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The Landau-Lifshitz equation (LL-equation) is shown to have infinitely many commuting one-parameter symmetry groups
and constants of motion in involution. The infinitesimal generators of these one-parameter symmetry groups define the
hierarchy of the LL-equation. We give explicir formulas for these generators and for the conserved demsitics. Furthermore,
infinitcly many time-dependent symmetry groups and conservation laws are constructed. All results are obtained via a simple
direct Lie algebra approach and without making any use of the quantum inverse scattering method based on the ingenious

results of R.J. Baxter,

1. Introduction

The LL-equation describes nonlinear spin waves
in an anisotropic ferromagnet. The equation has
the form

S,=S-S_+S-JS, (1)
where

s, 0 0
J=l0 J, o0

0 0 J

describes the anisotropy, where

S=8(x,1)=(8,(x,1), S,(x,1), S(x,1)),
ISt=1,

is an x- and time-dependent vector in R’ with
norm 1, and where * denotes the usual vector
product. In addition, this equation is particularly
suitable for the study of periodic and quasiperi-
odic solutions of classical nonlinear wave equa-
tions (like the sine-Gordon equation and the
non-linear Schrodinger equation) since it contains
all these equations as special cases [1, 2]. It was

tPermanent address: Universitat Paderborn, D-479 Pader-
born, Fed. Rep. Germany.

assumed for a long time that the equation is
completely integrabie since its complete integrabil-
ity was well established for special cases of J [3,
4]. Finally, its complete integrability was proved
by E.K. Sklyanin [2] who adapted, for this equa-
tion, the quantum-inverse scattering method of
L.A. Takhtadzhan and L.D. Faddeev [5] which is
based on R.J. Baxter’s ingenious method for the
solution of the XYZ-model in quantum statistical
mechanics [6]. This method leads to success in case
of the LL-equation since this equation is the con-
tinuous classical limit of the quantum X'YZ-model.
Sklyanin established the inverse-scattering theory
for the LL-equation. He found infinitely many
constants of motion (in involution) via the usual
expansion of the logarithm of the scattering data
with respect to the spectral parameter. However, it
should be observed that the constants of motion
are given by a complicated bilinear recursion for-
mula, which is certainly difficult to evaluate in case
that one is interested in the explicit form of these
quantities. 4

In this paper we obtain the explicit form of all
constants of motion by a direct Lie algebra ap-
proach. This approach has been proved to be
successful for other nonlinear equations as well
(Benjamin-Ono equation ([7], Kadomtse‘v-
Petviashvili equation [8]). We start by constructing
infinitely many nonlinear flows which commute
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with the LL-equation. This construction is im-
plicitly performed by use of a time-dependent
symmetry group of the LL. Then we find a Lie-al-
gebra homomorphism (Noether’s theorem) map-
ping the infinitesimal generators of these flows
onto conserved densities whose integration (under
an appropriate boundary condition for x — + o)
then yield the constants of motion. Applications of
similar methods to the XYZ-model are discussed
in a subsequent paper.

At the end of this paper we modify our method
in order to construct a (noncommuting) hierarchy
of time dependent symmetry groups.

2. Notation and basic notions

The manifold on which the flow (1) is taking
place is denoted by .#. In order to be able to
apply the usual calculus of variation we embed #
into a vector space. To be precise:

E denotes the vector space of C*-maps from R
into R*. The variable in R we denote by x and the

variable in E by S. For simplification we skip the

bold-face notation. In order to emphasize the de-
pendence of S on x we write for short S(x). We
consider the following linear maps E — E given by
x (multiplication by x), D (differentiation with
respect to x), J (matrix-multiplication by the ma-
trix introduced in (1)), furthermore, the bilinear
map - : E X E — E given by the vector product.

By TE we denote the vector fields on E, that is
the space of C*-maps E — E which is generated
by Id (identity map), by J, x and D and which is
closed against taking vector products and which is
a module with respect to multiplication by scalar
products (V, V), ¥V, V, € TE. The maps, assign-
ing to S € E the elements S, DS, §+ DS, §-JS,
(S, DS) {JS + DS}, etc. are typical members of
TE. For simplicity we denote these members by
S(x), S(x) . S(x)*S(x),, S(x)-JS(x), (S(x),
S.(x) {JS(x)+ S(x),,,}, etc. General elements
of TE are denoted by V;(S(x)), ¥5(S(x)), etc. The
real valued C*-functions in x € R which are of
the form (V1(S(x)), V5(S(x))), V;, V,€TE are

called scalar fields. The scalar fields are an algebra.

Now, the manifold # under consideration is
the subset of those S E with (S(x), S(x))=
[S(x)}*=1. And the vector fields of .# (denoted
by T.# ) are those V(S(x)) € TE, which have, for
S €A, the property (V(S(x)), S(x))=0 Vx €R,
1.e. V(S(x)) always has to be in the tangent plane
of the unit sphere at S(x). Observe that for S € #
the operator #: V(S(x))— S(x)+*V(S(x)) maps
TE onto T.#. Obviously, 7 =42 is the identity
map on T.#. The scalar fields on .# are the
restrictions to .# of the scalar fields defined above.
2. denotes the scalar fields on .

In T# we consider the usual Lie algebra of
vector fields. For K,G & T.# the corresponding
Lie product is given by

[K.G) =2 {K(S+:G(S))

—G(S+eK(S)} .o (2)

In order to introduce an appropriate Lie algebra in
2# we first pass over to a suitable quotient
structure. We consider o,,0, € ZA# to be equiv-
alent (denoted by ¢, = 0,) if they are equal up to a
total derivative, i.e. if there is some o, € 2.4 such
that ¢, — 6, = Do;. Let us give some simple exam-
ples for this equivalence relation

(S(x) vs S(x)) = = (S, (x), 5.(x)), (3a)
forall o3 4. (3b)

xoxxEO’ X0, = —o,

One reason for the introduction of this equivalence
relation is that, afterwards when we integrate scalar
fields (under suitable boundary conditions) to ob-
tain constants of motion, the total derivatives will
not give any contributions.

The classes of scalar fields, with respect to this
equivalence relation, will be called densities. The
equivalence class given by a scalar field o is de-
noted by . And for K,G € T.# we denote the
class given by (K(S(x)), G(S(x))) by (K,G), i
(', ) is a density-valued scalar product in T.#.
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Now, observe that the differentiation operator D
1s skew-symmetric with respect to (, ), and that all
the operators we used to generate TE now have
adjoints with respect to (, ). This observation has
the great advantage that all scalar fields o have
gradients with respect to ( , ), i.e. for every o
there is a vector field Vo (called the gradient of
o) such that

(vo, H)=o'[H] = %U(S+6H) ,

e=0

foral HE TA. (4)

These gradients are uniquely determined. We like
to give some examples for gradients. Consider the
scalar fields

H(S)=1((5.J8) = (S..5.).
T(S)=1x((S,JS) (5., 8,)) =xH(S),  (5a)
H(S)=(8.8,*S,)+(S"S,,JS).

Then the gradients of these densities are given by

vH=n(S, +JS),

VI=n(xS,, +xJS+S,)=xVH+S,,

VH=7(S, S, +2S*S,)  +I(S"S)
+S -JS+D(S+JS)).

(5b)

Where 7= (S-)? is the projection onto the tan-
gent plane of the unit sphere in R’ at the point
S(x).

As we shall see later on, these three vector fields
and their gradients contain almost all the mys-
teries of the Landau-Lifshitz equation.

At the end of this section we would like to
introduce a Lie algebra bracket (Poisson bracket)
in the space of densities. For densities , and &,
we define this Lie algebra product by

(6,6} = (va,(5).S - v&(S))
=1(v5,(5),5 - v5,(5))
—%(Vﬁz(S),S'Vf’}(S))- (6)

One easily checks the Jacobi identity for this
bracket. (Actually, we do not have to prove that at
all, since, implicitly it is proved in section 4 any-
way.)

We should remark that there is no ambiguity in
this definition.

Now, let us define the essential quantities we are
looking for in case of the LL-equation (1). We are
interested in the one-parameter symmetry groups
of (1), or rather their infinitesimal generators. This
is the same as looking for all flows which commute
with (1). We recall that a vector field G(S) is a
generator of a one-parameter symmetry group of
(1) if and only if

[K.G]=0, (7
where
K(S)=S+vH=S:S,,+S"JS (8)

is the right-hand side of the LL-equation. In other
words, we are interested in finding all vector fields
commuting with K(S). A dual notion of symme-
try-generator is that of a conserved density. The
equivalence class of a scalar field o is called a
conserved density if

0(S(1)),=0 (9a)
for all solutions S(r) of (1). Using eq. (1) we sec
that this is equivalent to

(vo.K(S))=(vo.S vH)=0. (9b)

or, by using definition (6). equivalent to
(6.H}=0. (10)

By integration we obtain, for suitable boundary

conditions, constants of motion. Here a suitable
boundary condition means that we assume

S(x,t) — e,

X=X

where ¢, € R® shall be one of the eigenvectors of
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J. Furthermore, we assume that the components of
S(x,1)—e, are functions which vanish rapidly at
infinity (x — +o0), i.e. S and all its derivatives
vanish faster than any polynomial in x. It is quite
clear that this boundary condition is preserved
under the flow of (1). Furthermore, this boundary
condition guarantees that for any scalar field o(S)
the integral

/j:{o(S)—o(el)}dx (11)

exists. In addition, all integrals over total deriva-
tives vanish. So, integration is a class function with
respect to our equivalence relation. This yields that
for any conserved density 6 the integral (11) is a
constant of motion for (1) (i.e. a real or complex
valued function on the manifold being preserved
under the flow of (1)).

3. The principal results for time-independent
quantities

We use the densities and vector-fields defined in
(5). Consider

T A(S)=8-VI(S)=xS-vH+S-S, (12)
and define
K()(S)ZS\’

K(S)=S+TH(S)=S-S, +5-JS,
. (13)

K, (S)=[K,(S).7.(S)].

Then the K,,n €N, are a commuting family of
vector fields and each member commutes with the
flow given by (1) (i.e. with K,(S)). Hence, the K,
are spanning a Lie algebra of an infinite dimen-
sional Abelian symmetry group of the Landau-
Lifshitz equation. The evolution equations

S,=K,(S), neN (14.n)

are called the hierarchy of the LL-equation.

Now, consider the H(S), »#(S) and T(S) given
in (5). Observe that #(S)={ H(S),T(S)} and
define

H\(S)=H(S),
i_{z(S)z'%_ﬂ(S), (15)

H,.(S)={H,S).T(S)},

where 7(S)=xH(S). Then all the H,,neN are
conserved densities for all equations (14.#n), espe-
cially for the LL-equation. All these densities are

in involution

{H(8).H,(S)} =0, foralln,meN. (16)
And the K,(S) and H (S) are related via
K,(S)=S-vH,. (17)

That means, the H, are the Hamiltonians of the
hierarchy given in (15). And the map S+ v pro-
vides a Lie-algebra homomorphism from the
conserved densities into the symmetry group gen-
erators (Noether’s theorem).

If e,€R’ is an eigenvector of J, and if we
assume that S(x)—e, vanishes rapidly for x —
+ oo then the

are constants of motion for each member of the
hierarchy (14.n).

It may occur that the reader is not happy about
the fact that x appears explicitly in the Hamilto-
nian densities H,. In that case, he is invited to
perform one integration by parts (which is possible
since densities were considered to be equal modulo
total derivatives).
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4. The method

We start by considering a map I defined on the
densities by

_ r

7(S) > S vo(S).

Recall that v is a class operator. We claim
I'{e,,s,}=[Ie,,Io,)] (19)

for all densities @,,d,. So, I' is a Lie algebra
homomorphism. To prove this, consider for arbi-
trary vector fields G the quantity V(G)

V(G)=(G.(5ve,)[S* va,])
—(G.(S-va,)[S - va])
-(G.5-v(ve,S va,)). (20)

We only need to show that V(G)= 0. Keeping in
mind that expressions like (G,(S * Vo,) * Vo,) are
equal to zero (since they are equal to the determi-
nant of three vectors being in a two-dimensional
subspace), and keeping furthermore in mind that
second derivatives are symmetric, we compute that
V(G) is equal to zero up to a total derivative.
Since

V(G)=0, foreveryG,

we may replace G by x™G and see that also
x"V(G)=0, forevery m. (21)

This clearly implies that ¥(G)= 0. =

Next, we observe that Hy(S) is a conserved
density for the LL-equation, i.c.

{H,(s). H(S)}=0. (22)

This can be checked by a simple direct calculation
which we do not want to present here since the

fact is well _known ({2, A, in formula 3.17]). Be-
cause of I'T(S)=r7_(S) an application of I' to
(22) yields

[KpKz]:O-

Now, we can proceed exactly as in [7] or [8). From
the Jacobi identity we obtain for K;=[K,.7 ]
that

(K, K3]=0.

So, K; must be a symmetry generator for (1).

We proceed this way as long as we know that
[K,, K, 1]1=0,n=1,...,m. Then a trivial appli-
cation of the Jacobi identity shows that all the K.
n=1,..., m do commute. We claim that

[K,, K, ]=0, foralln. (23)

but we postpone the arguments for this fact to the

next section.

Assuming this we apply I' to (15). Since IH =
K,, I'T=r, and because I is a Lie algebra homo-
morphism, egs. (15) go over into (13), and (17)
must hold. Since the K, commute we obtain
I(H, H,}=0 for all n.m. Hence { H.H,} =0
for all n, m. So. it only remains to show that, for
arbitrary n, the P, are constants of motion for

S =K,(S).

This is a trivial exercise.

P(S(),
= [ T(H(S(0) = Hyle)) dx
— [T H,(S(1)). TH,(S(1)) dx
= [ (PAL(5(0).5(0) vH.(S(1)))dx

=/”°{ﬁm,17,,}dx=o.
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5. Commutativity-leading term analysis

The Lie algebra under consideration has partic-
ular structural properties which force the sequence
of symmetries constructed in the last section to be
commutative. Nevertheless we would like to sketch
an ad-hoc proof of our commutativity claim, since
pointing out all structural properties, and proving
the relevant statements, would go beyond the aim
of this paper.

The proof of the commutativity result consists
of a simple “leading-term-analysis.” In order to
get accustomed to this method we start with the
special case J = 0:

SIZKO.I(S):S.S,r.t’ (24)

and we consider the sequence given by (13)

Ko o(S)=S..
(25)
KO.11+1(S)= [KO.n(S)vTO+(S)]’
where
TO+(S)=XS.S¥X+S.SY' (26)

A vector field G(S) is said to have degree n if
[G(S).xS.] =nG(S). (27)

This simply means that the number of derivations
occurring in each term minus the corresponding
power of x has to be n. Observe that the degree is
additive with respect to the commutator. The de-
gree of K, is 1 and that of K , is (n + 1) since
T,. has degree one. Those terms in a vector field
with the highest derivatives are called the leading
terms.

Now, consider again (14.1) and rewrite it with
respect to the coordinates ( 51) in the two-dimen-
sional euclidean parameter space given by the
tangent space of the unit sphere at the point S(x).
The equation then has the form

Py _ plxx :
( o) ) = ( - Pux) + higher order terms. (28)

From this we easily obtain that the leading term of
any symmetry generator of this equation has to be
of the form

0 D\~ b Py
[-o o) i)

where n is the degree of the term. Going back to
coordinates on the sphere this tells us that the
leading term of the symmetry generator must be of
the form (S -)"‘IS(,,) (n differentiations = degree
of the term).

Now, take the series K, , defined in (25) and
assume

[KO,nfl’Ko_n]ZO, fOfallnSN,

For N =2 this is certainly true since we checked
that directly. The Jacobi identity (or Leibniz for-
mula) then implies that all the K, ,,n <(N+1)
are commuting with K, ;. Hence the leading term
of K, is of the form (§+)"S,,, ,,. Now, assume
(falsely) that

A= [KO,N’KO,N+1]7&O-

The degree of this term must be equal to (N + 1)
+(N+2)=2N+3 since the degree is additive
with respect to commutators. Obviously, X" com-
mutes with K|, |, so its leading term must be of the
form (S+)?¥*2S, .. But, apart from leading
terms, the highest order of derivatives in K, y and
Ko ni1 are <N -1 and <N respectively. Thus
the leading term of X must come out of a com-
mutation of the leading terms of K, 5 and K y.1-
A trivial direct calculation shows that this cannot
be the case. Hence 2= 0, or

(Ko Ko ni1]=0, forall n,

and the Jacobi identity implies that all the K, ,, do
commute.

Using this result we easily can do the same kind
of analysis for the case J # 0. We have to modify
our arguments slightly since the full equation is
not homogeneous with respect to the degree de-
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fined in (27). Fortunately, it helps a lot that we
have free parameters in the full equation. In order
to use these parameters efficiently we replace J by
AJ and we consider the sequence defined by (13).
Again we assume

[K,.,,.K,]=0, foralln=1,...,N
and
A= [KN’KN+1] # 0.

Certainly N >2. Now, we write all occurring
quantities as polynomials in A. We observe that
the zero A-order terms are equal to 7, , and K
respectively. We know that K; commutes with ).
This means that K, has to commute with the
lowest A-order term ¥ of . From our results for
the case J =0 we know that the lowest A-order

cannot be zero. Hence, the leading term of X’

cannot be of the required from (S+)""'S,,,,, since
there are appearing some of the completely arbi-
trary J’s in it. So, again, J#= 0 which yields that
all the X, commute.

At this stage I cannot resist the temptation to
point out the structural reasons for our commuta-
tivity assertion. If one considers, among the vector

fields under consideration, the sub-Lie algebra &

consisting of all those fields which do not ex-
plicitly depend on x then, by a lengthy and com-
plicated procedure, one can prove that this Lie
algebra is beautiful. By that we mean that for
every G € % either

[G.G]1=0, forallGeZ,
or that the commutant
G'={Gez|[G,G]=0)}

of G is abelian.
Another approach to commutativity results can

be made via the notion of hereditary symmetries
(see [9] for details). One can show that there is a
hereditary symmetry ® mapping K, into K. This
then implies commutativity. But since I was not

able to write down @ explicitly 1 have chosen a
direct approach.

6. Time-dependent quantities

It is known for the Benjamin-Ono equation
[10), and some other equations too, that the con-
struction which was carried out in section 3 corre-
sponds to the construction of one symmetry
generator with explicit time dependence, see also
[11]. Now, the question is, are there higher order
time-dependent symmetries? This question corre-
sponds to the problem whether or not the role of
the fields 7, and T can be played by other oper-
ators. As one can see, T, can be replaced by
higher order fields whereas T cannot.

Let us start our considerations by pointing out
the connection with time-dependent quantities.

Take a family of vector fields G(S, 1) depending
polynomially on the parameter 7. We call G(S.t)a
time-dependent symmetry generator for

S = K,,(S)

if the infinitesimal transformation

(14.n)

S(1)— S(1)+eG(S(t),1), e infinitesimal

leaves (14.n) form-invariant. We easily see that
this is equivalent to

G, =[K,.Gl, (29)

where the right-hand side is the usual Lie bracket
(not effecting ) and the left-hand side is the

erivative with respect to the parameter f.

partial d '
pendent density

In complete analogy, & time-de
(S, 1) is said to be a conserved density for (14.7)

if
E(S”)I= {17",6},

where H, is the Hamiltonian for K.

Now, let T(S) be a time-independent density
with the property that (H, T} is a conserved
density for (14.n). Furthermore, let 7(§) be a
vector field such that [K,,, T]is a symmetry genera-

(30)
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tor for (14.n). Then
T(S,t)=t{H, T}+T(S),
7(S,1)= 1K, 7] +7(S),

are a time-dependent conserved density and sym-
metry generator, respectively. Conversely, if these
quantities are conserved densities and symmetry
generators, then {H,7} and [K,, 7] must be a
conserved density and a symmetry generator, re-
spectively. Since, the 7, and T of section 3 have
these desired properties we can rephrase our main
results in the following way:

Tl.n(S*t)= tﬁn+l(s)+ T(S)v

TS 1) =K, (S)+7.(S),

(31a)
(31b)

are time-dependent conserved densities and sym-
metry generators of (14.n). The question is: are
there others? By ad-hoc methods one can show
that there are no other conserved densities, but
that there are many more time-dependent symme-
try generators. The explicit construction of these
quantities is obtained by considering a suitable
enlargement of the Lie algebra under considera-
tion. A detailed analysis of this is carried out in a
subsequent paper.

Note added in proof

A similar analysis can be carried out for the XY Z-
model in statistical mechanics, although the situa-
tion becomes more complicated since for the peri-
odic case the manifold under consideration is finite
dimensional. For details see the author’s contri-
bution to the Sitges conference (1984) on statis-
tical mechanics.
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