On Transactions in Logic Programming Languages

Stefan Battcher
Daimler-Benz Forschung und Technik
Eberhard-Finckh-Strafie 11
D - 7900 Ulm-Béfingen , Germany’

Introduction

The extension of logic programming languages by database access has up to now concentrated on read
access of logic programs to external relational databases. Additionally, proposals for the integration of
database updates into a logic programming language have been made, e.g. [Manchanda88). However,
whenever many users access a database, the accesses of these users have to be synchronized too.
Therefore, a transaction concept is needed. We present a proposal how to embed a suitable transaction
concept in a logic programming language. The basic idez is to introduce transactions as a special kind
of deterministic relations in a logic programming language.

Requirements

In order to support the synchronization of database accesses, conventional database programming [angua-
ges provide a procedural transaction concept. However, in the case of an integrated logic programming
and database access language (ase.g. PROTOS-L [Beierle90], [Bottcher90]) the transaction concept has
to be integrated into the logic programming language, i.e. persistence and atomicity of transactions have
to be integrated with backtracking. In order to provide transaction persistence, backtracking should be
prevented from returning into commited transactions. Atomic transaction execution requires to undo
write operations in the case that a transaction can not be commited.

Additionally, database access should be allowed only in the scope of transactions for safety reasons and
because transaction synchronization provided by the database system can synchronize the database
accesses of several users correctly. In order to keep a logic-based database programming language
powerful enough, the programmer should have the possibility to program several transactions in a single
logic program.

The suggested solution

We suggest to regard transactions as a special kind of relations, i.e. the logic programming language
should provide several types of relations, one being a transaction.

Then transaction persistence is acchieved, if the transaction is a deterministic relation. Although
transaction persistence could also be acchieved by the use of the cut operation, we suggest that the
logic programming language contains a language construct which explicitly declares a relation to be
a transaction. For example, a transaction declaration may consist of a set of rules preceeded by the
keyword trans, whereas a relation declaration may consist of a set of rules preceeded by the keyword rel.
Transaction atomicity is acchieved in a natural way, if write operations to databases are backtrackable.
In this case, all modification operations done inside a transaction are undone, if the transaction fails,
i.e. transactions that fail to commit leave the database without changing the database state.

The basic idea for the implementation of a transaction trans t(...) is to access the database system
transaction managemert services for transaction begin, commit and abort by built-ins tBegin, tCommit
and tAbort and to use these built-ins in the following way. Each transaction trans t(...) can be
implemented by an ordinary relation rel tBody(...) containing exactly the same rules as given in the
declaration of the transaction t(...) by:

t{...) - tBegin, tBody(...), tCommit, ! .

t{...) == tAbort, fail.

The cut after tCommit prohibits backtracking to undo parts of & committed transaction, i.e. the
committed transaction is persistent. The goal tAbort guarantees transaction atomicity, if the execution
of tBody fails.

Since the implementation of t(...) by tBody(...) and the built-ins is independent of the code of the
transaction t, the sketched implementation is genetic and can be used e.g. as a first compilation step in

a compiler for logic programming languages.

References
[Beierle90] C. Beierle. Types, modules and databases in the logic programming language PROTOS-L.
In K.-H. Blasius, U. Hedtstiick, and C.R. Rollinger, editors: Sorts and Types for Artificial Intelligence,

Springer, Berlin [et.al.], 1990.
[Béttcher90] S. Bbttcher. A tool kit for knowledge based production planning systems. In A.M. Tjea,
W. Wagner, editors: Proc. Intern. Conference on Database and Expert System Applications, Vienna,

Austria, 1990.
[Manchanda8g] S. Manchanda and S. Warren. A logic-based language for database updates. In J.
Minker, editor: Foundations of deductive databases and logic programming, Morgan Kaufmann, Los

Altos, 1988

1The work reparted here has been done at IBM Deutachland GmbH, Scientific Center, Stuttgart
as part of the EUREKA Project PROTOS (EUSS).




	Seite 1 

