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Abstract

Despite of the fact that a number of approaches exsists for the theory of diffusion and heat
conduction within Lagrange formalisms, none of them solves the inverse problem without
paying a high price. In this paper it is shown that a variational principle can easily be
constructed for an extended theory based on a classical fluid model. This extended dy-
namics results in classical dynamics by the assumption of a local equilibrium. It is further
shown that the resulting Lagrangians are generalizations of the Lagrangians proposed by
Anthony for classical theories.
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1. Status Quo

The classical theory of diffusion is based on Fick’s law. The evolution of
the mass density g of the diffusing substance is given by:

Oio—DApg=0. (1)

D > 0 is the diffusion constant. It is well known that (1) is a non-selfadjoint
equation, i.e. no Lagrangian of the form I(p, 0, Vo) can be constructed.
However, there exist a lot of different approaches towards Variational Prin-

ciples. I restrict myself to Anthony’s approach f1.
By analogy to Schrodinger’s matter field theory Anthony introduces
a complex matter field ¢ for the diffusing substance with the property

n=2 ==y, (2)
m

Where n is the particle density and m the particle mass. To simplify the
mathematical treatment, we switch over to real valued fields g,¢ by the

following substitution:

v=Zew (i), v =L (-2). @
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Remark: I make use of a nomenclature different from Anthony’s one. The
quantity { appearing in Eg. (3) is connected with the quantities o, p and
w appearing in ANTHONY’s paper [1] by ( = pa/(mw). Since m( has the
dimension of an action, I have to introduce the constant k with the same
dimension in order to make the exponents in Eq. (3) dimensionless.

Anthony proposes a Lagrangian (see Eq. (19) in his paper) for a mul-
ticomponent system containing also thermal degrees of freedom and chem-
ical reactions. For an isothermic one-component system we set T' = Ty,
¥ = ¢p and R =0. The Lagrangian then takes the form:

(¢, V,0:¢, V() = —8:({ + DV -V( . (4)

It also can be written in terms of the complex matter field 9 after reversing
substitution (3):

k
2y

= ~5 (W0 — wow'] + DE_[wrowp — v - )

The arbitrary constant k having the same dimension (‘action’) as Planck’s
constant makes the Lagrangian energy-valued. Apart from this its value
has no effect on the dynamics defined by ()

The variational procedure with respect to (,p applied to the La-
grangian (4) results in the Euler-Lagrange equations

Oio— DAp=0, (6)
9 +DAC=0. (7

On the one hand, Fick’s law of Diffusion is reproduced, but on the other
hand, the field ¢ appears as a second quantity, the interpretation of which
is difficult. Looking at Eg. (7), a physical meaning of ¢ becomes doubtful,
be.cause this equation is a time-reversed diffusion law! So some questions
arise:
~ What is the meaning of the second field ¢ which by means of (3) is
connected with the phase of the matter field P?
~ Is it possible to modify the Lagrangian (4) in such a way as to make
the equation for ¢ acceptable?
~ Is there any experimental evidence for the existence of a second field
quantity (7
Anthony himself supposes that the phase function is a measure for the
deviation of the process from local thermodynamical equilibrium. I try to
answer the questions by extending the Lagrangian (4).
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2. A Macroscopic Model for Diffusion

To get an idea how to extend classical diffusion theory we need a suitable
model. In my opinion, a good approach is given by using an analogy
to a compressible, barotropic! fluid motion through a rigid, porous body.
The dynamics of this kind of system, illustrated in Fig. I is well known
from classical hydrodynamics. It is ruled by the mass balance equation
and Euler’s equation with an exterior frictional force proportional to the
velocity:

porous, rigid body

D ¢
T ILX

T LKL
X,

fluid motion o, U

Fig. 1. Fluid motion with exterior friction

Oto+V-(o7)=0, (8)
1 -
0047 — o7 x (V x ) + oV [562 + P(g)] = —no? . (9)

7 1s the friction constant and P(p) the pressure function given by:
¢ ..
P(g) := / ?i-é—’l)—d@ . (10)
go
() is the hydroelastic pressure and gg a reference density. In the special

rotational case, V X ¥ = 0, the velocity can be expressed by a potential

T=Ve, (11)

l‘barotropic’: the hydroelastic pressure depends on the mass density only.:
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so that Euler’s equation (9) can be integrated to the modified Bernoulli’s
equation (13). Together with the mass balance equation the complete dy-
namics of the irrotational case is given by the two equations

b0+ V- (e1) =0, (12
8% 418+ (VB + P(o) =0. (13)

WAGNER [4] has shown that a flow with exterior friction can be derived from
a variational principle. For irrotational motion he proposes the Lagrangian:

Q
(0, 2,008, V®,t) = —™p |01® + 98+ -21-(vq>)2} —e™ / P(3)dp . (14)
2o ’

This Lagrangian is time-dependent, becaunse there is dissipation of energy
and an exchange of momentum between the fluid and the rigid body. Vari-
ation with respect to ®,o reproduces conservation of mass (12) and the
modified Bernoulli’s equation (13).

I shall prove now that our fluid model leads to a suitable extension
of Fick's law of Diffusion. In the special case of a throttled motion® the
two terms 8;® and #2, which describe inertia effects, can be neglected in
Eq. (13) so that we obtain the following simplified Bernoulli’s equation:

12+ P(e)=0. (15)

Eq. (15) can be interpreted as a local equilibrium of acting forces: the sum
of the driving pressure-induced force and the frictional force vanishes. With
regard to (15) the velocity potential & can completely be expressed by the
mass density, i.e. the state of the throttled system is determined by the
mass density, only. Using (15, 10) Eq. (12) then takes the form:

0=010+V-[oVY]
i ()

}
U}
In the special linear case
P=po+ K(o - o) (a7

2 R "
Le. a flow with sufficiently small acceleration {86 +v-V}§=V [6,4» + %(V«p)z]
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with the compression modulus K the quantity

is constant, and so Eq. (16) turns out to be Fick’s law of diffusion (1). The
conclusion can be drawn that a flow suffering exterior friction results
in diffusion, if inertia effects are neglected!

Taking now into account inertia I define the function

C:=e™ [‘P + if"g')*] (19)

a5 a measure for the deviation of the process from local equilibrium. Obvi-
ously I take ‘local equilibrium’ as a synonym for the throttled motion, which
is characterized by (15) and for which { vanishes. Substituting the veloc-
ity potential @ by ¢ by means of (14) I get the Lagrangian (14) in the form

I =1lo(e,0:C, Vo, V) +11(e, Ve, VE, ) + 8:Gle, 1)
with
lo(e,:(, Ve, V() := —gB:{ + DV - VC , (20
I1(e, Ve, V(,t) := -%e [e""(VZ)z +e™ (g—Va)zJ :

e™
G(gs t) = ";"‘F(Q) ’

which divides into three parts. The first part lg is identical with Anthony’s
Lagrangian (4) if the deviation from equilibrium is identified ¢ with the
quantity ¢ of ch. 2 defined by (3):

¢(=¢. (21)

The second part Iy is associated with inertia effects and with external fric-
tion. Its explicit time-dependence gets clear, if one keeps in mind that the
fluid is but a partial, open system which interacts with the rigid body. The
third part is a total time derivative and has no effect on the Euler-La-
grange equatious.

So the following conclusions can be drawn:

= Anthony’s Lagrangian (4) can be extended to another Lagrangian
{20) which takes inertia effects into account.

)
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~ The function ¢ can be physically associated with the deviation from
local eguilibrium (15). The whole system is described by both fields,
o and (, and, thus, finally by the matter field ¢ (see Eq. 3).
~ The Euler-Lagrange equations due to (20) are equivalent to the mass
balance (12) and to the modified Bernoulli’s equation (13) by substi-
tution (19). So, the equation for ¢ can physically be accepted!
Reversing substitution (3) and taking account of (21) the Lagrangian (20)
of the fluid with exterior friction can be put into the form:

=~ [0 — va) + Dy [0 99)* - V9]
2 2 oz
-~ e’"t:—;;V%b* - VY + (;%e"" - mpe"‘) ____._[Vg"b*’i)] (22)

depending on the matter field 1. The term 8;G has been cancelled.

3. Extended Fourier’s Law of Heat Conduction

Let c be the specific heat and ) the coeflicient of heat conductivity. Because
of the fact, that Fick's law of diffusion and Fourier’s law of heat conduction

T — MAT = 0 (23)

are of the same type, the question arises if the extended model of diffusion
presented in ch. 3 can be transferred to the case of heat conduction.

For this purpose the description of thermal processes is based on a
particle model, Starting from a Lagrangian of heat conduction and using a
complex field of thermal ezcitation as the fundamental variable AZIRHI [5]
has already established a model for heat conduction within the framework
of quantum field theory. He associates thermal excitation with an ensemble
of quasi-particles which he calls thermions.

In contrast to Azirhi’s quantum field theoretical approach I make use
of the classical fluid model in ch. 3: Heat is interpreted as a classical gas of
thermions diffusing through a material body. Let m* be the effective mass
of a thermion, hwp its energy, u = cT' the density of internal energy and n
the particle density of thermions. Then, the following identifications lead
from the quantum theoretical concept to the classical model of heat:

nhwg =u =T, (24)
nm' =p. (25)
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So the mass density ¢ of thermions is connected with the temperature by

*

0= T, (26)
hwg

Together with another substitution

*

2;—3=¢+wot, (27)

which connects the deviation from local equilibrium ¢ with the phase func-
tion ¢ of the thermal excitation field, and with the definition A := cD the
Lagrangian (20) reads after neglecting the term &@G:

| = 0(T, 80, VT, V) + I (T, VT, Vi, 1)

with
Ih:= —cT - STo0+ 2VT -V, - (28)
wo wo
i cT ﬁ2 —nt 2 m*)\z ot (VT)2
= " huwy {.‘Zm"‘e (Vo)™ + 22 ¢ \T ]

The first part lp is identical to the Lagrangian for Fourier’s law proposed
by ANTHONY [2]. In analogy with the case of diffusion the second part
takes effects of thermal inertia into account. Its explicit time-dependence
is due to the open system of thermions.

The Euler-Lagrange equations read:

cOiT — AAT + c*h eV . (TVe)=0, (29)
m*w
xy2 /
2m/\e"tA T:O. (30)

h_ —nt 2 -
eI I~ R

A
Ay + *C-A‘P +

The explicit time-dependence of these equations can be eliminated com-

Pletely by substituting
@ = e"‘tp — wpt (31)

and multiplying Eq. (30) with e~:

h
AT — MT = ————V-(TVy9) ,  (32)
m wo

h 2m*)2 AVT
Ot + S0+ 5 (V) = T T (33)
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As in the case of extended diffusion ¢ has the meaning of a deviation from
local equilibrium (apart from the factor m*/R). If V¢ is assumed to be
sufficiently small, (32) results in Fourier’s law, as it should be! Qutside
local equilibrium the second equation (33) describes the relaxation of the
system to local equilibrium. Obviously the production rate on the left hand
side of (33) shows that the system is thrown out of local equilibrium by
strong spatial fluctuations of the temperature!

ANTHONY and KNOPPE [3] have also constructed an extended theory
for heat conduction, but they make use of a different ansatz.

4. Consequences

The question arises, if there are any observable effects for experimental
investigations. The fluid model of extended heat conduction differs in two
significant points from classical Fourier’s theory:

Finite signal speed: Fig. 2 shows the evolution of a temperature profile
given by a Heaviside function at the time t = t5. Some time later the profile
has changed by heat conduction. Fourier’s law gives rise to a temperature
change in any point x. This can also be interpreted as a kind of ‘thermal
signal’ which propagates from the singular point of discontinuity to infinity
in an arbitrary short time. This phenomenon is called the paradozon of
infinite signal speed.

temperature
r ]
T2 Ts ———
Fourter's law
5% — Ty —extended

t= tO x-coordinate t>t0
Fig. 2. Paradoxon of infinite signal speed

Contrary to this the extended theory predicts a temperature change
only inside a limited region. The extension of this region is approximately
given by the product of the passed time and the speed of sound of the
thermion gas. Within the proposed model the finite signal speed is a result
of the analogy with classical hydrodynamics: After linearization of Egs.
(32, 33) and after some manipulations of both equations and finally taking
account of derivatives up to the 2nd it can be shown that near local equi-
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librium the evolution of the temperature is ruled by Catlaneo’s equation
A2
-EBtT+C&T-AAT=O . (34)

The solutions of this well-known type of equation (telegraph equation) are
damped waves of a signal speed limited by

w=VE. (35)

For further details see forthcoming paper!

Speculations on momentum exchange: In contrast with Fourier’s
theory, which considers a heat flux without any associated mechanical
forces, the extended theory predicts an exchange of momentum between
the thermion gas and the rigid body, so that any heat flux causes force act-
ing on the body. Starting again from the theory of classical gases the den-
ity of this force is determined by the frictional term in Euler’s equation (9)

f=no? = 9oV . © (36)

Near local equilibrium the velocity potential ® can be approximated by
(15). So, the friction force density is simply given by

f=-nev (f—ff—)) =~p'(e)Ve . (37)

Restricting ourselves again to the linear case p'(9) = K and substituting
the mass density of the thermion gas by the temperature by means of (26),

we result in ‘K
7_ m AC ) (38)
= Ruwy VT
Let V be the spatial region filled by the body. Then the total force on the
body reads

Po_mEe forgy-_m K“/T-dg. (39)
hwg J Ruwo sV

OV is the surface of the body. To estimate this force let us assume that the

thermion energy is connected with the thermion mass by the relativistic

relation
wp = m*v?, (40)
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where v, is the speed of light. The compression modulus K of the thermion
gas is associated with the speed vy, of waves in the thermion gas being an
analogue of a hydroelastic fluid:

K =v} . (41)

Keeping in mind the microscopic picture, which associates thermal excita-
tions with phonons, we estimate vy, by the sound velocity. Thus, we finally

result in
= Uth 2
F=—-c(-——> /T-d?. (42)
av

Ve

To exemplify Eq. (42) let us look at a cylindrical body between two heat
baths (Fig. 8). In the stationary state the temperature varies only along
the cylindric axis. Then the amount of the reaction force is given by:

T2 — F T].

Fig. 3. Reaction force of a heat flux

m*Kc
hwe

A is the area of the cross-section. Because of the square of the velocity
quotient vg, /v, this force is expected to be very small!

F=

2
AT —Ti|=¢ (3’;1) AT, - Ty . (43)

c

5. Perspectives

One critical point of the theory presented in this paper is the explicit time-
dependence of the Lagrangians. This is due to the fact that the Lagrangian
(14) explicitly involves only degrees of freedom of the fluid whereas the de-
grees of freedom of the material background are disregarded. This moti-
vates us to go a step further towards an extended Lagrangian containing
some supplementary fields in order to take the body’s dynamics into ac-
count. The dynamical equations for these fields are expected to describe
elastic, plastic or fluid motion of the material background. Such a La-
grangian would be time-independent and adequate for diffusion and heat
conduction in deformable bodies.
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