Integrierte Systementwicklung

Reinhard Keil-Slawik

1. Einleitung

In einem vergleichenden Uberblick iiber mehrere in der Praxis eingesetzte
Methoden zur Softwareentwicklung wird u.a. festgestelit, dall der
Schwerpunkt bei allen Methoden auf dem Problemkreis Funktionalisie-
rung/Algorithmisierung liegt /Floyd 84/. Dariiber hinaus orientieren sich
alle Methoden in der ihnen zugrundeliegenden Sichtweise an einem
linearen Phasenmodell, das einen einmaligen Durchlauf aller Phasen von
der Problemanalyse bis zum Entwurf vorsieht.

Aspekte der Einbettung des Rechners in die Arbeitsaufgaben der Benut-
zer werden bei der Softwareentwicklung nicht oder nur unzureichend
beriicksichtigt. So werden als Anforderungen in der Regel Systemfunktio-
nen beschrieben. Es wird keine Trennung vorgenommen zwischen dem,
was der Benutzer will und dem, was das System bietet.

Demgegenﬁber ist STEPS (Softwaretechnik fiir evolutionire, partizipa-
U.VC Systementwicklung) ein Methodenrahmen, der den Erfordernissen
einer auf den Menschen und seine Arbeitsaufgaben bezogenen System-
entwicklung Rechnung tragen soll. Im Vordergrund stehen die Prozesse
der Herstellung und Benutzung von Software und nicht die Merkmale
und.Eigenschaften des Produktes, die sich aus rein softwareimmanenten
Gesichtspunkten ableiten lassen /Floyd, Keil 84/.

Schwerpunkte von STEPS sind
- dfis prozeBorientierte Modell zur Softwareentwicklung,
- die aufgabenbezogene Anforderungsermittlung,
- d?r Entwurf von Dialogschnittstelien,
-~ die inkrementelle Vorgehensweise bei Entwur

Die Methodenkomponenten von STEPS werden jeweils durch geeignete
Darstellungstechniken und Sprachmittel unterstiitzt.

f und Implementierung.

2. Von der Softwaretechnik zur Systementwicklung

el als ein abgeschlossenes Ganzes betrachtet,

Ein System wird in der Reg
1. DIN-Norm 66201 in /DIN 75/).

dessen Teile aufeinander einwirken (vg

206 Integrierte Systementwickiung

In Ergdnzung zu dieser Definition wird in /Holbaek-Hanssen, Handlyk-
ken, Nygaard 77/ betont, daB ein System immer zugleich auch personen-
und zweckgebunden ist. Das heit, da jeweils eine Person oder eine
Gruppe von Personen wihrend eines bestimmten Zeitraumes und fiir
einen bestimmten Zweck Gegebenheiten der wirklichen Welt auswihlt,
um sie als ein aus Komponenten bestehendes Ganzes zu betrachten. Je
nach Person bzw. Personengruppe werden so unterschiedliche Kompo-
nenten als zum System gehorend ausgewdhlt und unterscheiden sich auch
die jeweils als relevant erachteten Eigenschaften.

2.1 Eingebettete Systeme

Mit der rasch zunehmenden Anzahl von Bildschirmarbeitsplitzen treten
Probleme der Benutzerakzeptanz, der Arbeitsplatzgestaltung und der
organisatorischen Einbettung bei der Entwicklung und Einfiihrung von
DV-Systemen in den Vordergrund. Ansitze in GroBbritannien /Legge,
Mumford 78/ und Skandinavien /Sandberg 79/ tragen dieser Situation
Rechnung, indem sie Aspekte der Arbeitszufriedenheit und der betriebli-
chen Interessenvenretung bei der Systementwicklung beriicksichtigen.

Die Untersuchung von langlebigen Softwaresystemen /Belady, Lehman
- 79/ fihrt zu der Erkenntnis, daB Begriffe wie GréBe, Komplexitit, Ange-
messenheit usw. nicht nur aus softwareinternen Eigenschaften begriindet
oder abgeleitet werden kénnen, sondern je nach Problemstellung neu
definiert werden miissen. Aus diesem Grund wird von /Lehman 80/ eine
Klassifikation von Programmen in drei Kategorien vorgeschlagen:

- S-Programme sind dabei alle Programme, deren Funktion durch eine
formale Spezifikation definiert ist und die sich aus dieser Spezifikation
ableiten lassen. Beispiele sind Programme zur Berechnung des klei.n-
sten gemeinsamen Vielfachen zweier ganzer Zahlen oder zur POS§l€-
rung von acht Damen auf einem Schachbrett dergestalt, daB keine
Dame eine andere schlagen kann. Charakteristisch fiir solche Pro-
gramme ist, daf3 das Ein-/Ausgabeverhalten vollstindig durch die Spe-
zifikation der Funktionen beschrieben ist.

- P-Programme sind zwar ebenfalls formal definiert, wie beispielsweise
durch die Schachregeln fiir ein Schachprogramm, unterliegen aber
Einschrankungen und Verdnderungen. Diese beziehen sich auf Spiffl-
strategien, Anniherungen, Optimierungen usw. Betrachtet man ein
Programm als Losung fiir ein vorgegebenes Problem, so gilt fiir S-Pro-
gramme, daf} jede Verdnderung des Problems ein neues Program{n
bzw. eine neue Lésung impliziert. Die Veridnderung der Spielstrategie
bei einem Schachprogramm dagegen verindert in diesem Sinne nicht
die Losung (die Spielregeln bleiben unverdndert), kann aber das
Ergebnis verbessern oder verschlechtern. Die Bewertung erfolgt durch
die Benutzung und gehért mit zur Prob]embeschreibung, die somit

Von der Softwaretechnik zur Systementwicklung 207

nicht mehr formal prizise ist, sondern eine Anndherung an eine wirkli-
che Situation darstellt.

- E-Programme kénnen nicht unabhéngig von ihrer Einsatzumgebung
betrachtet werden. Sie sind in einen technischen Proze3 oder in die
Arbeitsabliufe von Menschen eingebettet. Sie konnen auch nicht als
Losung fiir ein fest vorgegebenes Problem betrachtet werden, da sie
durch ihren Einsatz die Natur des Problems selbst dndern; neue
Arbeitsabliufe entstehen, andere Anforderungen werden gestellt usw.
Durch ihren Einsatz werden sie ein Teil der Wirklichkeit, die sie
modellieren. Die enge Verzahnung menschlicher informationsverar-
beitender Titigkeiten und maschineller Datenverarbeitung spielt
dabei eine wichtige Rolle.

Je nachdem, ob ein DV-System in den Arbeitskontext von Benutzern ein-
gebettet ist oder in einen technischen ProzeB3, missen bei der Software-
technik unterschiedliche Aspekte betrachtet werden. Bei technischen Pro-
zessen stehen beispielsweise Genauigkeit, Fehlertoleranz, Zeitverhalten
usw. im Vordergrund der Betrachtung, wogegen im anderen Fall der
Benutzungskontext vorrangig betrachtet werden muf, d.h. Art und Aus-
wahl der Daten, Kombinierbarkeit und Umfang der Funktionen, deren
Bezug zu Arbeitsaufgaben, die Schnittstellengestaltung, usw.

2.2 Softwaretechnik und Betroffenenbeteiligung

Die GréBe von Programmen, wie sie von Belady und Lehmann definiert
wird, spiegelt die bisher beschriebenen Eigenschaften eingebetteter
Systeme wider:

Ein Programm ist groB, falls der Code so unterschiedlich, so allumfas-
send ist, daB die Ausfithrungsreihenfolge sich an die potentielle Vielfalt
der Einsatzumgebung anpaft: die spezielle Aufgabe, die erforderte Aus-
gabe und die Umgebungsbedingungen wihrend der Ausfithrung im aus-
filhrenden System selbst und in der Benutzerumgebung. Ein Programm
ist groB3, wenn es in sich die Vielfalt menschlicher Interessen und Aktivitad-

ten widerspiegelt /Belady, Lehman 79/.

Die Entwicklung von DV-Systemen, bei denen die Interessen der Benut-
zer und die vielfiltigen Aspekte der Finsatzumgebung nich_t berﬁcks:ch-
tigt werden, fiihrt in der Regel zu starren Systemen, die an die Yer%inderh-
chen Anforderungen der Benutzer nicht anpaBbar sind. .Mlthllfe der
Akzeptanzforschung /Helmreich 81/ sollen diejenigen Leistungsmerk-
male und Anforderungen ermittelt werden, die aus der Sicht der Benutzer
beziiglich der Systementwicklung wichtig sind.

en konnen vor Beginn der Systementwick-
erden. Damit die Anforderungen aber
htigt werden konnen, miissen die ein-

Aber nicht alle Anforderung
lung geniigend prizise festgelegt w
frithzeitig artikuliert und beriicksic

208 Integrierte Systementwicklung

zelnen Interessengruppen geeignet an der Systementwicklung beteiligt
werden (siche dazu /Mambrey, Oppermann 83/). Es gilt, ,,Strategien zu
entwickeln und zu erproben, die sicherstellen, dal3 alle von einer
bestimmten Technikentwicklung und dem Einsatz dieser Technik wesent-
lich betroffenen Personen und Personengruppen an den dabei ablaufen-
den Entscheidungsprozessen angemessen beteiligt werden* /Langenhe-
der 82/.

Dariiber hinaus zeigt eine Untersuchung zur Arbeitszufriedenheit bei
automatisierter Datenverarbeitung, ,,da die passive und aktive Partizi-
pation bei der Systemgestaltung unabhingig vom Entscheidungsspiel-
raum einen Beitrag zur Arbeitszufriedenheit leistet* /Miiller-Béling 78/.
Aus der Tatsache, daB neu in eine Organisation eintretende Personen
hdufig Unverstandnis einer Situation entgegenbringen, an deren Entste-
hungsgeschichte sie nicht beteiligt waren, leitet Ulich die Forderung ab,
die Beteiligung von Benutzern und Betroffenen bei der Umgestaltung von
Arbeitsplitzen nicht als einen einmaligen Vorgang zu begreifen, sondern
als ein wiederholt anzuwendendes Mittel /Ulich 81/.

Modell des Herstellers

______ - — = -

un
Modell des Benutzers

Welt , 1 Welt
Konkretion Abstraktion

des bL—-o. | Modell des Modell des | _ _ _ _ des
Herstellers Benutzers

N
Her- 1 ; l Be-

_____ Modell des Modell des { _ _ _ |
Herstellers Benutzers
stel- nut-
Konkretion Abstraktion
Yers Modell des Modell des zers
Herstellers Benutzers _
- Arbeitsplata~
DV-System beschreibung

------ :=Modellierung der Wirklichkeit

Abb. I: Der Modellierungsprozes der traditionellen Systementwicklung nach
/Budde, Ziillighofen 83/

Von der Softwaretechnik zur Systementwicklung 209

Die herkémmliche Systementwicklung kann durch das in Abb. 1 veran-
schaulichte Schema charakterisiert werden, bei dem die Benutzer eine
Folge von zunehmend abstrakten Modellen entwickeln. Hersteller und
Benutzer legen dann ein Modell fest, das vom Hersteller in ein ablauffahi-
ges System umgesetzt wird.

Diese Vorgehensweise entspricht auch den in der Softwaretechnik
gebriauchlichen Phasenmodellen. Sie zeichnet sich insbesondere dadurch
aus, daB keine kontinuierliche Kommunikation vorgesehen ist; das fiihrt
zu MiBverstindnissen und Fehlentwicklungen.

Ein verzahntes Vorgehen von Hersteller und Benutzer, wie es in Abb. 2
dargestellt ist, gewihrleistet, daf3 fortlaufend die Anforderungen an das
zu erstellende Produkt iiberpriift und ggf. korrigiert werden. Der Benutzer
erhilt zudem die Moglichkeit, in beschrinktem MaBe seine Anforderun-

gen wihrend der Entwicklung zu prézisieren.

Restrukturierung
Versions- (uiberarbeiteter)
auswertung Entwurf
(iberarbeitete) (iiberarbeitete)
Version Anforderungen
Mode11 Hersteller Benutzer Mode1l
Abb. 2: Der Modellierungsprozef} bei der integrativen Systementwicklung

210 Integrierte Systementwicklung

2.3 Einsatzumgebung und Softwareumfeld

Die Systementwicklung umfaBt tiefgreifende Veranderungen in der
Benutzerorganisation. Dies sind beispielsweise die Art und die Anza}.ﬂ
der nach der Einfiihrung des Systems vorhandenen Arbeitsplatze oder die
Neudefinition von Aufgabenbereichen. Nach /Doebele-Berger, Berger,
Kubicek 85/ werden sieben sich iiberlagernde Gestaltungsebenen von
Anwendungen der Informationstechnik unterschieden (vgl. Abb. 3).

Benutzergruppen

Stellenbesetzung
{Arteitszeit, Arveitsclatzwechsel)

Stellenbewertung
organisatorische Regelung
(aufbau- ung Ablauforganisation)

Bedienungs- und
Zenutzungsregeln

Mensch-Maschine
Schnittstellen

\ﬂ__ag I\ R
\ Bereich, der bei der Systementwicklung methodisch be- /
ricksichtiat werden muf
Bereiche, die vor der Softwareentwicklung festgelegt sein miissen

Abb. 3: Einbettung des DV-Systems in die Einsatzumgebung

Zu dem in Abb. 3 dargestellten Schalenmodell ist anzumerken, daB (;lie
Anordnung der Schichten nicht die Festlegung von Anforderungen im
Sinne einer strikten Top-Down-Vorgehensweise von aullen nach innen
nahelegen soll, bei der sich die Anforderungen einer weiter innen liegen-
den Schicht aus den Anforderungen der dariiber liegenden Schicht ablei-
ten lassen. Vielmehr ist es so, daB sich die jeweils auf eine Gestaltung§—
ebene beziehenden Anforderungen wechselseitig bedingen. So kann bei-
spielsweise die Festlegung auf eine bestimmte Hardware vielfiltige Aus-
wirkungen auf die anderen Ebenen der Systemgestaltung beinhalten.
Anforderungen stecken den Rahmen fiir die Systementwicklung ab;
ihnen kommt daher eine Schliisselstellung zu.

Wesentlich dabei ist der Zusammenhang zwischen Anforderungen an

DV-Systeme und der Einpassung der DV-Systeme in die Arbeitsabliufe
(siche Abb. 4).

Von der Softwaretechnik zur Systementwicklung 211

Aufgaben Aufgaben
alt) — (neu)

NN

Arbeitsablaufe Arbeitsablaufe
(att (neu)

nicht
DV-gestiitzte g——p DV-gestitzte
Tatigkeiten Tatigkeiten

durch Anforderungen
zu beschreiben

<im-‘n§h_——i 4

lDV—SYSTEM

Basismaschine

Abb. 4: Schliisselstellung der Anforderungsermittlung

,Organisationen sind per Definition zweckgerichtete Systeme** /Legge,
M.umford 78/. Sie bzw. ihre Mitglieder verfolgen bestimmte Ziele, die sie
mit Hilfe verschiedener Mittel zu erreichen versuchen. Aus diesen Zielen
ergeben sich Aufgaben bzw. Aufgabenbereiche, die wiederum in Teil-
Aufgaben zerlegt werden kénnen, um Teilziele zu erreichen. Zur Realisie-
rung einer Aufgabe gibt es eine Klasse denkbarer Arbeitsablaufe. Ein
Arbeitsablauf besteht aus Tatigkeiten, die miteinander in bestimmter
Weise verkniipft sind. Tatigkeiten unterliegen im Normalfall festgelegten
Regeln. Unter anderem gehdren zu einer Tatigkeit Ort, Zeitpunkt und
Dfluer, sowie die materiellen Trager, auf denen Daten vorliegen und die
Hilfsmittel, die fur die Tatigkeit verwendet werden. AuBerdem unterliegt
ihre Durchfithrung Nebenbedingungen, wie z.B. Verfahrensvorschriften.

A_nforderungen werden daher in die nachfolgenden Kate
d}e sich zum Teil an der im Abschnitt 2.1 gegebenen Programm
tion orientiert:

- Funktionelle Anforderungen beschreiben
des DV-Systems, d.h. welche Eingaben
Listen erzeugt werden sollen usw.

- Leistungsanforderungen beziehen si
der Betriebsmittel.

gorien unterteilt,
klassifika-

das Ein-/Ausgabeverhalten
das System erwartet, welche

ch auf die optimale Ausnutzung

212 Integrierte Systementwicklung

~ Handhabungsanforderungen betreffen das Zusammenwirken von
Mensch und Maschine; dabei geht es beispielsweise um die Gestal-
tung von Bildschirmmasken, die Dialogfithrung, Fehler- und Ausnah-
mebehandlung und die Geritebedienung.

~ Einbettungsanforderungen beriicksichtigen Gegebenheiten einer Orga-
nisation, die Randbedingungen fiir die Systementwicklung liefern. Das
kann sowohl den Bezug auf bereits vorhandene Hardware und Soft-
ware beinhalten, als auch die Forderung nach Einhaltung von festge-
legten Programmierkonventionen oder die Beriicksichtigung einschlé-
giger Verfahrensvorschriften, wie z.B. die Datenschutzgesetzgebung.

Mit dem Begriff Einsatzumgebung wird der Bereich charakterisiert, aus
dem Anforderungen an die Systementwicklung gestellt werden. Dagegen
wird der durch die Software gestaltbare Bereich als Softwareumfeld
bezeichnet (vgl. Abb. 5). Dazu gehoren die Arbeits- und Kommunika-
tionssituationen, die durch das DV-System gepriigt werden.

Dabei geht es um die Arbeit einzelner Benutzer, das Zusammenarbeiten
mehrerer Benutzer, sowie die Kommunikation von Benutzern mit ande-

—~
Kommu- mit AuBenstehen-
AuBenstehender nikation den kommunizie -
\ render Benutzer

zusammenarbei- zusammenarbei-
tender Benutzer 1 tender Benutzer 2

Gestrichelte Bereiche zeigen auf, wo softwaretechnische Entscheidungen das
Umfeld beeinflussen.

\ nikation

~—

Abb. 5: Softwareumfeld

Systementwicklung 213

ren Personengruppen, wie beispielsweise Kunden, Biirgern oder Patien-
ten.

Der Begriff Softwareumfeld sollte sehr eng gefaBt werden, weil die
Arbeitsbedingungen im wesentlichen durch die Anforderungen der
Benutzer bestimmt werden sollten. Beispielsweise miissen die funktionel-
len Anforderungen vor Beginn der Softwareentwicklung feststehen. Soft-
waretechnisch gestaltbar sind

~ Anzahl und Umfang

- Kombinierbarkeit

- Erweiterbarkeit der Funktionen des DV-Systems,

- Modifizierbarkeit

~ Unterbrechbarkeit

- Entscheidungen: Effizienz vs. Komfort,

- Fehlermeldungen,

- Dialogfiithrung,

~ Zugriff auf Datenbestinde.

Bei der Gestaltung des Softwareumfeldes geht es in erster Linie darum,
zusitzliche durch das DV-System mdogliche Hilfestellungen zZu g_eben,
ohne dabei die Benutzer auf bestimmte Moglichkeiten einzuschranken
oder festzulegen. '

3. Systementwicklung

Die neue Sichtweise, nimlich das Schwergewicht einer M(_ethodenent‘
wicklung auf den Entwicklungsproze zu beziehen, und weniger auf das
Produkt Software als Ergebnis eines solchen Prozesses, hat zu der Eu;
sicht gefiihrt, daB auch die Methoden keine statlschen_ Regelgebx]de sind,
sondern sich ebenfalls verindern /Floyd, Pasch 85/. Die Kernideen dieses
Methodenansatzes sollen im folgenden kurz vorgestellt werden.

3.1 Das prozeBorientierte Modell der Softwareentwicklung

neering wurde als ein weser'ltli-
ktmodell zur Softwareentw?ck-
d Werkzeuge erarbeitet.

Im Rahmen einer Disziplin Software Engi
ches Ergebnis das Phasenmodel! als l;roglf
lung sowie darauf abgestimmte Techniken un
Obvgvohl ese eine ;ﬁlle %on im Detail unterschiedlich_en Phasenm(()idtellirz
gibt (vgl. /Peters, Tripp 78/), weisen sie alle ei.ne gemeinsame Grunds r:er
tur auf: bestehend aus einer Folge von Arbeitsschritten (Ph?s(;’“} Vg;‘ b
Problemanalyse bis zur Wartung des fertigen DV-Systems wird a Sdasgvor
nis einer Phase (C_J) jeweils ein Dokument erarbeitet (Cba))’

Beginn der darauffolgenden Phase vorliegen sollte (vel. Abb. 6).

214 Integrierte Systementwicklung

Problemanalyse

Anforderungs-
definition

funktionelle
Analyse

funktionelle
Spezifikation
Entwurf | Funktions- u. Lei-
ntwur stungsiberprifun
Entwurfs- getestete .
spezifikation Programmteile

\

"Wartung"

eingesetztes
Programmsystem

Installation

Problem

Benutzer

integriertes
Programmsystem

Programmierung

Abb. 6: Phasenmodell

Phasenmodelle, wie beispielsweise das in Abb. 6 dargestellte, wurden ein-
gefithrt, weil sie eine vertragliche Grundlage fiir die Softwareentwicklu_ng
bieten, Zwischenergebnisse im HerstellungsprozeB3 definieren und eine

Groborientierung fiir die Terminplanung und Aufwandsabschitzung
geben.

Obwohl das Phasenmodell diesen Zwecken teilweise gerecht wird, reicht

es als grundlegendes Modell fiir die Systementwicklung nicht aus. Es

basiert auf den Annahmen, daf3

- alle wesentlichen Anforderungen zu Beginn ermittelt werden konnen
und dann feststehen,

~ umfangreiche Dokumente zur Verstandigung zwischen Hersteller und
Benutzern ausreichen,

- ein System einmal hergestellt und danach gewartet wird.

Die Lebensdauer von Softwaresystemen entspricht aber einer Folge von
ausgelieferten Systemversionen, die auch als Generationen bezeichnet
werden. Ausgehend von dieser Erkenntnis stellt /Lehman 80/ fest, daB

Systementwicklung 215

Software sehr viel effektiver hergestellt werden konnte, wenn von vorn-
herein Ausbaustufen geplant und entwickelt wiirden.

Hersteller und Benutzer kommunizieren nur zu Beginn der Entwicklung
miteinander. Zu diesem Zeitpunkt sind jedoch viele der spateren Auswir-
kungen auf die Arbeitsvorginge noch nicht bekannt. Da wihrend der
weiteren Softwareherstellung keine ausreichende Kommunikation mit
den Benutzern stattfindet, haben MiBverstindnisse und eigenstiandige
Entscheidungen des Projektteams oft verheerende Auswirkungen.

Die Dokumente, die als Zwischenergebnisse im Phasenmodell produziert
werden, liefern keine fiir die Benutzer auswertbare Grundlage. Dadurch
konnen die Benutzer erst nach der vollstindigen Erstellung des Systems
tberpriifen, inwieweit das DV-System ihren Vorstellungen und Anforde-
rungen angemessen ist.

Diesen Folgen versucht das von /Floyd 81/ entwickelte prozeBorientierte
Modell entgegenzuwirken (vgl. Abb. 7). Die Bereitstellung und Ausliefe-
rung einer ersten Systemversion ist in einem Vorlauf vorgesehen. Dabei
kann es sich um einen Prototyp handeln (vgl. /Budde et al. 84/), oder aber
um ein vergleichbares, bereits eingesetztes System. Im Sinne einer inkre-
mentellen Systementwicklung in Ausbaustufen kann es sich aber bei der
Erstversion auch um eine geeignete Modellierung der Benutzerschnitt-
stelle handeln.

Im Gegensatz zum Phasenmodell werden beim prozeBorientierten
Modell zwei Aktivititen modelliert: es bezieht sich nicht nur auf die Auf-
gaben des Herstellers, sondern auch auf die Aufgaben der Benutzer. In
jedem Entwicklungszyklus tragen die Benutzer die Verantwortung dafiir,
die Auswertungsgrundlage fiir die aktuelle Systemversion bereitzustellen.
Fiir den Hersteller bedeutet das prozeBorientierte Modell keine Abkehr
vom Phasenmodell; vielmehr werden die einzelnen Phasen auf eine Fo‘lge
von Entwicklungszyklen abgebildet. Die Erzeugung einer neuen Version
(Version-i-Produktion) enthilt als Verfeinerung samtliche Phgsen vom
Entwurf bis zur Implementierung. Die Wartung als eigenstandige Phase
entfillt. Die Aufgaben der Wartung, namlich Fehlerbehgndlung upd
Anpassung des Programms an verdnderte Anforderungen, sind nach dl.e—
sem Modell klar voneinander getrennt. Die Fehlerbehandlung findet in
einem laufenden Zyklus statt (Version-i-Analyse und K“orrektur),. wih-
rend die Einbeziehung verinderter Anforderungen beim Ubergang in den
nichsten Entwicklungszyklus erfolgt.

Das prozeBorientierte Modell orientiert sich an der Realitdt der DV-Pra-

xis, in der Hersteller und Benutzer iber lingere Zeitraume zusammen-
arbeiten und miteinander kommunizieren. Dariiber hinqus ist dieses
Modell sowohl fiir die Herstellung eines neuen Systems geelg{let als ?u_ch
fiir den zunehmend wichtigeren Fall der Weiterentwicklung eines existie-

216 Integrierte Systementwicklung

Vorfauf

Probiemanalyse

Anforderungs-
definition-0

funkt. Analyse
+ Version-0
{i=1)

Revision
(i:=i4+1)

il

S

Systemdefinition-i

Anforderungs-
definition-i

funkt. Spezi-
fikation-i

4
Entwicklungszyklen-i i / Archivierung
(i— =)
Version-i Xorbereltung
Produktion uswertungs-
grundiage-i
ion-i Auswertungs-
grundlage-i
Version-i Version-i Revisionsgrundlage-i
AQ:ZS:I«T'G Auswertung revidierte software-
Anforde- interne
rungen-i Anderungen-i

Abb. 7: Das prozeBorientierte Modell zur Softwareentwicklung

renden Systems. In /Floyd 83/ werden einige Griinde angesprochen,
warum die aufwendiger erscheinende Vorgehensweise beim prozeBorien-
tierten Modell bezogen auf den Gesamtaufwand eher zu geringeren
Kosten fihrt als bei der konventionellen Vorgehensweise.

3.2 Die Rolle von Dokumenten

Das Produkt Software besteht aus einem einheitlichen abstrakten Bau-
stoff, ndmlich Texten. Dokumente, die das Produkt oder seinen Herstel-
lungsprozeB beschreiben, bestehen zwar ebenfalls aus Texten, bieten aber

Systementwicklung 217

zusitzlich die Mdglichkeit, graphische Ausdrucksmittel zu verwenden.
Der Werkstoff Text als einheitlicher Baustoff erzwingt eine sorgféltige
A}theilung und Gliederung der im Rahmen der Softwarcherstellung ent-
w1_cke]}en Dokumente, die sich jeweils an einem klar umrissenen Zweck
orientieren muf.

Grundlage fiir jeden Zyklus beim prozeBorientierten Modell ist die
Systemdefinition, die aus zwei Dokumenten besteht: der Anforderungs-
definition und der funktionellen Spezifikation. Beide Dokumente bezie-
hen sich aufeinander und werden in jedem Zyklus iiberarbeitet.

In der Anforderungsdefinition werden die Aufgaben der Benutzerorgani-
sation beschrieben, die durch das System unterstiitzt werden sollen. Die
Strukturierung erfolgt entsprechend der Aufteilung in Aufgaben. Je nach
Benutzergruppe werden verschiedene Sichten des Systems beschrieben.
Dabei sollte jede Sicht

~ in der Fachsprache der Benutzer formuliert sein und Formalisierungen
verwenden, die den Benutzern gelaufig sind,

- das System mit den Begriffen zu beschreiben versuchen, die der
Arbeitsaufgabe des jeweiligen Benutzers entsprechen, sowie sich auf
die Arbeit anderer Benutzer beziehen, die sein Arbeitshandeln beein-
flussen,

- aufzeigen, wo und wie das DV-System in die Arbeitsablaufe eingebet-
tet ist, aber keine Losungen beschreiben,

- langfristige Ziele und Wiinsche der Benutzer festhalten, unabhangig
von ihrer kurzfristigen Durchfithrbarkeit,

- Aspekte des Arbeitshandelns enthalten, die sich nicht unmittelbar auf
die Informationsverarbeitung beziehen, wie Zeit, Riumlichkeiten,
Arbeitsrhythmus, Kommunikation mit anderen usw.

Die funktionelle Spezifikation beschreibt die Leistung der zu entwickeln-
den Software (Benutzermaschine) und bezieht sich dabei auf die in der
funktionellen Analyse {vgl. Abb. 6) festgelegten Betriebsmittel (Basisma-
schine). Sie nimmt Bezug auf die Anforderungsdefinition, indem jeweils
vermerkt wird, welche Funktionen zur Erfillung welcher Anforderungen
dienen, welche Anforderungen nur eingeschrankt erfiillt werden und wel-
che Anforderungen prazisiert werden, beispielsweise hinsichtlich von
Vermittlungsstrategien. Da die funktionelle Spezifikation die fiir dig Soft-
wareentwicklung verbindliche Arbeitsunterlage darstellt, enthilt sie dar-
iiber hinaus die folgenden weiteren Textteile:

~ Uberblick iiber das Gesamtsystem,

- geplante Ausbaustufen,

- Vereinbarungen iiber Testdaten un

- gegebenenfalls bereits erarbeitete A
wurf,

- vorgesehene Erweiterungen.

d ihr Bezug zu den Ausbaustufen,
nforderungen an den Softwareent-

218 Integrierte Systementwicklung

Wesentlich ist, daB die funktionelle Spezifikation als definierendes
Dokument fiir die Softwareerstellung nicht mit einer Entwurfsspezifika-
tion gleichgesetzt oder vermischt wird, die bereits eine DV-technische
Losung in Form einer Zerlegung eines Systems in Moduln und Schnitt-
stellen beschreibt.

In der Praxis wird die hier vorgenommene Abgrenzung zwischen Anfpr-
derungsdefinition, funktioneller Spezifikation und Entwurfsspezifikation
haufig nicht eingehalten. So besteht ein Pflichtenheft, das Ergebnis der
Problemanalyse, aus Anforderungen und Lésungen und die funktionelle
Spezifikation wird hdufig mit der Entwurfsspezifikation gleichgesetzt
(vgl. /Kimm et al. 79/).

Die Anforderungsdefinition beschreibt, was die Benutzer wollen, die
funktionelle Spezifikation dagegen, was der Hersteller bietet. Die vielen
Probleme bei der Installation von DV-Systemen haben deutlich werden
lassen, daB3 Anforderung und Leistung in der Regel nicht eindeutig tiber-
einstimmen.

3.3 Aufgabenbezogene Anforderungsermittlung

Die Angemessenheit von Software, die in das menschliche Arbeitshan-
deln eingebettet ist, ist nicht formal beschreibbar, sondern ergibt sich dar-
aus, inwieweit die Anforderungen und Erwartungen der Benutzer erfillt
und damit die Ziele der Organisation erreicht werden.

Benutzer bzw. Benutzergruppen werden durch funktionelle Rollen charak-
terisiert. Nach /Nygaard, Handlykken 81/ ist eine Rolle eine festgel?gte
Aufgabe oder eine Gruppe zusammenhingender Aufgaben, die von einer
Person bei der Entwicklung oder beim Einsatz des Systems ausgefiihrt
wird. Eine Person kann dabei mehrere Rollen haben. Es ist wichtig zu
beachten, dal} funktionelle Rollen Aufgaben beschreiben und nicht Per-
sonen. Solche Rollen kénnen z.B. sein: Programmierer, Operator, Sach-
bearbeiter, Datentypist, Abteilungsleiter, Kunde, usw.

Eine Aufgabe kann in der Regel durch mehrere unterschiedliche Arbeits-
abldufe realisiert werden. Ein Arbeitsablauf ergibt sich aus der Verkniip-
fung von Titigkeiten zur Manipulierung von Objekten (Daten, Formu-
lare, Biicher, usw.).

Der Zusammenhang zwischen den Ebenen der Anforderungsermittiung
und dem von Williamson entwickelten Modell zur Analyse von Mensch-
Maschine-Schnittstellen (vgl. /Dzida 83/) ist in Abb. 8 dargestellt.

Die Aufteilung in Ebenen beinhaltet weder eine strenge Top-Down-Vor-
gehensweise bei der Anforderungsermittlung, bei der zuerst die funktio-
nellen Rollen festgelegt werden und erst zum SchiuB die manipulierten
Objekte, noch bedeutet die Zuordnung, daB beispielsweise die Handha-

Systementwicklung 219

qunktione]]e Rollen] \:\

~

sind definiert N
durch ~
~
A
Organisations-
[Aufgaben] €------ > schnittstelle
werden rea-

lisiert durch

[Arbeitsab]é‘ufej €C—=—-=- > sc:i:x::ghe

entstehen durch
Verkniipfung von

— ‘ - Dialog-
L Tétigkeiten] €-——==--- > schnittstelle

zur Manipulation
der

l Ein-/Ausgabe-
L Objekte I €C-————-- > schnittstelle

Abb. 8: Ebenen der Anforderungsermittlung und Benutzerschnittstellen

bungsanforderungen beziiglich der Dialogschnittstelle allein aus d¢r
Betrachtung der Titigkeiten abgeleitet werden konnen. Vielmehr sind die
Beziehungen zwischen den Ebenen der Anforderungsermittlung und den
Benutzerschnittstellen sinnvoll zur analytischen Durchdringung der
Handhabungsanforderungen und als Grundlage fiir die Auswertung von
Systemversionen zu benutzen.

Als halbformales Darstellungsmittel bei der Anforderungse‘rmmlung
benutzen wir eine Variation von Petri-Netzen, die mit den in /Richter 8}/
beschriebenen Kanal-Instanz-Netzen vergleichbar sind. In /Keil-Slaywk
85/ wurde ein groBeres Fallbeispiel mithilfe von Netzen au§geqrbe1tgt,
Ausgangspunkt sind die funktionellen Rollen in einer.Orgamsatlon, die
durch das Symbol B—_<dargestellt werden. Fiir jedes Eingabe- l?zw. Aus-
gabeobjekt, das zwischen funktionellen Rollen ausggtauschl w1r'd, kann
dann eine Tatigkeit (dargestellt durch {) als Teil der fgr}ktlo.nell'en
Rolle modelliert werden. Eine noch weiter zu verfeinerr}de Tatigkeit wird
durch das Symbol [T 1dargestelit. Die Verfeinerung einer Aufgabe gvgl.
Abb. 9b) modelliert einen moglichen Arbeitsablauf, bf:stehe_nd aus Tatig-
keiten (Symbol: C——J oder, falls noch weiter zu veffenneltn ist __1) und
Objekten, dargestellt durchOdie benannt und mit Attqb_uten versehen
sind, die ihren jeweiligen Bearbeitungszustand charakterisieren.

220 Integrierte Systementwicklung

Funktionelle Rolle 1

»
‘
1
'
'
f
1
t
'
'
1
'
[}
'
[
'
L}
|
1
'
1
‘
£

”
~

'
\ . P fertig be-
vy Ve restl. . arbeitetes
C arbeiten Arbeiten{f * = OBJFKT
Vo AN
' // (]
Ve L] IS MY
Vorarbeiten

zu be— be-
arbeitendes arbeitetes
OBJEKT OBJEKT

Funktionelle Rolle 2

a) Funktionelle Rolle

b) Verfeinerung einer Aufgabe

Abb. 9. Verwendung von Netzen zur Modellierung von Aufgaben

Die Netze werden erganzt durch Lexika, in denen alle Objekte verzeich-
net sind, die zwischen funktioneilen Rollen ausgetauscht werden (Inter-
aktionslexikon) und die lokal zu einer Rolle sind (Rollenlexikon). Die
Netzdiagramme werden vervollstindigt durch ein Uberblicksdiagramm,
d.h. fiir jede funktionelle Rolle ein Baumdiagramm, dessen Knoten den
verwendeten Verfeinerungen entsprechen.

Nachdem die Aufgaben mit Hilfe von Netzen und erginzendem Text
geniigend priizise beschrieben worden sind, geht es darum, ein Sollkon-
zept zu entwickeln, d. h. festzulegen, welche Aufgaben bzw. welche Tatig-
keiten durch den Rechner unterstiitzt werden sollen und welche neuen
Aufgaben bzw. Tatigkeiten sich daraus ergeben.

Systementwicklung 221

Rechner funkt. Rolle 1 funkt. Rolle 2

]
1
[l
]
’
[l
i
i
1
+

-
1
'
0
t
'
t
'
'
+
-
~a
'
0y

o= e e e ...
FaERl TSI SNSRI RN RO

Funktionen Schnittstelle Interaktion

Jedes Objekt und jede Funktion wird in einem Lexikon verzeichnet.

Abb. 10: Aufgabennetz unter Einbeziehung des Rechners

In Abb. 10 ist die Einfiihrung des Rechners in einem Aufgabennetz veran-
schaulicht. Anhand eines solchen Netzes ist es moglich, die Anfordergn—
gen der Benutzer, speziell auch die Handhabungsforderungen beziiglich
der Schnittstelle zu diskutieren. In der Phase der funktionellen Analyse
wird dann u. a. detailliert festgelegt, auf welche Art und Weise die festge-
legten Anforderungen in Form der Benutzermaschine realisiert werden
sollen.

Alle Objekte, die in der Rechnerschnittstelle auftauchen, werden in einem
Dialoglexikon verzeichnet, die Rechnerfunktionen mit einer entsprechen-
den Kurzbeschreibung im Funktionslexikon.

3.4 Schnittstellengestaltung

Im Rahmen der Phase der funktionellen Analyse besteht eine wesentl.lche
Aufgabe im Entwurf der Dialogschnittstelle. Abhingig von der PrOJekt—
situation und dem Wissensstand der Benutzer sind die funktionellen
Anforderungen mehr oder weniger detailliert vorgegeben.

Ausgangspunkt fiir den Schnittstellenentwurf ist der Fpr_lktlonsbaum, mit
dessen Hiife man sich einen Uberblick iiber die zu realls-lerenden System-
funktionen verschafft. Die Ordnungsrelation des Funktionsbaumes kann

222 Integrierte Systementwicklung

entweder vom Benutzer festgelegt werden oder sich an Relationen .wie
Funktion ist vom gleichen Typ oder Funktion (F) ist Teilfunktion (TF) orien-
tieren.

Der Funktionsbaum wird dann modifiziert, indem er um alle Zusatz- und
Hilfsfunktionen angereichert wird, die im Umgang mit dem System erfor-
derlich sind, aber nicht explizit in den funktionellen Anforderungen
erwihnt werden und Unterbiume entsprechend der modellierten Arbeits-
abliaufe umgehingt und vervielfacht werden; Uberlegungen sind dabei
z.B., welche Funktion hiufig bzw. selten benutzt werden und ob es typi-
sche, hiufig sich wiederholende Aufrufreihenfolgen gibt. Der modifi-
zierte Funktionsbaum sollte beziiglich der Arbeitsaufgaben angemessen
sein.

Zeitlich unabhingig von der Entwicklung des Funktionsbaumes mub
noch die Verwendung des Terminals im Dialog festgelegt werden. Das
beinhaltet insbesondere den Entwurf des Bildschirmaufbaus, d.h. die
Aufteilung des Bildschirms in Segmente, in denen jeweils fiir bestimmte
Zwecke die Ein-/Ausgabe erfolgt (z.B. Meldungen des Systems, Kom-
mandoeingabe usw.) sowie die Auswah! der Kommandos zur Dialog-
steuerung (z.B. Datenfreigabe, zuriick zum Hauptmenii, Vorwdértsblattern
usw.).

Aufgrund der Funktionen und der mdglichen Benutzereingaben werden
Dialogzustiande definiert. In einem Dialogzustand erwartet das System
vom Benutzer eine Eingabe; durch die Klasse der moglichen Eingaben ist
der Dialogzustand definiert. Eine Eingabe 16st eine Systemaktion aus, die
zu einer Systemmeldung und zum Ubergang in einen neuen Zustand
fiihrt. Diesen Ubergang bezeichnen wir als Dialogschritt. Solche Dialog-
schritte konnen auf verschiedenen Ebenen beschrieben werden (vgl. Abb.
i):

Identifikation
Tatigkeitsbereich Q .. O
Funktion O\

/
Teilfunktion ()
Eingabe O\

.
-

/

Abb. 11: Mogliche Ebenen fiir Dialogzustinde

Systementwicklung 223

W_1cht1g ist, daB} fiir jeden Dialogschritt genau angegeben wird, wie die
Dialogsteuerung erfolgt (Meniiauswahl, Kommandoeingabe, Funktions-
taste usw.). Leitlinie fiir den Dialogentwurf ist u.a., da Dialogschritte
fierselben Ebene immer iiber die gleiche Dialogsteuerung erfolgen. Alle
im System auftauchenden Dialogzustiinde unter Angabe der Dialogsteue-
rung werden in einem Dialogzustandsdiagramm aufgefiihrt.

Die Feindarstellung von Dialogablaufen erfolgt mit Hilfe von Interak-
tionsnetzen, bei denen die Stellen (O) Dialogzustdnde und Transitionen
(:) Systemaktionen beschreiben. Benutzereingaben werden durch
beschn.ftete Pfeile von Stellen nach Transitionen dargestellt, wobei die
Beschriftung der Kanten aus mehreren, jeweils durch ein Komma
getrennten Eingaben und einem Pridikat bestehen kann.

Transitionen entsprechen sowohl der Aktivitdt des Systems nach einer
erfolgten Eingabe als auch der Meldung, die das System dem Benutzer
erstattet. Da zum einen nicht immer eine eindeutige Abbildung zwischen
der Bezeichnung einer Systemaktivitdt und einer Benutzermeldung
best?hF, zum anderen der Dialog erst noch mit Hilfe der Interaktionsnetze
detailliert entwickelt werden soll, wird eine Transition in mehrere Felder

unterteilt (Abb. 12).

Transition Kommentar:

Name Enthilt den Namen der Maske bzw. des

Meniis
Meldung Hinweise des Systems (z.B. in Form von
Kiirzeln)
Position Position des CURSORS
(Aktivitat...) Verbale Kurzbeschreibung der
{7 | Rechneraktivitit

Abb. 12: Transition mit Erliuterung der Feldinhalte

nerell festgelegt, sondern

Die Aufteilung einer Transition ist nicht ge
fbaus, d.h. der Anzahl der

orientiert sich an der Struktur des Bildschirmau
vorgesehenen Segmente.
hnell uniibersichtlich

kursives Zerlegungs-
chanismus fiir Petri-

Da die Beschreibung groBerer Dialogsysteme sc
wiirde, gibt es auch fiir die Interaktionsnetze ein re
konzept, das dem bereits erwihnten Verfeinerungsme
Netze entspricht.

224 Integrierte Systementwicklung

Der Ubersichtlichkeit wegen werden die vielfiltigen Moglichkeiten, Di.?l-
logzustinde zu Gberspringen (Abkiirzungen), beispielsweise durch die
Riickkehr in das Grundmenii auch iiber mehrere Ebenen hinweg, durch
benannte Transitionen dargestellt, die keine Verfeinerung sind (vg.l.' Abb.
13). Voraussetzung ist allerdings, daf3 alle durch benannte Transitionen
beschriebenen Dialogschritte im Dialogzustandsdiagramm aufgefiihrt
sind.

Interaktionsnetze allein sind jedoch fiir eine detaillierte Beschreibung der
Dialogschritte nicht ausreichend. Zu jedem Dialogschritt bzw. zu.Jeder.
Maske sind noch folgende Punkte zu beachten bzw. zu dokumentieren:

— Zeichenweise Beschreibung der Bildschirmsegmente bzw. der Masken,

- Liste der Systemhinweise und Hilfe-Texte, gegebenenfalls mit Erldute-
rungen,

- Fehlermeldungen,

- Angabe, welche Maskenfelder optional sind,

- vorbelegte Werte (default),

- Plausibilitétstiberpriifungen,

- Einsatz akustischer Signale,

- umgekehrte Kontrastierung/Einsatz von Farben,

- Kommandosprache (problembezogen).

perteinerungy _ S _ ,

! ! !

QE) | = f
| v

| e f

Yy } l

z]

] - i

| |

L |

|

| J

Abb. 13: Konvention fiir Vernetzung des Verfeinerungsmechanismus

Zusammenfassung 225

Auf jeder Stufe der Dialogentwicklung gibt es eine Fiille von Gestaltungs-
moglichkeiten. Insbesondere bei /Mehimann 81/ werden viele Einzelfra-
gen behandelt und entsprechende Gestaltungsvorschlige gemacht.

4. Zusammenfassung

Mit STEPS wurde ein Methodenrahmen geschaffen, der als Grundlage
fiir die Methoden- und Werkzeugentwicklung im Bereich der Software-
technik fiir eingebettete Systeme geeignet ist.

Durch das verinderte Rollenverstindnis des Softwaretechnikers, ndmlich
sich nicht nur als Programmierer im engeren Sinne zu verstehen, sgndern
sich vor allem als Agent von Verinderungen zu begreifen, sollen file Vor-
aussetzungen fiir eine partizipative Systementwicklung von Seiten der
Softwaretechnik geschaffen werden.

Die Angemessenheit von DV-Systemen als Werkzeug zur Unterstiitzun.g
des Arbeitshandeins der Benutzer wird zu einem bestimmenden .Qualx-
titsmerkmal. Durch die aufgabenbezogene Anforderungsermlttlung
sowie durch die darauf abgestimmte Dialoggestaltung soll die Angemes-
senheit frithzeitig beim Systementwurf beriicksichtigt werden.

Die halbformalen Darstellungsmittel, die wihrend der Prob!erpanalyse
und der funktionellen Analyse eingesetzt werden, sind eher auf die Unter-
stiitzung der Kommunikation zwischen Hersteller und Benutzer ausge-
richtet als auf eine vollstindig formale und konsistente Beschreibung
eines notwendigerweise stark eingeschrinkten Sachverhalts.

Kommunikation zwischen Hersteller und Benutzer wird aber nicht als
einmaliger Vorgang zu Beginn der Systementwicklung betrachtet, son-
dern soll im Rahmen des prozeBorientierten Modells zur Softwarepro-
duktion kontinuierlich iiber mehrere Ausbaustufen hinweg erfolgen. Eme
solche inkrementelle Entwicklung wird dadurch unterstitzt, daf3 nicht
nur fiir die beiden hier behandelten Bereiche Problemanalyse gnd funk-
tionelle Analyse, sondern auch fir den Entwurf jewe_ils .rekurswe Zerle-
gungskonzepie benutzt werden, die eine Vorgehensweise in Ausbaustufen
unterstiitzen. Dariiber hinaus ist durch die klare Abgr.enzux}g de.r Do]fu-
mente Anforderungsdefinition und funktionelle .S.pemﬁkauon dle"l}\lflog—
lichkeit gegeben, Entwicklung, Analyse und Revision so Flurghzufu ren,
daB nicht nur softwareinterne Gesichtspunkte bemcksxchtlgt we.rden,
sondern auch revidierte Anforderungen, die sich aus der veridnderlichen

Einsatzumgebung ergeben.

R Nullmeier/Rodiger

226 Integrierte Systementwicklung

Unsere Techniken und Werkzeuge werden kontinuierlich im Rahn}gn
universitiarer Ausbildungsprojekte, in denen die Studenten arbeitsteilig
ein groBes Softwaresystem entwickeln, eingesetzt. Im Sinne einer prozef-
orientierten Entwicklung werden sie dabei auf Grund der gemachten
Erfahrungen angepaf3t und verbessert.

Wesentliche Arbeitsschwerpunkte sind die Entwicklung von Werkzeu-
gen zur Unterstiitzung des Entwicklungsprozesses, die Entwicklung von
Datenmodellen, um den Ubergang von den Aufgabennetzen zur Ent-
wurfsspezifikation zu verbessern, sowie die Erprobung und Einbeziehung
neuerer Konzepte wie z. B. der objektorientierten Systemgestaltung.

Literatur

/Belady, Lehman 79/ .
Belady L. A., Lehman M. M., The Charakteristics of Large Systems, in: Weg-
ner P. (ed.), Research Directions in Software Technology, Cambridge, Mass.
1979. pp. 106-138

/Budde et al. 84/
Budde R., Kuhlenkamp K., Mathiassen L., Ziillighoven H. (eds.), Approaches
to Prototyping, Berlin 1984

/Budde, Ziillighoven 83/ .
Budde R., Ziillighoven H., Socio-technical Problems of System Design
Methods, in: Briefs U., Ciborra C., Schneider L. (eds.): Systerns Design For,
With and By the Users, Amsterdam 1983, pp. 147-156

/DIN 75/
Deutsches Institut fir Normung e.V., DIN-Taschenbuch 25, Berlin 1975

/Dobele-Berger, Berger, Kubicek 85/
Dobele-Berger C., Berger P., Kubicek H., Handlungsméglichkeiten des
Betriebsrats bei der Einfithrung von Neuen Technologien in Biiro und Verwal-
tung, Saarbriicken 1985

/Dzida 83/
Dzida W., Das IFIP-Modell fiir Benutzerschnittsteilen, in: Office Manage-
ment 3! (1983) Sonderheft, S.6-8

/Floyd 81/
Floyd C., A Process-Oriented Approach to Software Development, in: Systems
Architecture. Proceedings of the 6th European ACM Regional Conference.
Westbury House 1981, pp. 285-294

/Floyd 84/
Floyd C., Eine Untersuchung von Software-Entwicklungsmethoden, in: Mor-
genbrod H., Sammer W. (Hrsg.), Programmierumgebungen und Compiler,
Stuttgart 1984, S, 248-274

/Floyd, Keil 83/
Floyd C., Keil R, Softwaretechnik und Betroffenenbeteiligung, in: Mambrey
P., Oppermann R. (Hrsg.), Beteiligung von Betroffenen bei der Entwickiung
von Informationssystemen, Frankfurt 1983, S. 137-164

Literatur 227

/Floyd, Keil 84/
Floyd C., Keil R., Integrative Systementwicklung - Ein Ansatz zur Orientie-
rung der Softwaretechnik auf die benutzergerechte Entwicklung rechnerge-
stiitzter Systeme, Bundesministerium fiir Forschung und Technologie, For-
schungsbericht DV-84-003, Eggenstein-Leopoldshafen 1984

/Floyd, Pasch 85/
Floyd C., Pasch J., Methoden fiir den Entwurf groBer Softwaresysteme, in:
Morgenbrod H., Remmele W. (Hrsg.), Entwurf groBer Softwaresysteme, Stutt-
gart 1985, S. 12-37

/Helmreich 81/
Helmreich R., Benutzerforschung - Ziele, Methoden, Erfahrungen, Arbeits-
tagung "Mensch-Maschine-Kommunikation’, Stuttgart 1981

/Holbaek-Hanssen, Handlykken, Nygaard 77/
Holbaek-Hanssen E., Handlykken P., Nygaard K., System Description and the
Delta Project, Oslo 1977

/Keil-Slawik 85/
Keil-Slawik R., KOSMOS - Ein Konstruktionsschema zur Modellierung offe-
ner Systeme als Hilfsmittel fiir eine 5kologische Orientierung der Softwaretech-
nik, Dissertation, Technische Universitit Berlin, Berlin 1985

/Kimm et al. 79/)
Kimm R., Koch W., Simonsmeier W., Tontsch F., Einfiihrung in Software
Engineering, Berlin 1979

/Langenheder 82/
Langenheder W., Perspektiven der Wirkungsforschung: Nicht nur Techno-

logiefolgenabschitzung, sondern menschengerechte Technikgestaltung. ip:
Arbeitskreis Rationalisierung Bonn (Hrsg.), Verdatet, Verdrahtet, Verkauft,
Stuttgart 1982

/Legge, Mumford 78/)
Legge K., Mumford E. (eds.), Designing Organisations for Satisfaction and
Efficiency, Westmead 1978

/Lehman 80/ o
Lehman M. M., Programs, Life Cycles and Laws of Software Evolution, in: Pro-
ceedings of the IEEE 68 (1980), pp. 1060-1076

/Mambrey, Oppermann 83/)
Mambrey P., Oppermann R. (Hrsg.), Beteiligung von Betroffenen bei der Ent-
wicklung von Informationssystemen, Frankfurt 1983

/Mehlmann 81/)
Mehimann M., When People Use Computers, Englewood-Cliffs 1981

/Miller-Bdling 78/
Miiller-Boling D., Arbeitszufried
Miinchen 1978

/Nygaard, Handlykken 81/
Nygaard K., Handlykken P., The System
Some Problems and Needs for Methods, in: Hiink
eering Environments, Amsterdam 1981

/Peters, Tripp 78/
Peters, L. J., Tripp L. L., A Model of Soft :
3rd International Conference on Software Engineering, San

enheit bei automatisierter Datenverarbeitung,

Development Process - Its Setting.
e H. (ed.). Software Engin-

ware Engineering, in: Proceedings of
Francisco 1978

228 Integrierte Systementwicklung

/Richter 83/
Richter G., Realitdtsgetreues Modellieren und modellgetreues Realisieren von
Biirogeschehen, in: WiBkirchen P. et al. (Hrsg.), Informationstechnik und
Biirosysteme, Stuttgart 1983, S. 145-214
/Sandberg 79/
Sandberg A. (ed.). Computers Dividing Man and Work, Stockholm 1979
/Ulich 81/
Ulich E., Subjektive Tatigkeitsanalyse als Voraussetzung autonomieorientierter
Arbeitsgestaltung, in: Frei F., Ulich E. (Hrsg.), Beitridge zur psychologischen
Arbeitsanalyse, Bern 1981, S. 327-347

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24

