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The enthalpy of monovalent metals is ealeulated as a function of electron density according to
the model of nearly free electrons. The coefficient of thermal expansion of solid and liquid mono-
valent metals is given by heat capacity and Fermi energy, ap{T) = 2.5 % C p(T)jep(T). The heat of
fusion is determined by Fermi energy and relative change in volume at the melting point, Ly, ==
= 0dep(T) X (Vg — Vg)/ V1. The agreement with experimental data is quite satisfactory for
all alkali and noble metals.

Die Enthalpie einwertiger Vetalle wird als Funktion der Elektronendichte nach dem Modell der
fast freien Elektronen berechnet. Der Koeffizient der thermischen Ausdehnung fester und flissiger
einwertiger Metalle wird durch die Wiarmekapazitit und Fermienergie gegeben, « p(T)y=2,5
X Op(T)]ep(T). Die Schmelzwirme wird darch die Fermienergie und die relative Volumen-
inderung am Schmelzpunkt bestimmt, Ly = 0.4ep(Th) X (V5. — Vg)/Vy. Die Tbereinstimmung
mit experimentellen Werten fiir Alkali- und Edelmetalle ist recht zufriedenstellend.

1. Introduction

Thermal expansion and fusion are generally attributed to anharmonic phonon-phonon
interactions in condensed matter. In a first approach thermal expansion may be
linked to the anharmonic ionic potential. This will lead to a coefficient of thermal
expansion, which is pl'oportional to the anharmonic coefficient of the pote_ntl_al [1].
However, the model neither reflects the temperature dependence of \,,Asmular‘to
specific heat at low temperatures, nor does it show a close relation to fusion, which
makes it unsuitable for a more detailed discussion of these effects.

Most calculations of thermal expansion are based on the Griineisen relation, which
connects the coefficient of volume expansion xp to heat capacity at constant volume

CV [l]’
Xp = ](i{ . (1
eV
have been calculated quite accurately from pseudo

In alkali metals the bulk moduli Br ! i
hen be reduced to the discussion of

potential calculations. Thermal expansion may t _ '
the Griineisen parameter @ [2 to 6] according to (1). However, the_dlscussmn proves
to be complex, as all phonon branches as well as the electron_s will have a specific
Griineisen parameter. Thus little is revealed about the mechanism of thermal expan-
sion,

The heat of fusion of alkali metals has been obtained from psgudo pot.ential c:al-
culations [7]. Again a mechanism of anharmonic interactions or f}lSlon and its relation
to thermal expansion has not been obtained from these calculations.

1) PSF 1621, D-4790 Paderborn, FRG.
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i i i the electron density
In the present paper thermal expansion will be dlscussgd by the
concept. The enthalpy of the free electron gas or an alkali metal will depend on the

electron density. Due to thermal expansion or melting electron density and enthalpy
will change according to

dH ) dH 2)
dH = |- dV+(——) ar.
(dV r ar/,
Differentiating at constant pressure with respect to temperature we obtain
szl/r(—iﬁ CXP+CV, (3)
dv/,

vp = (dV[dT)p[V is the coefficient of volume expansion. Integrating (2) at constant
melting temperature T, leads to the heat of fusion Ly,

dH 4
Ly = (d-V)Tm(VL ~ Vs, *)

with V' and ¥ being the volume of the liquid and the solid at the melting point,

respectively. In order to apply (3) and (4) to alkali metals, the enthalpy of the free
electron gas will be caleulated in the next section.

2, Enthalpy of Alkali Metals at Constant Pressure P = 0

The mean kinetic energy of N free electrons at constant pressure as a function of
temperature T is given by

oy 3y (YO 5 [ akeT PP °
Fn) = 5‘“'{[»’(@] +§[ Zer ]} )

¢y is the Fermi energy at T = 0, ¢ is proportional to the 2/3rd power of the electron
density n. Equation (5) agrees with the calculations for constant volume [8], an
includes thermal expansion. The kinetic energy is determined by the electron density
of the first term in (3), the second term is a second-order correction, and will affect
a few electrons at the Fermi surface, only. This is due to the high energy of the Fermi
svstem at T = 0, changing the temperature will only have a relatively small effect
on the energy of the electronic system.

According to Slater [9] the total energy E{T) of an electron system may be derived
from the virial theorem. For P = 0 the virial theorem for any Coulomb type inter-
action vields

E(T)

—{ By} , 6
E(T) is the total energy at equilibrium, it is equal to the negative kinetic energy (3)
due to the bound state of the electrons. The total energy E(T) contains the volume
V(T) as a function of temperature. For the free electron gas the volume will be given
as a constant boundary condition, which is generally unaffected by temperature.
In 'real systems like alkali metals, however, the volume of the free electron gas is
defined by the volume of the ions, which will change with temperature due to the
movement of the ions,

S(? far the energy of the ions has not been mentioned. The Coulomb potential of
the ions confines the free electron gas within the volume of a metal. It is responsible
for the bqur_xd state of the electrons, which has been calculated by the virial theorem
in (6). This implies that the enthalpy of the ions is implicitly incorporated in (6).
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For P = 0 enthalpy H = E - PV and energy E will be equal and we obtain the
enthalpy of the free electron gas,

3 o J[VO 2 5 [akTT
S R

We may now proceed to calculate thermal expansion and heat of fusion according to
(3) and (4).

3. Thermal Expansion

Heat capacity Cp is the derivative of enthalpy H (7) with respect to temperature T'
at constant pressure P. According to (2) and (3), we now obtain

dH 2 IAORRE T

— ) = Negp| —nr — N [ahksP 5. 8

(dT)P 5 Ner [ V(T)] xp = Nlako 5 ®)

Dividing (8) by the number of electrons N we find the heat capacity per (monovalent)
atom at P = 0,

T V(0) 73 P

Thel? —— = —2 1 Xxp. 9

Cp + [7hg] 5oy 0.4 ¢p [V(T)} Xp (9)

The first term may be considered as heat capacity of the phonons, which are incorporat-
ed in the present model. The second term in (9) is the electronic contribution to
specific heat. The total heat capacity is a function of the density of electronic states
or Fermi energy &y and the coefficient of thermal expansion xp. .
We may now solve (9) forap. Introducing the temperature dependent Fermi energy
(

V()R
Ep(T) = ey [7('0—))] ,

: - . . 5 . o]
we obtain the coefficient of volume expansion as a function of temperature 7,

Cp(T) 11

ap(T) = 25—, (11)
‘ Eg(T)

Equation (11) is equivalent to the Griineisen relation (1), which relates thermal expan-

sion to heat capacity. In contrast to (1) all functions in (11) are well know_'n, tvhe Griin-

eisen constant (¢ does not appear. In the present model thermal expansion is a fune-

tion of heat capacity and electron density or Fermi energy.

(10)

3.1 Thermal expansion of solid Li from 0 to 433 K
In order to calculate the thermal expansion of lithium as a function of temperature,

we will approximate Cp(T) by Cv(T), which may be calculated as a function of
temperature by the Debye function D(T/Tp) and the Debye temperature T', [10],

125\3 T 12
¢ = () () .

e the hardly temperature dependent Fermi energy Ex(T)
The coefficient of thermal expansion between 0 K and 7',
Fermi energy and Debye temperature, only,

In addition we may replac
In (11) by the constant .
will now depend on the two parameters

(125)3 ﬁl)_ (13)
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Fig. 1. Volume expansion of Li according to (13). Eg}
perimental data according to [11], 7'y and ¢ from [

R 7 R T, 57,

Fig. 1 shows the coeffici

in the temperature range from 0 to 453 K. The calculate
to (13) with ¢y — 474 eV and Ty, =400 K [87,
Li from literature [11j.

s a function of temperature 7
d solid line in Fig. 1 correspond
and agrees well with data points of

3.2 Thermal expansion
For other alk
shows the volume ex

according to (11), experimental data [10
of experimental and calculated value

3.3 Thermal erpansion of liquid alkal; metals at T,,

The model of free electrong jg also applicable tq liquid metalg [13], and the above
caleulations of thermal expansion should be valig for liquid alkali metals as well.
Table 2 shows the coefficients of thermal expansion x, caleulated according to (11),
for lignid alkal; metals at t i m- Values for specific heat and Fermi
energy at the melting point are taken from the literature [13]. Experimental values
[14] are given in the sec

ond column, The ratio of experimenta] and calculated values
i* given jn the third column_

Table 1

Coefficients of therm
according to (11),
and ealey]

al expansion ap of solid alkali metals at 7' = 300 K, Caleulations
experimental daty from the Iit,

erature [10]. The ratio of experimental
ated values ig given in the thirq column

metal ap(300 K) (10-1 K-
cale., exp. exp./cale.
Li 1.3 1.35 1.0
B:a 2.2 2.13 1.0
K 3.6 2.49 0.7
Rb 4.3 2.70 0.6
Cs 5.1 2.91 0.6

—
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Table 2

Coefficients of thermal expansion ap of liquid alkali metals at the melting point 7',
Calculations according to (11), experimental data from Webber and Stephens [14]. The
ratio of experimental and calculated data is given in the third column

metal ap(Th) (1071 K1)
cale. exp. exp./cale.
Li 1.8 1.6 0.9
Na 2.7 2.42 0.9
K 4.1 2.90 0.7
Rb 4.7 3.38 0.7
Cs 5.5 3.95 0.7

3.4 Heat of fusion of alkali metals

The heat of fusion of alkali metals may be obtained from the enthalpy of the free
electron gas (7) and (4),
Ly, — 04E(Ty) I—LT Fs (14)
I
The heat of fusion L, according to (14) is proportional to the relative change in
volume (Vq — ¥g)/Vq and the Fermi energy at the melting temperat‘ulje T.. Melting
of alkali metals is accompanied by a change in volume of 1.59%, for Li, 2.59%, for Na
and other alkali metals [15].
Table 3 shows the heat of fusion L, of alkali metals. The first column gives the
calculation according to (14). The Fermi energy at the melting point according to (10)
may be calculated from the volume of the liquid and has been taken from the liter-
ature [13]. The relative change in volume has been given by Wray [15].
Experimental values of the heat of fusion [13] are given in the second column. The
ratio of experimental and calculated values in the third column is nearly unity for

Li and Na and about 0.7 for other alkali metals.

3.5 Discussion of alkali metals
heat of fusion according to the concept

43 . .
Ihe caleulation of thermal expansion and .
The agreement of experimental and

of electron density leads to satisfying results.

Table 3

Heat of fusion Ly, of alkali metals.
from [13]. The ratio of calculated an

Calculations according to (14), experimental data
d experimental data is given in the third column

metal L,, (meV)
cale. exp. cale./exp.
Li 27 31 0.9
Na 31 27 1.1
K 19 24 0.8
Rb 17 23 0.7
Cs 16 23 0.7
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caleulated values for solid and liquid expansion as well as for heat of f usion of alkali
metals in Tables 1, 2, and 3 is 109, for Li and Na and within 30% for other alkali
metals. The ratio of experimental and calculated values in the third co'lumn. of al
three tables is about 1.0 for Li and Na and about 0.7 for K, Rb, and Cs. This rf}tlo may
be interpreted as an effective mass ratio of the nearly free electrons _in alkal_l metals,
Similar effective mass ratios for alkali metals have been calculated in the literature
[12]. The good agreement of the simple free electron model with experimental d_ata
of alkali metals is due to the s-type band structure of the alkalj metals. If an applica-

tion to other metals should be possible, it will at least require modifications according
to additional p- or d-bands of the crystals,

4. Solid Noble Metals

For solid noble metals the volume expansio
(11) will be too large by a factor of about 2,
is applied. This is due to the fact that in (5) only the kinetic energy of s-electrons has

heen taken into account. In solid noble metals, however, d-electrons will have to be
considered, as well. The kinetic energy of a d

Taylor series in wave number £,

n coefficient wp caleulated according to
if the Fermi energy of the literature [10]

o (16)

. 3 o 23

<kkin>d = E() ‘:“ 5“ ZVEd [I\O)J .

The first term in(16) is a constant, and wil] drop out of the caleulations after differen-
tiating with respect to volume 7, The Second terms containg the contribution of d-
electrons to kinetijc CNergy. ey corresponds to the width of a]i d-bands similar to ¢y,
which indicates the width of the filled s-band. The total kinetjc energy of s- and d-
electrons in solid noble metals wil] he the sum of (5) and (16). The Fermi energy &y 1s

l(‘pldl(‘d ])‘ th(,‘ sum Of 3}' and 4. Ihe effe(tl"e Fellnl ener \4 €y — - E(l ake
R d g €
aceount 5~ a“d d~t‘18(thIIS.

itting thermal eXpansion at 3((

K to experimental
& = 2.8¢yp for Au

ratures the molgy specific heat of nobl tals i d by the

linear electronic contribution e torm s 18 represente Y
and the Debye cubic te "hi hermal

volume €Xpansion coefficient [1] v rm. This leads to a the

Xp = alT + a3T3 . (17)
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Table 4
Calculated coefficients of thermal expansion @, and @; of solid noble metals at low tem-
peratures according to (18), experimental data from the literature [11]

metal a, (10710 K-2) ay (10710 K~4)

cale. exp. cale. exp.
Cu 5.8 7 0.98 0.83
Ag 7.1 7 3.9 3.6
Au 3.9 6

7.3 6.0

With (9) and (12) we find
akyg |?
a, = 5[2E§} )

v — 5(125)3 1
872\, EY
Table 4 shows the calculated values of «, and «, according to (18) for copper, silver,
and gold. The same effective Fermi energy has been employed as in Fig. 2a to c.
Experimental values [11] are shown in the second column. Again the agreement is

quite satisfactory, only gold shows a deviation of calculation and experiment that
exceeds 209/,

(18)

4.2 Thermal expansion of solid noble metals from 0Kio?2Tp

In the calculation of thermal expansion of noble metals as a function of temperature
T we have to replace ep in (18) by €F,

125\3 Ty 1
a5V p( L) L. (19)
=25 ()

Fig. 2a shows the volume expansion coefficient of Cu as a function of temperature
in the range from 0 to 600 K. The parameters are Tp = 315K aqd ep = 7.0eV [.10],
and &ff — 1.8¢,. The solid line represents (19) and agrees well with the data points
given by [11]. . .

The same holds for silver and gold. Fig. 2b shows the calculation of ap s:ccordmg to
(1Y) for silver with the literature values Ty, = 215 K and &p = 5.49 eV [1.0]. The
effective energy is again ¢ff = 2.1ey. In Fig. 2¢ ap is given for gqld x‘vitvh literature
values 7)), = 170 K, & = 5.53 eV [10], and &f = 2.8¢p. The solid ll_ne calculated
according to (19) agrees rather well with the data points given in the literature [11].

4.3 Liquid noble metals

The calculations of thermal expansion may be applied again to liquid no‘t')le metals.
Table 5 shows the coefficients of thermal expansion xp calculated according to (11)

for liquid noble metals at the melting point T'y. Values for specific heat and Fermi
en from the literature [13]. Experimental values

energy at the melting point are tak :
[14] are given in the second column. The ratio of experimental and calculated values

is given in the third column.

¥ physica (b) 148/1
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00 200 300
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Fig. 2. Thermal volume expansion

according to (19), experimental data according to [11], 7'y, and
ey from [8): a) (y, & = 1.8, b)

Ag, of = 2.1ep, ¢) Au, & = 2.8¢p

In the caleulation of thermal expansion of liquid noble metals the Fermi energy
of the literat yre has been employed without any correction for the d-electrons. I';OP
Cu the valye of ‘roagrees well with the data, The Ag caleulation deviates by 309,
h()wm'er, data for the bulk modulug [13] indicate an experimental value of ap tha;’
agrees within 10°0 with the caleulation above, Thege results indicate that therma
Broperties of liquid nohle metaly Seem to depend o s-electrong only,

Pansion «,, of liquid noble Metals at the melting point Tp,.
Calculations according to (11),

- €Xperimental daty, from Webber ang Stephens [14]. The
ratio of €xperimenta] gng caleulated datg is given in the third column

metal xp(Ty) (10-4 K-
—_—
cale, exp. €xp./cale,
,,,,,,,,, Tee— ——
Cu 1.2 117 1.0
Ag 1.6 (1.19) (0.75)
Au 1.5 —

T
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Table 6
Heat of fusion Ly, of noble metals. Calculations according to (14), experimental data
from [13]. The ratio of calculated and experimental data is given in the third column

metal L, (meV)

cale. exp. cale./exp.
Cu 139 134 1.0
Ag 110 116 1.0

Au 120 132

0.9

4.4 Fusion of noble metals

The heat of fusion L, according to (14) is proportional to the relative change in
volume and the Fermi energy at the melting temperature T’

Table 6 shows the heat of fusion Ly, of noble metals. The first column gives the
caleulation according to (13). The Fermi energy at the melting point according to
(10) may be calculated from the volume of the liquid and has been taken from the
literature [13]. The relative change in volume has been taken from Wray [15].

In the calculation of heat of fusion of liquid noble metals no correction due to d-
electrons has been used. This may again indicate that d-electrons do not take part
in the bonding of liquid noble metals as much as they do in the solid.

4.5 Discussion of noble metals

The calculations for thermal expansion and heat of fusion of noble metals indicate
that the electron density concept may indeed be applicable for monovalent metals.
The results for thermal expansion of all liquid and solid monovalent metals as well
as for the heat of fusion is, in spite of the simplicity of the nearly free electron model,
quite satisfactory. The effective Fermi energy shows to represent the cohesive energy:

the larger the cohesive energy, the smaller thermal expansion. . 4
Moreover, we have found an indication to differences in the electronic state of solid

and liquid noble metals. In liquid noble metals the d-bands seem to contribute little
to cohesion and thus to thermal expansion and fusion. However, before discussing
these results in more detail, additional calculations have to be carried out for other

f.c.c. metals,
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