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Zusammenfassung:

Es werden die vier widitigen Losungen der Gleidungen fiir die
Diffusion entlang Korngrenzen und Versetzungen bei endlicher
Quelle zusammengefeRt. Die Loésungen fiir zeitlich konstante
Quellen lassen sich aus denen fiir die endliche Quelle durch Inte-

gration berecinen. Fiir drei gebriudhliche Mefimethoden werden die
Lésungen an Beispiclen aus der Literatur diskutiert: Nit*-Diffusion
entlang Korngrenzen in MgO, Te-Selbstdiffusion entlang Versetzun-
gen und Ni**-Diffusion entlang Yersetzungen in MgO.

Diffusion along grain boundaries and dislocationy

Summary:

The author gives four important solutions for the diffusion along
grain boundaries and dislocations for a finite source. The soluiions
for infinite sources can be calculated, by integration, from those

for finite sources. Solutions for three common experimental methods
are discussed using examples from the literature: Nitr diffusion
along grain boundaries in MgO, spontancous Te diffusion along dis-
locations and Nit+ diffusion along dislocations in MgO.

La diffusion le long des joints de grains et des dislocations

Résumé:

Les quatre solutions jmportantes des équations rendant compte
de la diffusion de long des joinis de grains et des dislocations pour
ube source limitée sont résumées. Les solutions pour des sources
constantes dans le temps, dont la source limitée, peuvent &tre cal-

1. Einfithrung

In der Materialforschung ist das Verhalten von
Korngrenzen und Versetzungen bei Diffusionsvorgéngen
von groBer Bedeutung fiir das Verstindnis von Mate:
rialeigenschaften. Dies gilt insbesondere fiir keramische
Stoffe, die bei hohen Temperaturen eingesetzt werden.
Wahrend man bei Metallen, die oft eine hohe Diffusions-
rate entlang Korngrenzen und Versetzungen aufweisen n,
recht gut mit Niherungen ) fiir die theoretische Losung
des Diffusionsproblems auskommt, ist dies bei halb-
leitenden und keramischen Stoffen nicht der Fall, da bei
diesen Materialien oft geringere Diffusionsraten entlang
Korngrenzen und Versetzungen gefunden werden. Es
sind dann exakte Losungen des Diffusionsproblems not-
wendig, damit man die richtigen Werte fur die Akll.Vle-
rungsenergie der Diffusion und die Korngrenzendicke
bzw, den Versetzungsradius erhélt. Im folgenden sollen
einige wichtige Losungen der Korngrenzen- l.md .Ver-
setzungsdiffusion zusammengestellt und an Diffusions-
experimenten diskutiert werden.

2. Experimentelle Anordnung

Diffusionsversuche werden i.a. an rechteckigen Eln-
kristallen durchgefiihrt, bei denen die Komgrenze eine
zur Oberfliiche senkrechte Ebene bildet, so daB sich ein
raumlich zweidimensionales Diffusionsproblem efglbt.
Bei vielen Stoffen ist es schwierig, ebene Kleu.lwmkel-
komngrenzen durch Bikristalle herzustellen. Es ist ‘dann
experimentell einfacher, durch mechanisches Verznege'n
des Einkristalls Stufenversetzungen zu erzeugen ), (_113
miglichst senkrecht zur Oberfliche stehen solltgn. Dies
ergibt ein riumlich dreidimensionales Diffusionspro-

lem,
——————

*) Dr.J.Mimkes, jetst I1. Physikalisches Institat de
Betlin, D | Berlin 12, Strafle des 17. Juni 135

) R.S.Barnes : Nature 166 (1950), 1032

Y I.C.Fisher: ] Appl. Phys. 22 195D, 78

) M. Wuttig und H.K. Birnbaum: Phys. Rev.
(1965), 495

r TU

culées par intégration. Pour les trois méthodes de mesure utili-
sables, les solutions sont discutées sur des exemples de la littéra-
ture technique: diffusion de Ni** le long des joints de grains dans
MgO. autodiffusion de Te le long des dislocations et diffusion de
Ni** le long des dislocations dans MgO.

Das zur Diffusion vorgesehene Material dampft man
gewohnlich auf die Oberfliche auf und betrachtet die
diinne Schicht als endliche Quelle der Diffusion 4). Zeit-
lich konstante Quellen stellt man durch dicke Schichten
bzw. bei hoheren Temperaturen durch Kontakt mit
gleichem Material in der Dampfphase her ®).

Das Diffusionsprofil bestimmt man entweder nach
kurzer Diffusionszeit als Funktion des Ortes, oder bei
festem Ort als Funktion der Zeit. Im ersten Fall gilt
(D1)"" €1, D ist die Diffusionskonstante des Kristalls,
¢ die Diffusionszeit und [ die Lange des Kristalls in
Diffusionsrichtung. Die Messung der Ortsabhiingigkeit
erfolgt durch Abschneiden diinner Schichten parallel zur
bedampften Oberfliche. Die Flichenverteilung laBt sich
durch Verwendung von Mikrosonden ¢) ermitteln. LaBt
sich der Kristall nicht schneiden, so muB man die
parallelen Schichten abschleifen oder -dtzen und sich
auf integrale Messungen der Konzentration des diffun-
dierten Materials in der abgetrennten Schicht beschrin-
ken. In diesem Fall lassen sich Zahler oder Photo-
schichten verwenden, wenn das diffundierte Material
radioaktiv ist oder nach der Diffusion im Reaktor
aktiviert worden ist.

Gilt (Dt)"* ~ 1, so miBt man gewshnlich die Ver-
teilung des diffundierten Materials auf der Riickseite
des Kristalls als Funktion der Zeit. Im allgemeinen
beschrinkt man sich dabei wieder auf die Messung der
integralen Konzentration der gesamten Fliche. Diese
experimentelle Erleichterung wird durch erschwerte Aus-
wertung der Ergebnisse erkauft, da ein weiterer Para-
meter an die gemessenen Werte angepaflt werden mufl.

3. Theoretische Lésungen

Die Losungen der Diffusionsgleichungen werden durch
die Geometrie der Differentialgleichungen, die Anfangs-
R
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und die Randbedingungen bestimmt. Im folgenden
werden die riumlich zweidimensionalen Gleichungen
der Korngrenzendiffusion und die der dreidimensionalen
Versetzungsdiffusion untersucht. Als Anfangshedingung
wird eine endliche und eine zeitlich konstante Quelle
betrachtet, als Randbedingung wird fir den Fall
(D1)" €1 ein unendlich ausgedehnter Kristall und fiir
(D1)"t = { ein endlicher Kristall angenommen, Daraus
ergeben sich acht Losungen des Diffusionsproblems,

Die Differentialgleichungen der Korngrenzendiffusion
fiir eine endliche Quelle der Stirke y lauten:

9% ¥ 1 3 vy
ﬁ;"'—ay—,'——ﬁ—*ﬁ‘ Dd(z)é(t) lzl>a (1)
3% | 9% 13 ¥
e i@ lzl<e @
Al a ‘a‘
c=c, D«—a:=13——acI x| =a (3)

Hierbei ist ¢' die Konzentration des diffundierenden
Stoffes und D' die Diffusionskonstante innerbalb der
Korngrenze, auflerhalb gilt entsprechend ¢ und D. Die
Korngrenze mit der Starke 2a verliiuft parallel zur
y-z-Ebene, die Diffusion erfdft in z-Richtung, & ist
die Deltafunktion. Die Ldsung der Gleichungen laBt
sich mit Hilfe von Fourier-Laplace-Transformationen
finden.

1. Fiir den Fall des in z-Richtung unendlich aus-
gedehnten Kristalls lautet die Fourier-Laplace-Trans-
formation:

E(z, iy 4) ‘.-f f c(z,2,8) "coa (4 2) ‘exp(—11) dzdt (4)

und die Differentialgleichungen lassen sich iiberfithren
in:
0% [Oz% = k2E — /D
ore' /o2 = k18 — y/D'
B=p2+ifD k*=u2+)jD
Mit den zusitzlichen Randbedingungen 9c'/3z=0 bei
z=0 und 3¢c/0r=0 bei 2 o erhilt man folgende
Lésung der transformierten Differentialgleichungen (5)
und (6)
E(z,pd) = y/(DEY) +Aexp(—kz)  (7)
&(z, 1, A) = y[(D' k) + A’ cosh (k' z) (8)

Die GroBen A und A' lassen sich durch die Rand-
bedingung (3) bestimmen, die Riikiransformation er-
folgt durch die Gleichung

+ioe +o0

clavnd) =1(2a) | [ 8z p,2) cos(uz)

{00 ~ag
exp(de) dz-dt 9)
Die dabei notwendigen mathematischen Schritte lassen
sich bei Whipple?) nachlesen. Fiir die riumliche
Verteilung der Korngrenzendiffusion im unendlic; aus-
gedehnten Kristall ergibt sich bei endlicher Quelle fiir
den Bereich auBerhalb der Korngrenzen die Lésung 8)

c(§,{ ) =y(nDy~" (10)
4
. {exp(—t’/‘l)-i-%;fup (-—%)
{

- erfe H— (g—:—:)lh (5-a+ %l) %}
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(5)
(6)

mit

Die reduzierten Parameter £, {, a, 4, § sind definient
durch

f=x'(Dt)_l/', C-’-Z' (Dl)—lh’
4-D'(D, f=(4-1)a

Fiir den Bereich des Inneren der Korngrenze |z| <a
18Bt sich die Konzentration c¢'(z, z, ¢) mit Hilfe von
Gl (3) aus der Konzentration c{z, z,t) des &uBeren
Bereichs berechnen:
. _ _a\l [E-a\ndc
Sbn=eb -5 3o ()

2 a3 —3?

a=a" (Dt)~'h

t=a
1

Da in den meisten Fallen die Konzentration ¢’ inner-
halb der Korngrenzen vernadilassigt werden kann im
Vergleich zu der des #uBeren Bereichs, ist die Losung
(11) nur in speziellen Fillen von Bedeutung?).

2. Im Fall langer Diffusionszeiten [ (D ¢)" = !] muf
man die endliche Linge ! des Kristalls in z-Richtung
beriicksichtigen. Die Diffusionsgleichungen (1) und (2)
werden dann durch die folgende Transformation geldst

4+l =
(2, 4) =1 [ [ e(z,2,2) -cos(y 2) -exp(—11) didz
—io (12

mit u,=n2fl. Fiir die rdumliche Verteilung der Korn-
grenzendiffusion bei endlicher Quelle ergibt sich mit
der zusitzlichen Randbedingung 3c/Qz = 9¢'/0z =0 bei
z=1 die Losung

c(z,z,8) =/l (13)

‘ [1+2i<1—b,.) c08 (i 2) ‘exp(~p,2.Dt)]
n=1

4
ba(z) = (4-1) 4z [ exp(— (4 1) o)
1
rfc( s—a+tofa ) do

roja 4
2(Dt—o)'hr (14)

Der Beitrag der Komgrenzendiffusion fiir | z| > & wird
durch b, (z) gegeben, innerhalb der Korngrenze gilt bei
gleicher Lisung (13)

bu(z) =by(a) - 2 S 1 (,:_,:), bl |

I . N 15
S onl\ 24 9z (15)

z~=a

3. Die Differentialgleichungen der Versetzungsdif-
fusion fiir eine endliche Quelle der Stirke p lauten:
B 1 Qe e

1 6, dc 1 J¢ y
3 r or 33 "’b‘w—ﬁdfz) 6(‘) I'Tld6)
A 13,3 1Ay
st ,+~a;;=b—_§;—-ﬁd(z)6(t) r?la”
c=c' % _pd _
c D~a~r._D 5 ,(;;3)

_Die Berechnung der Lésung erfolgt wie im zwei-
dimensionalen Fall durch Fourier-Laplace-Transforma-
tionen, Fiir den in z-Richtung unendlich ausgedehnten
Kristall benutzt man die Transformation (9) und er-
sett ¢ durch die Variable r, Sei d die Versetzungs-
dichte, dann st 7 A* = 1/d die Grundfliche des Kristall
zylinders mit der Diffusitit D, der im Mittel eine
Versetzung einschlieBt. Mit der zusitzlichen Bedingung

¢'/3r=0 bei r=0 und 3c/or=0 bei r=A erhilt

320'% I Mimkesund M. Wuttig: J. Appl Phys. 41 (1970}
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man suBerhalb der Versetzung, d.h. fiir r>q die
Losung 19) :

cle,f,t) = (19)

b4
(xD "

Jorl-5)e el i-3)

AG) oo s (3=0) (o= w273

o) el (=) (e a2
mit o=r(Dt)~"" und a'=A-(Dy)~"

Fiir den Bereich r < a innerhalb der Versetzung erhilt
man mit Hilfe von Gl. (18)

(0,8, 8) =c(a,t) — 4 i 1 (_Q’;a’)n?i

a Zi2n\ o de

)

¢=s
(20)
4. Im Fall langer Diffusionszeiten (D) =1 he-
nutzt man analog die endliche Fourier-Laplace-Trans-
formation (12) und ersetzt z durch r. Als Losung fiir
die Bedingung O¢/dz=0 bei z=1 erhilt man wieder
Gl (13), der Beitrag der Versetzungsdiffusion auBer-
halb der Versetzung wird gegeben durch!) (r>a)

by(r) = (4—1) u? _lfnexp[ —(4-1) yio—ofa®] do
0
el
+ (2 Aa—r)”,"'rfc [ ¥ r(;‘;:i)%-i”

Innerhalb der Versetzungen gilt (r <a)

' g w1 [rt-at 7 3ba(r)
B =bate) - 5 50 (S5
Damit sind die vier Losungen, welche die Korn-

grenzen- und Versetzungsdiffusion fiir den unendlich
langen und den endlichen Kristall im Fall der endlichen
Quelle beschreiben, gefunden.

5. Bei zeitlich konstanten Quellen muB in den Dif-
ferentialgleichungen der Korngrenzen- und Versetzungs-
diffusion die Funktion &(z) durch die Heaviside-Funk-
tion A(1) ersetzt werden. Die Berechnungen werden
ganz analog durchgefiihrt, im Fall der in Diffusions-
richtung z unendlich ausgedehnten Korngrenzen ergibt

(22)

sich7)
4
. 8,1) =7 [erfc (5)-2 fom(-2)
1
L2 e ]

Diese Losung fiir die zeitlich konstante Quelle cr.hiilt
man auch, wenn man die Losung (10) fiir die endliche
Quelle von z bis integriert:

o0

c(konst, Quelle) = [ c(endl. Quelle) dz
f
Diese Regel gilt auch fiir die iibrigen behandelten
Randbedingungen, und da sich die Integration expliziert

1 %) J Mimkes und M. Wuttig: Phys. Rev. B2 (1970),
619

) J Mimkes und M. Wuttig: J. Amer, Ceram. Soc.
54 (1971), 65

durchfiihren 1i8t, kann auf die Berecinung der iibrigen
Lésungen fiir die zeitlich konstante Quelle verzichtet
werden.

4. Diskussion

Die theoretischen Losungen der Diffusion ermig-
lichen jetzt die Bestimmung der Parameter Diffusions-
konstante D, Diffusionskonstantenverhiltnis 4=D'/D
und Korngrenzendicke bzw. Versetzungsradius a durch
Anpassung an die experimentellen Ergebnisse. Fiir die
drei wichtigsten MeSmethoden soll dies an den folgen-
den Beispielen aus der Literatur verdeutlicht werden.
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Bild 1. Experimentelles und berechnetes Konzentrationsprofil von
Nit* in MgO Bikristallen nach 312 h bei 1200°C*% %)

Bild 1 zeigt die rdumliche Verteilung von Ni®* ent-
lang einer Korngrenze in MgO. Wuensch und
Vasilos®) untersuchten die Diffusion einer diinnen
Schicht von Ni?* nach 312 h Diffusionszeit bei 1200 °C
mit Hilfe der Mikrosonde. Die Ordinate gibt die Kon-
zentration des diffundierten Nickels in einer zur be-
dampften Oberfliche parallelen Schicht an, auf der
Abszisse ist der Abstand von der Korngrenzenmitie
aufgetragen. Es wurden die Diffusionsprofile von
Schichten im Abstand von 32, 54, 80 und 93 um unter-
sucht.

Da (D6)""=1,7-10"%cm K[ ist, wurde zur Aus-
wertung die Lésung (10, 11) fiir Korngrenzendiffusion
bei endlicher Quelle und unendlicher Kristallausdeh-
nung benutzt. Die ausgezogenen Kurven geben mit
D-=291072cm?s™}, 4=1,5 und @ = 75 um die opti-
male Anpassung der Losung (10, 11) an die Experi-
mente wieder*). Die groBe Ausdehnung der Korngrenze
mit @ = 75 sem scheint in diesem Fall durch Ausscheidung
einer Silicatphase in der Korngrenze bedingt zu sein !?).

In Bild 2 sind die von Ghoshtagore durchge-
fiihrten Messungen der Selbstdiffusion von Te entlang
Versetzungen nach 30 min bei 400 °C dargestellt. Die

12y B.J. Wuensch und T. Vasilos: J. Amer. Ceram.
Soc. 49 (1966), 433
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Menge des diffundierten Te wurde integral iiber diinne,
etwa 1 um grofle Schichten gemessen, die parallel zur
bedampften Oberfliche abgetrennt wurden, Die Ordi-
nate gibt die gesamte Menge Q des in der diinnen
Schicht enthaltenen radioaktiven Te an, die Abszisse
das Quadrat der Entfernung der abgetrennten Schicht
von der Oberfliche. Zur Auswertung muBte, mit
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Bild 2. Experimentelles und berechnetes Konzentrationsprofil bei

Selbstdiffusion von Te entlang Versetzungen nach 30 min bei
400 °C mie Verseizungsradius a als Parameter 4, 16)

(D) =1,4 um <1, die Lisung (19) fiir den Fall der
Versetzungsdiffusion bei endlicher Quelle und unend-
licher Kristallinge Gber die ganze Flache integriert
werden,

a A
Q(z,1) =2nfc‘(r,z,t) rdr+2nfc(r,z, t) rdr (24)
0 a

Die mit D=1-10""¢m?s~1, 4—38+13 und a= 1,5
10,5 um optimal angepaBte Lésung Q(z, t) deckt sich
mit den experimentellen Werten). Zum Vergleich
wurde noch die Anpassung fiir 6 =0,15 #m eingezeich-
net, die gestrichelte Linie gibt den Verlauf der Diffusion
fiir 6 =0, d. h. ohne Versetzungen an.

In Bild 3 sind abschlieBende Messungen 1) der Ver-
setzungsdiffusion von Ni?* in MgO wiedergegeben, die
bei 1200 und 1250 °C fiir mehrere tausend Stunden
durchgefithrt wurden. Die Ordinate zeigt die auf der
Riickseite des 0,02cm dicken Kristalls integral ge-
messene Menge radioaktiven Nickels, auf der Abszisse
wurde die Zeit aufgetragen. In diesem Fall ist (D )"
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Bild 3. Experimentelle und berechnete Konzentrationsprofile bei
Diffusion von Ni** entlang Versetzungen in MgO bei 1200 und
1250 °C in Abhingigkeit von der Diffusionszeit 11)

=10"%cm ~ I, zur Anpassung an die experimentellen
Werte muB die Lisung (21, 22) fir die Versetzungs-
diffusion bei endlicher Quelle und endlicher Liinge des
Kristalls entsprechend Gl. (24) iiber die Fliche inte-
griert werden. Die ausgezogenen Kurven geben die
optimale Anpassung der theoretischen Losung Q(1, 1)
mit D=4,5-10"2cm®s™1 bei 1200°C, D=7-10"12
cm?s™ bei 1250 °C und A< 10 fur beide Tempera-
turen wieder. Wegen des geringen Finflusses der Ver-
setzungen auf die Diffusion war die Anpassung des
Versetzungsradius g an die experimentellen Werte nicht
mdiglich, Wie schon die Messungen der Korngrenzen-
diffusion von Ni** in MgO in Bild 1, deuten auch die
Ergebnisse der Versetzungsdiffusion von Ni?* in Mg0
in Bild 3 darauf hin, daB in ionischen Kristallen die
Kationendiffusion nur wenig von Korngrenzen oder
Versetzungen beeinfluBt wird,
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