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Abstract. The Griineisen relation I' = a, K7 V/C, has been integrated with respect to 7 at constant
volume. This leads to a potential £(¥) with the two exponents I” = m/3 and & = n/3. The Griineisen
constant I"is the exponent of the repulsive term. The exponent & of the attractive term may be determined
from heat capacity, thermal expansion and cohesive energy, d = Cy/ay/e..

The pressure coefficient of the bulk modulus of an m-n potential E(V) is given by Ko’ = m/3 + n/3
+ 2. According to the calculations above we obtain K’ from thermophysical databy K” = I' + & +
2 = a,K;VIC, + Cy/a,/e. + 2, with K¢' = 4—5 for alkali metals, Ky = 5.2—6.2 for transition
metals and K" = 7-8 for solid rare gas crystals. This is in good agreement with high pressure data.
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1 Introduction

Thermophysical properties as well as high pressure data of solids may be calculated from
Helmholtz or Gibbs free energy. Several equations of state (EOS) have been proposed for
solids [1—10]. In first order the potentials E(V) have generally been chosen

E(V) = Cl(Vy/ )™ = (Vo/ V)] - (1)
The choice of C, m and n depends on the proposed EOS..
The pressure coefficient of bulk modulus at p = 0 is given [10] by
¥l

Ky = (3K1/dP),.o = m/3 + n/3 +2.

Experimental values of K, [11] are of the order of 4 for alkali metals, near 6 for

transition metals [11] and about 8 for rare gas crystals [12].

The calculations of K’ vary with the models, some EOS give Ky =3 '[3, 10],’the
Birch EOS [7, 8] leads to Ky’ = 4, Lennard-Jones [2] withm = 12,n = 6 ylek_:ls Ko. =
8, other models [1, 4, 6] leave only undefined values for m and n. A recent discussion

of EOS [10] revealed that none of the reviewed EOS can predict the correct values of Ko’

for all types of materials.
This deficiency in the calculation of
to propose a model that may be applie

K’ has been the motivation for the present paper
d to all cubic materials.
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2 The Griineisen EOS

The present model is based on the Griineisen relation [1]: volume expapsion a,, bulk
modulus K7 and molar volume V are proportional to molar heat capacity C,,

a,K;V=rc,, 3
I'is the Griineisen constant. The Griineisen relation (3) is equivalent to
@PAAT), V = I'QE/3T), , C)

and may be integrated with respect to T at constant ¥V, This leads to the Griineisen EOS
[1] for cubic solids,

P(LV)V =TIET V) + GV, ®

I'= —(dlog @/dlog V) and @ is the Debye temperature. The integration cqnstant GV
is an arbitrary function of volume., Griineisen [1] suggested for this function

GCV) = =Cl(Vy/ VY™ — (Vy/ vy .

However, in the present calculations we will not follow Griineisen’s suggestion for G(V).

Instead, we will integrate the Griineisen EOS (5) according to Slater [3] and look for a
proper Griineisen function G(V), later on.

3 Integral fo the Griineisen EOS

AtT = Owe have P = ~I(ETS)/3V = —3E/3V, and the Griineisen EOS (5) may be
written as

~OE/3VYV = I'[E + G(V)] . 6

This is an inhomogeneous differentia
sol

l equation in E(V). It is solved by the sum of the
utions of the homogeneous equati

on and a particular solution that depends on G(V):
EWy=avl —v-rriguy v qp . ()

A is the integration constant of the homo
Slater idea [3] leads to apotential E(V) wit
of the first (repulsive) term.

geneous solution. In contrast to Eq. (1) the
h the Griineisen constant I” being the exponent

4 The modified Griineisen function G(V)

For further integration of Eq. (7) we need to find an appropriate Griineisen function
G(V). With G(V) = ¢

Y)W we only get the repulsive term of the potential E(V) in Eq. (7).
This 1nd1cate§ that G(V) may be connected to the attractive term of the potential E(V).
As the repulsive term is a power function in ¥, we may also assume G( ) in first order
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to be a power function in V with a real exponent §, G(V) = B ¥~%, with B being a
constant.

The constant B on the other hand may be obtained by looking at the Griineisen EOS
(5) for p = 0. With V(p = 0, T) = V(T) we find

E(T) = -GV, ®

the Griineisen function G[V(T)] is equivalent to the negative energy E(T) at p = 0.
Moreover, for P = T = 0 the potential energy F is equivalent to the negative cohesive
energy £, and we get E = —G (V) = —¢&.. This defines the constant B and leads to the

modified Griineisen function
G(V) = e.(Vy/V)° . &)

In contrast to G (V) [1] the modified Griineisen function G(V)is a simple power function

in ¥ with one exponent 4. .
The exponent ¢ again may be calculated from molar heat capacity C, at constant

pressure by differentiating the energy in Eq. (8) with respect to 7,

C, = (BE/3T), = (QE/3V)(@V/dT), = de. (V/VITIY a, . (10)
At low temperatures the ratio Vo/V(T) = 1, and we obtain

o = (Cp/ay)/e, . (1

The exponent & of the (repulsive) potential is given by the ratio of molar heat capacity
C,, volume expansion coefficient a, and cohesive energy &, at low temperatures.

S The potential E(F) at T = 0

With G (V) of Eq. (9) it will be possible to continue integration of thg potential energy
E(V)in Eq. (7). The integration constant A is determined by the condition ¥V = V, and
dE/dV = 0 for P = 0. This leads finally to the potential energy

E(V) = e [6(Vy/ V) = T/ VIV = 9). (12)

At T = 0 E(V) is given by the cohesive energy £ and the zero pressure vglume Vo. The
exponent of the repulsive term is given by the Griineisen constant I, and dis the expone.:m
of the attractive term, if I" > . This new interpretation of I'is independent of the choice
of G(V). '

The calculation of E(V) according to the modified Griineisen function G(¥) leads
again to an m-n potential. Comparing Eq. (1) and (12) we find I' = m/3 and 5 = n/3.
However, in contrast to Eq. (1) the exponents I’ and é of Eq. (12) are experimentally

defined by I' = a, Ky V/C, and & = (Cp/ap)/&c-



284 Ann. Physik 1 (1992)

6 The pressure coefficient K,’ of bulk modulus

The pressure coefficient of bulk modulus Ky at T = P = 0 according to Eq. (2) is now
equal to

Ko’ = OK7/0P)yeg = T' + 6 + 2 = 0, K7 V/C, + (Cp/a,)/e, + 2 @)

With the modified Griineisen function G(V) the high pressure value of Ky is now

related to thermo-physical data like thermal expansion a, bulk modulus K; and
cohesive energy ¢,.

7 Experimental data for cubic elements

For a large number of cubic elements the Griineisen parameter I” [13] and the cohe§ive
energy €. [13, 14] as well as the ratio of heat capacity C, and volume expansion
coefficient a, [14, 15] have been tabulated and we will now compare literature data for
I"and ¢ to high pressure data for Ky (11, 12].

In Fig. 1 the ratio of Cp/a, vs. & is drawn for the 5 alkali metals [14, 15]. The slope
is equal to 6 = 1.1 for all five metals:

] o
I3 S =]
——r

Cp/apin kJ/mol

-~
=3
T

Fig. 1 Ratio of heat capacity C,to expans.iVitY a,
vs. heat of sublimation £, [14, 15] for alkali metals.
The slope of the line is J = 1.1.

50 100 150
cohesive energy in kJ/mol

In Fig. 2 the ratio of Co/a,vs. g i

. s given for 9 transition metals and lead [14]. The slope
Isgivenby d = 1.7 =~ 5/3 [14],

and is nearly the same for all ten metals:
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Fig. 2 Ratio of heat capacity C, to expansivity a,
vs. heat of sublimation &, [14] for transition metals.
The slope of the line isd = 5/3.
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Fig. 3 shows the ratio of C,/a,, vs. ¢, for three noble gas crystals [12, 13], the slope is
givenby d = 2.7 = 8/3:
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Fig. 3 Ratio of heat capacity C, to expansivity a,,
vs. heat of sublimation &, [12, 13, 15] for noble gas
crystals. The slope of the line is § = 8/3.

Table 1 shows data from the literature for the ratio of heat capacity C, to expansivity
a, [14, 15], heat of sublimation & [13], ratio d of C,/a, and ¢, Griineisen constant I’
[13], pressure coefficient of bulk modulus Ky’ [11, 12] from high pressure experiments

and sum of I + & + 2 for 19 cubic elements.

Table 1 Ratio of heat capacity C, to expansivity a, [14, 15], heat of sublimation &, [13], ratio of é of
C,/a,and ¢, [14], Griineisen constant I"[13], pressure coefficient of bulk modulus K’ [t1, 12] and sum

of I' + § + 2 for cubic elements.

Element C,/a, £, J r Ky I'+d+2
[kJ/mol] [kJ/mol]
Ag 470 284 1.7 2.40 6.2 6.1
Al 374 312 1.2 2.2 4.8 5.4
Au 632 367 1.7 2.7 6.4 6.4
Cu 500 338 1.5 2.0 5.5 5.5
Cs 88 80 1.1 t.8 4.5 49
Fe 700 436 1.6 1.6 5.2 5.2
Li 177 160 1.1 0.9 35 4.0
K 100 91 1.1 1.3 4.2 4.4
Na 120 108 1.1 1.3 4.2 43
Nb 1150 722 1.6 1.6 4.2 5.2
Ni 642 428 1.5 1.9 5.2 5.4
Pb 332 197 1.7 22 5.5 59
Pd 725 382 1.9 2.2 5.4 6.1
bt 964 555 1.7 2.5 6.0 6.2
Rb 91 83 1.1 1.6 42 49
Ta 1280 780 1.6 1.7 3.9 5.3
Ne 5.7 2.1 2.7 2.8 8.5 75
Ar 21 7.7 2.7 2.8 7.2 7.5
Kr 28 11 2.5 3.0 5.9 75
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8 Discussion

The experimental data for I', § and Ky’ allow for a discussion of the present cal.culati(.)ns
as well as different model EOS of the literature [1-10]. The data suggest a discussion
by groups of elements:

8.1 Alkali metals

The value of & according to Fig. 1isd = 1.1 for all alkali metals. The Griineisen constant
for alkali metals according to Table 1 is I” ~ 1.3-1.8. The calculated sum I" + & + 2
of the present model will be between 4 and 5 » and agrees within 20% with the observed
values of the pressure coefficient of bulk modulus Ky = 3.5-4.5.

Comparing the models of EOS of the literature [1 — 10] the Birch model agrees well with
the data for alkali metals. According to Birch [7, 8], m/3 = 5/3 is close to the observed
value of I =~ 1.3—1.8. The second exponent in the Birch equation [7, 8] n/3 = 4/3
compares well with d = 1.1 of the present model. The sum in the Birch model [7, 8] gives
m/3 + n/3 + 2 = 4, whichis also very close to the pressure coefficient of bulk modulus
Ky’ = 3.5-4.5. For alkali metals the Birch model (7, 8] is also well suited. Other
models, e.g. Lennard-Jones [2], Slater [31, Bardeen [5] lead to insufficient values of K.

8.2 Transition metals

The value of & according to Fig. 2is 6 = 5/3 for all transition metals. The Griineisen
constant for transition metals according to Table 1 is I = 1.6—2.5. The calculated sum
I'+ 6 + 2 = 5.3-6.2 of the present model is within 20% of the observed values of the
pressure coefficient of bulk modulus Ky = 5-6.

The Birch model [7, 8] gives m/3 = 5/3 and n/3 = 2/3 again, both values are smaller
than the literature data for J° and 6. The sum m/3 + n/3 = 4 is much smaller than the
literature value of K¢'. This indicates, that the Birch model [7, 8] is not sufficient for
transition metals. The values of m and n should rather be m = 6—7,and n = §.

8.3 Rare gas crystals

The value of § according to Fig. 3is 6 = 8/3 for all rare gas crystals. The Griineisen

constant for rare gas crystals according to Table 1 is I” = 2.5-3. The calculated sum I

+0+2=7-750fthe bresent model agrees again within 20% with the observed values
of the pressure coefficient of bulk modulus K’ = 6-8.5.

potential [2], which cannot be applied to metals, also is quite

: : € rare gas crystals, The éxponent m/3 = 12/3 = 4 is somewhat
arger than the literature valyes of I'=25-3,andn/3 = 6/3 = 2 slightly smaller than

3. The sum of the €xponents m/3 + n/3 = 8 is within the range
of the observed valye of Ky = 6-8.5.

gh; Bir}fh {7, 8] model as well as other EOg lead to smaller values for 7; ¢ and Ky
att o ar the dxffe.rer.nce T'- g has not been considered. The exponents of the repulsive and
Tactive potential in a]] model equationg of state [1 — 10] give m/3—-n/3 = 0.6—2, and

- According to Table 1 this condition is not observed for the
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transition metals Fe, Nb, Ta and the rare gas crystals, where I" = J has been observed.
This would lead to a logarithmic term in the calculations. However, so far the high
pressure data are accurate only within 20— 30%, and it is not yet possible to discuss, which
model should apply to these elements.

9 Conclusions

The pressure coefficient K, of the bulk modulus has been calculated from the
Griineisen equation of state (5) for 19 different cubic elements. The agreement of the high
pressure data for Ky’ and the sum of the thermophysical ratios " + 6 + 2 = @, K7 V/C,
+ Cp/a,/e, + 2 is within 20% for all three material groups. In contrast to the models
of Birch [7, 8] or Lennard-Jones [2] the present model applies to all groups of materials
equally well and gives specific exponents /" and J for each element.

In addition, the modified Griineisen model should predict thermophysical and high
pressure data like volume, specific heat, thermal expansion, bulk modulus and pressure
coefficient as functions of temperature, volume or pressure for all cubic elements, if . g.
the model of Debye is applied. These calculations are presently in preparation.
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