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The paper deals with the question whether or not the well
known notions of Stone-Czech compactification and realcompactification
(Hewitt-Nachbin completion) can be transferred from the classical si-

tuation (CB(X),X completely regular) to a more general situation

where X is replaced by an arbitrary set and where a convex cone of

bounded functions plays the role of the continuous functions.

It turns out “hat this is in fact possible and that this proce-

dure leads in a very satisfactory way to a simple and transparent

theory which comprises the classical situation as well as the Choquet

theory of the state Space. Furthermore it is possible to adopt most

of the fundamental results known for the classical situation with

slight modifications for the general situation.

In the first part (Chapters I to IV) we define our basic notias

(zeneralized compactness, realcompactness and pseudocompactness) and

we show that - Toughly spoken - these objects can be characterized by

filter properties as well as geometric or lattice properties.

In the second pPart we transfer some basic results from the

classical case to our situation. For example, it is demonstrated

that a suitable generalization of Glicksberg's integral representation

theorem contains the Choquet - theorem as a special case, This hap-
Pens since the extreme points of a compact convex set are pseudocom=

pact (in the generalized sense) with respect to the continuous affine

functions,
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The rest of the paper is devoted to the investigation of real-

compact spaces,

I. BASIC DEFINITIONS

Let X be a nonempty set. We consider a convex cone F of

bounded real functions on X such that F separates the points and

contains all constant real-valued functions. A functional : F =+ R

is said to be linear if it is additive and positive-homogeneous

(i.e. Ww(Af) = Au(f) for all A > O, £ € F). The functional u is

called order-preserving if wu(g) = u(f) whenever g =z f.

At this point it should be remarked that every R U {-=} - va-

lued order-preserving linear functional W 15 automatically R-valued.

This is easily seen by
w(r) 2u@) 2 u(-e) er

inf f£(x).
x€X

preserving linear functional

where @ is the constant function equal to

A state is defined to be an order-
4  with

u(f) < sup f(x) for all f & F.

x€eX
The set of all states of F is called the state space and is denoted
by SXF- Tdentification of x € X with the point evaluation £ 4 £(x)
leads to an embedding of X into SXp- The state space is made into
a topological space by endowing it with the coarsest topology such

f ¢ F, are continuous. SXF is a

that all the functions W = u(f),
compact Hausdorff space (every ultrafilter converges ). A state M

is defined to be Dini-continuous if we have

inf u(f_ ) < sup inf £, (x)
neN n x€X neEN

. . i F.
for al1l pointwise decreasing sequences £,

. R . a
5.3223{&. Let F consist of upper-semlcontlnuous functions on
X, then because of Dini's

compact (not necessarily Hausdorff) space

lemma all states are Dini-continuous.
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As usual a state | is called maximal if whenever v is a
state with | £ v then W =y (there iy s v stands for w(f) < v(d
¥ £ ¢ F).
2 Remark. (i) States on vector sSpaces are always maximal,
(ii) By Zorn's lemma every state M is dominated by a maximal state
o] (i.e. u < p).

Let Y < X be a nonempty subset then we denote by supy, the

sublinear functional given by

£+ sup {f(y) | v ¢ Y}.

A convex cone G of functions on X is defined to be max-stable
if for €118, € G the function x 4 (g1Vg2)(x) = max(gl(x),gz(x))
is always in G, By VF we denote the smallest max-stable convex

cone containing F, that is the cone
(1) VE = {f, Vv £, v...w £, ] nen, flseee,f € F}.

A state ﬁ of VF is termed dominated extension of the F-state u

if Q(f) 2 u(f) v r € F. If we have equality for all f € F then,

of course, 4 is called an extension., y ¢ SX, can always be exterd-
EXtension

ed to a state of VF L2, Lemma 2],

J Definition. A state | of is called F-character if it has a

unique dominated extension to VF  and if for every finite cover

Yl""’Yn of X there is some k £ n  such that [V S SUPYk-

The set of F-characters will be denoted by B X5 Those cha-

racters which are Dini-continuous are called Dinj-characters, and

vXF stands for the set of Dini-characters.

E_QﬁfiﬂiﬁiﬂP- (1) 8X, ang UXp are called the F-compactification

of X and the F-realcompactification (or F_Hewitt_Nachbin-completum)

respectively,
(2) The set x is defined to be

(i) F-compact if 8Xp C X

(ii) F-realcompact (or F-Hewitt-Nachbin space) if uXp © X
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5 Definition, X is defined to be F-pseudocompact if every element

of the sup-norm closure of VF attains its maximum on X,

II. THE CLASSICAL SITUATION

When X is a completely regular Hausdorff space and F is
equal to CB(X) = {f € C(X) | f bounded} (C(X) being the space of

continuous real-valued functions on X) then we call this the

"classical situation".

6 ProEosition. (i) BXCB(X) is the Stone-Czech compactification of X.
(ii) UXCB(X) is the set of multiplicative linear functionals on
c(x) (restricted to CB(X)). Hence it is the usual realcompactifi-

cation of X.

Proof. (i) 4is left as an exercise.

(ii) Let U € UXCB(X)' Then 4 is multiplicative by Proposition 6

(1) and we prove that u(g) € g(X) ¥ g€ CB(X), which is a well-

known criterion for | being extendable to a multiplicative linear

functional of C(X). For this purpose we consider for an arbitrary

2
g ¢ CB(X) the decreasing sequence f = -n(g-u(g))” < 0. We must

then have sup inf fn(x) = 0 because of u(fn) = 0 and the Dini-

x€X n .
continuity of 4. This implies that (g-u(g)) dis equal to zero at
some x € X. Hence uieg) = g(xo) c eg(Xx).

It remains to prove that whenever V € BXCB(X) is not Dini-
continuous then there is some g € CB(X) with vig) ¢ g(x).

By definition there is a decreasing sequence £, in CB(X)

such that

(3) inf v(fn) =g > 8 = sup inf fn(x).
n x€X n

We consider the following o=-compact subset of the Stone-Czech com-

Pactification BX
- 2f sa + &85,
s =UK,, where K, = {z¢8x | 26,(2) }
n

i hn
Then S contains X (consequence of (3)) and by a suitable Uryso
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argument we find some g ¢ C(BX) with v(glx) =g(v) =a and
g(z) <& ¥z €& S, where g[X denotes the restriction to X. Hence,

because of S > X, we have v(g[X) 4 gIX(X)' 3

Thus we have shown that the notions of "CB(X) - realcompacti-
fication" and "CB(X)-compactification" coincide with the usual notions
of "realcompactification" and "Stone-Czech compactification" respect-
ively. The observation that CB(X) - pseudocumpact means pseudocompact
in the usual sense is quite obvious,

So, after having seen that the notions we have defined so far
are generalizing a well-known concept, we can state that the aim of
this paper is to investigate if those results which do hold for the
classical situation can be adopted for the general situation.

We show in the sequel that this is in fact possible.

III. THE PRINCIPAL TOOLS

We gather here those results from {2] to [5] which we need for
our investigation, Although they are formulated for the rather
special cone F we would like to mention that they are valid in more
general situations.

A very useful application of the sandwich theorem (our beloved

form of the Hahn-Banach theorem, see [4, pP.152])is the following:

Finite Sum Theorem. Let M be a linear functional on F and let

Pl,...,pn be sublinear order-preserving functionals on F with
n

u<s I pi. Then there are order-preserving linear functionals
i=1 n
My < P; such that gy < ‘21 Mo
1=

(This is a special case of the sum theorem from [4]),

7 Lemma, Let ¢ sup, (where z c X) be a state of F and let

¢ # Y, (k=1a---,n) be a finite cover of g then there are A\, 2 0
n n
with < = hat the u
M M kil ngk and k§1 Ay =1 such t k

Ri(£) 2 u, (g) whenever r(y) = &(¥)

and states

are Yk-order-preserving, i.e,
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* Y E Y.

Proof. (4, finite decomposition theorem] gives us the A, and states
n

Hk < squ with 4y < ¥ ngk' And from the sandwich theorem (apphf
k=1

ed with respect to the preorder given by pointwise order on Yk) we

get the desired Yk—order-peserving states My with My < My < squk.

il
.

The next result is of a much deeper nature. First, some nota-

tion. By ZF we denote the O-algebra generated in X by F (that

is the smallest O-algebra such that the elements of F are measure-

able)., We call a TF-probability measure m a representing measure

for an F-state  if

u(g) < ( g dm for all g & F,
X
in case that we have equality then we speak of a strict representing

measure,

8 Theorem, Every maximal Dini-continuous state u of VF has a

strict representing measure on X.

Proof., From [ 4, thm 1] we obtain that W has the decomposition pro-
are such that J Yn=x
neN
and A_ = O with u = TN M.
n nep non
of VF has a unique exten-

perty, which means that whenever ¢ # Y, X

then there are states U, € SuPy
n

We have to keep in mind that a state Vv

sion to the vector lattice E = VF - VF, which we denote by wv.

that when Vv is maximal and £ supy then we also have

Furthermore,
v < supy, (sandwich theorem, compare proof of the Main theorem in [3).

Now, since | 1is maximal W must be maximal when Xn > 0.

because we can

=]
Hence, ﬁ = X Anﬁn has the decomposition property,

n=l Y -
drop all those ﬁ where A\ = 0. And this was the condition
n
required in [3, thm 1] for the existence of a representing measure m
—

for ﬁ. Obviously m is then also a representing measure for W. O
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IV. THE GENERAL SITUATION

IV. 1 THE F-COMPACTIFICATION

Our aim is to find many useful characterizations of the F-com-

pactification. We begin with some definitions:

9 Definition., (i) A state p of VF is said to be a lattice state
if o(gy veeovog)) = max {p(g;),...,0(g,)} for all Epreeesey € Fu

(ii) M € SXF is called an extreme point of SXF if whenever

i - then =V
0< % < 1 and VisV, € SXp with gy < AV o+ (1 )‘)\)2 M

1
(iii) By Face (u) we denote the set of those states V such that

there are 0 < ) < 1 and a state p with W< AV + (l-k)p-

(iv) Z{(u) stands for the family of those subsets Z < X having the

property that for arbitrary @ < 8 < O there is always an f € F

with f < 0, y(f) 2 8 and sup(x\z)(f) < 0. Z({u) is termed the

set of strong domination.

(v) s@) = {Ye x | ucx< squ} and N(y) = {Yec x | w o SuP(X\Y)}
complementary set respect=-

are called the set of domination and the
——_lnation

ively,
We first gather some technical details:

10 lLemma, (i) M is an extreme point of SXF ® Face(u) = {u}-.

(ii) v ¢ Face(u) = Face(y) ¢ Face(u).

(iii) If two states U4,V € SX, have the property that for f,g € F

the inequality (*) u(f) » u(g) always implies wv(f) = v(g) then
o=y,
(iv) Z(u) e n@) n s(@) ¥ M€ SXy

(v) Vv ¢ Face(u) = Z(u)

n

Z(v)

(vi) z,,2, ¢ Z(u) = Z,N Z, ¢ nu),

Proof. (i) and (ii) are trivial,

(iii): The number L (f+g) must have the sign of u(f) or u(g)s

Then from y(lu(r+g)le) = u(lu(e)|(r+e)) we

obtain with (*) that v(lu(f+g) |g) = v(|lu(eg)| (f+g)). Hence we have

say that of yu(g),
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ui{f+g)v(g) = v(f+glule), or u(f)vi(g) = v(fu(g). For g =1 we
obtain with u(1) = v(1) = 1 the equality wu(f) = v(f).
(iv): Z(y) c n(u) is obvious. Let Z € Z(u), we want to prove
M < sup,. According to Lemma 7 we have W < Xul + (l—)\)u2 with
0 A< 1 and Uy < sup(X\Z), U, S sup,. For @ = -n< g = -1<0
there has to be some f < O with u(f) = -1 and sup(x\z)(f) < -n.
Thus -1 < u(f) < A sup(x\z)(f) < -3n, or A< %_ for all n.
Hence ) =0 or U = U, £ Supy.
(v): Tet v € Face(u), d.e. W < Av + (1-A)p, O< h <1, p € SX
and let Z be an arbitrarily chosen element of Z(u).

Then for arbitrary @ < 8 < O there is some f< O in F
with y(f) = A8 and sup(x\z)(f) < &.

Hence wv(f) = B, which shows that Z ¢ Z(v).

(vi): Let 1z Z, ¢ Z{4) and put Y, = N\Z;, i=1,2. We have to show

With the help

l’
that u su . Assume therefore U < sup .

* P(y,uv,) (Y,UY,)
of Lemma 7 we may write W + A, + (1-2)M,, where 0< ) <1 and u, <

£ supy , i=1,2. Take @ < 8 < 0 such that 28 > a then there are f,1,<0
3

in F with u(f,) 2 8 and supy (fi) < o, k=1,2. Because of uz(fl) < 0
i i

and ul(f2) < 0 this leads to the contradiction:
28 < u(r+r,) Ay (7)) + (1-1)u,(r)

< Asupy (fl) + (l-k)squo(fg) < Q.
l “

Hen
ce y £ sup(YlUYZ).

Now, we are in the position to prove the main theorem of this

chapter.

11 Theorem. Let u be a state of F, then the following are

equivalent:
(1) M is a character of F
(ii) M can be extended to a character of VF
a VF such that ﬁ is maximal and

(iii) M has an extension W to

is a lattice state
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(iv) W is maximal and Z(u) = n{y)

(v) Z(p) is a filter on X which converges in the state space
to \u
(vi) 4 is an extreme point of SXp

(vii) M can be extended to an extreme point Q of SXVF'
Proof, We proceed in the following way:

(1) = (11) = (31d) = (vii) = (vi) = (iv) = (v) = (vi) and (v)+(vi)=G).

(i) = (ii): Let ﬁ be the unique dominated extension of 4 to VF,
and consider a finite nonempty cover Yl""’Yn of X. Then by de-
finition there is some k < n such that || < squk. By the sandwich
theorem we find a dominated extension | < Supy . Because of L = ﬁ

k
(uniqueness) we have g < supy .

k

(i1) = (iii): We have to show that a character ] of VF is a lat-
tice state, Consider for fl,...,fn € VF  the sets

. inition
Yy o= (x| £,(x) 2 (£ veeuv f)(x)}, i =1,...,n. Then by definitio
there is some k < n with g s supy . Since U is maximal it must

k

be Yk-order-preserving (otherwise it is according to the sandwich
theorem dominated by some Y -order-preserving state), So we have by
definition of Y,  that w(f,) =2 g(fl Ve.uv £ ), and everything fol-
lows from the trivial inequality ﬁ(fl VaeeasV fn) > ﬁ(fi), izl,eee,Tt

(which is a consequence of the fact that Q is order—preserving)°

(iii) = (vii): We have to show that if ] is a maximal lattice
state then it is an extreme point of SXVF' So, let Q < kul +

+ (=M, o< <1, Mysdp € SXyp. We claim that

()00 = ) v (1on)uy(e,) v £1,f, € VF with £, v £, s f.

1
Now, assume that for arbitrary f, g we have ﬁ(f) = ﬁ(g)- Then

from (*) and the fact that 4 dis a lattice state we get W(f VvV &) =

d(e) = kul(f) + (l-X)uz(g). And because of le(f) + (1-A)u2(f) =

v

u(f) we obtain M2(f) 2 u,(g). Application of Lemma 10 (iii) gives

= “‘2'

Ty



Proof of the claim:
8(f) = sup {xul(fl) + (12, (£,) | f,,f, € VF with £, Vv f,< £}
defines a superlinear functional on VF with ﬁ < b < SUPy. By the

sandwich theorem there is some state ﬁ such that § < ﬁ < supX.

PN

Hence 4 =4 and & =] since  was maximal.

(vii) » (vi): Assume that € SXF has an extension to an extreme

point 1 of SXyp+ Define 8(g) = sup {u(f) | £ e F, £< g}

Obviously we must have 8 < ﬁ for every dominated extension ﬁ of
u to VF. We claim & = J which proves that ﬁ is the only domi=-
nated extension of M since every extreme point is a maximal state.
From this we easily deduce that U is extreme via the following ar-

gument : Assume Moo= )\ul + (]_-)‘ )L"'Z’ with 0< )< 1 and UlyuZ GS}CF.

Take dominated extensions al’ EZ of Mys Mo and consider

~

Mo= AL, o+ (l-x)ﬁz. This is a dominated extension of W, hence equal

~ -~

to ﬁ. Thus ﬁl =Ud, =M because ﬁ was extreme. Restriction to

F gives U, =M, = U.

Proof of the claim:

Let fl,...,fn be arbitrary elements of F then it suffices to pro-
ve ﬁ(fl VeesV fn) = max {u(fl),...,u(fn)}. For this purpose we con-

sider the cover Y, = {x | fi(x) 2 (£ VaeoV £Xx)},  i=lye.e,n, of X.
n N )
U s ‘Z Xiui with Yi—order-pre—
i=1 . .
was extreme we have WU = M,

Lemma 7 gives us the decomposition

R "
serving states ;- Since M for some

k. So ﬁ must be Yk-order—preserving. This gives u(fl VaeesV fn) =

= d(r,)

u(fk)'

(vi) = (iv): Z(@u) < n() (Lemma 10 iv) and the maximality of W

are obvious. So, we have for arbitrary Z ¢ n(4) to demonstrate
-1
that Z ¢ Z(u). Consider arbitrary G < g < 0 and put A =88

Y = X\Z., If we had | £ ) Supy *+ (1-))supy then the sum theorem

would give us states M, and W; £ SUPy such that W < Adj * (1M 5

This is in contradiction to KM # Supy and the fact that W 1S extre-~

me. Hence there must be some g € F with u(g) >\ Squ(g) +



306

+ (1-2) supy(s).
Then f = a(squ(g) - supx(g))"1 (g—supx(g)) has the required

properties, namely f < O, u(f) =2 g and squ(F) < Q.

(iv) = (v): From the filter properties only Z,,Z, ¢ Z(h) » 2, Nz,
€ Z(y) is nontrivial, but this is an immediate consequence of (iv)
and Lemma 10 (vi). So it remains to demonstrate that Z(u) conver-
ges to uW. For that purpose it suffices to show 1limy =y for
every ultrafilter Y > Z{u). 1et Y ¢y then u ¢ sup, 1is impos-
sible because (iv) thenimplies XN\Y € Z(4) which contradicts

Y2 Z(u). Hence M € supy, ¥ Y € y. This leads to u < 4 = lim Yy,

~ X : imal.
where | is a state and must be equal to y since W is maxima

(v) = (vi): Let v ¢ Face(g). Then from Lemma 10 (v) we obtain
Z(v) > Z(u). Because of Z(v) < 98(v) (Lemma 10 iv) this gives

. . 1d
V< supy ¥ Y € Z(M). Hence v < 1im Z(u) = u. Since this must ho

for every element in Face(u) we get vy = and Face(u) = {u}-

. i d
(v)+(vi) = (1): We first demonstrate that 4 has a unique dominate

" F
extension to VF, l"'”tn €

~ ~ - &
and put § = max(u(fl),...,u(fn)). We show that [J(f, v...v £ ) =

For this purpose we consider arbitrary f

for every dominated extension 4 of e g(fl VessV fn) z 8 is

obvious. For the other inequality we consider

Y, = {x f fi(x) z (fl VieaoV fn)(x)} and obtain with Lemma 7

dsz xiii’ where Gi is Y;-order-preserving (for those i with

Yi # ¢, otherwise we put Ai - O).
d(f z " /e have . (f.;) =
Hence [J{( 1 VesaV fn) < _Zl ki ui(fi). But we hav e
1= . -
= u(fi) if ki # 0 since M is an extreme point. This immediatly

leads to u(f1 VieeoV fn) < 8.

It remains to show that for any cover Yl""’Yn of X we

find some k € n with M < Supy « For this we consider some ultra-
filter 4y o Z(u) on x. Then 1im Yy =3, which has M € supy
¥ Yey as consequence. But as an ultrafilter | has to contain

one of the sets Y seseyY )
1 n -
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IV 2, THE F-REALCOMPACTIFICATION

Let us turn our attention to the Dini-characters of F. First
some remarks. By VF and LF we denote the sup-norm closures of VF
and VF - VF respectively. LF is a vector lattice with respect to
pointwise structure. Sinée states are sup-norm continuous they have
unique extensions from VF to VF and LF. Hence every character
U € BXF must have unique dominated extensions to VF and LF.

These extensions are also denoted by u since no confusion can arise.

12 Remark. Consider W € B8Xy and Y c X. Then u(f) s squ(f)
¥ fe F if and only if u(h) s squ(h) ¥ h ¢ LF.

Proof. The "if" is trivial. From the sandwich theorem we get a do-

minated extension W £ supy of to LF and by uniqueness we have

L= W (on LF). ]

By ZF(u), ZVF(Q), ZLF(H) we denote the sets of strong do-

mination for | with respect to the cones F, VF and LF respect-

ively. The same notation is adopted for n(u).

13 Consequence: Let W be a character of F then

Zo() = 2y () = 2 ().

=N H) = hLF(H) and

Proof. From Remark 12 we obtain hF(u) VF(

Theorem 11 (iv) gives the desired result, since u is obviously a

. . -
character for all the cones under consideration. -

14 Theorem. Let u be a character of F, then the following are

equivalent:
(i) W is Dini-continuous on F
(ii) u is Dini-continuous on LF

(iii) Let zZ, ¢ Z{(u), n €N, then ni{z, | n € N} is not empty.

(iv) 4 has a representing measure m which is a {0,1}-measure,

i.e. m(A) =1 or O ¥ A€ Ip.

(V) @ has a representing measure
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(vi) For every countable cover Yn’ n € N, of X there is some
n, with |5 < supy .
o
(vii) For every h € LF there is an x € X such that y(h) < h(x).
(viii)} For every sequence f, £ 0 din F with T u(fn) > -= there
nelN

is an x with I f (x) > -w.
n
neiN

Proof. We proced as follows
(i1i) = (iv) = (v) = (viii) » (1d1), (v) = (ii) = (i) = (viii) and
(vi)  (iii). The equivalence of (vii) is proved separately. Let us
begin:
(iii) = (iv): Let Z(u) be the family of countable intersections of
elements of Z(u). Then ¢ ¢ Z(4). Hence Z(4) is a filter which
is stable against countable intersections. Now, we define

1 ir acz()

m(aA) =

0 if X\A € Z().
Then m is clearly a g-additive {0,1}-measure on the c-algebra
T={Ye X | YeZ(u) or X\Y ¢ 2(u)}. It remains to prove that
every f ¢ F 1is Z-measurable and that (fdm = u(f). For this purpose
it is certainly sufficient to show thatlan arbitrary h ¢ LF is
I-measurable and that for A = {x ¢ x | h{x) = u(h)}l we have AcZ{u)
(ice. m(4) = 1). Let 5 < 4 (h) then by definition we have
X\h_l(]_m,ﬁj) € hLF(u)’ thus this must be an element of Z(u) =
= ZLF(“) = hLF(u) {(Theorem 11 (iv) and consequence 13). Replacing

h by -h we see in the same way that for v > y(h) X\h-l(EY,+“[) €

m

Z(u). Using the O-additivity of ¥ we then find that h is
I-measurable, and by application of the fact that Z(y) > Z(u) is

stable against countable intersections we immediately get A € Z(4)-

(iv) = (v) is obvious and (v) = (viii) follows from the Lebesgue do-

minated convergence theorem,

(viii) = (iii): Consider Z,¢€ Z(4) and assume N {zn | ne N} =¢0-
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Since Z(u) is a filter we can - without loss of generality - restrict

our considerations to the case where Zn+l c Zn for all n € WN.

By definition we know that there are fn < O in F with u(fn) >

l -
2 -— and supy (fn) £ -2, where Y = X\Z, . Now, we have
n n
1 ﬂ2
z H(fn) z ~I—5=-§g > -
neN n
and
-] w
T fn(x) € T (-2) = -= for x € Y.
n=1 n=m

Because of our assumption the Ym cover X. Hence the sequence f

is in contradiction to (Viii).

£ 5X

(V) = (ii): Let m be a representing measure for 4 € Fe

LF consists of EF—meaSurable functions, since the ZF-measurable func-

tions are a g-complete vector lattice. So

v(h) := j/ h dm ¥ he¢ LF
X
defines a dominated extension of W to LF and must therefore be

equal to on LF. Hence m 1is also with respect to LF a repre-

senting measure for W and (ii) is a consequence of lebesgues domi -

nated convergence theorem.

(ii) = (i) =» (viii) is trivial.

(vi) o (iii) Because of Theorem 11 (iv) the converse of (vi) must be

equivalent to the existence of 2 ¢ Z{4), ©n £ &, such that the

- . ‘ er of X,
&n = X\Zn with p g Squn, n € N, are a cove

The equivalence of (vii): Because of (i) » (ii) it suffices to prove:

(v) for LF = (vii) = (vi) for LF. But: (v) for [LF= (vii) is com-

Pletely obvious. Now, let (vii) be fulfilled and assume that there
is a countable cover Y, , n € N, of X with u & supy (for LF).

Then by Theorem 11 (iv) we find f_ € O in LF with w(r,) =8, >

< O.
>e, = squn(fn), where 8 < 0 and &

i 0 is chosen such that
Define h = xn((anBn) v an) where A > i
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-1
sup |h_(x)| 5425-. Then h = 7 h  is an element of LF with
x€X n n=1
M(h) = sup h(x) > h(x) for all x e 'J (v, | ne N}. This contradicts
x€X
(vii)., 0

We would like to conclude this chapter with some words of

warning. Although we have BX,. = B8X

F we do not have BXLF = BXVF'

VF
Indeed, a state of LF 1is uniquely determined by its restriction fo
VF, ©but not every state on VF is maximal whereas every state on LF

is automatically maximal since LF is a vector space. So in general

we have g8X o gX

LF VF and this has uX o uX as a consequernce,

LF VF

Another warning should be given with respect to the comparison
of the usual realcompactification UX (of X as a subspace of the
topological space SXVF) with UXLF' Here we have in general
uX < VX, p« The reason for this is the fact that although LF is
isometrically lattice-isomorphic to ¢(0) (2 = (closure of X in SXVF)
= BXLF) it is in general only isometrically lattice-isomorphic to a
subspace of CB(X). This inequality vuX < uXLF has some advantages
with respect to products,

Another remark which seems appropriate is that we actually

proved in (ii) = (iv) (of Theorem 14) a little bit more than we

claimed, namely

15 Corollary. ¢ 8Xp is a Dini-character if and only if u(h) € h(X)

for all h ¢ LF,

V  CONSEQUENCES

Those who are acquainted with the theory of Hewitt-Nachbin
Spaces have certainly realized that Theorems 11 and 14 already gene-
ralize very many classical results of Hewitt, Gillman, Jerison and
others. We shall not elaborate this in great detail, but we shall

Present some more results along these lines. These results show that

our theory comprises large parts of Choquet-theory as well as the
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classical theory of continuous functions. Of course, in view of
Theorem 11 {vi) and (vii) this is not very sufprising. In constrast
to the first part of this paper, where we have insisted on giving the
full details of the proofs of the fundamental Theorems 11 and 14 we

are only going to sketch the proofs of the coming results.

V 1. F-PSEUDOCOMPACTNESS

We recall that X is defined to be F-pseudocompact if every

element in VF ({sup-norm closure) attains its maximum on X.
16 Theorem. The following are equivalent:

(i) X 4is F-pseudocompact

(ii) BXF = UXF
(iii) F 4is a Dini cone, that means that for every pointwise

decreasing sequence (fn), n € N, we have

sup inf fn(x) = inf sup fn(x)
x€X n n xeX

(iV) Every state of F has a representing measure.

Proof. We prove the theorem via the following implications:
(i) = VF is a Dini cone = (iv) = (ii) = (1) and (iii) = (ii)
(which is obvious since (iii) implies that every state is Dini-con-
tinuous).

Let us start:

(1) = VF  is a Dini cone (compare[h Theorem 2]): Let h be a de-
and consider

creasing sequence in VF with & = inf sup hn(x) > ==
n xeX

is a decreasing and uniformly bounded se=-

$<a. Then g =h V38

n
quence and the series T kngn converges uniformly on X for
nelN
xn 2 0 with ¥ 3 = 1. So with the help of Simon's convergence
neN

ompactness implies:

lemma [7, p.104] we see that F-pseudoc

’
m m ] (x)
inf{su oo > 0 v 3. =1} < sup lim sup g {x}.
e (nilxngn(x)) | Apseeeshpgz 00 Iy SR e n
(since the &n

The left-hand side is equal to inf sup gn(x) =06
n x€X
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are decreasing and 8 < a), and the right-hand side is equal to

sup inf g (x) which again is equal to the maximum of & and
n
xX€X n

sup inf hn(x). Hence
x£X n
sup inf hn(x) 2 inf sup hn(x).
x€X n n  xeX

The other inequality is trivial, So in view of the arbitraryness of

the sequence VF must be a Dini cone.

VF is A Dini cone = (iv): TFirst of all, we observe that every state
of VF must be Dini continuous (VF is a Dini cone). Every state
of VF 1is dominated by a maximal state thus Theorem 8 tells us, that
every state of VF has a representing measure. Hence every state of

F  must have a representing measure.

(iv) = (ii) follows immediately from Theorem 14,

. L - = BX_ .
(ii) = (i): 4an elementary exercise leads to 8Xyp 8 T

So with Theorems 11 and 14 we get that (ii) is equivalent to

BXVF =1JXVF- From Bauer's maximum principle [1] we know that for

every h ¢ VF there is an extreme point |3 of the state space,

(hence an element of BXVf) such that

M(h) = sup n(x).
xeX
Now, because of | ¢ UXVF we find with Theorem 14 (vii) an x, € X

such that (h) < h(x ). So h must attain its maximum on X. O

This theorem already generalizes some well known results of

Hewitt and Glicksberg. It contains for example the well known

Alexandrov—Glicksberg theorem [ 8, thm 21 or 23] which says that every

state on CB(X) has an integral representation if and only if X 18

Pseudocompact,

Another consequence is the integral representation theorem of [3]-

V 2. THE GEOMETRICAL SITUATION

Consider a compact ¢onvex subset K of a Hausdorff locally
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convex topological vector space and denote by A(K) the affine con-
tinuous functions on K and by 3K the extreme points of K. Then
by Bauer's maximum principle the spaces A(K)‘BK (restrictions of the
f e A{(K) to B3K) and A(K) are isometrically (with respect to the

sup-norm) isomorphic and lattice isomorphic.

Hence they have the same state spaces (being equal to the point

evaluations given by all x € K).
17 Lemma. 3K is A(K)laK-pseudocompact.

Proof, Take a decreasing sequence fn € A(K)laK and denote by wn

the unique extensions of fn to elements in A(K). Then the v, are

also decreasing., From Bauer's maximum principle (for upper semicon-

tinuous affine functions) and from Dini's lemma we know that there is

some X, € 3K such that

inf sup f_(x) < inf sup wn(x) = inf wn(xo) = inf fn(xoL
n x€X n n x€X n n

Since f was chosen arbitrarily this proves the assertion (Theorem

n
16 (iii)). O
So, Theorem 16 contains the celebrated Choquet-Bishop-de Leeuw

theorem as special case.

x ¢ K there is a probability measure m

18 Corollary. For every

) .
on 3K (with respect to the O0-algebra generated by A(h)\aK) such

that
e(x) = o dm ¥ o € A(K).

3K

V 3. EPIMORPHISMS AND ADMISSIBLE SUBSETS
In this subsection we turn our attention to subsets of the

state space, and here especially to the admissible subsets. Roughly

spoken, these are subsets coming out of epimorphisms of cones,

Then if not otherwise mentioned { will

Let ¢ # 0 < SXp.

always carry the topology inherited from the state space. By (a,r)
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we denote the convex cone of functions on given by uw =+ w(f),
£f € F, Since X is embedded in the state space we can identify (X,F)

with F. Cones of the form (Q,F) are called concrete order unit

cones,

Now, consider two concrete order unit cones (Q,F) and (Z,G)

and a map ¢: Q % Z. @ is said to be an epimorphism from (4,F) to

(z,¢) ir
(%) supy (ge®) = sup,(g) wgec o
(5) leew | g€ a} =F,.

Where, of course, getp stands for the function

Q2w +ow)(sg),

and where sup,(g) = sup {y(g) | v ¢ 2z}, and F|q denotes the cone

of functions given by 0 3 4 = w(f), £ ¢ F.

19 Examples. (i) Let { < Q, then the embedding of (] din 0 is an
epimorphism (ﬁ,F) + (Q,F) if and only if {] is a sup-boundary of Q,
i.e. supﬁ(f) = supn(f) ¥ £ ¢ F,.

Such a subset will be called admissible.

(ii) In the geometricai situation the embedding 3K in K gives an

epimorphism (3K,A(K)) =~ (x,a(K)).

20 Observation., Let ® be an epimorphism from (Q,F) to (Z,G)-

(1) o: 0 + 2 is automatically injective and continuous with respect

to the topology of the state space.

(ii) o*: SQF #+ SZ. given by w*(u)(g) =u(gew) ¥ g€ G is an af-

fine continuous injective map.
(iii) For every vy ¢ SZ, there is a y ¢ s Qp such that e*(u) = V-

Proof. Only (iii) is less obvious. For this, we define a superlinear

8 < supy (because of (4)) on (0,F) by

8(£) = sup{v(g) | ¢ ¢ G, gep < f}.
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Then from the sandwich theorem we obtain the desired state |y with

< < . —
8 M Sup, -

Assertions 20 (i) and (ii) have the interesting consequence
that ©* restricted to {u € S Op | o™(v) is maximal in SZG} is

invertible. This immediately leads to

21 Corollary. (i) ¢* maps 8Qp onto 8Z;
(ii) @* maps v into VZe

This together with the fact that ( is dense in 0 U 80
(Theorem 11 (v)) 1eads to the following important universal proper-

ties (which are well known for the classical situation}.

22 Theorem. Let ¢ be an epimorphism from (Q,F) to (Z,G) then

¢ extends uniquely to epimorphisms from (Q U 80p, F) to
(z y BZG, G) and from (Q U UQF’ F) to (z U VZ;, G).

This result is useful for formal proofs of structural proper-

ties. As an exercise the reader may use it for the proof of the

idempotence of 8 and u, d.e.
8(X U BXy), = 8Xp and v(X U vXp)p = UXpe

After this detour let us get back to admissible subsets O of the

v f e F,

state space sX i.e. subsets with sup,(f) = supy (1)

F’

23 Theorem. Let Y be an admissible subset of X.

(i) If Y 4is closed in X and if X is F-compact then Y is

again Fecompact.

(ii) If X 4is F-realcompact and if Y is an Fj-subset of X (i.e.

. - —t .
countable union of closed subsets of X) then Y 1% F-realcompac

i extended
Proof. (i): The embedding ®: Y # X can be uniquely

F = X,F
(thm, 22) to an epimorphism o*: (y U BYF’ F) + (x u BXF’ ) (x,F)
and the dense sub-

(since X is F-compact). Hence p*: YU BYp X

- : Y 5 BYge.
set Y = ¢*"1(p(v)) must be closed in Y U BY,. Thus F
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(ii): First we remark that according to Theorem 14 (iii) or (vi)

every Fo-subset of Y U uYF which contains Y must be equal to

YU vY.. Now, as in (i), the embedding ¢@: Y 4 X extends uniquely

to an injective continuous w*: Y U UYF - X (realcompactness of X)-

Hence, Y must be an Fc-subset of Y U uYF

with the help of our introductory remark., ]

which gives Y o UYF

By a similar argument one proves:
24 Theorem., The following are equivalent:
(1) u € sxp\uxg.

(ii) There is an Fy-subset 0 of X y 8X, with 0 © X and u g Q.

V 4., REALCOMPACT SPACES

We like to look a little bit closer on the case when X is
F-realcompact, i.e, UXF € X. First we observe that we have already
proved the following characterization of F-compactness, which is well

known in the classical case {9, p 347 .

25 Observation, The following are equivalent:

(i) x is F-realcompact and F-pseudocompact
(ii) x  is F-compact,
Proof. (i) = (ii): We have uXp € X (X dis F-realcompact) and
VXp = 8Xp (X is F-pseudocompact), hence BXp < X.

(ii) = (i): Obviously F-compact implies F-realcompact, And from

BXp € X and the fact that all point evaluations are Dini-continuous

follows sXF c UXF' ]

This is a rather useful criterion for F-compact spaces. Be-
Cause very many spaces are automatically F-realcompact and for them

F-pseudocompactness is then a necessary and sufficient condition for

the assertion that x contains already aljl extreme points of the

state space. If one reformulates the Theorems 23 and 24 one easily
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finds examples for such situations:
26 Theorecm. The following are equivalent:

(i) X is F-realcompact

(ii) X is Gé—closed in X U BXF, i,e., for every u € BXF\X there

is an Fg-subset 0 of XU 8Xp with W g0 and 0 D X.

(iii) X 4is the intersection of Fc-subsets of X U 8 Xpe

This theorem generalizes well known results of Mréwka [ 10,p &0]

and Wenjen [ 10, p 81].

Other examples for such X which are automatically F-real-

compact are occuring in topological situations (compare [4]):

27 Theorem. Assume that there is a topology T on X such that all

f ¢ F are T-upper-semicontinuous and such that (X,r) 1is a Lindeldf

space, Then X is F-realcompact.

Proof. Take W € UX, and consider the filter Z(u). By Y we de-

note the r-closure of Y € X. By the definitions of h(u) and Z{u)

one easily shows that & = (Y | ve Z()} is a filter basis of Z{(u).

Hence 4 ¢ X dimplies [ {? | Ye 3} =09 (since JF = W), or in

other words {X\? | Y ¢ ¥} is an T-open cover of X. Thus there
must be a countable subcover X\?n, n¢ N, since (X,7) 1is Lindelbf
in contradiction to Theorem 14 (iii).

™
-

This gives N {Y | ne W} =¢
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