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Abstract

Fail-High Reductions (FHR) is a new method to guide the search
in game trees in a very selective manner. The main idea is that
the search algorithm should not spend too much effort searching
subtrees, for which the side to move estimates that the opponent
will avoid them to become part of the principal variation. More
precisely, a fail-high node is a node v with a search window
[a, B] at which a static evaluation function e produces a cut-off.
The FHR algorithm reduces the search depths at these fail-high
nodes thus searching their subtrees with less effort. FHR is
domain independent in the sense that it only uses a static
evaluation function, which always is assumed to exist, and the
search windows to guide the search.

In this paper we describe the incorporation of FHR in our chess
program ZUGZWANG. Three different tests are conducted
comparing ZUGZWANG with FHR and without FHR. First, we
compare the results obtained from running the algorithm on the
Bratko-Kopec test set and on the positions of the WinAtChess
test suite. Second, we look at the results obtained from three
matches of 50 games each. The games were played under
tournament conditions between three different versions of
ZUGZWANG each with and without FHR. Third, we compare both
versions by looking at the results of 100 games played against a
chess program developed independently from ZUGZWANG. All
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three tests indicate that the FHR version is about 120 to 150 ELO
points stronger than the version without FHR. Moreover, from
the second test we obtain the result that with statistical
significance the FHR version is stronger than the regular version.

1. INTRODUCTION

The problem of evaluating trees appears in many applications. For instance,
expert systems, proof systems and various management tools use algorithms
similar to the ones used in game-playing programs. The crucial point is that
the best-known algorithms for determining the root’s minimax value search
game trees of depth d and width w in an average running time of O(Ww™), i..,
the running time grows exponential with the depth of the game tree. Knuth
and Moore (1975) showed that Q(w*?) is a lower bound on the running time
of any algorithm that evaluates a game tree of width w uniformly to depth d.
Hence, it is clear that under real time constraints the look-ahead of programs
is very limited.

This is one reason why in many games, such as chess, the game-playing
programs are inferior to the best human experts. We note that this is true
although human experts are hopelessly inferior in speed — as measured in
visited nodes per second — compared to the computers. Besides the superiority
of humans in terms of intuition, smartness, and experience, still another reason
for the overall inferiority of programs is that humans do a very selective look-
ahead. Unlike computers, they consider only reasonable moves in their search.

Several approaches have been studied to mimic a human’s selective look-
ahead by computers. For instance, Berliner (1979) presented the B* algorithm
which computes an upper and a lower bound on the value of an inner node to
guide the search into relevant subtrees. The algorithm was investigated in
more detail and improved to PB* by Palay (1985).

Later, McAllester (1988) developed the Conspiracy Number Search (CNS).
The idea is that a decision at the root of the game tree should not be based on
the evaluation of a single leaf node as it may be in the af algorithm. Thus,
CNS searches the game tree in a way to guarantee that at least some ¢ leaves
(c > 1) have to change their value in order to change the decision at the root
of the tree. Several variants of CNS has been implemented in game-playing
programs (Schaeffer, 1989; Van der Meulen, 1990; Allis, Van der Meulen, and
Van den Herik, 1991; Lorenz et al., 1995). Recently, CNS has been used in
chess tournaments: ULYSSES CCN, a chess program written by Lorenz and
Rottmann, played the 1995 World Computer Chess Championship in Hong
Kong using a CNS algorithm.
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The most widely-used algorithm in chess programs is the aff algorithm or one
of its variants like PVS (Campbell and Marsland, 1983) or Negascout
(Reinefeld, 1983). Without any selective extensions these algorithms search
game trees of width w uniformly to a certain depth d with a running time of
O(w*) in the best case (Knuth and Moore, 1975) and O(w*) in the worst case.
The huge practical importance of the o variants stems from the fact that for
most applications the average running time is close to the best-case running
time.

Many heuristics have been developed to guide the search of the aff algorithm
into branches of the game tree which are relevant for the decision at the root
of the tree. Many of them are domain dependent, such as check-evasion
extensions. Anantharaman (1991) has given an expanded overview together
with an empirical comparison for many of these heuristics.

There has been some research on developing domain-independent heuristics to
guide the search in game trees. In the late 1980s the Singular Extensions (SE)
were developed (Anantharaman, Campbell, and Hsu, 1988) for the chess
program DEEP THOUGHT. The idea behind SE is to increase the search depths
in subtrees which are reached from the root by making a singular move. Here
a move is called singular if it is much better than all its siblings. The
drawback of this method is that the off algorithm does not provide the search
with the information that a move is singular. Extra searches have to be carried
out with the risk that extra effort is spent for an uncertain qualification of a
node.

Somewhat later, Beal (1989) re-investigated his idea of the Null-Move
Heuristic (NMH). NMH is based on the observation that in many games and
game-like applications for the side to move there is almost always a better
alternative (move) than doing nothing (the null move). We call this the Null-
Move Observation (NMO). Based on NMO, at an inner game-tree node first a
search after a null move is carried out to a reduced depth. If this search
already produces a cut-off then the search at the node is stopped hoping that
there s at least one move available that would produce an even better result
and therefore a cut-off too. Nowadays, many of the world’s best chess
programs seem to use the NMH. There are of course no publications of the
professional chess programmers about this heunstic, except for Donninger
(1993) who described an implementation of the NMH in his program NimMzo
presenting also some promising results. The main drawback of the NMH is
well-known: it fails in zugzwang positions. In these positions the NMO is not
valid, causing chess programs to fail heavily. Therefore, in endgames chess

programs usually switch off the NMH or try to verity the NMO by some extra
searches.
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Another drawback of the NMH is that extra searches are carried out in order
to establish the cut-offs by the null move. If the search after a null move fails
to produce a cut-off extra effort has been spent for nothing. The effects of
various combinations of NMH, SE and some domain-specific heuristics are
studied by Beal and Smith (1995).

Schriifer (1989) proposed a method to achieve selectivity in quiescence
searches, while Althofer (1991) used majority systems to build game trees
with only a few successors of the root. Recently, Buro (1995) described an
algorithm called ProbCut, which is based on the off algorithm. It uses the
results of a shallow off search to decide whether the result of a deep search
would yield a value outside the current search window. ProbCut is domain
independent and used in an Othello-playing program.

In this paper we describe a new selective-search heuristic, called Fail-High
Reductions (FHR). Informally spoken, a node v is a fail-high node if the side
to move at v estimates the value of the position so high that it believes that
doing nothing at v is sufficient to prevent the opponent from playing into v.
The basic idea is to reduce the search depth at these fail-high nodes by unity.
We present some exceptions from the above rule later in this paper. In
general, applying the above rule recursively all over the game tree leads to a
very non-uniform search in chess trees.

Like the NMH, FHR is based on the NMO. However, it is not as rigorous as
the NMH in using the NMO: there is still a chance that the reduced search
will show that the NMO is not valid at some node, i.e., it fails to produce a
cut-off. Instead of re-searching nodes in which the reduced search fails to
produce a cut-off, in our implementation a combination of the FHR together
with the Negascout algorithm (Reinefeld, 1989) is given, which automatically
searches the node to a full depth if it turns out that the value of the node may
become relevant for the decision at the root.

In the following we present the basic definitions for FHR. Then the
implementation of FHR in ZUGZWANG is described and some implementation
details are discussed. In Section 3 we investigate the behaviour of the FHR
version of ZUGZWANG in several tests. Conclusions are given in Section 4.

2. FAIL-HIGH REDUCTIONS

In this section we describe the implementation of the FHR in ZUGZWANG, a
distributed chess program usually running on parallel hardware. For a detailed
description of ZUGZWANG’s distributed search algorithm and its development
we refer to Feldmann, Monien, and Mysliwietz (1991), Feldmann, Mysliwietz,
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and Monien (1992), Feldmann (1993), or Feldmann and Mysliwietz (1994). In
this paper we only deal with the sequential search algorithm in ZUGZWANG. It
1s based on the Negascout algorithm as shown in Figure 1.

function Negascout(v : node; a,B.d : integer): integer;
var i,w.x,low,val high : integer,
begin
if 4 > O then generate all successors v.1, ..., v.w of v
if v is a leaf then return(e(v)); /* static evaluation */
low == o; high := B; val := —
for i := [ to w do begin
x ;= —Negascout(v.i, —high, —low, d - 1, /* i > 1 : null window search */
if (x > low) and (x < B) and (i > 1) then
x = ~Negascout(v.i, =B, -x, d - 1), /* re-search */
low = max(low,x); val = max(val x)
if val > 3 then return(val); /* cutoff */
high = low + 1;
end;
return{vul);
end;

Figure 1: The Negascout algorithm.

The following notational conventions are used. The function Negascout has
four parameters: v, a, B, and d. When called for a node v, the parameters o,
and d have a value. [0, B] is called the window of v, d the search depth of v.

Note that Negascout may search the same nodes several times with different
parameters o and . The main idea is to search the appropriate successors of a
node with an artificial zero-width window (null-window search) and to
re-search these successors with their full windows only if the null-window
search fails high with respect to the artificial window but not with respect to
the full window. Negascout uses a domain-dependent static evaluation function
e mapping positions to integers.

ZUGZWANG's regular evaluation function e contains subroutines detecting and
scoring several kinds of threats, e.g., whether the side to move is checked or
threatened mate', whether several high-valued pieces are attacked
simultaneously, whether the opponent has passed Pawns etc. While computing
e(v) for some position v, a threat evaluation function ¢ is computed (#(v) = 0).
The function ¢ may score the threats in a more pessimistic way than e(v), e.g.,
we may assume that the function ¢ has value o if the side to move is either

Here only those mate threats are considered, which may statically be checked.
Peter Mysliwietz developed the mate-threat-detection mechanism for ZUGZWANG.
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checked or threatened mate. However, ¢ only scores the threats already
detected by the evaluation function. No domain-specific knowledge is used for
computing 7 that is not used for computing e. Since scoring a threat (simply
adding a number) can be done much faster than detecting a threat, #(v) can be
computed without any delay while computing e(v).

Definition: Let ¢ be the static evaluation function used by Negascout, let ¢ be
a static evaluation function scoring threats against the side to move as roughly
described above. A node v searched by Negascout with window [a, B] obtains
the value é(v) := e(v) — #(v). The node v is called a fail-high node, if é(v) 2

B.

Thus, é(v) produces a value which is more pessimistic than e(v). The amount
of pessimism depends on the threat evaluation function .

By the above definition we intend to mark nodes v in which the side to move
estimates v so high (é(v) 2 ) that the opponent will avoid these nodes to
become a part of the principal variation. For these fail-high nodes we will
reduce the search depth in order to reduce the search time. The above
definition provides a useful heuristic to the state of a node. The rate of errors
may depend on the threat evaluation function ¢. During our work on
ZUGZWANG the threat evaluation has been changed owing to Peter
Mysliwietz’s work on the regular static evaluation function e.

The experiments in Section 3 show that the behaviour of FHR remains
unaffected for several different threat evaluation functions z. Early experiments
(not reported here) were made with a threat evaluation function  consisting
only in detecting whether the side to move is in check. In this case ¢ had the
value o=, in all other cases r had the value 0. Even with this simple threat
evaluation FHR worked well.

For the aff algorithin the fail-high nodes are nodes v in which the side to
move estimates v so good (€(v) > B) that the opponent will avoid reaching v.
In the Negascout algorithm this should be reformulated into: the side to move
estimates v better than 3 (€(v) 2 B and therefore e(v) > B), and hence node v
can be avoided by the opponent if all assumptions for the artificial windows
on the path from the root to v hold.

The main considerations are now as follows. If the NMO holds it is not
necessary to search huge subtrees below a fail-high node v only to prove that
one of the successors of v really produces a cut-off at v. In this case there is a
successor of v which even allows the side to move to improve on e(v) 2 (V)
> B. If the NMO does not hold a search has to be done below v in order to
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find a less erroneous value for v than é(v). Therefore, the FHR in its basic
form works as follows.

FHR: The search depth d of the Negascout algorithm at a fail-high node v is
reduced to d — 1.

function FHR-Negascout(v : node; o,B,d : integer): integer;
var Lwx,low,val high.eval bt : integer,
begin
eval ;= e(v); t := 1(v); /* static evaluation */
/* t is computed together with e */
d := d; /* save search depth */
ifeval -t2Pandoa=pf -1 thend =38 - I;
if 5 > 0 then generate all successors v.1, ..., v.w of v;
if v is a leaf (1.e., w = 0) then return(evul);
low = «; high = B; val = —oo;
for i := | to w do begin

x = ~-FHR-Negascout(v.i, -high, ~low, 8 — 1); /*i>1:null window search */
if (x > low) and (x < ) and (i > 1) then
x .= -FHR-Negascout(v.i, -8, —x, d - I); /* re-search without FHR at v.i */

low = max(low.x); val == max(valx);
if va! 2 P then return (val); /* cutoff */
high == low + |,

end;

return(val);

end;

Figure 2: The Negascout algorithm with FHR.

Figure 2 shows the modified Negascout algorithm with FHR, henceforth
denoted by FHR-NS. If a node v has to be searched to a depth d, the
algorithm first computes the static evaluation e(v) of v. Together with e(v) a
value #(v) is computed and stored into r. Then FHR-NS investigates whether v
is a fail-high node which is to be searched with a zero-width window (ot = B —
1). If this is the case, the search depth is reduced by one.

Below, we list some characteristics and implementation details in order to
identify our version of FHR. The context of this contribution forces us to
refrain from describing the experiments performed to measure the FHR effects.
We distinguish eight items.

. We tested several variants of the FHR. We introduced a margin A and
investigated whether eval — t 2 B — A. We explored several margins
between 0 and 1 pawn unit. The best margin found so far is A = 0.
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The FHR is based on the NMOQO. Therefore one could argue that special
attention should be given to nodes where the reduced search fails to
compute a cut-off. We tested a version of the FHR that re-searched such
nodes without depth reduction. This version turned out to be inferior to
the original FHR version.

The question, whether a better approximation for threats should be used
than the static function f, e.g., by doing a null-move quiescence search, is
addressed. It turned out that the overhead for the extra searches does not
pay off, even if these extra searches are restricted to nodes at least 3 ply
from the leaves.

We tested versions which use FHR only in the deeper levels of the tree.
These versions were superior to the version without FHR, but they were
clearly beaten by the version that applies FHR recursively.

If FHR is used recursively in the full search tree, principal variations may
arise which are obtained from searches with reduced depths. However, in
Negascout a principal variation always results from a full-window search,
i.e., a re-search after a null-window search. Since these re-searches are
very rare, we want to use the FHR only when doing a null-window
search. If oo # B — 1 then FHR-NS is definitely not in a null-window
search (but searching the leftmost variation of the tree or doing a
re-search) and FHR is excluded. If oo = B — 1 then FHR-NS is doing a
null-window search with high probability. In the latter case we allow fail-
high reductions. This has the additional effect that principal variations are
very unlikely to be reduced in depth even if aspiration search is applied at
the root.

The artificial windows of the null-window searches may allow many depth
reductions. If the result of a null-window search indicates an improvement
the re-search may not confirm this result, since many nodes in the subtree
are re-searched without depth reductions. This effect may even happen in
a regular Negascout algorithm if transposition tables are used. In some
implementations the improvement is always taken for real even if the
re-search does not verify it. Especially, at the root of the game tree the
improving move may be considered best if the search is stopped before
the re-search has verified it. In the FHR-NS the improvement may have
been obtained by a very shallow search and therefore should not be taken
for real until the re-search also indicates an improvement.

Every state-of-the-art chess program uses transposition tables to speed up
the search. An entry of the table may have the form (lock(v), val, flag, d)
indicating that (val, flag) was the result of a search below v with search
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depth d (see, ¢.g., Marsland and Campbell, 1982). The FHR-NS algorithm
may recognize that the search depth has been reduced at v before writing
the result for v into the table but in general does not know, how many
depths reductions have been done below v. In our implementation
transposition-table entries for a node v get the search depth d associated
with v, and therefore recognize only the depth reduction at v itself. We
did not observe any problems with this implementation, but an
implementation as proposed by Breuker, Uiterwijk, and Van den Herik
(1994) will avoid any trouble.

8. There is a small time overhead of about 3% caused by calling the
evaluation function for inner nodes as well as for leaves.

3. EXPERIMENTAL RESULTS

From now on we will refer to two versions of ZUGZWANG: one with FHR
(denoted by ZZ, or in some tables and figures simply by FHR), and the
other one without FHR (denoted by ZZ). ZUGZWANG uses a Negascout
algorithm with some chess-specific extensions. It does neither use null-move
search nor singular extensions.

ZUGZWANG is a program which changes almost every day. The experiments
described below have been made in a range of nearly half a year. In that time
we used different versions of ZUGZWANG for the tests. The differences were
due to our impatience to fix some bugs and to improve the evaluation
function. The search algorithm of all versions has always been the same. After
a change had been made we repeated some but not all tests done with previous
versions. We note that the results were always very similar. Hence, we believe
that our results are still a reliable base for our conclusions.

3.1 Searches to Fixed Depths

The 24 positions of the Bratko-Kopec test set (Kopec and Bratko, 1982) are
searched to fixed search depths (4 to 8 ply) using ZZ;; and ZZ. We counted
the number of nodes (total, brute-force tree, and quiescence search) for both
versions. For each case the sum of nodes for all 24 positions divided by 1000
is shown in Figure 3. The graph contains six lines (2 versions, 3 numbers per
depth). The total number of nodes for the search depths 4 to 8 is given in the
table within Figure 3. Because of the search-depth reductions the growth of

the trees of the FHR version is much smaller than the growth of the regular
trees.
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Figure 3: Nodes searched by ZZ,, and ZZ for fixed search depths.

Observation 1: If used in an iterative-deepening process, ZZ,; searches to
larger search depths. This is very helpful for the timing heuristic, since there
are more check points between two successive iterations when the search can
be stopped regularly.

3.2 Running a Suite of Test Positions

In the following we show how FHR performs on the 300 WinAtChess test
positions (Reinfeld, 1958).

Timing

In experiments running a set of test positions the timing is either by stopping
the program after a fixed amount of time, or by stopping it after a fixed
amount of nodes has been searched. The first alternative is bad, if the
experiments are run on a multi-user machine (as we do). If many users use the
same CPU, stopping by real time gives wrong results. Stopping by CPU cycles
gives also erroneous results due to swapping etc. Both alternatives (i.e., time
and nodes) do not reflect a performance as occurring in tournament games. In
tournaments, a certain amount of time is given and the program typically tries
to stop the search just after finishing an iteration of the iterative-deepening
process which is close to this deadline. If there are still a few moves to go to
the next time control the program may be allowed to run even longer in order
to finish the current iteration. We tried to overcome the drawbacks of both
traditional alternatives by the following hybrid method.
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Let one time unit be equivalent to 2700 nodes searched by ZUGZWANG. This is
the number of nodes a very early version of ZUGZWANG searched per second
running on a Sparc Classic workstation. We run the program, version
ZUGZWANG V 1.20, using the following timing algorithm. The timing is done
as if the test position would have been reached at move 20 and ZUGZWANG
had 2, i € {1, .., 10} time units average time for the following 20 moves.
The timing algorithm tries to stop the search between two successive iterations
of the iterative deepening, but sometimes cancels the search if an iteration
takes too long.

Results
Table 1 shows the number of positions solved by ZUGZWANG with and without
FHR.

2/ x 2700 nodes
Version i 2 3 4 S 6 7 8 9 10
z 189 | 212 229 | 241 252 261 268 2711 284 | 288
ZZon 184 | 184 232| 246| 258 268 | 275) 282] 286 289
ZZorx 190 221 238§ 249 263| 269{ 276 283§ 287 289

Table 1: Number of solutions by ZUGZWANG V 1.20 at the WinAtChess set.

ZZx produces more solutions than ZZ if the time is larger than 2° i.e., the
program searches more than about 21600 nodes per position on the average. If
we allow improvements at the root of the tree to be accepted before the
re-search confirms the improvement (see item 6 in Section 2) the sequence for
27, starts with 190, 221, 238, ... as indicated on the line marked ZZq .
ZZcyrx seems to be slightly better than ZZg,, but the improvement, if any, is
only a minor one and may be due to the class of positions in the test set.
Because of the problem mentioned under item 6 ZZg,y is not used in games.

It turns out that FHR needs fewer nodes than ZZ to produce more solutions.
For instance, ZZzx needs about 163 million nodes to produce 283 solutions,
while ZZ searches nearly 206 million nodes for 271 solutions (2* time units).
While ZZ needs 206x10%/300 = 2682x2* nodes per problem on the average,
ZZ.xx searches only 163x10%300 = 2122x2" nodes per problem. (Note that
2700 nodes correspond to one time unit and therefore the average running time
of ZZ is close to the given time limit.) This is due to the effect described in
observation 1: FHR grows much smaller trees and thus gives the timing
heuristic more possibilities to stop the search between two successive iterations
of the iterative-deepening process.

For 2" time units the numbers of solutions nearly coincide. This is due to the
fact that for ZUGZWANG V 1.20 ten positions remain unsolved even with much
larger computation times.
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Observation 2: In the sensitive range from 2° to 2' time units FHR
corresponds to a speed-up of 2 to 3 compared to the version without FHR.

3.3 ZUGZWANG in a Self Test

Three versions of ZUGZWANG with FHR' played 50 games against ZUGZWANG
without FHR. We selected 25 opening positions from a chess opening database
each two ply away from the initial position. Starting from these positions
(indicated in Table 2) both versions played white and black without opening
book. The timing was set to 40 moves in 2 hours and 20 moves in each
additional hour. The games were stopped after 100 moves and then
adjudicated. The three ZUGZWANG versions were V 1.24, V 1.30, V 1.40. The
differences between these three versions are due to some bug fixing (especially
in the detection of threefold repetition of positions) as well as to some minor
changes to the static evaluation function.

vV 1.24 V130 V 1.40
Position FHR = b FHR = w FHR=56 | FHR=w FHR =b | FHR=w
e4 e5 112 2 1-0 1-0 t-0 0-1
€4 €6 0-1 1-0 0-1 0-1 12 172
ed4 ¢S5 1-0 1-0 0-1 1-0 0-1 1-0
e4 c6 172 1-0 -0 1-0 0-1 1-0
ed d6 12 1-0 0-1 0- 1-0 1-0
e4 g6 0-1 1-0 1-0 12 -0 -0
€4 Nf6 172 1-0 0-1 1-0 1-0 1-0
e4 d5 12 172 1-0 1-0 1-0 1-0
e4 Nc6 172 172 1-0 0-1 1-0 0-1
d4 Nfo 112 172 0-1 1-0 172 1-0
d4 d5 172 0-1 0-1 1-0 1-0 0-t
d4 fs 0-1 0-1 12 i-0 0-1 1-0
c4 ¢S 0-1 0-1 0-1 0-1 0-1 1-0
c4 e5 172 1-0 0-1 1-0 0-1 0-1
c4 c6 12 1-0 1-0 1-0 1-0 1-0
c4 f5 1-0 1-0 0-1 1-0 0-1 1-0
c4 6 12 12 12 1-0 0-1 1-0
¢4 Nf6 0-1 1-0 0-1 0-1 0-1 0-1
Nf3 d5 0-1 1-0 0-1 1-0 0-1 1-0
Nf3 Nf6 0-1 1-0 -0 -0 1-0 1-0
Nf3 {5 0-4 12 0-1 1-0 1-0 172
f4 e5 12 1-0 0-1 0-1 0-1 1-0
f4 d5 0-1 0-1 0-1 12 0-1 0-1
b4 Nf6 0-1 1-0 0-1 1-0 12 1-0
b4 e5 172 172 12 0-1 0-t 12
X 8.5-16.5 17.5-75 8.5-16.5 17-8 11.5-13.5 17.5-75
34-16 335165 31-19

Table 2: Results of the games between ZZ,; and ZZ.
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Observation 3: ZZ,, V 1.24 won the match by 34-16, i.e., it scored 68%.
With this result ZZ,, V 1.24 is better than ZZ V 1.24 at a 5% significance
level (Mysliwietz, 1994, pp. 86ff). Almost the same is true for V 1.30. V 1.40
produced a slightly weaker result.

Because of the overall win of 98.5-51.5, i.e., 65.67% for the versions with
FHR, the playing strength is estimated to be about 130 ELO points better than
the playing strength of the regular versions. This is equivalent to a speed-up of
about 2 to 3 (Mysliwietz, 1994) and therefore corresponds to the observations
given in Subsection 3.2.

3.4 ZUGZWANG vs. CHEIRON

Table 3 shows the results of 100 games ZUGZWANG V 1.50 played against
CHEIRON, a program by Ulf Lorenz. CHEIRON successfully participated in the
1995 World Computer-Chess Championship in Hong Kong and in the 1995
World Microcomputer Chess Championship in Paderborn. ZZ denotes the
version without FHR, FHR the one with FHR. The second column contains
the result of CHEIRON playing with White against ZUGZWANG without FHR
(13-12), the third column the results of CHEIRON playing Black against
ZUGZWANG without FHR (8-17), etc. The last line shows the overall result of
the two 50-game matches.

C-27Z Z2Z-C C-FHR FHR-C
z 13-12 8-17 13-12 14.5-10.5
Total C - 77 30-20 C - FHR: 23.5-26.5

Table 3: Results of the games against CHEIRON.

The games were started on the positions given in Subsection 3.3. No opening
books were used. ZUGZWANG had access to Ken Thompson’s endgame
databases. CHEIRON had not. The tuming rules were 40 moves in 2 hours,
followed by 20 moves in one hour. Then, CHEIRON continued to play at a rate
of 20 moves per hour while ZUGZWANG played the rest of the game in 30
minutes. Note that for this kind of test it is not necessary to have the same
uming conditions for the two opponents since we only want to compare
ZUGZWANG with a fixed opponent.

Observation 4: ZZ scored 40% against CHEIRON, whereas ZZ_,, won the
match by 26.5 to 23.5, i.e., it scored 53%. This allows for an estimation of
ZZy, being about 130 ELO points stronger than ZZ.
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4. CONCLUSIONS AND OPEN QUESTIONS

In this paper we presented a domain-independent method, called FHR, to
search selectively game trees. FHR is based on the null-move observation but
is less strict than the null-move search and very easy to implement.

In several tests FHR turned out to be superior to the regular Negascout search.
For one test, a 150-game match between ZUGZWANG with FHR and without
FHR, ZZ.; turned out to be superior to the regular version with a statistical
significance.

A comparison with null-move search as proposed by Donninger (1993) would
be interesting. In our first experiments it turned out that FHR was slightly
superior to the null-move search. This, however, may also be due to our
implementation of null-move searches. Incorporating FHR into a program
using a strong null-move search may give further insight.

It remains an open question whether the playing strength of FHR can be
further increased, if the implementation of the transposition table takes care
about the depth reductions done in the subtrees. An implementation as
proposed by Breuker et al. (1994) may help.

Another serious question is why our parallel implementation of FHR-NS is not
as efficient as the one for Negascout. The reason may be that our distributed
algorithm is most efficient in the appropriate subtrees of the game tree, but
that these subtrees are considerably smaller as compared to the leftmost
subtree when the tree is searched with FHR-NS.

Last but not least it would be interesting to compare the error propagation of
the standard of} algorithm with the error propagation of the FHR algorithm in
a model of game trees, which is not too far away from the trees occurring in
practical applications.
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