KEIL-SLAWIK, REINHARD

IMEART ING FEoOT 1o PR
ARTING FEADTICAL SEILLE IN BOFTHARE ERG T HEERING

EONZEFT T -
ONZEFTION EINES SOF TWARE TECHNIK ~ FRAKT IFUMS

1. INTRODUCTION

SOftWare
h .
as become a key factor in systems development in view of

Consequentlyr universities

increasi
in : ; i
g computerization 1n all fields.

are call :
ed upon to direct research and teaching efforts towards im-—

Provin
g software engineering technigues.

Trainj
nin s . . .
g software engineers regulres setting problems of a realistic

but £ .
lexible nature, which allow various
user/d

problem dimensions to be

dealt wi
with : ; . . .
h : requirements analysis, eveloper communication,

interf .
ace design, incremental system develop
pDifferent tools and t

ment, team organisation

echniques have to be

and ;
Project management.
ess for different

uUsed i N
n different phases of the development proc
Purposes.

e Technical University of Berlin have

software engineering p
5 are required to comp
ece-semester cycle h
date the increasin

Com i

ﬁlputer science students at th

‘he opt i .

. ption of participating in a
9 two semesters. The participant

trod -
uctory course beforehand. This thr

roject last-

lete an in-

Proved suffici . as not
ciently flexible to accommo g number

of
fs
tudents each semester.

&

' new .
course has therefore been devised by the auther, enabling stu-

e engineering within a

dent
s : . . .
to gain practical experience 1n softwar

letion of the introductory course 18

Sin 1
. gle semester. Again, comp
Ompulsory.

ourse, we present

tware Technol-
{1]. The

scription of this ¢
proach STEPS (Sof
Systems Development)

ZEZ:Zngivin? a more detailed de

outline of our methodical ap

:iilizr Evo}utionary participative
we aim to impart are discusse

to ¢
he overall teaching situation at th

d with reference to STEPS and

e university-

- 517 -



2. PROCESS-ORIENTED SOFTWARE DEVELOPMENT

STEPS embodies a different view of software development from that
advocated by conventional approaches [2]. While in conventional ap-
proaches software is regarded as an autonomous product, STEPS fo-

cusses on the processes of development and use of software.

According to our process-oriented approach, as described in [3], we
regard software development in the wider context of systems develop-
ment. It is thus seen as part of an ongoing organisational process
designed to improve an organisation's ability to pursue specific
goals. Hence, the organisational context, i.e. the usage context of
the desired DP system, has to be taken into account. The adequacy
of DP systems with respect to the users' work tasks is one of our

basic quality criteria [4].

STEPS comprises a process-oriented view, human-centred quality cri-
teria, a cyclic development model, gestalt-forming project tech~
niques, and component methods for reguirements analysis, dialogue
specification and modular design. Depending on the actual problem
setting, these components have to be arranged, modified, or even

partly replaced by other components.
3. THE OVERALL CURRICULAR SITUATION

The introductory course which the students have to complete befOr?
attending the practical course does not aim to give a 1exicogr3pﬁl'
cal overview of the wide variety of tools and technigues in usé in
software engineering. The main intention is rather to enable stu-
dents to gain a substantial understanding of the process of SOftT
ware development with the help of our methodical approach. This 15
followed up by short practical exercises.

Practical skills can, however, only be acquired by working in 2 rea
project situation where at least one development cycle, from probler
analysis to implementation and system evaluation, is run through-

Thus, in the practical course, the students are required to develoP

. . s
a DP system in a team context, with all relevant technical aspect
being touched upon:

- 518 -



- problem analysis

- interface specification

- modular design

- implementation

- use of tools and description techniques.

In e
addition to these technical aspects:, the participants have to

learn

-t i . .
o discuss requirements with persons from outside the project

to communicate on the basis of written documents
to cooperate in different teams

* to document the work they have done.

it ie necessary to define a problem which
ely within one se-
own field of

Tn A . :
Aer +o achieve this,

al . .
lows us to cope with all these aspects effectiv

me
Ster. The problem must, then, relate to the students’

ex i . . .
perience. This has been accomplished in three ways:

L. g students' accommodation office was selected as the problem to
e dealt with, the main aim being to computerize the process of

allocating requests for accommodation to suitable offers. Though
most of the students are acquainted with this problem, it still
rélse§ a good many unfamiliar gquestions which require considera-
tion in the development process.

2. The Fools and technigques used are the same as those employed in
the introductory course, with the exception of the programming
language (now COBOL). However, the tools have been adapted to
COBOL to make the programming task easier.

3 In each development phase throughout the course, the students
arrive at partial solutions which have to be extended (in most
cases), or modified, or adapted to actual needs.

depending on +he actu-

ns is possible,
be based on a con-

g
inally, a variety of solutio
a .

1 project course. Each solution must, however,
t .

Tactual agreement with the so-called 'virtual user’'.

N
2

- PROJECT MANAGEMENT

each of which

The participants are divided up into four tutorials,
A

s headed by a student teacher (tutor) throughout the semester.
tutorial consists of up to 16 students, ised into four teams.
Each tutorial is required to develop a system, the individual teams
working on their own specific problems in the respective development

organ

phase .
- 519 -



The development phases can be roughly divided into: requirements
analysis, functional specification, modular design, implementation,

and evaluation.

The tutorials meet twice a week, the meetings being supervised by

the tutor.

In order to promote communication among teams and to afford each
participant an overall view of the project, we use a number of dif-
ferent techniques to organise the development process:

- Work review: Each team is required to present its work at the
weekly meetings during the first two phases.

- Task exchange: Solutions worked upon by a team in one phase are
further processed by another team in the next pahse, e.g. one
team specifying and another implementing a module.

- Intercommunicative groups: Specific tasks related to the work be-
ing done in individual teams are carried out by ad hoc intercom-
municative groups (comprising one member from each team). Such
tasks include: the definition of the basic functionality, the
overall modular design, the integration test, and the negotiations
with the virtual user.

- Virtual user: This role is played by the course teacher, who is
not involved in any of the tutorials and who acts as the client.
His job is to accept the final product, i.e. the program text
along with its documentation.

As may be surmised, the overall project plan is quite complicated.

Additional difficulties may also arise during the course if there

is a lack of team spirit among the groups, or if a team delivers 1tS

work later than scheduled, or if any hardware problems occur.

We have nevertheless succeeded in establishing a rigorous project
plan, at the same time providing mechanisms to cope flexibly with
the actual project situation by redefining contractual agreements
with the virtual user. We therefore feel entitled to claim that the

s . ~life
course participants are given a fairly accurate taste of a real 1if
project situation.

5. TOOLS AND TECHNIQUES

The rigorous project plan allows no time for experiments or evolu~

tionary development techniques like prototyping or incremental soft”

ware development, as might be suggested by the philosophy of STEPS -

- 520 -



Tools i i
and techniques have to be applied in a straightforward manner.

We h
ave therefore adapted our tool to the principle of component-
we aim to overcome the

wi .
se development. By using this principle,
such as

rob i : :
problems inherent in the conventional phase model strategy,

found i ; .
d in software engineering textbooks [5]. A phase comprises a set

of r S
elated activities, whereby the result produced is related to the

whol
N e system. Tools used in one phase aim at supporting the activi-
ie i

s designed to produce that result.

of .
the previous phase is taken as inpu

since in each case the result
t for the next phase, So as to

produ N
ce a new result providing the necessary input for the subse-

Quent .
phase, we call this strategy transformational (see Figure la).

e strategy. By this, we mean

ions being done in one phase
should be directly im-

PSR N
. raTt e nropese A component-wis
hat ; . °

partial solutions, i.e. formalizat

and .
covering only part of the desired result,
thout being transformed in

plem
ented by means of suitable tools wi
te result {see Figure 1b).

inte .
rmediate phases as part of a comple

'} Tool
T00] -—e|functional FORM " functional
* analysis GENERATOR analysis
functional
specification

functional
specification
Tool —_, |modular modular Tool
Y design design MODESTOR

design design
specification

specification

implementation

|implementationl
documented
program

a)
Transformational Approach

COBOL
skeleton
+ copy file

COBOL

entries

-wise Approach

p) Component

Fi .
Jure 1. Dpevelopment Strategies

- 521 -



During the functional analysis phase, for instance, students‘haveto
specify forms by means of a form generator in such a way that the
forms generated can be demonstrated to the virtual user. We have
adapted the form generator by writing a small program that takes the
internal data structures produced by the form generator as input and
produces COBCL code to process forms by means of the COBOL copy
mechanism. Another tool used in the modular design phase (MODESTOR)
supports the activity of specifying the system architecture by means
of defining object modules, type modules, and the associated module
interfaces. MODESTOR is based on the specification language MODEST
[6]. It not only checks the module specification for completeness
and consistency, but also produces a COBOL program skeleton accord-
ing to our COBOL programming conventions, and defines copy file en-

tries for the specified type definitions.

The component-wise approach means, then, that the students are wOrk-
ing on a sound basis with respect to the desired implementation

right from the start of the project.

REFERENCES

(1} Floyd, C.: STEPS- Eine Orientierung der Softwaretechnik auf
sozialvertrigliche Technikgestaltung; to be published in: 1987
Report of the Fachbereich Informatik, Universitit Dortmund;

[2] Floyd, C.: Outline of a Paradigm Change in Software Engineerl?%
in: Bjerkness, G., Ehn, P., Kyng, M. (eds.): Computers and Pee.
mocracy. A Scandinavian Challenge; Gower Publishing; Hampshirl
1987

{31 Floyd, C., Keil, R.: Adapting Software Devleopment for Systems
Design with Users; in: Brief, u,, Ciborra, C., Schneider, Lilanw
leds.): System Design For, With, and By the Users; North-HO
Amsterdam, New York, Oxford; 1983

[4] Keil-Slawik, R.:Supporting Participative Systems Development By
Task-oriented Requirements Analysis; Proceedings of the IFIPt
TC9/WG 9.1 Conference on "System Design for Human Developmen
and Productivity: Participation and Beyond", Berlin, GDR, _
12-15 May 1986; Supplement Volume; to be published by North
Holland; Amsterdam, New York, Oxford; 1987

; . . . e in
[5] Kimm, R., Koch, w., Simonsmeier, T., Tontsch, F.: Einfi@hrung
Software Engineering; gde Gruyter; Berlin, New York; 1979

(6] Pasch, J., Schmidt, G.: MODEST - Bine modulare Entwurfstechnik
und eine darauf abgestimmte Entwurfssprache; in: Wippermanf

H.-W. (Hrsg.): Software-Architektur und modulare Programmierund
Teubner; Stuttgart; 1986

~ 522 -



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 

