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TRAVELTIMES IN COMMON MIDPOINT SECTIONS
OF ANISOTROPIC MEDIA

S. Hansen

The traveltimes of common midpoint gathers are closely related to those arising from a
(fictitious) point source at the normal incidence point. The second derivatives of the travel.
time functions agree up to a trivial factor of 1/2. This result, well-known for isotropic media,
is generalized to the anisotropic case. In the proof the coordinate invariance the ray theory is
used in an essential way.

INTRODUCTION

invadgnt Therefore, we shall review aspects of ray theory emphasizing the coordinate invariance of the eicond
cquations, the ray equations, and Snell’s law. To better see this important property, we also restate and rederie
In an appendix some basic formulas of Hamilton-Jacobi theory.

NOTATION

, Coordinate vectors of spatial points are gencrally denoted by small Lafin letters x,y, 2. For the correspond
1ng dual vectors (e.g., momenta) we use small Greek letters &, 1, 2. So, for example, (x, £) denotes a pout

six-dimcnsg'ogal phase space. (In more standard physics notation the letters k or 2 are used instead of £.) Wewst
the abbreviation

3
= 1)
(Er v ) 21 61‘!1} . (
}-
an index j, we denote its j-th component. We poml;;l:
(momcnmm) and v (velocity) do not even belong 101X

Here and in' the following, by subscripting a vector with
that eq. (1) is nor a scalar product. In fact, the vectors ¢

3
function f(z), df =j21%d § is its total differentia] We use the notation of (1) also with differete

3
(§ dr)= Edx ., For a curve x(¢ S . ___gx_m
121 7 *(t), the derivative with respect 1q 1 parameter ¢ is written as X =z
transpose of a matrix 4 is written 4T its inver. -T jven by &
, Se trans =(q4~WT , . . ven b)
equation S() = 0with &5 0 For e of o oo )+ An interface is locally
ax ~ -+ Or tase of notation the interface is alsg called 5.
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RAYS AND TRAVELTIME FUNCTION

The eiconal equation is a starting point for the introduction of rays associated with wave equations. For
theories of waves and rays see, e.g., [4-6]. »

In a source-free region, the temporal evolution of an elastic wave governed by the equations of elasto-
dynamics

azu. 90;; ]

. Su
u = (ity, Uy, U3) is the displacement field, o; = 2 (c,-jkj;l) is the stress tensor. The density, p, and the elastici-
k]

ties, Cije> Ar€ smooth functions of spatial position, x = (x;, %), x;).
Wavefronts, t = T(x), of high-frequency waves u satisfy an eiconal equation

B ) =1. ®

Here and in the following 4 is a positive smooth function such that (h(x, E))2 is an eigenvalue for the 3 by 3
matrix I'(x, £), defined by

I‘jk(x, 5= ,D(X)—lz’l Cijkl(x)fisl -

X = (x,,%,, X3) is the coordinate vector of a point, and & = (£, £,, &) is a covector at that point. I'(x, £) is positive
definite symmetric, if £ # 0. Observe that k is always homogeneous of degree 1 as a function of ¢, ie.,
hx,cE) = |clh(x, £) bolds for all (x, ), & = 0, and all real numbers ¢ # 0.

Remark. In the isotropic case there are two distinct eigenvalue functions, hp(x,£) = cp(x)|&| and

. 12. .
hg(x, &) = cg(x)|£ |, corresponding to P- and S-waves, respectively, Here |§| = (E% + 5% + gg) is the Euclid-
12
ean norm of £. The wave speeds are, in terms of the Lame parameters Aand g, cp(x) = ((A+2u)/p) " and
¢s@) = (u/p)">. . _ .
Rays are curves (x(f), £(t)) in phase space which satisfy Hamulton’s canonical equations:
. 8k r__oh 4
X=%F and ¢ = po (4)

h s constant along a ray. This is seen when differentiating A(x(t), £(t)) with rgspect tot.
Solutions to the eiconal equations eg. (3) and solutions to the ray equations eq. (4) are closely related. If

50 = 2x() )

holds for one curve parameter ¢ then it holds for all t. A proof of this basic fact in Hamilton-Jacobi theory is
given in the Appendix, part A. Using ¢q. (), eq- (4) and eq. (3) we compute

gy =(Li)-(sF)=n=1.

i i functions applied to A. It follows that
The third equality follows from the Euler’s thcorem on homogeneous (  follov
t=Tx(t)) 1(51 coztazt_oﬂcncg rays in h =1 are parametrized by the traveltime of wavefronts, justifying the

notation ¢, ] . N
To see the coordinate invariance of the formulas consider a transformation which maps x, the old coordi

nates, smoothly to x’, the new coordinates. Given define T and h” by T'(x") = T(x) and h'(x &) = h(x, £). Here
~-T

§= (%(x)) ‘. ©
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With these definitions and a straightforward differentiation we obtain
o 8T = p fe 3L
h (x ,?(x )) =h (x, ax(x)) .

This equation states the invariance of the eiconal equation under coordinate changes. The transformation g
consistent with that for waves. s ) ) .

The transformation which maps (x, £) to (', &) with £’ defined in eq. (6) is a symplectic (or canoricy)
transformation. We have

($'$dx'>=(5,dx)» (7)

this follows when expressing the differentials dr’ in terms of dx. It is well .known from classical mechanics thy
the structure of eq. (4) is left invariant under general canonical transformations.

At an interface, S, across which the material properties change discontinuously, eq. (2) does not holg
However, the elastic waves on cither side of S are related by the continuity of the displacement field and the
normal traction, A high-frequency wave has, for cither side of S, wavefronts = T_(x) and ¢ = T, (x) wit

corresponding eigenvalue functions _ and k., respectively. In addition to the eiconal equation the following
holds:

T, =T_@x), 5&)=0. ®
These equations are obtained by phase matching, Here we assume S to be given by an equaﬁon Sy=0
satisfyingv = %’g # (0 on S. Taylor's formula and eq. (8) imply that

holds on S with some scalar function f. This condition is equivalent with the following:

) =(5), w

holds for all vectors v which are tangent to § atx. This is the general law of reflection and refraction, with or
without mode conversion, for wavefronts. It applies to isotropic and to anisotropic media.

If eq. (10) and eq. (5) are to be cobsistent, the followi t hold f £)) at the point of
reflection or transmission x = x(¢ + 0) = x(t ~ 0): ving must hold for a ray (0, 569 P
(§t+0)v)= (¢ -0),v) (19

for every vector v which is tangent to S atx, and, in addition,

hyn, § + 0) = h_(x, £t - 0)).

This is the general form of the Snell’s law, valid also for anisotropic media.
The laws of reflection and refraction als

‘et c 0 retain their fo i changed. Set
S'(@") = S(x). Then §', the interface.§ in new cog rm when coordinates are

cet rdinates x’, is given by the equation §'(x') = 0. For a vedor?
ax’
v’ 1
= (“‘(xa ))u , Q)
v'is tangent to S’ atx’ precisely when v is tangent to § atx. Furthermore

ar, o7,
< ' (I),v >=< ax-.‘ (X),U).
Hence the law of reflection and refraction of eq. (10) retains its structure in the new coordinates:

-
%x’;’.(x')’ v)= (%(xv,v' .
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holds for all vectors v’ which are tangent to S’ at x'. The i : . i
the different transformation bepav%org of covectors and veggl::fiir:étzg;lii‘g ::r_ zg; liczgzsc‘;i:;t with this. Note

Example. Assume that S is given by an cquationx3 = f{x,,x,) with a smooth fl’mction f. Po);x = (&3, X5, X3)
define x' = (1", X5, X'3) With x'y =x), X', =), and x, =x3 = f(r},X;). The implicit function theorem shows
that, at least locally near a point, the map which sends x tox’ is a coordinate transformation. It has the important
property that it flattens S. More precisely, §”, the interface S in new coordinates, is given by the equationx’, = 0.
The statements about the coordinate invariance of the eiconal equations and of Snell 3
no generality is lost when assuming plane interfaces.

We now discuss traveltime functions and their relation to rays. Consider two points in phase space, (x, &)
and (y, 7), such that A (x, £) = h(y,7) = 1and such that there exists a ray which passes through (x, £) and (;: 1;; at
times ¢ and 0, respectively. Let C; denote the set of all ¢, (x, £), and (y, 1) related in this way. C; is a manif:)I dof
dimension six. It is parametrized by t and (y, ), with (y, ) = 1. Hamiltor’s law holds:

dt:(Eadr)_(rl:dy)oncl- | (B)

A proof of this fact is given in the Appendix, part B. In view of eq. (7) the form of eq. (13) remains unchanged
when the coordinatesx and y are changed to new coordinatesx’ and y’.

If it happens to be true that C; can be parametrized by x and y, then there exists a function T with
t = T(x,y), and, because of eq. (13), there holds on C;:

s law therefore imply that

oT aT '
'E = 'ax-(l’,)’), n=-= ;;(x’y) . (14)

Such a function T is called a traveltime function. In general, because of caustics a traveltime function T(x, y) is
not everywhere defined as a smooth single-valued function. However, T may still exist locally near some pair of
points (x, y) even when the connecting ray has gone through caustics.

THE KREY-CHERNYAK-GRITSENKO THEQOREM

We consider rays which travel through layers of inhomogeneous, isotropic or anisotropic elastic media
separated by first order discontinuities across interfaces. Let us fix a normal ray, ie., a ray (x(r), £(r)) which

starts at a common datum point y0 = x(0), travels down to a reflector, R, is reflected without mode conversion at
the normal incidence point L - x(t,), travels back along the same path in reverse direction, and ends where it
started, in yo =x(2,. Thus, for 0 <t =1, x(t, + ) =x(t, — ¢) and £(t, + 1) = ~&(t, — ©) hold. (Here we used
the equation A(x, §) = h(x, —&).) Because of eq. (11) §(t, + 0) = —&(f, — 0) is normal to R atx®.

Assume that, for y near the common midpoint yo and for x near the point of normal incidence 2, the
traveltime function T(x,y) corresponding to the rays close to the normal ray is defined. Furthermore, assume
that, fory™ and y+ close yo, there exists, close to the normal ray, a unique ray which starts iny , is reflected at R
in a point x = x(y,y") close to %°, and ends in y”. These assumptions are violated only in very exceptional

situations. Now we apply eq. (14) to the ray scgments from y tox and fromx to y+. Snell’s law eq. (11) then
becomes:

(Zay v )= (-G as)

for every vector v which is tangent to R atx.
In a common midpoint experiment, for

aty (d) =)° - %d andy” (d) = ¥+ %d, respectively, the traveltime is given by

small three-dimensional offsets 4, with sources and receivers placed

Ty (d) = Tee(d).y" (@) + Tee(@),y™(@)- (16)
Here x(d) =x(y+(d), y (d)) is the reflection point. The common midpoint traveltime function Ty, is known

. . .0
from measured data. In a second, hypothetical, experiment a wave onginates from a point source inx . Here the
traveltime is
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Ty0) = 76" - W

This experiment is not done inreality. So Ty is not a measured quantity. . ‘ -
Krey [1], and Chernyak and Gritsenko [3] proved the following relation for isotropic media:

2 2
19Ty o Tu
'z'—a;i-(vo) =7 (0). (1)

Thus, to second order, the wavefront of the hypothetical wave can be obt'ained from measured common mid-

point traveltimes. Using the coordinate invariant theory of rays and travcltxmcs'prescnted above we proceedto

show that the proof of Chernyak and Gritsenko for eq. (18) immediately generalizes to the anisotropic case.
First differentiate eq. (16) with respect to d;, the j-th coordinate of &:

Ty, 18T, o 4o 10T 4
ggjﬂd) 25’;(x(d),y @) 28,},]_(x(a’),y @

H{Zewy' @ + L@y @, 35@)-

Since x(d) ranges in R the vectors -aa—;-_{d) are tangent to R atx(d). Hence, according to equation (15), the angulay
]

bracket term vanishes for all 4. Thus
oTy 14T 16T -
57D = 35,60y @) = 35Dy (@)

for all small offsets d. Now differentiate this equation with respect to d. Finally, set d = 0 to arrive at eq. (18).
Equation (18) is also true whes the source and receiver locations are restricted to a surface S, the surtace
of the carth. In fact, because of coordinate invariance there is no restriction to assume that S is gives by the

equation y; = 0. Repaming, for simplicity, (;,y;) and (d;,d,) as y and d, respectively, €g. (18) becomes the
statement of the theorem for this case, too.

CONCLUSION

When study:ing rays, wavefronts, and traveltimes for isotropic media it is natural to use concepts from
(conformal) Euclidean geometry, ¢.g, orthogonality, length, angle, arc length, curvature. These concepts art .
longer uscful when dealing with anisotropy. In fact, they should rather be avoided as they may unnccessarty
restrict the generality of results,

The methods of symplectic geometry lead to a much more fi clidean o

) . plc exible ray theory than those of Eucic
Riemannian geometry. This is because the formulas of such a ray theory arz invagant under general choices o
_coorc'lmatc.systcms. In particular, oogrdmatg changes need not be orthogonal. An advantage of the C(}Of{im“
invariance is that the ray theory permits a uniform treatment of isotropy and of anisotropy. The generalizato® of
the Kr::—ixembiakfr;:senko theorem from the isotropic to the anisotropic case illustrates this ot by

other benefit from coordinate invariance i ity is lost Y
assuming that interfaces are locally plane, is that for many aspects of ray theory no generaliy

The author wishes to thank P. Hubral and B. Ursin for useful discussions about seismic ray theory:
APPENDIX

For convenience and completeness we et
feprove some formulas of Hamilton-Jacobi i - See 2%
o1y [7), and Guillemin and Sternberg [8] for these and other resuits, o {theory and symplecee o

4. LerTbea solution of g, (3)- Let (<9, §)) be a ray. Define by

ar
() = {x()) -
Assume that 7(2) = (1) holds for at least one 2. We claim that n(r) = &(r) holds for all ¢. Using cq. (4) we compute
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. P, Sra 3T (ah h
p=—jx= 2"5(&'])"'1‘{(35‘(&5)'%5(&"))=‘%(xﬂl)+

2
3T (ak
+ e (3; ® 8- %’} (x r,)) :

The last equation follows upon differentiation of eq. (3) with respect tox. The resulting equation is an ordinary differential equation for 1.
n =& is its only solution.
B. To prove eq. (13) it is convenient to remove the restriction h.(y, n) = 1. Therefore, consider the set C consisting of all
{t,7), (), and (3, ) such that ¢ = h(y, ) > 0 and there exists a ray which passes through (y, 7) and (x, §) at the parameter values O and ¢,
respectively. The curve parameter ! is now traveltime scaled by 1/, Equation (13) is the special casc of
vdt = (£,de)—(n,dy)onC, (19

where 7 = 1. Here, for consistency of notation, we denote the frequency variable which corresponds to the time variable with 7. (The usual
notation for frequency is @.)
First assume there are no interfaces. Parametrize C by?,y and 7 using a family of rays:

x=xty,n), E=&y.n), T=h(,n).

Eq. (4) is assumed to hold when y and # are held fixed. Atf = 0, the equationsx =y and £ = » hold. Using this fact the parametrization eq.
(19) is seen to be equivalent with the foliowing set of equations

T=(&%), (20)
ar T

n= (;) § @D
T

-3

Eq. (20) follows frorm
rmh= (8, )= (L) onC.

Here we used Euler’s theorem on komogeneous functions and eq. (4).

ax ax . . .
We prove eq. (21) and eq. (33). First observe that, at 1 =0, > and T e cqual to the unit and the zero matrix, respectively.

Therefore it suffices to prove

T T
d{ax dfa
I(E) E'o ﬂnd’d—‘(ﬁ) E'O.

These equations follow from the following computation where s denotes any arbitrary component ofy or
2(20) = (2o (20} 2us)- ) 22)-
- (38)-(22)-
Now assume there is one interface at which the rays are reflected or refracted. Let C T andC * be the ray relations before and after

reflection, respectively,
s =(t 7,4y (nd)onC @)

and

it = (b iy -t yon @4
Recall that this means that & _(y,7) = h+(z+, t*) = 7, and that there exist rays connecting (v, 7) with ¢ ,{ )and @) with . ).
The traveitimes are @ and n+, respectively. Without loss of generality we may assume that the hypersurface is given, locally near the

x .= IS ;
reflection point of a (central) ray, by the equation z{ = 0. Thenz ™ and L™ are related at the reflection point in the following way:

It follows from this that (¢, dz ) —{t ", dz" )vanishes. Thus, adding cq. (23) and cg. (24) we obtain
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(d +dTy= (8 de) - (n, dy).

We have now proven that eq. (19) holds if there is at most one interface at which reflection or refraction can occur, Clearly the easonig

generalizes to a finite number of interfaces.
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