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2. PROCESS-ORIENTED SOFTWARE DEVELOPMENT

STEPS embodies a different view of software development from that
advocated by conventional approaches [2]. While in conventional ap-
proaches software is regarded as an autonomous product, STEPS fo-

cusses on the processes of development and use of software.

According to our process-oriented approach, as described in [3], we
regard software development in the wider context of systems develop-
ment. It is thus seen as part of an ongoing organisational process
designed to improve an organisation's ability to pursue specific
goals. Hence, the organisational context, i.e. the usage context of
the desired DP system, has to be taken into account. The adequacy
of DP systems with respect to the users' work tasks is one of our

basic quality criteria [4].

STEPS comprises a process-oriented view, human-centred quality cri-
teria, a cyclic development model, gestalt-forming project tech~
niques, and component methods for reguirements analysis, dialogue
specification and modular design. Depending on the actual problem
setting, these components have to be arranged, modified, or even

partly replaced by other components.
3. THE OVERALL CURRICULAR SITUATION

The introductory course which the students have to complete befOr?
attending the practical course does not aim to give a 1exicogr3pﬁl'
cal overview of the wide variety of tools and technigues in usé in
software engineering. The main intention is rather to enable stu-
dents to gain a substantial understanding of the process of SOftT
ware development with the help of our methodical approach. This 15
followed up by short practical exercises.

Practical skills can, however, only be acquired by working in 2 rea
project situation where at least one development cycle, from probler
analysis to implementation and system evaluation, is run through-

Thus, in the practical course, the students are required to develoP

. . s
a DP system in a team context, with all relevant technical aspect
being touched upon:

- 518 -



- problem analysis

- interface specification

- modular design

- implementation

- use of tools and description techniques.
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COBOL to make the programming task easier.

3 In each development phase throughout the course, the students
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cases), or modified, or adapted to actual needs.

depending on +he actu-

ns is possible,
be based on a con-

g
inally, a variety of solutio
a .

1 project course. Each solution must, however,
t .

Tactual agreement with the so-called 'virtual user’'.

N
2

- PROJECT MANAGEMENT

each of which

The participants are divided up into four tutorials,
A

s headed by a student teacher (tutor) throughout the semester.
tutorial consists of up to 16 students, ised into four teams.
Each tutorial is required to develop a system, the individual teams
working on their own specific problems in the respective development

organ

phase .
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The development phases can be roughly divided into: requirements
analysis, functional specification, modular design, implementation,

and evaluation.

The tutorials meet twice a week, the meetings being supervised by

the tutor.

In order to promote communication among teams and to afford each
participant an overall view of the project, we use a number of dif-
ferent techniques to organise the development process:

- Work review: Each team is required to present its work at the
weekly meetings during the first two phases.

- Task exchange: Solutions worked upon by a team in one phase are
further processed by another team in the next pahse, e.g. one
team specifying and another implementing a module.

- Intercommunicative groups: Specific tasks related to the work be-
ing done in individual teams are carried out by ad hoc intercom-
municative groups (comprising one member from each team). Such
tasks include: the definition of the basic functionality, the
overall modular design, the integration test, and the negotiations
with the virtual user.

- Virtual user: This role is played by the course teacher, who is
not involved in any of the tutorials and who acts as the client.
His job is to accept the final product, i.e. the program text
along with its documentation.

As may be surmised, the overall project plan is quite complicated.

Additional difficulties may also arise during the course if there

is a lack of team spirit among the groups, or if a team delivers 1tS

work later than scheduled, or if any hardware problems occur.

We have nevertheless succeeded in establishing a rigorous project
plan, at the same time providing mechanisms to cope flexibly with
the actual project situation by redefining contractual agreements
with the virtual user. We therefore feel entitled to claim that the

s . ~life
course participants are given a fairly accurate taste of a real 1if
project situation.

5. TOOLS AND TECHNIQUES

The rigorous project plan allows no time for experiments or evolu~

tionary development techniques like prototyping or incremental soft”

ware development, as might be suggested by the philosophy of STEPS -
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During the functional analysis phase, for instance, students‘haveto
specify forms by means of a form generator in such a way that the
forms generated can be demonstrated to the virtual user. We have
adapted the form generator by writing a small program that takes the
internal data structures produced by the form generator as input and
produces COBCL code to process forms by means of the COBOL copy
mechanism. Another tool used in the modular design phase (MODESTOR)
supports the activity of specifying the system architecture by means
of defining object modules, type modules, and the associated module
interfaces. MODESTOR is based on the specification language MODEST
[6]. It not only checks the module specification for completeness
and consistency, but also produces a COBOL program skeleton accord-
ing to our COBOL programming conventions, and defines copy file en-

tries for the specified type definitions.

The component-wise approach means, then, that the students are wOrk-
ing on a sound basis with respect to the desired implementation

right from the start of the project.
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