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Abstract

Attribute Grammars (AGs) are a formal and practical method for rule based
specifications of computations on tree structures. A typical application area is the
analysis and translation of formal languages. In this paper we first point out the
basic concepts of computations in tree contexts and their dependencies. Then more
elaborate methods are presented for systematic development of AG specification.

Longterm experience with AG specification has lead to certain paradigms for
attribution. They are presented in terms of typical dependency patterns. Some
AG systems provide specific constructs which allow to apply these paradigms in
short and comprehensible notations. Realistic applications of AGs are rather large
and hence they must be well structured. We present a rather simple but effective
module concept for attributions. Finally the use of abstract data types (ADTs)
in AGs is introduced. Tt is shown how sequencing required for ADT operations is
systematically specified by attribute dependencies. The examples in this lecture are

taken from compiler-specifications formulated for the LIGA system.

1 Introduction

During their more than 20 years old history attribute grammars (AGs) have proven to
be a suitable method for specification of computations in tree structures. There js wide
range of application areas for AGs with programming language analysis and translation

and compiler construction being the most important of them. Systematic techniques for
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deriving efficient implementations from AGs have been developed and many generating
systems are build around this method. An overview over the state of the art in AGs can
be found in [DJL88].

It is clear that complex software systems cannot be developed just on the base of an
abstract calculus for algorithms; software engineering methods, paradigms for program-
ming in the large and in the small supported by suitable implementation languages are
needed. The same holds for AG specifications of really practical problems, e.g. specifica-
tions of a compiler frontend for languages like Pascal or Ada. It is not sufficient just to
apply the basic AG concepts.

It is often argued whether AGs are an adequate method for the solution of practical
problems. The main arguments presented against the use of AGs in practical specifications

are:

e Some AG specifications are as large as or even larger than a manually developed

implementation for the same task.

o The concept of locality in AGs requires much redundant information reducing the

comprehensibility of the specification.
o Large AGs lack a structure which improves comprehensibility and maintainability.

e The strict functional and declarative character of AGs discourages the use of certain

well known efficient implementations, hence yielding less efficient solutions.

The first three arguments are true if only the basic AG concepts are considered, and
specifications are written in a notion for exactly that base. But basic AG concepts are
the wrong level for that discussion. In the same sense it would be completely impracticable
to develop complex software in terms of a Random Access Machine, which is the theoretic
model for imperative programming.

AGs define basic concepts for a certain class of specifications. In this paper we show
that specification languages for practical use exist which provide suitable notations and
structures on top of these concepts. Furthermore they support certain general paradigms
for specification development - like programming languages supporting software devel-

opment paradigms. If such an AG specification language is used in a systematic design



18

the above arguments will not hold for the result. After an introduction of the use of ba-
sic AG concepts in specifications (Sect. 2) we present in Sect. 3 three general attribution
paradigms and their notational support in a specification language. A simple and effective
modularization concept for AGs is shown in Sect. 5.

The last of the above four arguments is of a different kind. It is correct that cer-
tain computations, e.g. for name analysis according to scope rules [KaW90], is more
efficiently implemented by a module with a local data structure modified by operations,
than by a strictly functional implementation. It is a widespread misunderstanding that
the declarative character of AGs prohibits the use of such modules: An AG is a declara-
tive specification of dependencies between computations associated to tree contexts. Two
computations are either dependent by definition and use of values, or by pre and post
conditions describing the effects of computations. In both cases the dependencies are
expressed by attributes. In the latter case they do not propagate a value. In Sect. 4 we
show that the use of such state changing implementations of abstract data types (ADTs)

can be systematically specified in AGs without loss of its declarative character.

2 Basic Concepts

An AG specifies context dependent computations on tree structures, which are described
by the underlying context-free grammar (CFG). Specifications of computations are asso-
ciated to its productions. Results or effects of computations are described by association
to symbols of the CFG. Dependencies between computations are expressed by definitions
and uses of attributes, An AG specification does not contajn any explicit sequencing of
the computations apart from those functional dependencies. If certain formal restrictions
hold an evaluator can be derived systemnatically from an AG specification. Given a partic-
ular tree according to the CFG it executes the specified computations in a suitable order.
It stores their intermediate results as values of attribute instances, which are implemented
by data objects of specified types in suitable locations, e.g. tree components, variables,
or stacks.

In the following we introduce the basic concepts of AGs from the view of a means

for specifications, (For a definition of AGs as a formal calculus the reader is referred to
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[Alb91], [DJIL8S], [Kas80].) We will characterize the specification of dependent computa-
tions, introduce the concept of contexts in trees, and describe the role of attributes.

The CFG is the skeleton of the AG. It specifies the trees in which attribute evaluation
is executed. Attributes are associated to its symbols and computations are associated
to its production contexts. The CFG should be designed such that the attribution can
be specified as clear as possible and without unnecessary redundancy. Especially CFG
terminals without relevant information and certain chain productions can be omitted from
the CFG. Hence in case of compiler specification the CFG should be an abstract syntax
derived from the concrete syntax which is used for parsing and tree construction. In
[Kas91] guidance is given for the CFG design with respect to attribution.

The tree nodes are instances of CFG symbols with their attributes. At each nontermi-
nal node a certain production is applied. We say that a node together with its immediate
descendants is an instance of the context of a production p. (In the following we
often omit the term instance of where it is clear that we refer to objects of the tree rather
than to those of the AG or CFG.) Fig. 2.1 shows a part of a tree with two applications
of production p and one of g. The production contexts are indicated by the trapezoid
shapes. Each nonterminal node (except the root) belongs to two adjacent contexts; one
corresponding to the symbol occurrence on the righthand side of a production (like Frpr
in p), and one given by its derivation (¢ for this Erpr node).

For each attribute of a symbol there is an attribute instance at each node for that
symbol in the tree. In the design of an AG attributes should be chosen such that each
describes a certain property of a symbol (and hence of the subtree derived from it}).
Our example is taken from the type checking task of a compiler. For that purpose two
attributes are associated to both Var and Ezpr. One describes its type, the second a
coercion operation (like contents of an address) to be applied to the construct if neces-
sary. The Opr has attributes op and instr describing the source and the target operator
respectively. In an AG specification the association of attributes to symbols is usually

stated explicitly together with the attribute types, e.g.
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p: Var ::= Var ‘" Expr ¢’
q: Expr ::= Expr Opr Expr

Fig. 2.1 Production Contexts in a tree

NONTERM Var, Expr: type: TypeRep,
Instr;
NONTERM Opr: op: Symb,
instr: Instr;
Computations of attribute values are context dependent. Specific attribution rules are
associated to each production context. In the context p of Fig. 2.1 the type of the whole

i ed
construct { Var on the lefthand side of P) is computed as the element type of the index

variable. Hence an attribution rule

Var[l].type = Elem _type_of (Var[2].type)
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is associated to context p. It is applied at any instance of p in the tree. Such a computation
is specified by a functional expression over attributes and literals. (Its notation and the
specification of the functions may vary for different AG specification languages.)

Such a computation may access any attribute of the associated context. Hence the
attributes of a nonterminal are accessible from two adjacent contexts. In order to guar-
antee that each attribute instance is uniquely defined for any pair of adjacent contexts an
attribute belongs to one of two classes: Synthesized attributes are defined in the "lower
context” with their symbol on the lefthand side of the production. They represent prop-
erties determined by subtrees derived from the symbol. Inherited attributes are defined
in the "upper context” with their symbol on the righthand side of the production. They
represent properties determined by contexts the subtree is embedded in. In the design
of an AG it is absolutely necessary to find out which class the property described by an
attribute belongs to. In the graphic of Fig. 2.1 the synthesized attributes (type, op) are
placed below and the inherited {coerce, instr) above the border line of the context. Hence
those attributes which must be defined in a specific context lie within its shape.

So the complete attribution of production p in Fig. 2.1 could be specified as

RULE p: Var ::= Var ‘[’ Expr ‘]’
STATIC
Var{i].type = Elem_type_of (Var[2].type);
Var[2].coerce = nolnstr;
Expr.coerce = Coercion (Expr.type,
Index_type_of (Var([2].type));
END;

The attribution of a production p constitutes a computation pattern over attribute
occurrences in the context p. It is applied at any instance of p in the tree. Each attribute
rule also specifies a functional dependency between the attributes used in the expression
and that being defined. An attribute evaluator constructed for the AG arranges the
computations in an order which is compatible with those dependencies. The order of
attribute rules in the specification is completely irrelevant for evaluation. In the above

example the three computations may be executed in any order. In general they are
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interleaved with computations in adjacent context. The attribution of a production also
constitutes a dependency pattern over attribute occurrences. Evaluator construction
transforms it into an evaluation pattern (e.g. a visit-sequence) where the order of
computations is fixed.

In the above example each computation yields a value which is stored in an attribute
instance and used in other computations of adjacent or of the same context. Their
definition-use relation specifies dependencies between the computations. An AG spec-
ification may as well contain computations which cause an effect instead of yielding a
value. Then attributes are used for only specifying functional dependencies between such
computations without carrying a value.

Producing error messages is a simple example for computations which have an effect
but do not yield a value. As a basic rule for AG design any computation should be safely
executable even if context dependent conditions are violated. Hence no other compilation
depends on the check for an error condition. So we formulate such a check as an expression
which conditionally produces a message. The attribution of p above may be augmented

by

message_if (NOT (Compatible_types (Expr.type,
Index_type_of (Var[2].type))),

"wrong index type");

This computation depends on the used attributes, but it does not establish a precon-
dition for other computations. Hence no attribute is defined.

A typical example for functional dependencies between computations without results
is the specification of output. Assume that we want to produce a postfix notation for
expressions like those of production ¢ above. We use a function put for output of a single
symbol. The output sequence is described by two attributes of Ezpr having the following
meaning:

pre:  the output sequence before this expression is completed

post:  the output sequence of this expression is completed
The following attribution specifies the desired sequencing of put operations for expres

sions
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RULE q : Expr ::= Expr Opr Expr
STATIC

Expr[2).pre = Expr[1].pre;

Expr[3].pre = Exprl[2].post;

Expr[1].post = put(Opr.op) DEPENDS_ON Expr[3].post;
END;

The dependencies specified here establish the preconditions for the two subexpressions.
The last computation explicitly DEPENDS_ON the completion of output for the right
subtree, and establishes the post condition for the whole expression. (The notation of
this example will be drastically simplified by constructs described in Sect. 3.)

The attributes in this example specify functional dependencies, but they do not carry
any value. (Their type may be specified VOID.) They contribute to the dependency
pattern of the context ¢. Their computation will be eliminated from the evaluation
pattern of the evaluator, which contains only the put operation at a suitable position.
The evaluator does not provide any storage for instances of those attributes. A more

general use of such dependency attributes is presented in Sect. 4.

3 Attribution Paradigms

An AG is a declarative specification of computations in recursively defined tree structures.
As well as in any other kind of specification or programming there are many different ways
to express the same computation. Good AG design should aim at clear and comprehensi-
ble specifications without unnecessary redundancy. As a drastic example it is well-known
from [Knu68] that any AG could be rewritten such that only synthesized attributes are
used. For practical AGs the result would be a rather complicated specification describing
properties in an unnatural way.

Experience with AG design especially in compiler specification has led to a set of
paradigms and attribution schemes which contribute to clear and comprehensible speci-
fications. Some AG specification languages (like ALADIN for the GAG-System [KHZ82]
or LIDO for the LIGA-System [Kas89]) support those paradigms by specific higher level

constructs. Their application reduces the size of the AG drastically by elimination of
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redundancy. The constructs can be systematically transformed into the basic AG con-
cepts. Hence they improve the specification quality without loss of generality, declarative
character, and formal properties of AGs.

A general paradigm of AG design says to consider an attribute as a property of the
symbol which it is attached to. Attribution rules specify computations of such properties.
All attribute instances are computed exactly once. Their values do not change after being
computed (single assignment rule). Hence AG design should be guided primarily by the
relationship of properties and computations (expressed by dependencies), rather than
starting from an idea of programming computations in a certain sequence. The naming
convention for attributes should support that view of properties: Attributes describing
the same property of different symbols should have the same name.

The basic AG concepts associate computations to a rather small context given by
a single production. On the one hand this locality supports comprehensibility of single
computations. On the other hand computations of certain properties often depend on
attributes rather far away in the underlying tree. A typical example for long range
dependencies is the specification of scope rules, i.e. the relation between definition and
application of entities. Those dependencies can of course be broken down into several
single attribution rules for adjacent contexts covering the distance between source and
target of the information. As a typical result the AG would be scattered with lots of

trivial attribution rules like

Y.a=1X.a

called transfer rules which just propagate identical information. Furthermore attributes
have to be associated to symbols in the contexts between source and target for the purpose
of information propagation only, so called transfer attributes.

In most cases such an attribution belongs to a certain scheme ranging over a larger
context. The quality of AG specifications improves drastically if the schemes are expressed
directly using higher level specification constructs. The redundant transfer attributes and
transfer rules are avoided. They can be generated automatically by the AG system, and
they can be object to optimization of the evaluator. In the following sections we present

such attribution schemes together with notations used in specification languages ALADIN
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and LIDO.

A second class of transfer rules stems from local relations between attributions: As-
sume that two symbols coincide in a subset of their properties. One symbol occurs on the
lefthand side of a production, the other on the righthand side, and the context requires
that the corresponding properties are equal. This situation would be specified by a set
of transfer rules for those attributes. Again such a local redundancy can be reduced by
a higher level specification construct. In the following example both Var and Ezpr have

the attributes type and coerce.

RULE r: Expr ::= Var
STATIC TRANSFER;
END;

The abbreviation TRANSFER stands for the two transfer rules

Expr.type = Var.type;

Var.coerce = Expr.coerce;

The direction of the transfer can be deduced from the attribute classes. The attri-
bution may be augmented by further rules for properties which are not identical. The
TRANSFER may be restricted to explicitly enumerated attributes, or to some of the
symbols on the righthand side of the production.

The use of the TRANSFER construct relies upon application of the above mentioned
naming convention for attributes. The above example in fact describes a typical syntac-
tical and semantical chain production. If the distinction between Erpr and Var is not
needed in other contexts that production may be eliminated in the design of the abstract

syntax.

3.1 Remote Access to an Including Symbol

This attribution scheme is described as follows:
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A computation in a context p depends on a property of a symbol X from which p
is indirectly derived. In terms of the tree the computation refers to an attribute
instance of an X node which is the root of the smallest subtree containing the p

instance (but not being the root of the p instance).

A typical example is taken from scope rule specification: In a block structured language
the definition of an applied identifier has to be found in the environment of the small-
est enclosing block. Hence the identification in the context of an jdentifier application
depends on the environment attribute of the next upward block node in the tree. Fig.
3.1 shows two nested blocks with several identifier contexts enclosed. The arrows Tepre-
sent the dependencies specified by the remote access. The attribution for this exarple is
completely specified by computations for the contexts given in Fig. 3.2.

Block env

o~ S
""‘ “.."
0"“' “."\
. Y.
AppId AppId
."‘”‘ ‘...‘,

Fig. 3.1 Remote Access to an including symbol
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RULE pl: Prog ::= Block
STATIC
Prog.env = NewEnv ();
END;
RULE p2: Block ::= ‘begin’ Decls Stmts ‘end’
STATIC
Block.env =
EnterDefs (NewScope (INCLUDING (Block.env, Prog.env)),
END;
RULE p3: ApplId ::= Ident
STATIC
AppIld.key = KeyInEnv (INCLUDING (Block.env), Ident.id);
END;

Fig. 3.2 INCLUDING for remote access

Decls.defs);

The attribution of Fig. 3.2 uses the INCLUDING constructs of the specification

the environment of the smallest enclosing Block.

languages ALADIN and LIDO denoting this kind of remote access. The function NewEnv
creates an environment for the root context pl. The function call NewScope (e} creates
a new environment embedded within the environment e. In p2 the argument is stated by
the INCLUDING construct. It yields the environment of the surrounding Block or that
of Prog, depending on which is the smallest enclosing structure. EnterDefs enters the

definitions of that block into the environment. In p9 KeyInEnv searches the definition in

In general three syntactically different situations can be distinguished. Let p be the

context with the remote access, and let X be its lefthand side symbol.

1. The remote context is unique, i.e. in any tree the context p is embedded in a subtree

rooted by the source symbol of the remote access, e.g. INCLUDING (Block.env) of

p%in Fig. 3.2.
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2. Alternative symbols are specified for the remote source, e.g.
INCLUDING (Block.env, Module.env, WithStmt.env).
Here the remote source is the smallest p enclosing subtree rooted either with Block,
Module, or WithStmt. (In this case attribution may be simplified if in the abstract
syntax a single symbol can be introduced for each of the alternatives, leading to

case (1) then.)

3. The remote source symbol is X, the same as the lefthand side of p i.e. the remote
access follows the recursive derivation of X referring to the next upward instance of
X in the tree. The recursion is terminated by an alternative source, which often is
the root symbol. This case applies to the INCLUDING (Block.env, Prog.env) in p?
of Fig. 3.2.

All transfer attributes and transfer rules for intermediate contexts are avoided by the
described constructs. They can be deduced automatically, e.g. for dependency analysis.
Furthermore there are implementation techniques which may omit them in the evaluator.
If the remote access is used to specify a dependency only, rather than a value access, the

construct and its transfer expansion also vanishes from the evaluator.

3.2 Remote Access to Subtree Components

This attribution scheme is described as follows:
A computation in a context p depends on a property of all instances of a symbol

X in the subtree rooted by the p instance. If the lefthand side Y of p is recursive,
then no X instances in inner subtrees rooted by Y contribute to the computation

in the outer p instance.

A typical example for this scheme is again taken from scope rule specification: In a block
structured language each definition contributes to the environment of the enclosing block-
Hence the computation of an environment attribute depends on all definitions which ase
constituents of the block but not of inner blocks. Fig. 3.3 shows two nested blocks with
several definitions. The arrows represent the dependencies specified by the remote access:
Using this scheme the attribution of Fig. 3.2 is refined in Fig. 3.4



29

Block

s “.Definition

" Definition

& *,
. e,
.'., ""
o .
< .,
Pd o
o [y hY
o Definition
7 Definiton rri
g v..
..'-’ v“'
& "~

Fig. 3.3 Remote access to subtree components

RULE p2: Block ::= ‘begin’ Decls Stamts ‘end’
STATIC

Block.env =

EnterDefs (NewScope (INCLUDING (Block.env, Prog.anv)),
CONSTITUENTS Definition.def
WITH DefList, DefAppend, DefSingle, DefEmpty) ;

END;
RULE p4: Definition ::= Type Tdent ';’
STATIC

Definition.def = MakeDef (Ident.id, SoneProperties);
END;

Fig. 3.4 CONSTITUENTS for remote access
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The attribution of Fig. 3.4 uses the CONSTITUENTS construct of the specification
languages ALADIN and LIDO denoting this kind of remote access. Instead of passing all
definitions up to Decls.def as in F ig. 3.2, they are collected by the remote access CON-
STITUENTS Definition.def from the Definitions in the subtree. According to the descrip
tion of the scheme definitions of inner blocks do not contribute to the CONSTITUENTS
of this context instance. They may contribute to such a construct associated to their
context.

All transfer attributes and transfer rules for intermediate contexts are avoided by the
described construct. They can be deduced automatically. We assume here that lists
of type DefList are formed by user defined functions DefAppend, DefSingle, DefEmpty.
DefSingle makes a list from a single element Definition.def. DefAppend concatenates two
lists; it is applied left associative to the list values of subtrees. DefEmpty makes an empty
list; it is called in contexts A ::= u where u does not derive to Definition, if there is a
context A ::= w where w does derive to Definition. The names of the type and of these
functions are associated to the CONSTITUENTS construct. The resulting list contains
the Definition.def values in an order which corresponds to a postorder of the Definition
nodes in the subtree.

Completely different computations can be specified by other choices of attribute types

and composition functions: For example a construct Jike
CONSTITUENTS Stmt.instr WITH InstrList, Append, Single, Empty
¥ields an instruction list for the statements of the subtree, whereas
CONSTITUENTS Stmt.costs WITH int, Add, Identity, Zero

computes the sum of al] accessed statement costs.

If the CONSTITUENTS construct does not describe a value dependency, no compy-
tation is specified, and so the WITH part with type and function names is omitted. I
Sect. 4 the above example is modified in that way.

3.3 Chaining

Chaining is a frequently applied attribution scheme described as follows:
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Some symbols have a certain property a. The instances of a within a subtree depend

on each other in a depth-first, left-to-right order of the symbol instances.

There are two typical variants of the scheme. An example for the first is given by comput-
ing a storage map for the variables of a Block. The address of each variable is a property
which depends on the left-to-right order of the Definitions. Each Definition symbol has
the property representing the next free address at the symbol instance. Its computation
depends on the result of the mapping at the Definition instance left to it, or on an ini-
tialization in the block context for the left most Definition. Fig. 3.5 (a) shows the idea
of such dependencies. The arrows represent computations of that property associated to
the definition context, except the upward arrow which represents the use of the result in
the block context.

In order to make the chaining scheme more obvious in Fig. 3.5 (b) the expansion of the
example in terms of basic attribution concepts is given. The property is in fact described
by a pair of attributes: The inherited attribute Definition.pre represents the next free
address for this symbol instance, the synthesized attribute Definition.post represents the
next free address after allocation in this context. Such attribute pairs are introduced at
all intermediate nodes for transfer as indicated. The example shows that an application

of the scheme is completely described by the following specifications:
a) introduction of the chained property, here the next free address,
b) indication of the root context for the subtree, here the Block context,
c) initialization of the chain in the root context, arrow (0) here,

d) computation of the chained property at symbols in the subtree, here arrows (1) in

the Definition context.

The mapping to basic concepts with attribute pairs and transfer rules wherever required
(Fig. 3.5 (b)) can be deduced automatically.

In Fig. 3.6 an AG notation in LIDO is given for this example. Here the chained
property describes a value dependency. In the attribution the name of the CHAIN is
used as attribute names wherever the CHAIN is referenced. The occurrence of a CHAIN
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(a) Definltion chain dependencies

(b) Definktion chain expanded

Fig. 3.5 Chaining
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CHAIN addr: int; (a)
RULE Block ::= ‘begin’ Decls stmts ‘end’
STATIC

CHAINSTART Decls.addr = BlockBaseAddr; (b,c)
END;
RULE Definition ::= Type Ident
STATIC

Definition.addr = (@

Increment (Definition.addr, Type.size);

Fig. 3.6 Chain attribution in LIDO

reference either on the lefthand side of an attribute rule (defining) or on the righthand side
(applied), and its symbol being on the lefthand side or righthand side of the production,
distinguish the mapping to the pre or to the post attribute. Hence the attribute rule (d) is
not cyclic but establishes a dependency from Definition.pre.addr to Definition.post_addr,
cf. Fig. 3.5 (b).

It should be noted that there is no need to specify explicitly which parts of the subtree
are reached by the CHAIN. The CHAIN would lead through Stmts, too, in the above
example only if Stmts contain references to defs. If the root context ( Block) is recursive
each instance has its own separated instance of the CHAIN. In the above example the
symbols which conceptually have the chained property ( Definition) are not recursive. Its
instances lie on a cut line of the subtree.

The second typical variant of chaining is a generalization, including recursion and
CHAIN accesses in arbitrary contexts of the subtree. It is demonstrated in Fig. 3.7 by
an attribution which produces output of expressions in post order. Attribute rule (3)
specifies a computation inserted in the upward chain dependency of the recursive Ezpr
context, producing the output of the operator after the output of the right operand is
produced. Computation (2) depends on the "end of the CHAIN”, producing the final
7:=" operator. The example could be modified to output in inorder, by simply replacing



CHAIN out : VOID;
RULE Stmt ::= Ident ‘:=’ Expr

STATIC
CHAINSTART Expr.out = put{Ident.id); 1)
put(*:=") DEPENDS_ON Expr.out; (2)
END;

RULE Expr ::= Expr Opr Expr
STATIC
Expr[1].out = put(Qpr.op) DEPENDS_ON Expr[3].out; (3)
END;
RULE Expr ::= Ident

STATIC
Expr.out = put{Ident.id) DEPENDS_DN Expr.out; @
END;
Fig. 3.7 Output of postfix expressions by chaining
rule (3) by

Expr(3].out = put (Opr.op) DEPENDS_ON Expr{2].out;
and replacing rule (1) and (2) by
CHAINSTART Expr.out = ORDER (put(Ident.id), put(":="1));

. es
where ORDER (a, b) specifies execution of first a and then b. Other typical exampl

for applications of the chaining scheme are
¢ consecutive numbering of block instances or other language constructs,

. o datd
¢ pre and post conditions of statements with respect to some property (eg ds!

flow analysis),

e any computation of sequential lists in left to right order of tree nodes.
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4 Abstract Data Types

An abstract data type (ADT) defines a type of concern by a set of functions which con-
struct objects of that type or access values from such objects. ADTs are implemented by
program modules, thus providing an effective method for structuring software. An ADT
may be implemented strictly functional such that its operations are free of side eflects.
The constructor functions of an ADT can also be implemented such that they modify a
data structure local to the module. Then their effect causes a transition of the ADT state.
Such implementations are well suited and efficient for many ADT implementations, like
"dictionaries” associating properties to object keys, or representation of environments in
a compiler.

Using ADTs in AG specifications improve AG design and implementation in several
aspects: The AG specification concentrates on the central concept of AGs - specifying
functional dependencies between computations which use the ADT operations. There is
a clear interface between the AG computations and the ADT implementations. Function
calls pass arguments by value and may return values. If an ADT implementation imposes
restrictions on the sequence of calls of state transition functions, they are specified by
dependencies in the AG (without propagating a value). The implementation of ADT
operations and their data structures is separated from the AG itself. As a consequence
ADT implementation can take any advantage from the chosen implementation language,
like modular decomposition, separate compilation, and techniques for implementation of
complex data structures and functions. By those means efficient implementations can be
achieved without loss of the declarative character of the AG specification.

ADTs in AG specifications were first suggested by Waite in [Wai86] where externally
defined types and functions were introduced in the specification language ALADIN. For
the LIGA system and its specification language LIDO this separation is a central concept:
All types and functions which are used in the AG are implemented outside of the AG.

In the following we demonstrate several basic techniques for using ADTs in AGs by
simple but typical examples. We start from a strictly functional ADT implementation,
and then show different application schemes for state transition ADT implementations.

An example for a strictly function ADT module is a module for linear lists. It
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provides a data type LinList and functions Cons, Head, Tail, and Empty with the usml
meaning. Since those functions do not have any side effects, and each value is ever
accessible after its construction, their use in AG computations is either expressed by

nested function calls in single attributes rules like
X.1 = Cons (Y .a, Tail (Z.1));

or by the value dependencies between definition and use of attributes. Those attributes
have the type LinList. The attribute evaluator provides storage for them, whatever in-
plementation of that type is chosen in the ADT module, e.g. a pointer or a pair o
pointers.

In general a state transition ADT module implements a set of functions which
modify or access a data structure local to the module. Hence some constructor functions
perform an irreversible transition of the module state. The access functions yield values
of the data structure which depend on the actual state. Hence the sequence of function
calls has to obey restrictions in order to yield the desired results: certain module states
are pre and post conditions of AG computations. Attribute dependencies are a natural
way to specify such restrictions as precise as required.

We again start from a trivial example which imposes no such ordering restrictions. Let
us assume there is a module which collects error messages during attribute evaluation. It

implements a single operation

message._if (condition, message_text).
After completion of attribute evaluation finalization causes insertion of the messages into
the source text. Hence there is no restriction on the order of the calls of the message func
tion, and it does not return a value. Such a function call is specified by a computation i#
appropriate production contexts without defining an attribute, e.g.

message_if (is_multiple (Def.key), multiple definition™);

The AG system is free in jts choice of the evaluation order for these calls. This messag®
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ADT can be considered as a state transition implementation: Each call of the message
function modifies its internal data structure, and hence alters the state. But the specifi-
cation does not require any restriction of state sequence. The ADT states are ignored in
the AG.

In Sect. 3 we presented an example for translation of expressions into postorder form.
It can be understood as an application of a very simple state transition ADT module.
The put operation is its only state transition function. There are very tight sequencing
restrictions to achieve postorder representation: The precondition for output of an op-
erator is the completion of the output of its operands and any expression left to it. Its
postcondition completes the output of the expression for that operator. The precondition
for output of a leaf operand is the completion of all expressions left to it. These pre-
and postconditions model states of the ADT with respect to the tree structure. They
lead directly to the CHAIN specification in Sect. 3, and to the meaning of the pre- and
post-attributes introduced by it.

The next example shows a simple state transition ADT where only two of its arbitrary
many states are relevant for specification. The ADT module implements a simple counter
which is used for counting the instances of a certain language construct, e.g. assignments.
The ADT has the operations Init, Incr and Print with obvious meanings. Init and Incr
are state transition functions, Print is an access function. The desired calling sequence

can be described by the regular expression
Init Incr* Print

The Iner calls may occur in any order between the calls of Init and Print. Hence the
precondition of each Iner call is ” Init has been called”. The precondition of Printis "all
Incr calls have occurred”. This view leads immediately to the attribution of Fig. 4.1.
The two states - after Incr and before Print - are represented by the attribute Prog.init
and the CONSTITUENTS constructs in the root context.

A more elaborate specification of state transitions is required if the counter should
be reused for counting assignments of each (possibly nested) procedure in the program
separately. The calling sequence then has to be

(Init Incr* Print)*
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NONTERM Prog : init : VOID;
RULE Prog ::= . .
STATIC
Prog.init = Init();
Print() DEPENDS_gN CONSTITUENTS Assign.incr;
END;
NONTERM Assign: iner : VOID;
RULE Assign ::= .,
STATIC

Assign.incr = Incr() DEPENDS_ON INCLUDING (Prog.init);
END;

Fig. 4.1 Counting language constructs

the precondition for the next Init. The attribution jn Fig. 4.2 is derived from that in Fig:
4.1. The counting sequences for each procedure are chained. The CHAIN attributes enl
fepresent the states between Print and Init, meaning completion of one counting sequence.
(It should be noted that this attribution is slightly over specified, since the procedures
are considered in postorder.)

In our last example we present an application of a state transition having both con
structor and access functions. Results of the access function depend on the state. The
example also shows abstractions of the states in different granularities.

The example describes the definition of objects and association of properties to them,
L.e. a typical task of a definition module in a compiler, or some kind of dictionary in other
applications. [t may be implemented by property lists for example. Such a module is

provided in the compiler construction environment EJj [WHKS8]. The ADT operations
are
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CHAIN cnt : VOID;
RULE Prog ::= Block
STATIC
CHAINSTART Block.cnt = NoOp ();
END;
NONTERM Procedure: init: VOID;
RULE Procedure ::= Block
STATIC
Procedure.init = Init() DEPENDS_ON Block.cnt;
Procedure.cnt = Print() DEPENDS_ON CONSTITUENTS Assign.incr;
END;
NONTERM Assign: incr: VOID;
RULE Assign ::= ...
STATIC
Assign.incr = Incr() DEPENDS_ON INCLUDING (Procedure.init);
END;

Fig. 4.2 Counting language constructs in nested structures

SetProp (key, newval, chgval)
associates a value for the property Prop to the object identified by key.
If that property has already a value for that key chgval is associated,
otherwise newval.

GetProp (key, default)
returns the value of the property Prop for the object identified by key, if

it is set previously, otherwise the default value.

The SetProp operation modifies (the state of) the module’s data structure. The ap-
plication usually requires that if there is a SetProp call for a particular key and Prop pair
it should precede all GetProp calls for the same pair.

The attribution in Fig. 4.3 checks definitions and applications of identifiers. The ADT
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NONTERM Prog: def, use : VOID;
RULE Prog ::= ...
STATIC
Prog.def = CONSTITUENTS Definition.def;
Prog.use = CONSTITUENTS Application.use;
END;

NONTERM Definition: def: VOID;
RULE Definition ::= ‘var’ Ident *;’
STATIC
Definition.def = SetIsDef (Ident.id, defined, multiple);
message_if (EQ (GetIsDef (Ident.id, undefined), multiple),
“multiply defined identifier")
DEPENDS_ON INCLUDING (Prog.def);
message_if (EQ (GetIsUsed (Ident.id, unused), unused),
“unused definition")
DEPENDS_ON INCLUDING (Prog.use);
END;

NONTERM Application : use : VOID
RULE Application ::= Ident
STATIC
Application.use = SetIsUsed (Ident.id, used, used);
message_if (EQ (GetIsDef (Ident.id, undefined), undefined),
“undefined identifier")

DEPENDS_ON INCLUDING (Prog.def);

Fig. 4.3 ADT for property association
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associates two properties IsDef and IsUsed to identifier encodings (attribute Ident.id),
which play the role of the object key here. The properties may have the values
IsDef undefined, defined, multiple

IsUsed: unused, used

For ease of presentation we assume trivial scope rules here: Each definition is valid in the
whole program. (Generalization to nested scopes is mentioned below.)

In the Definition context the property IsDef is set to defined, or modified to multiple
if it was already set. The property IsUsed is set to used in the application context.
The corresponding attributes describe the state information "the property is set for that
symbol instance”. Three conditions are checked in this attribution: An identifier is marked
to be multiply defined if there is another definition for that identifier. The precondition for
the check is the fact that the SetlsDef operations are executed for all Definitions of that
identifier. The dependency on Prog.def describes a less specific state information: Prog.def
represents a state where all Set/sDef operations are executed. It should be remarked that
the specification does not require any order of the execution of SetlsDef and SetlsUsed
operations, and that each one of multiple definitions is marked by a message. The same
scheme is applied for the other two messages indicating unused and undefined identifiers.

The attribution of Fig. 4.3 specifies that the two properties IsDef and IsUsed are inde-
pendent of each other. It is important for clarity and maintainability of the specification
not to introduce unnecessary dependencies, which would overspecify the problem and re-
duce the freedom of evaluation order. In our example the same results could be achieved
if in the Prog context only one less specific state information is used for the precondition

of all three checks, e.g.

Prog.set = CONSTITUENTS (Definition.def, Application.use);

The attribution would be slightly simpler, but the evaluation order is more restricted:
All SetIsDef and SetlsUsed operations must occur before the first GetlsDef or GetlsUsed
operation.

On the other hand there are situations where the state information must be specified

as specific as in our example: Assume that in some context one property, e.g. the type of
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RULE Prog ::= ...
STATIC

Prog.type_def = CONSTITUENTS TypeDefinition.type;

Prog.type = CONSTITUENTS Definition.type;
END;
RULE Definition ::= ‘var’ Typeldent Ident
STATIC

Definition.type =

SetType (Ident.id,
GetTypeDef (Typeldent.id, error_type), error_type)

DEPENDS_ON INCLUDING (Prog.type_def);
END;

Fig. 4.4 Dependent properties

an object, is set by accessing another property, e.g. a type definition, as in Fig. 4.4- This
functional dependency would automatically lead to an evaluation order, where first the
TypeDef properties are set and then the Type properties. If the state information would
merge the setting of all properties into one state attribute Prog.set, as mentioned above
this attribution would be cyclic.

This example can be extended systematically to the specification of block structured
scope rules: In that case each definition has to be identified by a unique key, instead of
the identifier code. Each identifier in a particular block context is mapped to the key of
its definition according to the scope rules of the language. That mapping can be Spedﬁed
using an ADT module which implements the concept of environments for nested scope®:
Such an ADT is described in [KaW90]. An implementation belongs to the set of standard

modules in Eli [WHK88). The association of properties to definition keys is then SP"Ciﬁed
as discussed above.
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5 Modularization of Attribute Grammars

Complete AG specifications of compilers for complex languages can be very large: e.g.
about 2000 lines for the Pascal frontend specified in [KHZ82], or more than 20000 lines
for Ada in [UDP82]. Both are written in ALADIN, and they contain the complete spec-
ifications of all functions used in the AG, which contribute to about half of the size.
Consequent application of the ADT concepts of the previous section would separate the
two parts and reduce the size of both. The function part can be well structured into
sufficiently small modules for ADTs of different tasks. In this section we concentrate on
the modularization of the AG part, which would still be rather large in the above cases.

The basic AG concepts do not provide a means for modularization. The central part
of an AG is a sequence of productions, each with its attribution associated. That principle
of locality supports comprehensibility of attribute rules in their syntactic context. But it
does not allow for any global structure of the AG. One could try to subdivide the AG by
syntactic criteria, e.g. parts for attribution of the productions for declarations, statements,
and expressions. In general such a structure decreases comprehensibility, because related
properties are described in several parts, but should be understood together. For example
attribution for type rules occurs in all three of the above parts.

The structuring problem mainly results from the fact that all computations of different
semantic aspects for one context are comprised in a single attribution of a production.
However each of them is more closely related to attributions of the same property in
other contexts than to other attribute rules of the same context. Fig. 5.1 shows part of
an expression syntax with attribution for typing in production contexts, p, q, and r, for
scope rules in r and for postorder output in p and r.

This observation leads to a very simple and effective modularization concept: A module
of the AG contains the attribution of one semantic aspect. It is composed by some
production contexts with their attribute rules related to that aspect. The above example
would contribute to three attribution modules for scope rules, for typing, and for output.
Such a decomposition can be achieved by a simple notational extension: There may be
several RULE constructs which associate attribute rules to the same production. Then

the modules can be written on one file each. Composing the modules and mapping the
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NONTERM Expr: type: Type;
NONTERM Opr: op: Symb,
instr: Instr;
NONTERM Appldent: key: Key,
type: Type;
TERM Ident: id: Symb

CHAIN out: VOID;

RULE p: Expr ::= Expr Opr Expr

STATIC
Opr.instr = Oprldentif (Opr.op, Expr[2].type. Expr[3].type);
Expr[1] .type = ResultType (Upr.instr);

Expr{1].out = put (Opr.instr) DEPENDS_ON Expr(3].out;
END;

RULE q: Expr ::= AppIdent
STATIC TRANSFER type;
END;

RULE r: Appldent ::= Ident
STATIC
Appldent.key = KeyInEnv (INCLUDING (Block.env), Ident.id):
message_if (EQ (AppIdent.key, NoKey), "undefined identifier"):
Appldent.type = Get (Appldent.key, has_type, err_type)
DEPENDS_ON INCLUDING (Block.types_set);

Appldent.out = Put (Ident.id) DEPENDS_ON Appldent.out;
END;

Fig. 5.1 Attribution for scope rules, typing and ouiput
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attribute rules to their production contexts is an easy task of the frontend of an analyzer
for the AG specification language. The same principle can be applied for the association
of attributes to symbols: Attributes may be associated to a symbol in several NONTERM
or TERM constructs. These notational facilities have proven to be an effective support

for modularization in the LIDO specification language.

NONTERM Expr, Appldent: type: Type:;
NONTERM Opr: op: Symb;
TERM Ident: id: Symb;

RULE p : Expr ::= Expr Opr Expr

STATIC
Opr.instr = OprIdentif (Opr.op, Expr[2].type, Expr{3].type);
Expr[1] .type = ResultType (Opr.instr);

END;

RULE q : Expr ::= Appldent
STATIC TRANSFER type;
END;

RULE r : AppIldent ::= Ident
STATIC
Appldent.type =
Get (Appldent.key, has_type, err_type)
DEPENDS_ON INCLUDING (Block.types_set);
END;

Fig. 5.2 a Part of an attribution module for typing
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NONTERM Appldent: key: Key

RULE r : Appldent ::= Ident
STATIC
Appldent.key = KeyInEav (INCLUDING (Block.env), Ident.id);
message_if (EQ (Appldent.key), NoKey), "undefined jdentifier");
END;

Fig. 5.2 b Part of an attribution module for scope rules

CHAIN out: VOID;

RULE p : Expr ::= Expr Opr Expr
STATIC

Expr{1].out = put (Opr.instr) DEPENDS_ON Expr{3].out;
END;

RULE r : Appldent ::= Ident
STATIC

Appldent.out = Put (Ident.id) DEPENDS_ON AppIdent.out;
END;

Fig. 5.2 ¢ Part of an attribution module for output

In Fig. 5.2 it is shown how the example of Fig. 5.1 can be decomposed into modules- Each
module contains only attributions for one semantic aspect, here typing, scop€ rule, and
output. This example shows only few contexts of a complete specification. Each module
would be completed by corresponding attributions of further contexts which contribut®
to its semantic aspect, e.g. the scope module by attributions of the Block and the P
context. Contexts which do not contribute to that aspect are not mentioned in the module
e.g. the Ezpr context p in the scope module. The same holds for attribute association ¥
symbols. If additionally the technique of remote attribute access is applied each module

contains only those specifications which are really relevant for a certain SP“iﬁcauou

aspect. The modules can thus be designed rather compact and comprehensible'
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