel execution of sequential backtracking algorithms, i.e. a general-
-purpose package is implemented together with a user interface for the specific application.
To demonstrate the performance of the ring machine the Hamiltonian cycle problem is solved
for 50 graphs with up to 16 ring members.
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Peaiome. Komuueobpasuas cerh aCHHXPOHHBIX TPOLIECCOPOB NOCTPOCH2 C ITI9BM
(CUPHUYC ). Kaxnas MalWiHHa B KONblie WMECT CBOH MHKDOMPOLECCOP, NOKANbHYIO
NaMATL MUIA KOAA W OAHHBIX H C NMOMOLILIO [IBYX MOCJEXOBATENBHBIX HOPTOB MOXET
061aTHCR ¢ COCCASMH, T. €. MOXET 06MeHHBATLCA HHPOPMauKEH CO CBOUM NMPEALIECTBEH-
HHKOM M NPCEMHHKOM B KOJIblIC. JTa PACTIPEACICHHAS CHCTEM2 NO3BONACT NAPAJNCALHYIO
06paboTky MOCNCAOBATEbHBIX ANrOPHTMOB GIKTPEKHHIa, T.€. MCNONB3yeTCH obwe-
uesienodi naxer BMecTe ¢ HHTepdelicoM NMoMb30BaTE/IA 1A CEUHPHHECKOTO NIPHMCEHEHHUS.
Ins nemoucTpaimn paboTu xonsuesod IBM mpobnema raMuaLTOHOBCKOTO LMKA pelie-
Ha nas 50-TH rpados ¢ nomoubio 16-T YCTPOACTB XOMIbla.

1. INTRODUCTION

In the beginning of the seventies COOK [1] and KARP [4] introduced the notion of
NP-compicteness, which since then has been the centre of many research efforts [3). This
term characterizes a class of combinatorial problems (members are e.g. Hamiltonian
cycle, vertex cover, satisfiability) that behave — relative to their inherent solution com-
plexity — equivalent in the following sense:

1) Any algorithm that solves any of the NP-complete problems fast (i.c. in polynomial
time) can be transformed to fast algorithms for all NP-complete problems.
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2) The proof that a specific NP-complete problem cannot be solved in polynomial time
can be extended to the whole class.

Since no one has ever found such a fast algorithm, the term of N P-completeness can,
despite the absence of a formal proof, be used as a synonym for intractability. So,
NP-complete problems will — at least in the worst case — consume an intolerable
amount of execution time, even for modest-sized problems.

One way to overcome this difficulty is to use approximation algorithms that produce
near optimal solutions in short running times. Another way is parallelism:

Since the performance of sequential computers cannot be improved because of
electronic principles. in recent years computer architectures have evolved that consist of
a system of several processing units which are connected by a communication network.
The goal of such super computer is to produce additional processing power by the use
of additional processing units.

In general. it is not obvious how to take advantage of the **paralle] hardware™, since
It requires a special “parallel software”. The philosphy of the von Neumann computer,
modifying an exclusive memory by sequential steps, has tuned programmers to produce
tricky 1-processor-code and only very slowly they adjust to the need of programs that
exploit parallelism.

In this paper we present an approach that bypasses these two difficulties, namely to
have access to special hardware and to write parallel software. We present a general-
“purpose package together with a user interface that allows the parallel computation of
sequential backtracking algorithms on a set of personal computers.

The organization of the paper is as follows:
: - © our approach to previous work. In Section 3 the hardware
Fonhguratlgn 18 presented. Sections 4 and 5 illustrate sequential and parallel backtrack-
Ing respectively. In Section 6 we describe the user interface, in Section 7 we discuss the

computing times and speedup resulting from 5 typical implementation. Section 8 closes
with suggestions for further research.

2. RELATED WORK

parallelism 10 speed up the compuytati lete
o putation of NP-comp
opmization problems. J. MOHAN [5] solved the travelling salesman problem on the

ﬁ‘i f:ll:. z 'I'fl]ultipr'OCCSSOl’ system built at Carnegie Mellon University, consisting of a

. dl:C ica netwqu of LSI-11 computers, Using 16 processors, MOHAN got 1/8 of the
processor running time for 30-node instances. R. FINKEL und U. MANBER [2]

‘;pturposc Package for distributed backtracking implementations
uter, '

10 Mb-sec token ring, MANlPa collection of 16 VAX-11/750 computers connected by 2




2 IR

The ring machine 197

multicomputer, i.e. a special designed hardware that provides global memory to all
processors or allows fast communication between the processors. Both are necessary for
a parallel backtracking algorithm that uses a single subproblem stack. Our attempt, on
the other hand, will start from standard hardware: the personal computer, a mass
product, available at low rates and powerful enough to act as an integrated part of a
(loosely coupled) parallel system.

Since the main philosophy of our architecture is to handle independent subproblems
of asynchronous processes, it is also very well suited to organize parallel branch-and-
-bound algorithms. The experiences relevant to these topics have been reported in [9].
Our ring machine has also been used to study superlinear speedups produced by a parallel
implementation of testing Boolean formulas for satisfiability [7].

3. THE HARDWARE

The basic ingredients of any multiprocessor network are processing units (called
nodes) and connections between them (called links). Most universities, banks and in-
surance companies are equipped with a lot of personal computers that are used for
programming tasks and administration work. Edch personal computer (like the
SIRIUS I at the University of Paderborn) has
— its own microprocessor (Intel 8086)

— its own main memory for program code & data (256 KB)
— two serial ports to the outside world: (RS 232).

Each port can

¢ send one byte

e receive one byte

These properties obviously qualify such a personal computer to act as a processing
unit in our parallel system. How do we design the connections? There are mainly two
possibilities:

Centralized version: A supervisor (with special hardware and software) is introduced
which is connected to all the nodes. It acts as an operating system and is responsible for
balancing the work load (see Fig. 1).

} (at a rate of 9600 bits per second).

Fig. 1.

Decentralized version : All nodes form a ring by connecting the left port of a computer
to its left neighbour and its right port to its right neighbour (see Fig. 2).

There are several advantages inherent to the decentralized version:
— simple concept
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— 1al designed hardware for supervisor o _ .

— :gtsgf:;'alparallgel computation but also paralle} communication (in the gcntfrzgzzg
version the supervisor forms a bottleneck, since it can manage only one pair o
talking to each other at a time). o .
We will see later that the main disadvantage, namely the very restrictive communica-

tion pattern, will take effect only partly when this network is running our backtracking
Strategy.

cycle problem how to implement 3 sequent
(To recall the problem: Given a directed

E. the question is whether G has a Hamil
exactly once.)

ial backtracking,
graph G = (¥, E) with node set ¥ and edge set
tonian cycle, i.e. a cycle running over each node

ution and e belongs to the solution

g e (resulting in G,) or by shrinking the endpoints of e into
a new node (resulting in G.); see Fig. 3.

Notice that G, has also lost the edges leaving the (former) node x and going into the

(former) _nodc Y. This is justified by the fact that the explicit inclusion of an edge e into
the solution cycle implies a

. 0 explicit exclusion of the adjacent edges.

Itis casy togee that G hag Hamiltoniancyck iff G, has a Hamiltonian cycle or G,
has a Hamiltonian cycle. Furthcrmore, the solution for G can be constructed from the
solution from G;or G,
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The two graphs resulting from the splitting may allow us to *'simplify” them: a node
x of outdegree one forces its only outgoing edge e into the solution cycle and a node v
of indegree one forces its only incoming edge e into the solution cycle. This leads to a
sequence of implications that only stop when there are no longer nodes of outdegree or
indegree one. Clearly, if a graph results with a node of degree zero, it can be excluded
from further examinations.

If we store the still unsolved subproblems in a stack, the backtracking procedure looks
like this:

push input graph G on the stack
repeat
pop top graph G from the stack
simplify G
if G is small

then begin

end
else begin

if G is Hamiltonian then report cycle

choose an edge e :
split G and push G; and G, on the stack :

end
until the stack is empty or a solution has been found.

5. PARALLEL BACKTRACKING

By adding a communication procedure at the beginning of the repeat loop we can
extend in a very natural way the sequential backtracking procedure to a parallel program

for our ring structure.

procedure communicate

begin
if the stack 1s empty then ask your left ncighbour for a problem;
if the right neighbour asks for a problem and the stack is not empty
then cut the bottom graph from the stack and send it

end;

The repeat-condition has to be changed to

“until all stacks are empty or a solution has been found™.

Notice that the size of the subproblems on the stack decreases fro_m the bottqm to the
top. This stems from the fact that splitting a graph G results always in graphs with fewer

edges and/or fewer nodes. So the topmost subproblem in the stack is the smallest
(measured in “free variables™) and therefore the casiest to solve; the bottom graph in the

stack represents the largest subproblem. Since we wish to supply an i(_lle processor with
work that lasts again for a while (until the next request is necessary), it makes sense for
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a processor to get rid of its largest problem first and therefore send its bottom stack

element.

At the beginning only one node in the ring (master) has the input graph in its stack,
the other nodes (slaves) start with an empty stack. Starting with the master the original
graph will be split into smaller and smaller pieces which are spread by requests of idle
nodes over the ring. By this technique the solution space is divided into disjoint sub-
spaces.

What has been described so far had been the first version of our parallel backtracking
procedure. After we had conducted several experiments it became clear that some tuning
was necessary, mainly to compensate the following two effects:

I} Atthe beginning the work is distributed extremely unevenly: the master has the whole
input problem, all slaves are idle. So they all start to ask their neighbours for work
at the same time and it takes quite a while until all ring members are supplied with
work. Even then they start with problems of very different size, since slave i starts with
a graph that is a restriction of the graph of slave i — 1.

2) An idle processor is supplied with work from its neighbour. However, it often takes
only a few iterations to completely solve this subproblem and the processor asks once
more for work. This leads to high interaction and results in loss of performance, since
each time the processors have to synchronize for their communication.

So in order to support a better balanced work load the implementation is augmented by
two heuristics:

1) To postpone the first need of processor communication it is important to provide in

the beginning all ring members with roughly the same amount of work. First, starting

with the master each Processor sends a copy of G to its right neighbour. Assume there
are k = 2' nodes in the ring (if & i

possible). Consider edges e, e,,
< i < 1} consists of k graphs which

So if all ring members agree on t
— on receiving G
loop.

2) Upon request not only one problem is sent but severa] depending on some heuristic
Jreuments such as the total number of problems currently in the stack.

Let us summarize the main PhiIOSOPh)’ of our implementation. Parallelism is or-

he selection of €, €, ..., ¢, each process r can
enter the main repeat-until

: € ring membe i king on
their local stack), sending a few slow b c > ousy (ie. keep them working
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sequential backtracking program for this specific user application would basicly consist
of these four components:

procedure create-problem ; (only used by the master)

The user generates (either randomly according to specific requirements or by reading the
terminal input) one instance of his problem class and stores it in a suitable encoding on
a file.

procedure init-stack ; (only used by the master)
The user reads a problem instance from a file and pushes it as the first subproblem onto
the stack.

procedure split-problem ; (used by both the master and the slave)

This is the basic part of any backtracking algorithm. The user removes the topmost
subproblem P from the stack. If P turns out to have a solution, then this solution is put
in a buffer B, provided by the system. If P turns out to have no solution, this is a “dead
end” and nothing is done. If P must be divided for further examination, then the user
splits P into disjoint subproblems P, P, ..., P. and pushes these onto the stack. It has
to be guaranteed that P has a solution iff A, P, ..., P._, or P, has a solution.

procedure show-answer ; (only used by the master)
The content of the buffer B is displayed.

It should be emphasized that our approach requires the sequential backtracking
algorithm to be formulated in a specific manner (see below). It is clear that our method
is not a general “parallelizer” in the sensc that any backtracking algorithm (in what
notion so ever) is automatically transformed to a parallel version,

However, the requirements we impose are very weak:

1) The algorithm has to be formulated in an iterative version, i.e. the basic “‘backtracking
step” has to be specified: Pop a subproblem from the stack, split it into subproblems
and push them onto the stack.

2) The encoding of the subproblem has to provide all information necessary to let this
subproblem be solved independently of other subproblems. This requires e.g. that
subproblems contain those parts of the solution vector that have been found so far.
These four routines together with the system utilities for communication in the ring

form the parallel system. Notice that at the end of the computation the system collects
the solutions (if any were found) from the local buffers and moves one into the master
buffer. So if the master finds its buffer empty there is no solution. How do we detect the
end of the computation if no solution is found? A request for a subproblem is expressed
by the master with a “master request”. A request for a subproblem by a slave is expressed
as a “slave request™ unless the slave itself was asked for a subproblem and could not
provide one: in this case it formulates its need by a “master request”. Clearly, when the
master receives a ‘‘master request” he can conclude that all slaves (and he himself) are
idle and therefore initiate a stop signal.
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Table 1. Execution times in seconds.
Number of processors
yes/no ,
2 4 8 16
Graph No. 01 - 40353 20573 19288 5152 2901
gfaph No. 02 + 3554 3605 425 32 ggo
Gr?p: lr:o. 03 + 5148 5184 5172 1126 852
G::gh Ng. 8-: ; ll;‘l‘ : 5900 2975 1521 863
Graph No. 08 0 30 14 3 » 2%
grap: ﬁo. 0; - 30764 15489 7741 3899 2000
Graph 0.0 - 3996 1979 1011 535 375
raph No. 09 + 57 60 61 61 61
Graph No. 10 + 1250 36 38 23 25
grfaph No. 11 + 21 25 17 20 24
G::g: ]f:g :g + 583 16 16 17 23
G o 13 - 27221 13841 69909 3486 1929
Graph No. | 25611 13028 6518 3293 1994
Gmph NO- 12 + 1327 54 55 61 53
ph No. + 1283 1321 13
Graph No, 17 22 15 2
Granh No. 18 + 20697 21067 17104 145 42
Graph No: 19 i :g 13 17 16 2
1 14 19
Oz No- 28 - 186 12 82 74 61
Graph No. 22 + 412 229 139 100 »
Graph No. 23 i 4%2 ]lg 16 17 23
g;:gg - % - 2345 1192 63 4l 20
Graph No. 26 M 12 15 17 21 27
Graph No. 27 * 26 29 2 22 21
Graph No. 28 " 6106 3083 1573 822 520
Graph No. 29 : 415 2105 1077 568 323
SiRo S S N S A
Graph No. 32 - 22 382 204 139 103
v T
Gmgh Ng: 3 - 1718 5900 2968 1552 848
Graph No. 36 4630 2338 1188 613 401
Graph No, 37 M 12 14 16 16 20
Graph No. 38 ’ 1932 1038 517 46 47
Graph No. 39 N w1l 1569 801 429 267
Graph No. 49 T 65 68 70 23 27
Graph No.41 N 3% 1576 809 422 282
ra .
Grash No. 43 M 20 21 % " 4
Graph No, 44 I 23 25 7 24 2
Graph No. i 144 27 3 %
ph No. 45 + 62 39 35 36
Graph No. 46 15 17
+ 17 19 23
graph No. 47 + 73% 23 2 28 3
raph No. 43 M 7455 7453 7379 2933
Graph No. 49 780 794 21 32
Graph No. 59 N 155 394 27
per problem: + | 8 20 8 “
Per problem: M 932 3:1 1065 314 160
Total: 22525 7 2419 1232 714
) 2
per problem: s l3§2§% 78814 33169 18560
1576 663 m
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To help the user to evaluate the efficiency of his program and to measure the
performance several statistical data are collected during the computation (see Section 7).

7. EXPERIMENTAL RESULTS

50 directed random graphs having 100 nodes each were generated. All graphs were
forced to have in- and outdegree in the range of 2 to 4, because previous experiments had
shown that without this restriction the graphs become *‘too easy to solve™: Almost any
random walk through the graph establishes a Hamiltonian cycle. This effect has been
analysed in a paper by POSA [8], where he proved that a random graph with n vertices
and ¢-n-logn edges contains a Hamiltonian cycle with probability approaching 1
(as n— o).

Table | shows the running times in seconds for the 50 graphs when solved on 1, 2, 4,
8, 16 nodes in the ring. The + and — respectively indicate whether the graph has a
Hamiltonian cycle or not. The execution time covers the total work period, beginning
with the distribution of the graph and ending with the display of the solution at the
master. So communication overhead and idle times are included.

Notice that sometimes additional processors do not help in finding the solution more
quickly (e.g. for graph No. 16, 1, 2 and 4 processors need roughly the same amount of
time) and sometimes one additional processor speeds up the algorithm very much (e.g.
2 processors compute a Hamiltonian cycle for graph No. 10 about 30 times faster than
| processor). The reason for this is obvious: sometimes the additional processors search
“in vain” their solution spaces, sometimes they are “Jucky” and detect a cycle early. For
certain problem classes (e.g. satisfiability) anomalies have been observed and explained
yk

One of the most important criteria to measure the performance of a multicomputer
system is the speed-up and the efficiency.

Let T;(P) be the execution time for problem P using k processors.
Then S,(P): = T,(P)/T;(P) denotes the speedup for problem P,

AS, := }; T,(P) EP: T,(P) denotes the average speedup and

E, := AS,/k is called the efficiency, a measure for the
utilization of the k processors.

A few comments on problems related to the notion of speedup are in order. First, the

average speedup is not defined as -l—-ZLS.(P), where n denotes the number of problem
n

instances. This is motivated by the fact that in general several problems have to be solved
ina row and one is interested in the total gain of speed. Second, we were unable to predict
the average speedup by mathematical analysis. Note that in each iteration of the main
while loop we can simplify the current graph. Sometimes, after scveral implications dye
to nodes of degree 1, the graph “vanishes”, i.c. that branch of the solution space turns
out to be non-Hamiltonian at an early stage of the computation. So it seems that the very
irregular execution times for graphs of similar sizes can only be recorded by experiments.
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Table 2. Speedup factor.

Number of processors

yes/no | 3
. 4 8 16
Graph No. 91 - 1. 1.
Graph No. 82 n l.% a.gg ggé 1?‘33 }3%
Graph No. 93 + 1.00 9.99 1.00 457 6.04
Graph No. 04 - 1.00 1.98 3.94 7.70 13.57
Graph No. 95 + 1.09 16.39 15.46 13.87 13.20
Graph No. 06 + 1.09 .97 6.19 5.91 500
Graph No. 97 - 1.00 1.99 3.97 7.89 15.38
Graph No. 8 - 1.09 1.97 3.86 7.30 10.42
Graph No. 09 + 1.60 0.95 0.93 0.93 0.93
gmpﬁ I;‘Io. 10 + 1.00 34.72 32.89 54.35 50.00
raph No. 1] + 1.00 0.84 1.24 1.05 0.88
Graph No. 12 + 1.00 36.44 36.44 34.29 25.35
8;:;2 ﬁg :3 - :.% 1.97 3.94 781 1411
- - . 1.97 3.93 7.78 12.84
g::gg gg { g :t }.88 23.3; 23.13 21.75 2504
: . . 97 85.53 64.15
g;:g'}: :g- :g I m g.gg (1’ .%o 142.12 49o.$
: . . 71 0.75 0.
gzgf: gg 33 - 1.00 1.44 1.18 0.93 0.68
Craph No. 20 - 1.00 1.51 227 2.51 3.05
Gmgh No- 21 - 1.00 1.89 2.96 412 5.22
. + 1.00 1.63 1.63 1.5 1.13
Graph No. 23 + 1.00 28.86 2525 20 23 14.96
Crah No. 24 - 100 lg7 3.67 688  10.56
Graph No. 26 I }gg 3% ?-l]; ?‘57 ?gz
Graph No. 27 - ]'00 ) : 18 :
. 1.98 3.88 . 11.74
cals 7 B @ m o o b
b . : ) . 0.74 0.6
v SRS B A A
Grach No. 33 - 1.00 1.89 3.54 5.19 7.01
Granh No. 32 " 1.09 1.94 381 6.86 8.58
Graph N 33 + 1.00 0.87 0.76 0.68 0.52
Graph No. 35 - e 1% T LA S
rap NO. 36 + l'w - . 7.55 l]SS
Graph No. ' 0.86 9.75 - -
gragz Y&Ig gg i :88 ?gg %gg Zgg 2?82
raph No. 39 + l . . 7.16 11.50
G 09 9.96 .
Craph No- 46 N 1% rgs 9% 79 1
Graph No. 42 + }-gg 10.73 10.00 25.88 22,00
Graph No, 43 + i\ 9.95 0.83 0.83 0.83
Graph No. 44 + n 0.85 0.9 0.79
Graph No, 45 N 1.00 2.3 3.69 411 4.00
Graph No. 4 M .y 0.38 0.88 0.79 9.65
grap:: No. 47 + 169 o 9.88 0.75 9.68
raph No. 48 M | ) 0.99 1.09 2.51
Graph No, 49 M ]'2 0.98 37.14 28.89 24.38
Graph No. 59 N 1% 192 339 5.2] 6.74
Average ; - 3.42 3.49 13.60 24.73
Average: T }:gg :;; 1.49 47 9.26
Average: 1 . 391 7.65 13.19
Efficiency : 1I= ;zg 2.86 6.79 12.14
- 0.71 .85 9.76
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Table 3. Statistical details for graph No. 13, solved with 16 processors.

Solution: There is no Hamiltonian circuit

CPU TRANS TOTAL % >0 >5 WAIT REQ IN OUT STACK ITERAT

Master 169¢ 239 1929 87 11 1447 16 656 57 68 2699 16796

Slave | 1635 294 1929 84 10 1178 12 935 68 72 2740 15960
Slave 2 1619 310 1929 83 11 1180 14 1368 72 70 2344 15475
Slave 3 1581 346 1927 82 35 1088 14 1796 70 68 2721 14965
Slave 4 1563 365 1928 81 551 1991 14 2808 68 55 2402 16215
Slave 5 1596 333 1929 82 810 1356 25 3345 55 45 2812 16467
Slave 6 1685 243 1928 87 699 1621 26 2231 45 37 2629 16545
Slave 7 1694 234 1928 87 1207 1604 25 2305 37 21 3452 17235
Slave 8 1724 204 1928 89 687 1716 21 2552 21 11 3133 17213

Slave 9 1773 156 1929 91 1692 1718 25 2899 I 3 2606 19659
Slave 10 1876 52 1928 97 1656 1996 23 840 3 3 2985 19187
Slave 11 1880 48 1928 97 1867 1908 12 432 3 8 3792 20476
Slave 12 1861 66 1927 96 1385 1909 14 595 8 16 3167 19449
Slawve 13 1839 89 1928 95 1383 1911 15 668 16 28 3472 18791
Slave 14 1805 122 1927 93 1263 1912 13 528 28 43 3329 18433
Slave 15 1759 169 1928 91 1172 1791 23 616 43 57 3208 18310

Total 27580 3270 30850 24394 605 605 47431 281196
Average 1723 204 1928 88 902 1583 18 1524 37 37 2964 17574

Table 2 shows speedup and efficiency. The average speedup is also listed tjor gaphs
with Hamilton cycle (+) and for graphs without Hamilton cycle (—). The 1f\d1v1dual
speedup ranges from 0.44 (the communication overhead for 16 processors solving graph
No. 25 outweighs by far the absolute short execution time for 1 processor) to 490.64 (slave
No. 11 found a solution in the 16-processor ring for graph No. 17 after 42 seconds).

Tables 3-5 show statistical data in detail for graphs No. 13, 44, 47 when solved on a
16-node ring.

For each processor the following is given:

CPU time in seconds spent on working on the graph .

TRANS time in seconds spent on waiting for a problem or transmitting a problem
TOTAL total time in seconds, i.e. CPU + TRANS

% work load in percent, i.e. 100« CPU/TOTAL
>0 first moment that the node has run out of work ¢
>5 first moment that the node has to wait more than 5 seconds to get work from i

his neighbour - '
WAIT  maximal time period the node has spent for waiting to get work 4
REQ number of requests _ i
IN number of problems received from the left neighbour i

ouT number of problems sent to the right neighbour

STACK maximal stack size in bytes )
ITERAT number of iterations of the repeat-until loop.
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Table 4. Statistical details for graph No. 44, solved with 16 processors.

Solution (found by slave No. 13): There is a Hamiltonian circuit:

199 58 19 91 82 18 SI 76 80 33 21 34 74 94 25 89 12 100 5
13 10 4 35 64 81 7 48 57 16 95 79 77 360 79 30 17 67 52
87 6 92 98 53 43 S0 14 26 44 45 46 24 2 20 sS4 4 8 2T
61 29 99 97 32 65 15 28 47 9 66 56 72 39 78 49 55 83 86 96

41 11 38 73 42 8 93 68 31 88 37 84 36 63 75 69 23 27 62 59
CPU TRANS TOTAL % >0 >5 WAIT REQ IN OUT STACK ITERAT
Master 27 9 36 75 6 3 1 | 1 1880 260
Slave | 24 1 35 68 5 s 31 1 2083 221
Slave 2 21 14 560 6 12 6 95 | 1648 199
Slave 3 20 15 55T 8 15 71 11 1 o 2874 193
Slave 4 25 10 35 7 0 0 0 0 1962 26!
Slave 5 23 12 35 65 ) P 0 o0 1635 291
Slave 6 21 14 35 60 ] o @6 o0 2511 241
Slave 7 18 17 35 si 0 0 0 1 1766 192
Slave 8 14 2] 35 4 14 3 11 | 1730 122
Slae 9 13 21 4 38 14 4 19 1 1268 97
Slave 10 12 2 B35 14 0 6 1 1 863 82
Slave 11 10 24 ¥ 2 2 1w 112 0 1528 59
Slave 12 2] 13 34 6l ) 6 0 o 219 228
Slave 13 22 13 35 6 ) O 0 o 3195 251
Slave 14 28 6 k7 S )] 0 O 90 9o 223 276
Slave 15 28 5 33 84 0 o 9 | 2475 309
Total 327 27 ss4 452 8 8 32660 3233
Average 20 14 B8 2 3 2 o 0 2041 202

Note: If th_e condition for *

' ">0"0r "> 5" never occurred, the no number i listed and
the maximum possibl

€ value contributes to the average.

Graph_No. 13 exhibits a “good behaviour”, As the column % shows, the average
workload is about 88%. No node had to wait for more than 26 seconds in a row. Nodes
7 and 9——!5 ran out of work for the first time after more thap 1000 seconds. Most nodes
had to wait more thap § seconds only close to the end of the whole computation. Since

lt’l;cogl::Pl; th:s 0o solution, every iteration of a single processor search was also performed
0F the processors in the 16-node ring. . anh
No. 13 is about 14 = 88% of 16, 8 So the speedup shown in Table 2 for grap

Graph No. 44 produces an avera . :
the unfavourable refation bet 8¢ work load of only 58%, This results mainly from
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Table 5. Statistical details for graph No. 47, solved with 16 processors.
Solution (found by slave No. 1): There is a Hamiltonian circuit: ‘
57 42 38 88 86 89 10 54 6 58 45 55 1 29 76 81 24 64 8 9
82 37 72 31 50 13 19 77 34 85 98 67 59 33 60 32 83 92 26 Sl
66 97 17 75 27 3 S 100 56 39 25 8 99 23 94 53 91 47 1t 20

616921638479157814732274)836401249 2 46 96
35 4 30 7 70 44 32 93 68 99 16 95 41 43 65 7l 87 28 62 48

CPU TRANS TOTAL >9 >S5 WAIT REQ IN OUT STACK ITERAT

&

Master 2928 5 2933 99 0 0 o 0 3037 32711
Slave 1 2927 6 2933 99 0 0 e 0 3652 31585
Slave 2 2927 6 2933 99 0 0 o 0 3321 38064
Slave 3 2925 7 2932 99 0 0 o 0 3832 35885
Slave 4 2923 9 2932 99 0 0 0 0 3272 27128
Slave 5 2921 11 2932 99 0 0 ¢ 0 4369 27088
Stave 6 2919 12 2931 99 o 0 0 ) 3953 30624
Slave 7 2917 14 2931 99 0 0 o 0 4320 30816
Slave 8 2917 15 2932 99 0 0 0 0 3597 29079
Slave 9 2918 13 293t 99 0 0 o 0 3750 27912
Slave 10 2918 13 2931 99 0 0 o 0 4197 29898
Stave 11~ 2919 12 2931 99 9 0 e 0 4333 29145
Slave 12 2921 19 2931 99 0 p o o 4830 26649
Slave 13 2923 8 2931 99 0 0 6 9 5629 26519 ,
Slave 14 2924 6 2930 99 0 0 o 0 4828 27466
Slave 15 2926 5 2931 99 0 0 o 0 5206 29126
Total 46753 152 46905 . 0 @ 0 66126 479695
Average 2922 9 2931 99 2931 2931 @ 0 o 0 4132 29980

s. After about 50 minutes, slave No. 1 found

processors did not need to exchange problem N
because the single processor finished after

a solution, causing only a speedup of 2.5,
2 hours.

8. CONCLUSION

We have presented an implementation of a parallel backtraclfing strategy for a set of
personal computers. This strategy was tuned t0 the specific requirement pf the hardware
environment : no global memory, restricted routing (ring), slow transmission. Our experi-
mental results show that suitable software can cope with these handicaps and produce
astonishingly high speedup.

With the more and more intense use of personal computers LANs (local area net-
works) become commercially available. Via a common bus they allow clique-like connec-
tions, It is the goal of our next project to use communication routines of such an LAN
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to handle requests for subproblems more effectively: the donator can be any network
member and the transmission is much faster (1 Megabit/sec).

Acknowledgement. Thanks to E. SPECKENMEYER for inspiring discussions and to R. FUNKE and
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