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A simple and straightforward method for generating completely integrable non-
linear evolution equations with time-dependent coefficients is presented herein.
For the equations under consideration, the solutions to those given by vector
fields which are independent of time are given, thus explicit links between equa-
tions are obtained. As an application of the proposed method it is shown that the
linear superposition, with arbitrary time-dependent coefficients, of different
members of an integrable hierarchy is again integrable. Furthermore, it turns out
that for some integrable equations [like the Korteweg~de Vries (KdV), the
Benjamin-Ono {BO), or the Kadomtsev-Petviashvili (KP) the resolvent oper-
ator of lower order flows can be explicitly obtained from that of any higher order
flow. Those flows {demonstrated for the KdV) which can be generated by Lie
homomorphisms coming from first order problems are completely classified.
Many well-known equations which can be found in the literature are of that
type. As an application of such a first order link a direct link is given from KdV

to the cylindrical KdV, and from there to the KP with nontrivial dependence on
the second spatial variable.

i. INTRODUCTION

\”ery pften in the literature (see the extensive literature survey in the application section)
modifications of well-known integrable systems are found which again turn out to be integra-
ble. These so-ca]lf:d equations with variable coefficients play an important role in applications.
They oqglnatefi, in the case of the Korteweg-de Vries (KdV), from shallow water problems in
water with variable depth, and today they generally turn up where modifications of integrable
systems are needed to take inhomogeneous properties of media into account.

X In most examples the additional terms are somehow related to the symmetry analysis, of
;0: :ﬁz‘e“g z;r::gsm, of thde :nderlying equations. Usually, the methods for integrability results
o e eq hns are ad hoc methods. However, looking at the variety of examples one has

pression that there must be a general approach to these equations. Indeed, there is such

a general _apprf)ach.' This approach is simple, transparent and straightforward and will be
presented in this article. Consider an evolution equation of the form

u,::K(u), (11)

;V?:E’i u ;V?l\:;sh eI(:n soline suxtab}e rpanifold of functions in the independent variable
i~ lg’r;)u; ireprm,exs:tlec:d ;n eguantf;;)ln is said to be integrable if an infinite dimensional sym”
ature, we abbreviate inﬁnite)s,i : ; itesimal generators) can be found. Here, as in the liter"
notion of symmetry. Or m mal generator of a symmetry group (or semigroup) just by the
held o e unde;- o t?re precise, the notion of symmetry of a given flow stands for 2 vector
con b ariant und ‘s, fBow. In all known cases of integrable equations the symmetry algebra

0 a Virasoro algebra of vector fields (i.e., an algebra of symmetries and

mastersymmetries or a heredi .
Virasoro algebra are ereditary algebra, see Refs. 1-4). The commutation relations of this
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[Kn, Km]=0, (12)
[7ns Knl=(m+p)K,\ s (1.3)
[Tn’Tm]=(m_n)Tn+m’ (14)

where p is a fixed number, m, n run from either — 1 or 0 to infinity [there are also meaningful
cases where the m, n run from — o to + o0 (see Ref. 5)], and where the 7., K,, are suitable
vector fields on the manifold under consideration. One should recall that the commutator can
be expressed (in any suitable parametrization of the manifold) as

[K, G]:=G"(u) [K(u) ] - K" () [G(u)], (1.5)

where G'[K] denotes the variational derivative

E
G’ () [K()):=75_ Glu+€K (1)) (1.6)

in the direction of the vector field K. Equation (1.1) is said to be integrable if K(u) is in the
linear hull of the X,, neN of such a Virasoro algebra.

One can rephrase these observations in a more concrete way by introducing time-
dependent symmetries. To see this, consider a one-parameter family of vector fields K (u, ¢) and
define by that a time-dependent flow

u=K(u,t). (1.7)

Then another family of vector fields G(u, t) is said to be a time-dependent symmetry (see Ref.
6) if ’

aG(u, t)

[K(u’ t)a G(u’ I)J+T=O- (1.8)

This concept generalizes the concept of symmetries and has the advantage that we may include,
from the beginning, equations where the right-hand side depends explicitly on time. Now, we
return to Eq. (1.1), where the flow is given by a time-independent vector field K(u). If we
assume that K(u) is a linear combination of the K, of some Virasoro algebra, then we can make
out of the corresponding 7, of that Virasoro algebra time-dependent symmetries. A simple

computation shows that
Tm(tt): =7y (1) +t[K (), Tn(u)] (1.9)

are indeed time-dependent symmetries for Eq. (1.1). This is an immediate consequence of the
fact that by the commutation relations of the Virasoro algebra, and by use of the Jacobi

identity, we obtain
[K(u), [K(u), 7(x)]]=0. (1.10)
So, we may say that Eq. (1.1) is integrable if it admits a Virasoro algebra of time-dependent

symmetries. This definition, which, verbatim, can be carried over to Eq. (1.7), is the notion of
integrability on which this article is based.
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il. THE MAIN OBSERVATION

Denote the Lie algebra defined in Eq. (1.5) as .£. The Lie derivative given by some Me.#
on .¥ we denote by Ay, i.e., for all Ke.¥

AyK:=[M,K]. (2.1)

It is well-known that, formally, the exponential of A,

) An
exp(Ayp):= 20 n_l,” (2.2)

is a Lie algebra isomorphism on .#. By “formal” we mean that whenever the application of Ay
to K as well as to G converges then

exp(Ap) [K, G] =[exp(Ap)K, exp(A,) G]. (2.3)
Again, we introduce one-parameter families H(u, ) of vector fields; these are always assumed

to be differentiable in . The derivative with respect to ¢ we denote by d,. Our main result is
Theorem 2.1:

(a) Let G(u, t) be a symmetry Jor

u=K(u,t) (2.4)
and let H(u, t) be a family of time-dependent vector fields. Then

['(u, t):=exp(Ay)G 2.5)
is a symmetry for the equation
- (A"
u=exp(Ag)K— ———3.H. 2.6)
=exp(Ag) go oy O (

Furthermore, the Lie algebras of Symmetry group generators of Egs. (2.4) and (2.6) are isomor-

phic. So, if Eq. (2.4) admits a Virasoro algebra as symmetry group generators, then Eq. (2.6) also
admits such an algebra of symmetry group generators.

(b) Let o be a new evolution parameter and consider the equation

U,=—H(U,1). (2.7)

Whenever U=U(x, t, 0) is a solution

of Eq. (2.4) then Ulx, t, 0=
Before we prove this sta

Later on we shall give exam
Example 2.2: We claim

of Eq. (2.7) such that u(x, t):= U(x, t, 0=0) is a solution
1) is a solution of Eq. (2.6).

tement we illustrate by a simple example how this result works.
ples which are more meaningful.

that, for any h(z), the equation

U=+ 6 explh (1) uu,—h' (t)u (28

admits a Virasoro algebra as symmetries. Indeed, this fiow, for example, admits u, as well as

Urrxxx+20 CXP(h(t))unux+ 10 exp(h(t))uum+ 30 exp(2h(t))u2ux 29

as symmetries, and so on.
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Furthermore it turns out that u(x, ¢) is a solution of Eq. (2.8) if and only if u(x, ?)
Xexp{h(t)) is a solution of the KdV.

This is easily explained, and generalized, by introducing the u-scaling degree. Let m(u) be
any monomial in #,u,,u,,,... . Its u-scaling factor is its polynomial degree minus 1. For exam-
ple, the scaling factors of w3, uzui, u(u,,x)4 are 2, 3, and 4. By exp(AS) we denote the operator
which acts on a linear sum of monomials by multiplying each of its summands by the expo-

nential of A X its u-scaling factor. So,
exp(hS) (Uyux+ 6U,) =t +6 exp(M)uu,. (2.10)
Now, choose in theorem 2.1
H(u,t)=h(t)u (2.11)

and observe that application of exp(Ag) coincides with application of the scaling exponential
exp(AS). Furthermore, observe that the sum

o (A"

>

= mB,H (2.12)

reduces to its first term (n=0) since H and d, H do commute. Therefore application of 2.1 to
the KdV hierarchy yields a hierarchy of time-dependent flows of which Eq. (2.8) is the second
member. Indeed, the whole Virasoro algebra of symmetries and mastersymmetries of the KdV
can be carried over to Eq. (2.8).

The relation between solutions of Eq. (2.8) and the KdV is a consequence of theorem
2.1.b. However in this simple case it is easily checked by a direct computation.

Proof of theorem 2.1:
(a) The basis for the Lie algebra .#” was a manifold .# of functions in x. We now change

that viewpoint by considering a manifold consisting of orbits on .#, i.e., we consider the field
variable u as a function in x and t. By .7, we denote the vector field Lie algebra with respect
to flows on this extended manifold.

Since .# can be considered as a subalgebra of .Z°,, (see Ref. 7) we denote the Lie algebra
in % also by [,]. Using this Lie algebra we can now rephrase condition (1.8): A time-
dependent vector field G(u, t) is a symmetry group generator of

u=K(u,t)
if and only if
[K(u)—u,, G]=0 (2.13)

in the extended Lie algebra .7, . After this observation the proof of Theorem 2.1 is straight-
forward. We consider, all in the extended Lie algebra, the Lie algebra isomorphism exp(Ay).
Then application of this isomorphism to K(u) —u, leads to the right-hand side of Eq. (2.6),
and G is transferred by this to the I" given in Eq. (2.5). Using the fact that exp(Ay) is an
isomorphism, and taking the first nontrivial symmetry of the KdV, we see from Eq. (2.10) that
indeed Eq. (2.9) must be a symmetry for Eq. (2.6). Again, the isomorphy of the Virasoro
algebra of the symmetry group generators of Eqs. (2.6) and (2.4) follows from the isomorphy

property of exp(Ay).
{(b) Consider the manifold of functions U in x, ¢, and ¢ and on that the solution manifold

M of R(U)=0, where
R(U):=exp(oAyy, g (U,—K(U, 1)). (2.14)
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Observe that its fibers 0=0 and =1 are the solution manifolds of .Eqs. (2.4) and (2.6),
respectively. Taking the total o derivative of R(U) on the whole manifold we find

R'[H]-H'[R]+R'[U,]=0
or, since R(U)=0 on .#,
R'[H+U,]=0. (2.15)

Hence, U,= — H leaves .# invariant, and obviously this flow transports from the fiber 0=0
to the fiber o=1. a

One may ask at this point if notions as hereditary operators and the like can be transferred
from Egs. (2.4)-(2.6). This, of course, is possible for any kind of invariant tensor: By the usual
procedure®® we extend the Lie derivative from vector fields and scalar fields to arbitrary tensor

fields by requiring the validity of the product rule. Then a tensor ®(u, t) is invariant with
respect to the flow

u=K(u,t)

if and only if its Lie derivative with respect to the vector field K (u, t) —u, vanishes. Now, if the
meaning of Ay is extended, such that it stands for the Lie derivative with respect to H applied
to arbitrary tensor fields, then one easily sees that

exp(Ay)

provides an isomorphism for the tensor algebra built up over the vector fields .& - Hence, by

application of this formal isomorphism we may transfer invariant tensors for Eq. (2.4) to
invariant tensors for Eq. (2.6).

lil. APPLICATIONS

The examples given in the following sections are based on transforming equations such as
Eq. (2.4) with the help of time-dependent vector fields & (u, t) into new equations like Eq.
(2.6) and then using the direct transfer for solutions, as given by Eq. (2.7), or the transfer of
vector fields by Eq. (2.5), to obtain information about the new equation. For the transfer of
solutions, of course, it is necessary that Eq. (2.7) is integrable. This is the case whenever the
vector field H(u, t) is a scaling symmetry or even a simpler field; hence working with scaling
symmetries will make up for a large part of these applications. Even for these simple cases we
obtain a large variety of equations usually treated as separate cases in the literature; we shall
demonstrate that for the KdV. However, in order to show that also less obvious results can be

obtained from Theorem 2.1 we start with some examples being more involved from the view-
point of nonlinear equations.

A. Finite sums of integrable fields with arbitrary time-dependent coefficients

Consider any hierarchy of commutin

g g vector fields K,(u), neN. Then usually the equa-
ions

u,=K(u) (3.1

can be solved by standard methods

s (inverse scattering theory, Hirotas bilinear method, etc.).
To facilitate notation we denote by

J. Math. Phys., Vol. 34, No. 11, November 1993



Benno Fuchssteiner: Integrable nonlinear evolution equations 5145

u(x, )=R(U(x, 1), 1) (3.2)
the solution of
u,=K(u,r)
for the initial condition u(x, 7, 1=0)=U(x, ). Here 7 plays the role of an additional param-
eter. The crucial operator Ry we call the resolvent operator of the vector field K. An equation

is said to be solvable if this resolvent operator can be computed somehow.
We are interested whether equations of the form

u= 2 ¢ (K, (u) (3.3)

are again solvable if K, (u) are. Here, of course the sum is assumed to be a finite sum. Indeed,
we show as an application of Theorem 2.1 that this is the case for arbitrary functions ¢,(¢) and
that the solution can be written in terms of the resolvent operators of K. It suffices to show a
suitable result for the linear superposition of two fields.
Theorem 3.1: Consider commuting vector fields K u, 1), Ky(u)
[Kl(u’ t)a KZ(u)]z())

where Ky(u) is assumed to be time-independent. Let the equations

u=K,(u,1), (3.4)

u=K,(u) (3.5)

be solvable. Then for an arbitrary function ¢(t) in time the equation

u=K(u, ) + () K, (u) (3.6)

is again solvable. Indeed, let
d
7r Y1) =¢(1)

then
Ry (R, (U(x), 1), ) (1y= 1y, 1,=1) (3.7)
is the solution of Eq. (3.6) for the initial condition u(x, t=0)=U (x).

Proof: Put H(u, t) = —1(t)K,(u) then Eq. (2.6) carries over in Eq. (3.6). Since the flow
(evolution parameter o)

Us=9(11)K,(U)

has for initial U(x, t,, 0=0) =u(x,t,) the solution RKZ(u(x, 1), o¥(t))) we find by Theorem
2.1 that

Ry (u(x,1), 0)(o=y(0)}
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must be a solution of Eq. (3.6) whenever u(x, ¢) is a solution of Eq. (3.4). Hence Eq. (3.7)
gives the solution of Eq. (3.6). [ |

Obviously, iteration of that result leads to the claim that we may write the solutions of Eq.
(3.3) in terms of the resolvents of K, . In case these K, are from a hierarchy generated by a
recursion operator, then it is just a matter of routine to construct the recursion operator of Eq.
(3.3) by similar methods. This is possible because we have generated the solutions by the
application of a Lie homomorphism for the underlying tensor bundles.

B. Solutions for flows given by time-dependent symmetries

As we know, for all known integrable systems, in addition to the usual symmetries, there
are those depending explicitly on time. These additional symmetries are either only of first
order (conformal symmetries) or, for some equations, also of higher order. Such higher order
equations, for example, can be found for the Benjamin-Ono equation (BO) or the Kadomtsev—

Petviashvili equation (KP).!
To give a nontrivial example, we consider the Benjamin-Ono equation
u=Hu,,+2uu,, (3.8)
where H stands for the Hilbert transform

1 r+e f(§) o )
(Hf)(x):=ﬁ B ad@‘, (principal value integration). (3.9)

The following equation is derived from the first nontrivial time-dependent symmetry of the BO:
u,=2(Huy,+2uu,) +2(u+xu,+x)

(3.10)
4t (Hu o+ 2uu,+u+ xu,) — 42 (Hu, o+ 2uu,).

We want to_solve such an equation for arbitrary initial value. Indeed, this is possible in terms
of the iteration of the resolvent operator for the BO. To do this consider

Ky(w)=Hu,, +2uu,. (3.11)
We claim that

u(X, t):RKI(RKl(U(x) +x, tl) —X, 12)|{12=tl’tl=t} (3.12)

i Ing from this observati . . .
(3.10) by use of ation we represent the right-hand side of Eq

exp( ~IAK1 )(exP(aAG)Kl):H“xx+ 2uu,+-2(u+xu, +x) +4t(Huyo+ 2uu, + u+xu,)

—42(Hu, +2uu, ) (3.13)
and
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exp(aAg) K=K (u(x) +x).

Using this we see that the right-hand side of Eq. (3.10) is equal to

a
exp( —tAKl)(exp(AG)Kz)—a—t (—tK))

and Theorem 2.1 may be applied because this field is of the form (2.6). Actually the Theorem
has to be applied twice. In the first step we find that R K1(U (x) 4 x, ) — x solves the initial

value problem u(x, t=0)=U(x) for
u,=exp(Ag)K;.

In the second step a further application of 2.1 gives Eq. (3.12).

In this example the decisive tool was that the Virasoro algebra of the BO was generated by
a nontrivial symmetry and a constant vector field. Hence, the above arguments can be applied
to all equations where this is the case, for example, to the KP (see Ref. 1 for finding the
necessary commutation relations).

C. Solving lower order equations

Consider, for example, the KdV or the BO. The problem seems interesting if we can find
explicit formulas between the resolvent operators for different members of the hierarchy.

Indeed sometimes this is possible, for example, for the KdV, the BO, or the KP. Because
we have a constant vector field as a descending master symmetry of the first order, we can
determine explicitly from the resolvent for the nth member of the hierarchy u,=K,(u) the
resolvent operators of all lower order flows. We briefly demonstrate the case of the KdV, where
the trivial field G(u) =1 is a mastersymmetry going, via commutation, from K, L toK,. To
see the details let

U =Ky (1) : = (Ugpux+ Sttt + 10uu, + 104°) (3.14)

be the second member in the hierarchy. Observe that
AGK;=10(u, + 6uu,) =10K,
and
(Ag)*K,=60u,.
Hence
K:=exp(Ag)K,=K,+ 10K+ 60K,

where K, and Ky=u, are the lower order symmetries of Eq. (3.14). Now, using 2.1 we find
that the resolvent operator for K, trivially yields the resolvent operator for K. Hence by the
results in Sec. IIT A we find the resolvent operator for K—K,=10K,+60K,. Now elementary

routine allows us to get rid of K, thus we are able to find the resolvent operator for X in terms
of that for K,. As an exercise the reader may derive the explicit formulas (and check them out,

say, for the two-soliton solutions).
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D. Some Tools for working with scaling symmetries

In the following examples we use scaling fields and fields of a similarly simple nature. As
a tool, we first need solutions for some special Cauchy problems of first order partial differential
equations in the unknown function F(z, 1).

Lemma 3.2: Let 4(t) be some differentiable function, its inverse Junction we denote by ¥,
and we abbreviate

(8, ) =¥ (¥(2) — A). (3.15)

(a) By Y{r(t, 1)) we denote the derivative of ¥ at 7(t, A) whereas W7(2, 1)), denotes the t
derivative of Y/(1(z, 1)), i.e., (8, 1)) =7 )YLr(t, X)). The initial value problem F (1, A=0)
=g@(t) for

—¢7'Fr=F/1 (3.16)
has the solution
F(t, L) =¢(r(1, 1)). (3.17)
(b) The initial valye problem F(t, A=0) =@(2) for
~ ¥, o F—y; 'F =F, (3.18)
has the solution
F(1, D) =9(0); dr(t, A))g(r (s, 1)). (3.19)

{c) Let a(t) be differentiable in t, then the general solution of

_ a
Fi+; 1F,=$ (3.20)
is
F(6 D) =In(a(O)(r(t, 1))+ Q(1) — A) (3.21)
Jor arbitrary Q. Hence the solution of the initial valye problem F(t,A=0)=0 js obtained Jor

(o) =—In(a(Yin(0))) Y iny (o))

as

a(t)
F(t,l):ln(m)z/}t(r) (3.22)

The proof of these results, which were obtained by the well

. _kn r
equations,'® can be checked by direct ¢ own theory for the first orde

omputation. However, one should keep in mind that

3 ~1
T ) e Y I (3.23)
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x;/a
and then taking the derivative with respect to a at the point a = 1. The operator performing this
scaling we denote by le_. So, for homogeneous terms, the operator S, counts the number of x;
derivatives and deducts from that the number of powers in x;. For example,

S (et Utdeg+-X,) = 3u o+ Suu®, — 3%,

In the same manner we introduce the ¢ scaling. A trivial, but nevertheless important observa-
tion is that these scalings can be realized by Lie derivatives

SxizAx,ux_’ S2=Atut' (3.24)
This corresponds to the already observed fact for u scaling
S=A,. (3.25)
Hence, it will not come as a surprise that exponentials of these scalings lead to Lie algebra
isomorphisms. We compute explicitly some of the Lie algebra isomorphisms given by these
scaling quantities.

Lemma 3.3:
(a) Let K(u,t) be a vector field not containing t derivatives and let a(t), b/(t) be suitable

Sunctions in t. Consider
H=In(a())u+ Z In(b,(0))x (3.26)
then
exp(AAK (4, 1) =a(1)*S H b5 K (u, 1). (3.27)

(b} Now, consider the functions introduced in context of Lemma 3.2, then for
H(u, t)=v,(t) 'u, (3.28)
Jor some t independent K(u), which does not contain t derivatives, we find
exp(AA ) @ (1)K (u) =@(r(t, 1))K(u). (3.29)
(c) And for the same H(u, t) =1/1,(t)_1u, we have
exp(AAR) @()u, = (1) ; ' Yhr (1, A))plr(t, ))u,. (3.30)

(d) Finally, for
H=In(a(O))u+ X In(b())xux+¥:() 'y, (3.31)

we obtain
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exp(ARu =Rt A+ T Ro (8 it 476 )t (3.32)
where
a(t) )
—Inf —— 3.33)
Ra(t) A’) _ln(a(T(t, A)))‘ljt(’r)' (

The Ry are defined accordingly.
Proof:

(a) The result of (a) follows directly from the interpretation of scaling as the effect of Lie
derivatives.

(b) Looking at the power series for exp(/lA g) we justify the ansatz
exp(AA (DK (1) =F(t, A)K(u). (3.34)

Taking the A derivative yields

[H, F(t, VK (1)1 =F;K(u).
Explicit computation leads to
—4,(t)"'F,=F;. (3.35)
Furthermore by putting 1=0 in Eq. (3.34) we see that F must fulfill the initial condition

F(t, A=0)=g(1).

So, the result follows from Lemma 3.2.a.
(c) Here we proceed in the same way. We take the ansatz

exp(AAp)@(Du,=F(1, A)u, (3.36)

and obtain by the A derivative and A =0 the initial value problem

— ) ", F—9(0)"'F,=F,;, F(1,A=0)=9(1),

the unique solution of which is given by Lemma 3.2.b.
(d) Here we make the ansatz

exp(AAp)u=A(t, Ayu+ X Bi(t, Dxu,+C(t, A)u,. (3.37)
Again, the A derivative and A =0 lead to the initial value problem

1)
C+¥7'C= _:5:(—(”2 C, C(t,A=0)=1.

From Lemma 3.2.b we find its solution as

Clt, \y=r,t,A)~".

Using this result we see that the initial value problems for 4 and B, are
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a
A,1+¢,“A,=i, with A(t, 1=0)=0

t

and

—1 bit
(B4 (B)=—

5+ with Bi(5,A=0)=0.

The solution of these have been given in Lemma 3.2.c. Inserting them in Eq. (3.37) we obtain
the result. |

E. Variable coefficient KdV’s
We start with the well-known KdV
Up=Upp e+ 6uu, (3.38)
for which the Virasoro algebra is easily generated by the hereditary recursion operator
®(u)=D*+2u+2DuD". (3.39)
Application to suitable base elements yields X,, and 7,
K,,=0"u,, 7,=0"(xu,+22u). (3.40)

Indeed, the hereditary property of ® is equivalent to the Virasoro property of the algebra
generated by the K,,,, 7, (see Ref. 4). Expressing this in the extended Lie algebra we know that

C(u)=u,+6uu,—u, (3.41)

admits a Virasoro algebra as commutant. Defining successively

I'y=exp(Amgacny)u+in(o(n)eu ) T (3.42)
Ty=exp(Ay-1,) Ty, (3.43)
Fy=exp(Ama(n)u+n@Bopa ) T2 (3.44)

we obtain a vector field T';(u, ) which admits a Virasoro algebra as commutant, hence
I;(u,2)=0 (3.45)

is an integrable equation.
Abbreviating

T(t):=7(1, 1) =¢, (¢(2) 1) (3.46)
and carrying out the details of the computation we obtain with the help of the Lemma 3.3

3 a’'(t) b’ (1) (347)
'i=b(1) um+6a(t)b(t)uux—m u_—b(t) XUy—1U,, .
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a(T(n) bv(T() —1
Do =b(T (1)) s+ 6a(T ()BT (2) )ttt — AT ) “ T o) “— WD) AT (D),

(3.48)

a(T() b(T(1)

r3=b(T(t))3B(t)3um+6a(T(t))b(T(t))a(t)B(t)uux— (T D) u— BT (1)) Xlx

(1) B’ (1) -
~ OV AT 00 i u— G O) T ) S e~ ) AT (b

(3.49)
Observing
¥,(2)
A A (3.50)
TO=prmy

multiplying Eq. (3.49) with T'(t), and renaming AT (1))=B(1), a(T(1))=A(t) we obtain
that the equation

A(2), a(p),
U= B(t)BUYT 1)t +64(2) B(1)a(£)B(1) T () uu,— ( )u

A0 T2

(B(t), B(t)r)
— xu,

m.;.m (3.51)
must be integrable. Introducing now
v(1):=B(OB(1), w(t):=A(t)a(t) (3.52)
we find the integrable equation
U =V(T ()t + 60() (1) T,(t)uux—%t u—%xux. (3.53)

It should be observed that the com
hand, in the interdependence of the
function T'(¢) was constructed.
From the second part of Theorem 2.1 we know that there
KdV and Eq. (3.53). In order to find this,

patibility conditions for this equation are hidden, on one
coefficients, and on the other hand, in the way the crucial

must be a direct link between' the
we have to solve successively the evolution equations

Uini(x, £, 0)o=—H, (U, \(x, 1, o), 1), i=1,.,3 (3.54)
for
Hi=In(@())U+In(b(n))xU,, (3.55)
H=)"'v, (3.56)
Hy=In(a())U+n(B(n)xU, (3.57)

in case of the initial conditions
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Ui+l('x’ t’ 0:0) =ui(x, t).= Ui('x, t) U=1)7 (358)

where u, is taken to be a solution of the KdV. Similar to Lemma 3.2 we find

Uy(x, t, o) =a(t) ~u(xb(1) =, #), (3.59)
Us(x, 1, o) =uy(x, 7(1, 0)), (3.60)
Uy(x, t, 0) =a(t) ~uy(xB(1) 7, 1). (3.61)
Hence
ug(x,8) =(a()a(T () uy (xBB(T (1)), T(1)). (3.62)

As consequence we have that whenever u(x, t) is a solution of KdV, then
Unew (X, 1) =w(t) "tulxv(2) 7!, T(1)) (3.63)

must be a solution of Eq. (3.53).

Remark 3.4: This last equation provides a direct link between the KdV and the class of
time-dependent coefficient KdV’s given by Eq. (3.53). Of course, most of the results of this
section could have been obtained much simpler by use of this direct link (3.63). However, the
derivation we have given yields additional information: first, that the class (3.53) is closed
under all Lie homomorphisms being derived from first order problems and that this is the
smallest such class of equations containing the KdV. Hence all first order modifications which
can be found in the literature must be among these equations (if one searches the literature
with respect to these equations, one really is surprised how much work has been invested in the
study of special cases of these equations). Another decisive advantage of our derivation for
these equations is that we constructed them via a Lie homomorphism for the tensor bundles in
the extended Lie algbra. This allows a direct transfer of all notions and quantities formulated
in a differential geometric invariant way, for example, the Virasoro algebra. We do not give
explicitly the Virasoro algebra of Eq. (3.53), since that is now a simple exercise.

Special cases. Consider the special case

#(1) =—(In(c)) " 'In(In(z)) (3.64)
then
Y1) =1+9(r)
or
T(t)=F, T, (t)=ctr " (3.65)
If now, for example, we choose
v()=(ct"), w(t)=(cr~")"? (3.66)

this produces the KdV, where the most simple mastersymmetry has been added

U= U+ Ouu,— (c—1) Qu+xu,). (3.67)
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This is Blaszaks!! extended KdV, for which he studied solitons and the like. Since the sym-
metry group structure of this equation is isomorphic to that of the KdV, the soliton solutions,
being solutions obtained by group theoretical reductions, are carried over with the help from
formula (3.63). This equation has also been studied, as GKdV (generalized KdV), in Ref. 12,
where pseudopotentials, Lax pairs, and Bicklund transformations were investigated. For the
solution of this equation by inverse scattering see Ref. 13, also Ref. 14. Of course all these
results can now be obtained by the direct link which preserves all the group theoretic structure.

It should be observed that Eq. (3.67) is the most simple nonisospectral flow for the usual
Lax pair formulation of the KdV. Other nonisospectral flows for other equations [see Refs. 15
or 16 for the whole Ablowitz-Kanp-Newell-Segur (AKNS) class of these equations] can be
obtained in the same way.

By a different choice of v(¢) and w(¢) other equations with variable coeflicients are ob-
tained. For example, one easily obtains

n+l1
Uit B e+ 6uu,) = Qu+txu,) =0, (3.68)

an equation introducec_l by Nirmala, Vedan, and Baby.!”!8 Also the other equations studied by
Baby,. as well as by Li Yi-Shen and Baby, are of the same type (see Refs. 19-22). All these
equations were introduced in order to explain soliton breaking in variable depth shallow water.

Other special cases of Eq. (3.53) are some (but not all, see below) of the KdV equations

with nonuniformities studied by Brugarino,? among them the KdV in nonuniform media with

relaxation coefficients.

F. Other KdV and mKdv modifications

The same procedure as with th

' e KdV can be done with mKdV, or more generally, with the
Gardner equation

Ue= Ut O\ttt + U+ cyu, . (3.69)
We obtain then the integrable modification
u,=u(t)3T,(t)um+c1v(t)w(t)T,(t)uux-}-czw(t)zv(t) T()u*u,

w, v
+ew(NT(Duy——y— xyy
w v

) =u e+ 6un,—u,

and defining

Iy =exp( Antatou+ nto()xa 4 (9, 1) )T

Wwe obtain the integrable equation

Ti(u, r)=0.
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Abbreviating again T'(¢):=7(t, 1) =4,,,(¥(¢) — 1) and carrying out the details of the compu-
tation we obtain (with the help of the Lemma 3.3d)

= T UV g+ 60 (V1) T (1) (i -2 tnf 20
u =T (1)v(t)’uy+6w(t)v [(Duu,—Y, t)n(a(T(t)))u—ip,(t)n(m)xux,

where

(1) T
(1) -—-exp( f ¢s(s)ln(a(s))ds), v(t) =exp( f ¢S(s)ln(b(s))ds).
t t

Using Theorem 2.1 we find as before that for solutions u(x, t) of the KdV, the function
Unew(X,8) =0 (D ulxv(t), T (1)) (3.72)

must be a solution of Eq. (3.71). It should be remarked, that Eq. (3.71) is the most general
equation which can be obtained out of the KdV by application of exponentials of scalings. This
follows from the fact that the exponentials of the kind

€XP (An(a(e))u+In(b())xu, +(9,(0)~ 1u,)

are a subgroup of the exponentials of vector fields.

G. Cylindrical equations

In the KAV (for the variable #) we substitute

Then u evolves with
1
u,=um+6uxu—; (u+xu,). (3.73)

Now, taking the same transformations as in Eqs. (3.42), (3.43), and (3.44) we obtain the
integrable equation

1 , 1 v,
u,:v(t)3T,(t)um+6v(t)w(t)T,(t)uu,,— (T(—t—)——*_%)u_ (m+;)xu,‘. (3.74)

Now, by choice of

In(?)

= 75
YO =S (3.75)
we pick out a special case. We get
t 1
T(t)=- and T,=-. (3.76)
c c

Putting
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o(t)=t""3 and w(r)=r23 (3.77)
we obtain
1 2 ¢ 1 ¢
— - —_ ) 3.78
“e ct(um+6u"u)+(3t t)u+(3t t)xu” (3.78)

Now, performing for the parameter ¢ the limit c— 1 we find the equaticn

1 \

1 2
U= (um+ buyu—3 U~z xux}?. (3.79)

Following all the steps, and transforming the solutions accordingly, we find that whenever
u(x, t) is a solution of the KdV then

Unew (%, 1):=Pu(xt3, 1) +’—; (3.80)

is a solution of Eq. (3.79). At this point we transform dependent and independent variables
according to

u=6"U, x=6"3%, t=o~12 (3.81)

to find

1
U,= ~Tag (Uxxx+6UxU—2U—4xU,). (3.82)

This is a well-known equation from the literature (Ref. 24, p. 268). From here the transfor-
mation

v(§, 0)=(120)"*U(X, o), E=(120)3y (3.83)
yields a link to the cylindrical KdV

v
Vot Vgge+ Dev+5-=0. (3.84)

Thus we have found a direct link

from KdV to the cylindri 1 . i i lution
of the KAV thew y cal KdV. So, if u(x, ¢) is a so!

1 £ 1
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H. Link from KdV to KP

As for the KdV we may, by the same methods, obtain a link between the Kadomtsev—
Petviashvili equation

(U46UU,+ Uyyy) = —30U,, (3.86)
and the Johnson equation®
Y 2V
Va+6VVa+ Vggg—-f—%_ =—3a 7, (387)
§

which was investigated for its applications in water with variable depth (see Ref. 26 and, or
Ref. 27). However, this link is well-known from the literature, so we may skip it here. In an
article of Lipovskii, Matveev, and Smirnov?® we find that whenever V(&m,0) is a solution of
Johnson’s equation then

T2t ¢ (389

yzyt)

U(xy P t) = V(X+

must be a solution of the KP. Now, obviously, any solution of the cylindrical KdV of the form
(3.85) is a solution of Johnson’s equation (not depending on 7). Hence we have found a direct
link from the KdV to the KP. Interestingly, this link, contrary to the trivial link where the y
dependence is neglected, yields solutions of the KP which genuinely depend on the second
spatial variable. To make this link precise, we conclude that whenever u(x, ) is a solution of
the KdV then

u(x b l)x '

1
U(x, y, t)=4—173— 21/3‘/;+12(2)1/3a2,3/2’$ +1_21+(12at)7

t

must be a solution of the KP. This fact is easily verified by direct computation. Since the KP
is invariant with respect to translation of time we have found the following general class of
solutions:

x 7 1 )

1
Ulx,y,t) =41/3(t+c) u(21/3 \/(t+c)+12(2)]/3a2(t+c)772’ \/(I+C)

x Vv

T20+o) T(2ati+0))

(3.89)
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