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Abstract

This paper describes a special purpose inference en-
gine for deductive databases and how it is inte-
grated with a Warren Abstract Machine within the
PROTOS-I. system. Furthermote, we outline some
typical cases where this special purpose inference en-
gine is superior to the standard Prolog evalnation
sirategy based on backtracking, and we compare the
performance of the special purpose inference engine
to that of the standard Prolog evaluation strategy.

1 Introduction

1.1  An overview of PROTOS-L

PROTOS-I. is a logic programming language ex-
tended by the following features. PROTOS-L em-
beds a module concept similar to that of Modula-
2 [Wirth, 1983], provides read access to external
databases, allows to program deductive databases
[Bottcher, 1990a], and combines order-sorted types
with  polymorphism  [Beierle and Béttcher, 1989],
[Belerle, 1989]. PROTOS-L has been implemented at
IBM Stutigart on an IBM-RT 6150 workstation.

The PROTOS-L system contains a compiler, an ab-
stract machine [Semle, 1989] (which is an extension of
the Warren Absiract Machine [Warren, 1983] by sub-
types, polymorphism and database access), a run time
code retrieval system [Béottcher and Beierle, 1989],
[Garidis and Béticher, 1990] and a deductive data-
base system. The PROTOS-T. deductive database
system supports an efficient evaluation of funciion
free logic programs' which are equivalent to DATA-
LOG [Bancilkon and Ramakrishnan, 1986].

PROTOS-L offers two evaluation strategies for logic
programs: backtracking as in Prolog and set-oriented
retrieval as in deductive databases. For this purpose,
the module concept of PROTOS-I. supports the fol-
lowing two kinds of module bodies (the PROTOS-L

'Ti\b research reported here has been carried out within the inter-
national EUREKA project PROTOS (E1I58): Prolog Tools for Build-
ing Expert Systems. Project partners are BIM, IBM Stuttgart, San-
doz AG, Schweizerische Baunkgesellschaft, University of Dortmund,
and University of Oldenburg.

'We also use the term deductive database as a synonym for a fune-

tion free lngic pIngram accessing a relational database.

programmer can choose between hoth kinds of had-
ies in order to implement an interface): program
bodies (which are evaluated by tuple unification and
backtracking) and database bodies (which are cvalu-
ated by set-oriented proof techniques). A PROTOS-
I database body contains only function free rules
which additionally have the property that aficr ev-
ery bottom-up (forward chaining) application of such
a rule every variable occurring in the head is hound.

1.2 The language for the PROTOS-L
deductive database inference engine

PROTOS-L supports the programming of dednctive
databases because the PROTOS-L database hodies
may contain any furction free logic program which is
equivalent to DATALOG. We give a short nverview
of DATALOG because the expressive power of the
language and its typical applications determine the
requitements for the inference engine.

DATALOG has become the most commonly used pro-
gramming language for deductive databases, as Pro-
log is the best known logic programming langnage. As
logic programs, a DATALOG program can he con-
sidered as a collection of facts and horn rules, ie.
the rules have one unnegated literal. However, differ-
ent from logic programs DATALOG programs contain
only function free facts and rules, i.e. they do not
contain function symbols. Further, DATALOG pro-
grams can access relations of a relational database in
order to get gronnd facts for a certain predicate, ie,
ground facts are not listed in the program (as e.g,
in Prolog), but are retrieved from a database rela-
tion. Typical DATALOG programs access datahase
relations which contain very many ground facts (some
thousand) compared to Prolog programs. Addition-
ally, the sequence of facts and rules is not considered
to be relevant in a DATALOG program, but it is rel-

evant r.~ Prolog.

There are many applications for DATALOG programs
because relational databases are a widely used tool in
order to share large data collections.

To summarize: The difference of DATALOG pro-
grams compared to logic programs is as follows. DAT-
ALOG programs are used for applications with func-
tion free rules which typically consider a large number
of ground facts stored in database relations.
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1.3 Inference engines of the PROTOS-L
system

The PROTOS-L inference system consists of two in-
ference engines which are implemented as abstract
machines. The upper inference engine (called the
PROTOS Abstract Machine (PAM})) is an extension
ol the Warren Abstract Machine by types and poly-
morphism. This upper inference engine uses back-
tracking. The lower inference engine {called deduc-
tive database inference engine (DDBIE)) is a special
purpose inference engine for function {ree logic pro-
grams. Its set-oriented proof technique and some per-
formance results are described in section 3. The re-
sults of section 3.3 show that this inference engine is
adapted for proofs which contain large sets of ground
facts.

Alltogether, PROTOS-L provides backtracking on
top of set-oriented proofs. Note that it is the decision
of the PROTOS-L programmer, in which cases he as-
sumes that solutions are easy to find and therefore
prefers backtracking, and in which cases he prefers
sel-oriented retrieval of facts because he assumes that
a large search space has to be searched in order to
find a solution. Whenever the PROTOS-L program-
mer prefers tuple-oriented unification with backtrack-
ing he programs his rules in program bodies (the code
of which is evaluated by the upper inference engine).
Otherwise, if he prefers set-oriented retrieval he pro-
grams his rules in database bodjes (the code of which
1s evaluated by the lower inference engine),

Note further, that the syntax for rules in program
hodies is identical to the syntax for rules in database
bodies. Therefore, the PROTOS-I, programmer has
to learn only ane single language.

1.4 A motivating example

In this section we demonstrate the advantages of pro-
gram hodies and the advantages of database bodjes
and outline how the programmer can choose between

bhoth in order to determine the evaluation strategy of
his program.

The following example is taken from the domain of
production planning systems. [t is a modified ver-
sion of a targer production planning example given in
[Biticher, 1990¢] which describes {he reimplementa-
tion of a scheduling algorithm for a chemical produc-
Hon planning system. A first version of this schedul-
ing algorithm has heen implemented at Sandoz AQ in
Basel [Slahor ¢ al., 1990}, [Saner, 1990].

The production planning algorithm has to obey the
constraint that every product can only he produced
at sume machines. Furtherore, the planning algo-
rithms has to care about whether or not a machijne js
available at the time it shail be used for production,

Which product can he produced on which machine
is stored in a specific relation
can be_produced_on. The relation available com-
putes whether a machine is availahle at a given time
interval. The predicate producable checks whether
& given product is producable jn a given time inter-
val and returns the machine on which a product is

producable. The predicate producable can be im-
plemented by the predicates can_be_produced_on and
available as follows.
rel producable : string x int x int x
% product time interval

Pstring .
on machine

producable( Product, From, Until, Machine ) <—
can_be_produced_on( Product, Machine ) &
available( Machine, From, Until ).

PROTOS-L offers the programmer the choice be-
tween two alternative evalwation strategies for the
predicate producable. If the Programmer assuines
that it is difficult to find an available machine on
which the product can he produced, then he may
prefer to evaluate the predicate producable in a set-
oriented way. In this case he will declare the module
body in which the predicate producable is imple-
mented, say producable_orders, to be a database
body because database hodies are evaluated by the
PROTOS-L deductive database system, t.e. the join
of can_be_produced_on and available is evaluated
In a set-oriented way.

However, if the programmer assumes that it is easy
to find an available machine on which the product
can be produced, then he may prefer to evaluate
the predicate producable by backiracking. In this
case, he will declare the module body in which the
predicate producable is implemented to be a pro-
gram body because program bodies are evalnated
by the PROTOS Abstract Machine, ie. elements
of can_be produced_on are taker one by one and
the evaluation of the predicate producable can be
stopped when no more solutions are needed.

The two system implementation alternatives are
shown in figure 1. In the alternative shown in the left
hali of figure 1, the module body producable_orders,
in which the predicate producable is implemented,
is a database body, in the alternative shown in the
right half of figure 1, the module body is a pro-
gram body. The example shown in figure | as-
sumes that the relations can_be_produced_on and
available are implemented in database bodies com-
puting the production data.

2 The PROTOS-IL deductive

database system

2.1 Advantages of the PROTOS-L deductive
database system

The following outlines why the PROTOS-T, system
contains two inference engines, i.e. why the Prolog
evaluation strategy in general, and thereby the PRO-
TOS Abstract Machine jn particular, is not sufficient
for query evaluation in deductive databases which are
programmed in datahase bodjes.

A fitst reason is the computation of large joins. Con-
sider the rule implementing the predicate producable
which is given in section 1.4. In production planning
systems the relation can_be_produced_on may con-
tain about 5000 ground facts depending on the fac-
tory for which it is planned. The size of the relation
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Upper production
planning system

Database body
set-oriented evaluation

producable_orders

Database bodies
set-oriented evaluation
y

production_data

_____________________

Program bodies
evaluated by backtracking

Upper production
planning system

Program body
evaluated by backtracking

X

producable_orders

Database bodies
set-oriented evalnation

production_data

iRelational databases:

_____________________

A l-—>| B means that modules A use modules B

Above the dashed line predicates are evaluated by backtracking, below it by set-oriented evaluation.

Figure 1: Two implemetation alternntives for the predicate producable both using backtracking on top of set-oriented retrieval from

relational datahases.

available depends on the size of the time interval for
which the production is planned. Assume this rela-
tion contains 2000 facts. In the worst case, the Prolog
strategy proves 5000 goals can_be_produced_on and
5000 x 2000 goals available in order to compute
the answers to the predicate producable. Of conrse,
efficient join algorithms implemented in the underly-
ing SQL/RT database system are much faster.

A second reason not to use the Prolog evaluation
strategy is the requirement to avoid duplicate compu-
tations. This idea is known as lemma generation in
the field of automated theorem proving. The idea of
lemma generation 1s that all intermediate results are
stored for further usage and are used instead of recom-
puting the answers to a goal. This can not be done by
a Warren Abstract Machine because it does not con-
tain any stack for intermediate results. For the same
reason, an extension of the Warren Abstract Machine
has been proposed recently [Warren, 1989]. This ex-

tension has the property of storing intermediate re-
sults in common with the DDBIE of the PROTOS-L,
system.

Furthermore, during the evaluation of left recursive
programs, the Prolog evaluation strategy may run
into an infinite loop, although there exists a proof
for a goal. This is avoided by the DDBIE of the
PROTOS-L system, because it uses a hottom-up de-
duction strategy and because all rules in database
bodies are free of function symbols.

2.2 The process model of the DDBIE

This section summarizes the inference techniqur used
in the PROTOS-L deductive database inference en-
gine. A comprehensive description of the algnrithms

is given in [Meyer, 1989) and [Bottcher, 1990b].

A PROTOS-L deductive database contains only func-
tion free rules which additionally have the prop-
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erty that after every bottom-up (forwarfl chain-
ing) application of such a rule every variable oc-
curring in the head is bound. The PROTOQS-L
DDBIE combines bottom-up (forward) deduction
with a goal-oriented deduction as used in the War-
ren Abstract Machine. Because the PROTOS-L
DDBIE uses this goal-oriented deduction it is su-
perior to naive or semi-naive inference engines

[Bancilhon and Ramakrishnan, 1986].

The DDBIE combines the magic set approach
{Bancilhon and Ramakrishnan, 1986] with  the
QoSaQ) approach [Vieille, 1988] and with ideas out-
lined in [Hulin, 1989].  The basic idea of the
PROTOS-L deductive database inference engine is
the process model. Every predicate occurring in a
PROTOS-L database body is implemented by its own
process. For didactic purposes, it is easier to think of
independent processes, although the whole computa-
tion is implemented as a single PROTOS-L Pprocess.
All rules of a predicate together with all goals of the
rule are considered to be a part of the process. A
global scheduler coordinates the processes.

Each process can perform the following activities:

® it can submit an answer,
e it can submit a subquery,

¢ it can signal to the global scheduler that it is idle.
Furthermore, each process has two kinds of memories:

* amemory for received goals containing also their
environments,

® a memory for the computed answers.

The processes are lazy, i.e. no process computes any
subquery twice. Tnstead, the process submits stored
answers to newly received goals and it submits each
newly received answer to all stored goals which can
be satisfied by the answer, thereby reactivating other
processes. That is how PROTOQS-T, supports lemma
generation for every predicate occurring in a database

body.

Query processing is completed when all processes sig-
nal to the global scheduler that they are idle.

The process model allows various degrees of freedom
[Boticher, 1990b]. For example, every process can de-
cide by its own in which sequence it submits answers
ot subqueries. Furthermore, the global scheduler can
control the evaluation strategy by assigning priorities
to the processes, e.g. bottom-up evaluation is en-

forced by assigning higher priorities to processes at
the leaves of a proof tree.

The advantages of the process model over the Pro-
log deduction strategy can be su mmarized as follows.
The process model embeds a fast computation of large
Joins which is provided by the underlying database
system. The process model uses lemma generation

for every predicate. Finally, the process model avolds
mfinite left recursion.

We do not outline the process model in more de-
tail here because it is described in [Bottcher, 1990%]
which additionally discusses lemma

. - !
generation in the

process model and presents the implementation of the
process model in the PROTOS-L system.

2.3 Performance results

As described for the module producable orders in
section 1.4 several modules have been implemented in
one version as a database body and in another ver-
sion as a program body. Then both systems have heen
linked together as shown in figure 1 and the perfor-
mance of both systems has been compared.

This performance comparison was done for the
reimplemtation of the production planning system
Béttcher, 1990c] and for a travel information system

Bottcher, 1990al.

The queries to the production planning system are to
plan a given set of production orders under some given
production constraints. The computation which
products could be run on which machines has heen
implemented in one version in a database body and
in the other version in a program body. Depending on
the set of constraints, the version using the database
body is 2 to 4 times faster than the version using the
program hody.

The queries to the travel information system are:

* Compute the shortest travel time between two
cities.

¢ Find a path with a minimum number of stop-
overs.

* Compute the latest departure time that is suffi-
cient in order to reach a city at a given time.

¢ Find the carliest arrival time if a city can be left
al a given time.

The result of the performance comparison is that
the version implementing as much as possible in the
database body (i.e. using the DDBIE as inference
engine) is in most cases superior to the version imple-
menting as much as possible in the PAM (i.e. using
the Protos Abstract Machine). How much the first
version is superior to the second depends on the size
of the base relations and on the distance of the cities.
For example, we get the following results in a test
where the database relations of the travel informa-
tion system contains about 100 facts. If the distance
of the cities is 2 (i.e. the search tree has a depth of
2), then the first version is about as fast as the sec-
ond (from 10% slower up to 80% faster depending on
the query). However, if the distance of the cities js 4
(ie. the search tree has a depth of 4), then the first

version is between two and four times faster than the
second version.

Further evaluations have generalized this performance
result: The larger the relations are and the deeper the
proof tree is, the more is the first version (msing the
database body which is evaluated by the DDBIE) su-
perior to the second version {using the program body
which is evaluated by the PAM)}.



3 System architecture and
implementation

3.1 The integration of the DDBIE into the
Warren Abstract Machine of the
PROTOS-L system

The architecture of the PROTOS run time system can
be summarized as follows. The PROTOS-L system
consists of a compiler and a hierarchy of two inference
engines, which are implemented as abstract machines

{c.t. figure 2).

| PROTOS-L Compiler I

| PROTOS Abstract Machine (PAM) |

|

I Deductive database inference engine (DDBIE) |

|

I SQL/RT Database system J

——» means A uses B

Figure 2: Architecture of the PROTOS-L system

The upper inference engine (called the PROTOS Ab-
stract Machine (PAM)) is an extension of the Warren
Abstract Machine [Warren, 1983] and uses backtrack-
ing [Semle, 1989], [Béticher and Beierle, 1989]. The
lower inference engine is the deductive database in-
ference engine (DDBIE) described above.

As shown in section in section 1.4, the PROTOS-L
system supports backtracking on top of set-oriented
retrieval of facts. Therefore, set-oriented results are
not computed and stored completely but instead are
computed part after part as required by the upper
inference engine. In order to support this incremental
set-oriented computation, the DDBIE is embedded
in the PAM as follows. The PAM-DDBIE interface
contains besides others two functions: by one, the
PAM submits a query to the DDBIE, by the other
the PAM asks for further solutions for a given query
goal. The queries are evaluated by communicating
processes of the DDBIE as described in the previous
section, however only a first part of the solution-set
to the goal is computed. The procedure which asks
for further solutions may trigger the computation of a
further part of the solutions to the given query goal, i{
each tuple of a current part has already been returned

to the PAM.

3.2 Implementation

Since the PAM is the upper inference machine and
the only abstract machine direcily used by the code
of compiled PROTOS-L programs, the PAM code
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contains also code for the evaluation of gqueries to
database bodies. This code is passed through the
PAM-DDBIE interface to the DDBIE. The interface
of PAM and DDBIE contains only the following func-
tions.

o A set of functions for constructing at run time a
graph structure which represents the PROTOS-L
program coded in a database body, i.e. functions
constructing predicates, rules, goals and built-in
goals, arguments, variables and constants. The
function calls are part of the PAM code which is
produced by the compiler during the compilation
of the database body.

¢ A function dbquery which is used to solve a
goal when the corresponding predicate is imple-
mented in a database body. Each call of dbquery
passes the name of the goal predicate and the ar-
gument bindings from the PAM to the DDBIE.
The argument bindings are used by the DDBIE
in order to reduce the search space by the goal-
oriented query submitting technique described in
section 2.2.

o A function dbfacts which is used by the PAM in
order to read the next fact to a goal submitted by
dbquery. The DDBIE submits the next fact for
the given goal to the PAM or informs the PAM

that there 1s no next fact for the given goal.

o A function dbcutfacts is used by the PAM in
order to tell the DDBIE that no more answer to
a given goal is needed and that the DDBIE can
do garbage collection.

o A function initializing a connect link to the un-
derlying relational database system (which is in
our case the SQL/RT database system).

These functions are used in the PAM in the follow-
ing way. The functions which construct a graph rep-
resenting a copy of the database body are executed
once for each query to a database hody. After this
graph construction the argument bindings are passed
by a call of dbquery and the DDBIE computes a re-
sult. Thereafter, the DDBIE returns a single fact for
each call of dbfacts until there are no more facts
for the given goal or the PAM called the function
dbcutfacts in order to tell the DDBIE that no more
facts of a given goal are needed.

4 Summary and conclusion

PROTOS-L provides two kinds of module hodies:
program bodies and database bodies. Program bod-
ies and database bodies may both contain function
free logic programs, however they evalnate function
free logic programs in a different way.

The PROTOS Abstract Machine (PAM) which is
an extension of the Warren Abstract Machine uses
backtracking for rules contained in program hod-
ies, and the dednctive database inference engine
(DDBIE) uses the process model for rules contained in
database bodies. The PROTOS-L system integrates
the DDBIE into the PAM and implements the inter-
face of hoth inference engines with a rather small set
of communication functions.
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Since program bodies may call predicates imple-
mented in database bodies, but not vice versa,
PROTOS-L alltogether supports backtracking on top
of set-oriented retrieval from relational databases. It
is the decision of the PROTOS-L programmer to de-
termine the boarder line between upper system mod-
ules which shall be evaluated by backtracking and
lower system modules which shall use set-oriented
evaluation. Even more, the programmer can easily
change the evalnation strategy for modules at the bor.
der line: he only has to change a database body into
a program body or vice versa.

The process model evaluates predicates programmed
in a database body in a set-oriented way and in-
crementally on demand. It was adapted for queries
searching in a large search space of ground facts. The
process model is in superior to the Prolog evalua-
tion strategy, whenever a large search space has to
be searched in order to find a solution to a given
goal. If, however, the search space needed in order
to find a first solution to a given goal is smaller and
further solutions are not required, then backtracking
may be preflerable. PROTOS-1, provides hoth evaly-
ation strategies for function free logic programs.

In summary, the PROTOS., system which integrates
both inference engines supports adaptive query eval-
uation of small search spaces as well as of large search
spaces.
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