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Abstract
A large class of attribute evaluators (AE) are controlled by visit-sequences de-
scribing the computations during a tree walk. In this paper it is shown how such a
control structure is implemented systematically. An AE has to provide storage for
the attribute values associated to the tree nodes. Naive storage allocation techniques
are not tolerable for practical applications. An introduction to well elaborated meth-

ods of attribute storage optimization is given. They are applied automatically by

practical AG systems.

1 Introduction

An Attribute Grammar (AG) specifies computations to be executed in trees. Their struc”
ture is described by the underlying CFG. From those specifications attribute evaluators
(AEs) are derived which execute the specified computations in any particular tree. The
construction of an AE for a given AG has to solve two problems: The evaluation order
of the computations has to be chosen such that it obeys the specified dependencies be-
tween computations. (This paper considers sequential evaluation only.) Storage has to be
allocated for attribute values which are defined in one computation and used in others.
There are several methods for systematic construction of AEs with respect t0 the
evaluation order. We here concentrate on visit-oriented AE construction, which de-

termines the evaluation order at AE generation time. The control structure of the AE is
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chosen such that it executes the specified computations during a walk through the given
tree. A systematic construction starts from the computation patterns specified for
each production context of the AG. The dependency patterns derived from them are
analyzed and transformed into evaluation patterns for the AE, cf. [Kas91b]. They are
sequences of tree walk operations and computations in the case of the method considered
here. Those visit-sequences were introduced in [Kas80). They are presented in Sect. 2.
For a discussion of the technique of computing visit-sequences from dependency patterns,
and of the restrictions required for the AG we refer the reader to [Kas80]. In Sect. 3 it is
described how visit-sequences can be constructed such that attribute evaluation is inter-
leaved with tree construction. These techniques, known as parse-time attribution, shorten
the tree walk and may save tree space. In Sect. 4 different implementation techniques for
visit-sequences are discussed.

A naive storage allocation would allocate space for the attribute values in the tree
nodes. Since many of the attributes are used only during a rather short time, they can
be allocated in global variables or stacks. In Sect. 5 a technique for attribute storage
optimization is presented, which is a generalization of the method given in [EnD90].
We here again concentrate on those techniques which make the allocation decision at

AE generation time, in order to avoid additional runtime and space requirements at AE

execution time.

2 Visit-Sequences

An AG specifies a computation pattern for each context p given by a production of
the underlying CFG for the abstract syntax. It comprises computations to be executed in
each instance of that context within a particular structure tree, i.e. a tree node with its
immediate descendants which represent an application of the production p. Dependencies
between these computations and those of adjacent contexts are specified by defining and
applied occurrences of attributes of symbols in p. Hence the attribution of p also speci-
fies a dependency pattern. A visit-oriented attribute evaluator executes the specified
computations during a tree walk in an order which is compatible with the specified depen-

dency patterns. Its control structure has an evaluation pattern for each context p. In
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NONTERM X: a, b, ¢, d: int;
RULE p: Z ::
STATIC

X.a

"
»e

f0;
X.c = g (X.b);
h (X.d);

END;

RULE q: X ::= X X

STATIC
X[1].b
X[2].a
X[3].a
X{2].c
X[3].c
X[1].4

g (X[1].a);
g (X[1).c);
g (X[1].c);
g (X[2).v);
g (X[3].b);
8 (X[2].d4, x[3].4);

END;

RULE r: X ::=

STATIC
Xb=g (X.a);
Xd=g (X.c);

Fig. 2.1 Example for computation patterns
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Fig. 2.2 Dependency patterns for Fig. 2.1
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Fig. 2.1 a small, artificial AG is given as an example for the specification of computation
patterns; Fig. 2.2 shows a graphical representation of the dependency patterns; the evalu-
ation patterns are given in Fig. 2.3. In this paper we consider only those evaluators where
the evaluation patterns are sequences of computations and basic tree walk operations for
visits of adjacent contexts, introduced as visit-sequences in [Kas80]. (Any pass-oriented
evaluator is a special case of this evaluator class; evaluators for absolutely non-circular
AGs and for general well-defined AGs are not covered by this class.)
Each visit-sequence vs, is a sequence vy,. .., v,, where each v, belongs to one of three

operation classes:

v = compg a computation

vy = visit(i,j) visit the i-th descendant (i > 1) for the j-th time

(7 2 1), also denoted as |; X;
vr = leave(j)  visit the ancestor context for the j-th time (j 2 1),

also denoted as 1; "
The set of visit-sequences controlling an attribute evaluator must obey tree walk 1€

quirements and dependency requirements.

Execution of the attribute evaluator for any particular structure tree has to perform 2
complete tree walk. For the moment we assume that it starts and ends at the root of the
tree. This is achieved by applying the visit-sequences at each node, and moving between
adjacent contexts by visit- and leave-operations. Fig. 2.4 shows the interaction between
vs, and vs, of our example graphically.

The tree walk requirements can be specified as follows. For each nonterminal X of the
CFG there is a number s, we say X is a s-visit symbol. The root symbol is defined to

be 1-visit. Terminal symbols are not visited. Then the following conditions hold for each

vSp!

1L If X is the lefthand side symbol of production p, vs, contains operations

leave (1), ..., leave (s} in this order, where leave (s) is the last element of vsp. We

say vs, has s sections each ending with a leave (j).

2. If X occurs as the i-th symbol on the righthand side of p, then vs, contains opera-

tions visit (i, 1), ..., visit (i, s) in this order.
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Vigit-sequence for p: Z ::= X

comp (X.a = £ ()),
visit (X, 1),

comp (X.c = g (X.b)),
visit (X, 20,

comp (h (X.d)),

leave (1)

Vigit-sequence for ¢q: X ::= X X

comp (X[1].b = g (X[1].a)),
leave (1),

comp (X[2].a = g (x[1].c)),

visit (X[2], 1},

comp (X[2].c = g (X[2].1v)),

visit (X[2], 2),

comp (X[3].a =g (X[1].c))

visit (X[3], 1),

comp (X[3].c = g (x[31.b)),

visit (X[3], 2),

comp (X[1].d = s (X[2].d, Xx[3].d)),
leave (2)

Visit-sequence for r: X ::=

comp (X.b = g (X.a)),
leave (1),

comp (X.d = g (X.c)),
leave (2)

Fig. 2.3 Visit-sequences for Fig. 2.1
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Fig. 2.4 Interaction between visit-sequences

In our example X is a 2-visit symbol. These conditions guarantee that the visit-
sequences fit together for any structure tree, and that a complete tree walk is performed.
The dependency requirements can be specified as follows. A computation comPpa in
a visit-sequences vs, may define an attribute of the context p, and/or may use some (or

none) attributes. Then the following conditions hold for each vsp:

1. If vp = comp, defines an attribute @ and v; = comp, uses a, then k < L.

2. If v = comp, defines an attribute a of a symbol occurrence X; in p, and v =
visit (1, j) or vy = leave (j) (and X; is the lefthand symbol of p) leads to a use of a,
then k& < (.

Any system generating visit-sequence controlled attribute evaluators form AGs, like GAG
[KHZ82], LIGA [Kas89], or the Synthesizer Generator [ReT89], produces visit-sequences:

which obey the above conditions. They apply algorithms for dependency analysis a3
described in [Kas80].

3 Parse-Time Visit-Sequences

The structural requirements for visit-sequences described in Sect. 2 assume that a tree

walk is performed on a tree which is completely build prior to attribute evaluation. The
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tree walk can be shortened, and the maximum storage for the tree can be reduced, if
evaluation already starts while the tree is being build. This technique is called parse-
time attribution, since the problem was first attacked for parser driven tree construction.
Parser generators have mechanisms to attach actions to productions which could be used
to drive tree construction or attribution or both. This is obvious and simple for recursive
decent parsers, and for bottom-up parsers if restricted to synthesized attribution only.
Techniques like those of Tarhio [Tar89] allow for some inherited computations at parse-
time as well. However, such techniques can be generalized to attribution merged with
tree construction, not necessary driven by a parser. In the following we first express the
problem in terms of visit-sequences and then distinguish between the top-down case and

the bottom-up case.

Let us consider a production of the abstract syntax taken from an AG

p:Xo=X1...X,

It can be rewritten as specification for tree construction augmented by actions:

p: Xe o= &u1 Xl &Ug Xz &u,, Xn &uo

It specifies that the tree constructor builds a node for context p by executing the
righthand side from left to right, where the X; stand for building the i-th subtree, and
each &u; for executing some attribution operations. The p-node itself is either build
immediately before that sequence in the top-down or after it in the bottom-up case.
(The reader should not worry about storing attributes which may be computed in u;
before the node for X; is made. They can always be kept on a stack, and may be copied
into the node at the end of the sequence if their life-times exceed the tree construction
phase.) Such a specification for tree construction can automatically be extracted from an
AG specification. Furthermore it can be mapped to a concrete syntax augmented with
the same actions, then specifying a parser that drives tree construction, as described in
[Kas91a).

An AG system has to determine which computations can be executed during tree

construction. It performs dependency analysis on the AG and expresses the results in
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terms of visit-sequences vs,. The first section (up to the leave (1) operation) of each vs,

describes the operations at tree construction time. Hence the vs, have the form

Usp: g, visit(l,1), ug, visit(2,1),..., u,, visit(n, 1), uo, leave(l), w

The u; may contain computations and other visits, such that the general restrictions for
visit-sequences of Sect. 2 hold. As in the constructor specification above the wisit (i, 1)
operations stand for subtree construction and are executed under control of the tree
constructor. This construction-section is followed by the rest w of the vs, which is
constructed as usual.

In the case of top-down tree construction the AG system is free to allocate any
operations in the u; of the construction-section, provided the dependency requirements
hold. That result can be achieved by a dependency analysis in two phases: first LAG (1)
analysis for one top-down left-to-right pass, then usual visit-sequence analysis for the
remaining computations. Obviously the u; can be easily inserted as actions into a recursive
descent scheme,

In the bottom-up case the decision for constructing a node for context p is made
at the end of the construction section, if no further information about the CFG is used.
Hence all the u; have to be empty except ug. this approach yields a first bottom-up
attribution pass with synthesized computations only.

More computations can be performed at construction time if the decision for context
p can be made earlier. Thig problem can be solved using the concept of free positions in
LR-grammars introduced by Purdom and Brown [PuB80]. Consider the tree construction
specification for production p above. A position in a production is called free if an action
like &wu; can be inserted without violation of the grammar class (LR (1) or LALR (1)
The information on free positions may be transformed from the concrete into the abstract
syntax. Knowing which of the U; are at free positions we can allow the visit-sequence
construction to allocate operations in those u;. The AG analysis can achieve that in a
way similar to the two phase approach for the top-down case: The first phase performs
LAG (1) analysis, and additionally removes computations from the first pass which would
be allocated on non-free positions (and all computation which depend on them). The
LALR (1), parser generator Cola [Pro89] computes the free positions according to the
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Purdom and Brown algorithm. We are going to combine it with the LIGA system in the
way described above.

Certain attribute storage optimizations (see Sect. 5) eliminate transfer computations,
and hence reduce the number of non-free positions being hit. In combination these tech-
niques yield effects like those achieved by the approach of [Tar89).

We finally describe a simple improvement for tree storage management. A rather
large amount of storage is needed for the pure structure information of the tree, not
regarding any attribute stored in tree nodes. During the process of attribute evaluation
attribution for some subtrees gets completed. Since they are not accessed again their
storage can be deallocated. If the whole tree is constructed prior to attribute evaluation,
that deallocation would not reduce the maximum storage requirement for the tree. If
attribution starts during tree construction (at parse-time), it may be completed for some
subtrees before others are build. Then deallocation may significantly reduce the space
needed. At the end of a visit-sequence vs, none of the subtrees of that p instance will be
visited again, and none of their attributes will be used any more. Hence at that point the
descendant nodes may be deallocated.

The combination of both techniques can automatically avoid tree construction at all
for certain subtrees: If all visits to a context p are contained in the construction section
of visit-sequences for the upper contexts ¢ then the nodes for p can be stored on a stack
instead of allocating and deallocating tree storage for them. (This is a basic pattern for
attribute storage optimization too, as described in Sect. 5.) That decision can be made
on base of the visit-sequences at generation time. As a special case these optimizations
automatically yield a one pass attribution without a tree being stored at all, if the depen-

dencies of the AG, the CFG and the tree construction driver obey the stated conditions.

4 Implementing Control

The set of visit-sequences for an AG specifies the control structure of an attribute evalua-
tor. The implementation techniques mainly differ in the implementation of the tree walk
operations {coroutine calls, procedure calls, operations on an explicit stack), and in the

encoding of the visit-sequence elements (directly executable or table encoded). There are
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different consequences for runtime, code size, and storing of globalized attributes, which
are discussed in Sect. 5.

The essential concepts of visit-sequence implementation are:
® a node stack for the tree nodes of the active node up to the root,

o the control state for each node, i.e. the position of the visit-sequence element which

is executed next.

Each execution of a visit-sequence element advances the state of the actual node. A
visit pushes a node on the stack, which is popped by a leave operation. The techniques
discussed here use different implementations of these concepts.

We first present an object oriented implementation which is closest to the concept
of visit-sequences. Each tree node can be considered as an active object of a class given by
the production. It executes the operations of jts visit-sequence within its context and in
cooperation with the objects adjacent in the tree. Such an object behaves as a coroutine
interacting with its neighbours. Fig. 4.1 gives a rough idea of such an implementation by
SIMULA classes [DMN70] for the example of Sect. 2.

A descendant visit is implemented by a coroutine switch (call-operation in SIMULA).
An ancestor visit switches control back to the calling object (detach-operation). The
control state is the local execution pointer of each coroutine instance. The code is directly
executable, but there are penalties in space and execution time caused by the runtime
system for general coroutine management. It should be pointed out that the classes for
tree nodes are defined in a very natural way: A class for a production is a subclass of
its lefthand side symbol (denoted by a prefix class in SIMULA). The class of the symbol
with its tree attributes is common to the production class, which additionally contains the
descendant references for the particular righthand side. A corresponding data structure
is used in all of these implementation techniques.

The second technique to be presented here is the transformation of visit-sequences
into recursive procedures. Each visit-sequence can be decomposed into a sequence
of sections such that the j-th sectjon ends with the operation leave (j). Fig. 4.2 shows
the procedures for the visit-sequences of our example. A descendant visit visit (i, j) can

be considered as a procedure call which leads to the j-th section of the visit-sequence
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CLASS cZ; BEGIN END;

cZ CLASS p;

BEGIN REF (cX) X;
X :- NEW cX; Construction of subtrees
DETACH;

[}
>4

Visit-sequence for p: 2 :
X.a := £f;
CALL (X);
X.c :=g (X.b);
CALL (X);
h (X.d);
END;
CLASS cX; BEGIN INTEGER a, b, c, d; END;
cX CLASS q;
BEGIN REF (cX) X1, X2;
X1 :- NEW cX; Construction of subtrees
X2 :- NEW cX;
DETACH;
Visit-sequence for q: X ::= X X
X1.b := g (X1.a);
DETACH;
X2.a := g (X1.¢c);
CALL (X2);
X2.c := g (X2.b);
CALL (X2);
X3.a := g (X1.c);
CALL (X3);
X3.c := g (X3.b);
CALL (X3);
X1.d := s (X2.d, X3.4);
END;
cX CLASS r;
BEGIN
DETACH;
Visit-sequence for r: X ::=
X.b := g (X.2);
DETACH;
X.d := g (X.c);
END;

Fig. 4.1 SIMULA classes implementing visit-sequences
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void p_1 (a) Node n;

{ /* Visit-sequence for p: Z ::= X */
n->X->a = £ ();
(* (n->X->proc)) (n->X); /* vigit (X, 1) */
n->k->¢c = g (n->X->b);
(* (p->X->proc)) (n->X); /* visit (X, 2) */
h (n->X->d);

¥

void q_1 (n) Node n;

{ /* Visit-sequence section 1 for q: X ::= X X */
n->b = g (n->a);
n->proc = q_2; /* next section */

}

void q_2 (n) Node n;

{ /* Visit-sequence section 2 for q: X ::= X X */
n->X2->a = g (n->c);
(* (n->X2->proc)) (n->X2); /* visit (X[2], 1) */
n->X2->c = g (n->X2->b);
(* (n->X2->proc)) (n->X2); /* visit (X[2], 2) %/
n->X3->a = g (n->c))
(* (n->X3->proc)) (n->X3); /* visit (X{3], 1) */
n->X3->c = g (n->X3->b);
(* (n=->X3->proc)) (n->X3); /% visit (X[3], 2)
n->d = s (n->X2->d, n->X3->d);

3*

/
}

void r_1 (n) Node n;

{ /* Visit-sequence section 1 for r: X ::= */
n->b = g (n->a);
n->proc = r_2; /* next section */

¥

void r_2 (n) Node n;

{

/* Visit-sequence section 2 for r: X ::= */
n->d = g (n->c);
}

Fig. 4.2 Recursive procedures implementing visit-sequences
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while (n != NULL) {
switch (n->state) {

case p_1:

case

case

case

case

case

case

case

case

case

case

3¢

p.-2:

/* Visit-sequence for p: Z ::= X
n->X->a = £;
n->state = p_2; /* visit (X, 1)
nstack[ns++] = n; n = n->X; break;
n->X->c = g (n->X->B);
n->state = p_3; /* visit (X, 2)
nstack[ns++] = n; n = n->X; break;

h (n->X->d);

n = nstack[--ns]; break; /* leave
/* Visit-sequence section 1 for q: X ::= X X
n->b = g (n->a);

n->state = q_2; /* leave
n = nstack[--ns]; break;

/* Visit-sequence section 2 for q: X ::= X X

n->X2->a = g (n->c);
n->state = q_3; /* visit (X[2], 1)
nstack[ns++] = n; n = n->X2; break;
n->X2->c = g (n->X2->b);
n->state = q_4; /* visit (X[2], 2)
nstack[ns++] = n; n = n->X2; break;
n->X3->a = g (n->c));
n->state = q_5; /* visit (X[3], 1)
nstack[ns++] = n; n = n->X3; break;
n->X3->c = g (n->X3->b);
n->state = q_6; /* visit (X[3], 2)
nstack[ns++] = n; n = n->X3; break;
n->d = s (n->X2->d, n->X3->d);
n = nstack[--ns]; break; /* leave
/* Visit-sequence section 1 for r: X ::=
n->b = g (n->a);
n->state = r_2; /* leave
n = nstack{--ns]; break;
/* Visit-sequence section 2 for r: X ::=
n->d = g (n->c);
n = nstack[--ns]; break; /* leave

Fig. 4.3 Tree walk with directly controlled stack
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associated to the i-th subtree. The descendant node is an argument of the call. Hence the
node stack is implemented by elements of the runtime stack. The state of each active node
is represented by the actual program pointer and the return addresses for visit-calls on the
runtime stack. The state of inactive nodes is stored in a node component that contains
the address of the procedure to be called when the node is visited. (The size of this node
component may be reduced to that of an integer that encodes the production. Then a table
maps production encodings and visit numbers to section procedures.) Obviously such an
implementation can be smoothly combined with recursive decent parsers. (cf. Sect. 4).
If attribute storage optimization is applied, as discussed in Sect. 5 stacked attributes can
be allocated on the runtime stack in the activation record of those procedures.

In a third implementation technique the stack is organized explicitly in the attribute
evaluator. A descendant visit is implemented by a push operation on the stack, a leave
operation by a pop operation. The control points after each descendant visit are encoded
as case labels and stored as the state of the node. The control structure of the attribute
evaluator is a loop with a switch over the state of the actual node, as shown in Fig. 4.3.
Compared with the procedure implementation there are the following disadvantages: A
fixed stack size imposes a severe restriction upon the maximum depth of the trees. Fur-
thermore, the checks for stack overflow (omitted in Fig. 4.3) cost additional runtime. A
dynamic stack allocation is even more costly.

Finally it should be mentioned that the visit-sequences could be implemented by
table-driven technique-instead of the three directly executable implementations above.
The visit-sequence elements (visit- and leave-operation, code of a computation sequerice)
can be encoded in a table, which is interpreted by a control loop of the evaluator. Jts body
decodes the operations and performs the same operations as described for the technique of
an explicit stack described above. Accessing and decoding of table entries costs additional
runtime. The code size can be reduced if a compact table representation is chosen. In
practice that gain in storage is not very large with respect to the size of the code for
computations of the attributjon,

In general the procedure implementation of visit-sequences is the smallest and fastest

with respect to code size and runtime for control and storing attributes.
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5 Attribute Storage Optimization

An attribute evaluator is responsible for storing values of attribute instances which are
defined by one computation and used in others. We call these dependencies value de-
pendencies, cf. [Kas91b]. Computations may be specified to depend on others without
obtaining a value form them, e.g. in order to obey to the calling sequence of functions
which alter an internal state of a module. Attributes used only for such sequencing de-
pendencies do not need storage. They can completely vanish from the attribute evaluator
as soon as the evaluation patterns (the visit-sequences) are determined.

A naive approach defines the record types for tree nodes such that a node for a sym-
bol X has a component for each attribute of X. Hence each attribute instance occupies
storage as long as its tree node exists. However that space is used only during the lifetime

of the attribute instances, from its definition to its last use. Techniques for attribute

storage optimization allocate storage for attributes in variables or stack elements and

reuse them for several instances such that their lifetimes are not in conflict. Implementa-

tions of optimization-techniques have proven to yield significant improvements of storage

requirements in practical applications, cf. [KHZ82,5ch89]. The need for such storage im-

provements is often emphasized by the argument that otherwise huge data structures like

definition tables are copied all over the tree. This is a misleading argument: References

to structured values can always be implemented by pointers. That is either done by the

type mapping in an AG system like GAG [KHZ82], or by modules used in the AG for

a system like LIGA [Kas89]. But even for attributes of pointer or integer size the large

number of attribute instances justifies the effort for optimization.

Completely different directions for storage optimization have been followed: In [R&i79)]

a technique is suggested which makes allocation decisions at evaluator runtime. It requires

that space consuming dependency information is available, its analysis costs additional

execution time. Sonnenschein [Son85] suggests, that the user specifies certain attributes
to be global, then the AG system tries to find suitable evaluation patterns for that re-
quirement. This approach puts the burden of implementation decisions back to the user.
In this paper we concentrate on those techniques which make all allocation decisions at

generation time on the base of a given set of evaluation patterns (visit-sequences). The
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different techniques in [EnD90,FaY86,Kas87] coincide in this principle. They are success-
fully applied in systems like GAG, LIGA, and LINGUIST [Far82]. In [Hal87] additional
techniques are presented which use the freedom in visit-sequence construction for bet-
ter storage optimization. In the following we first explain the basic principle, and then
present a decision algorithm, based on [EnD90], which removes as many attributes from
the tree as possible.

The optimization problem can be stated as follows: Given a set of visit-sequences and
an attribute X.a. Is it true for any structure tree, that the values of all instances of X.a
can be stored in a single variable (a single stack) such that they are never in conflict
during evaluation according to the visit-sequences? If the answer is no, X.a is allocated
as a node component. The problem is solved by analyzing lifetimes on the hase of the
defining occurrences of X.a and its last applied occurrences in the visit-sequences. That
analysis may be pessimistic, i.e. decide to allocate a node component if a stack or variable
were possible, or a stack if a variable would be sufficient. So we have to show that in case
of a variable the lifetimes of all instances are disjoint, and that in case of a stack they are
either disjoint or properly nested. If they partially overlap a node component has to be
chosen. Fig. 5.1 shows the situations graphically over the time axis of the evaluator.

In order to check whether the above conditions hold for any instance of X.a in an
arbitrary structure tree we reformulate them in terms of visit-sequences. Since an instance
of X.a is accessible in two adjacent contexts any combination of such contexts have to be
analyzed whether they contain conflicting lifetimes or visits may lead to those. Fig. 5.2
shows parts of visit-sequences for contexts p and q which are adjacent at X. For the
moment we assume that X does not occur elsewhere in p and ¢. The visit-sequences are
connected by lines where visit or leave operations lead from p to ¢ and back; visits 10
other parts of the tree are indicated by arrows only. We now can describe the lifetime of
X.a in this context by points in the visit-sequences, e.g. the definition at a and the last
use at b if X.a is inherited, or the definition at e and the last use at f if X.a is synthesized.
Since the AG is not restricted to Bochmann Normal Form the last use of an inherited
{(synthesized) X.a may also be in vsy (vs,).

We first describe the lifetime analysis informally; the precise definitions of the condi-

tions are given at the end of this section. The lifetime of each occurrence X;.a of X.6 in
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variable: disjoint lifetimes

——

stack: disjoint or nested lifetimes

node component: overiapping lifetimes

Fig. 5.1 Lifetimes of X.a during evaluation

a context p: X = Xp...X, is described by a subsequence of the visit-sequence vs,.
We say the lifetime of X;.a in p is the tuple (i, r, s) such that the lifetime begins at the
element e, in vs, and ends at e,. In the example of Fig. 5.2 we may get a lifetime (i, a, ¢)
in vs, if X;.a is defined at point a; or a lifetime (i, d, f)invs, if X;.ais defined at point
e in vs,. In fact the lifetimes in vs, are determined by all combinations of contexts p
and ¢ which are adjacent in X; = X Hence in our example larger lifetimes than the two
shown above can result from consideration of all adjacent pairs. We defer the details of
the computation of lifetime tuples for visit-sequences to the end of the section.

On the base of the lifetimes expressed in terms of visit-sequence operations we have
to check two kinds of conditions for both the variable allocation and the stack allocation:

Reachability conditions: From within such a lifetime no wvisit or leave operation
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Fig. 5.2 Adjacent visit-sequences for lifetime analysis

may lead to another alive instance of X.a such that the lifetimes are in conflict with the

allocation.

Multiple occurrence condition: The lifetimes of several occurrences of X.a in a

vsp must not be in conflict with the allocation condition,
In fact the multiple occurrence condition can be dropped if a more sophisticated

allocation strategy is applied. Assume that X.a can be implemented by variable according

to the reachability condition. If there are vs, where at most n occurrences of X.a are alive

at the same time, then variables are allocated for X.a. The computations in vs, use

them correspondingly. Before a visit to the adjacent context the value is swapped to the

first of the n variables, such that it can be accessed at a well-defined position. In the case

of stack allocation the same technique ig applied to the topmost n stack elements. This

technique, described in [FaY86,Ha187], increases the number of attributes being allocated

to variables or stacks, The price is the additional runtime and code size for the swap

operations. If the technique is applied, the allocation decision is made on the base of the
reachability condition only.



133

For variable allocation the reachability condition should be checked as stated above,
whereas for stacks specific implementation considerations should be taken into account.
For each stackable attribute an individual stack may be allocated. If it is a fixed size
array it imposes limits on the nesting depth of the program, and the push operations
cost additional runtime for bound checking. Alternatively additional runtime is required
for dynamically allocated stacks. However, if the visit-sequences are implemented by
recursive procedures, as described in Sect. 4, elements of all stacks can be allocated on
the runtime stack for procedure calls. Hence no additional limit for individual stack sizes
is imposed.

The runtime stack implementation is achieved by the following technique: In the
procedures for the sections of a visit-sequence vs, the stack attributes of the descendants
of p are declared as local variables. Their addresses are passed as parameters of the calls
for the descendant visits. Hence the push operations corresponds to the procedure entry
and the pop operations to the procedure exit.

For this technique we have to reconsider the lifetimes of the attribute occurrences in
vsy: We ;irst consider attributes having a lifetime which does not include a leave operation
in any visit-sequence for the upper context, we say the atiribute is 1-visit. Their lifetime
is now extended to the whole section. Obviously the reachability condition holds for
the extended lifetime if it holds for the exact lifetime. Even multi-visit attributes can
be implemented by this technique: At the end of a procedure for a visit-sequence section
those stack attributes, which are still alive in the next section, are pushed on an individual
stack for that attribute, and popped on entry of the next section procedure into its local
variable. The reachability condition guarantees that the stack discipline is obeyed.

Finally a further improvement can be applied to those attributes which can be al-
located to variables: If A is a set of attributes which can be allocated to variables, it
can be checked whether one single variable instead of individual ones can be used. For
a given set A the check is easily described: The occurrences of all attributes in A are
considered as different occurrences of the same attributes for the reachability condition
and the multiple occurrence condition. The resulting storage improvement is in general
not significant. But all the transfer rules (assignments of the form X.a := Y.b) between
attributes in A can be eliminated. In [{Gan79] it is proven that this optimization with
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respect to a maximum of eliminated transfer rules is NP-complete. However, good re-
sults can be obtained if those attributes are collected in one set which are generated from
the expansion of the constructs for remote attribute access (INCLUDING and CHAIN,
described in [Kas91b)).

Description of the allocation decision algorithm

The allocation algorithm described here is based on the idea of [EnD90]. Tt is generalized

in the following respects:

¢ The AG is not restricted to Bochmann Normal Form, i.e. attributes can be used in

the same context where they are defined.

¢ There are no further assumptions made for visit-sequence construction than those

specified in Sect. 2, i.e. the definition of attributes need not immediately precede

the corresponding visit.

Furthermore we assume that the improvements for multiple occurrences are applied
as presented above. Hence we omit the check of those conditions.

In the following the lifetime analysis for a single attribute X.q is described. Tt is
repeated for all attributes of the AG. In a second phase sets of attributes which each
fulfill the variable condition may be analyzed in order to be implemented by a single
variable. The algorithm has three steps: computation of lifetime tuples, computation of
reachability sets, and check of lifetime conditions.

Computation of lifetime tuples. We express lifetimes of attribute occurrences in
terms of a single visit-sequence, rather than of pairs for adjacent contexts. The lifetimes
are mapped to the "upper context”, i.e. the visit-sequence for the context p where X =
Xiy >0 (X; is on the righthand side of p). We define ED and LU to be visit numbers
with respect to earljest definitions and latest uses of X.a in all visit-sequences:

If X.a is inherited ED is the smallest number j such that a definition of X;.a precedes
visit (i, ) in a visit-sequence. If X.q is synthesized ED is the smallest number j such

that a definition of X,.q precedes a leave (j) in a visit-sequence.

LU is the largest number j such that either a use of Xo.a is contained in a visit-

Sequence section ending with leave (7), or a visit (X:, 7) precedes a use of X;.a. (If there
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is no use of X.a no storage is needed for it; only the computations for its definition have
to be executed.)

These definitions of ED and LU take into account that the AG need not be in
Bochmann Normal Form, i.e. attributes may be used in the same context where they
are defined. As a consequence even the definition points may vary such that defining the
minimal number for ED is necessary.

Using ED and LU the lifetime of an occurrence of X.a in a production p is described
as a subsequence of vs,: Let X; = X in p. Then the tuple (i, r, s) is the lifetime of X;.a
in p such that the visit-sequence element e, is its begin and e, is its end. Three cases
have to be distinguished:

1. X.a is inherited and i > 0 (righthand side occurrence):

e, is the definition of X;.a, and e, is the rightmost of visit ( Xy, L{7) and the last use

of Xj.a in vs,.

2. X.a is synthesized and i > 0 (righthand side occurrence):
e, = visit (X;, ED) and e, is the rightmost of visit (Xi, LU) and the last use of X;.a

in vs,.

3. i = 0 (lefthand side occurrence):

e, is the first element of the section ending with leave (ED) and e, = leave (LU)

Informally spoken the upper of one of adjacent contexts is made responsible for the storage
allocation for attributes in the lower context.

Reachability Sets. Two sets SL and CL are defined in order to describe whether
an alive instance of X.a can be reached by tree walk operations from within the lifetime
of another instance:

The subtree lifetime set S contains a tuple (Y, 4, j) if thereis a subtree y with a
root labeled Y such that there is an instance of X.a in y (but not at ¥), and the i-th visit
to y leads to its definition and the j-th to its last use.

The context lifetime set CL contains a tuple (Y, i, 7) if there is a subtree y of the
whole tree ¢t with a root labeled Y that has the following properties: In t outside of y
there is an instance of X.a; its lifetime begins before the i-th visit to y (but not before

the (i — 1)-th) and ends after the j visit to y (but not after the (j + 1)-th).
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SL and CL are computed in the following steps:

L. If there is a lifetime tuple (i, k, I for a visit-sequence vs,, then add (Y, r, s)to SL
such that v; is in the r-th section of vs,, and v is in its s-th section, and Y is the

lefthand side symbol of P.

Let X;, 5 > 0 be a symbol occurrence in p such that visit (j, m), ..., visit (j, n),

m < n occur between v; and v; in v3,. Then add (X, m, n)to CL.

2. Take a tuple (Y, r, s)of SL and a v$p such that X; = ¥ in p. Add (Z,t, ) to SLif
visit (Xi, ) = vy is in the ¢-th section, and wvisit (X, $) = v is in its u-th section,

and Z is the lefthand side symbol of p.

For each X, >0, j # i in p add (Xis m, n) to CL if visit (;, ™m), ..., visit (j, m)

occur between v, and vy iR s,

This step is repeated until no more tuples can be added to SLorCL.

3. Take a tuple (Y, m, n) of CL and a vs, such that is the lefthand side of p. For
each X;, 7 > 0in padd (X;, r, s) to CL if visit (4, ), ..., visit (7, s) occur in the

m-th to n-th section of vs,.

X.a can be implemented by a variable if there are no tuples (Y, 4, k), (¥, j, ) in
C’Lsuchthati<j<k§1.

X.a can be implemented by a stack if there are not tuples (Y, ¢, k), (V, j, )
inCLsuchthati<j<k<l.

It is assumed that the multiple occurrence optimizations are applied as described above.
(1

f not, conditions for overlaps of lifetimeg have to be checked for each single visit-sequence,
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without regarding its context.) In [EnD90] it is proven (for AGs and visit-sequences with
the above mentioned restrictions) that such computations of SL and CL yield sets with

the described properties, and that the conditions allow the allocation condition.
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