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Kurzfassung 
 

Das originäre Ziel dieser Arbeit ist die spektroskopische Analyse chemischer Stoffsysteme 

hinsichtlich der Vermessung, bzw. Aufnahme von Konzentrationsfeldern im Mikroreaktor 

und die entsprechende Charakterisierung des Mikroreaktorsystems. Eng verbunden damit ist 

die Realisierung, bzw. die Anpassung/Weiterentwicklung entsprechender Messverfahren, 

welche zum einen eine Adaption des Reaktorsystems und zum anderen eine physikalische 

Zugänglichkeit bezüglich des Stoffsystems ermöglichen. Hierbei ist die µ-Raman-

Spektroskopie geradezu für die Betrachtung von Mehrkomponenten-Systemen prädestiniert 

und stellt die Hauptmethode dieser Arbeit dar. Für eine spätere, alternative Charakterisierung 

mittels laserinduzierter Fluoreszenz (LIF) werden zudem mögliche Stoffsysteme 

spektroskopisch charakterisiert.  

 

Die Leistungsfähigkeit des konfokalen Raman-Setups wird zunächst an verschiedenen 

Festkörpersystemen demonstriert. Nach erfolgreicher Umsetzung des Aufbaus mit 

zugehöriger Adaption des Flachbett-Mikroreaktorsystems erfolgt die Bestimmung relevanter 

Systemparameter und die Validierung der Flachbett-Mikroreaktor-Methode (FMR-Methode). 

Das beinhaltet seitens des Mikroreaktor-Systems vor allem die Betrachtung der Stationarität 

und die Überprüfung der antizipierten Tiefenhomogenisierung, welche für eine Überführung 

der dreidimensionalen Auswertung (Aufnahme/Anpassungsrechnung) von Konzentrations-

feldern in eine zweidimensionale notwendig ist. Neben verschiedenen Prototypprozessen soll 

vor allem die Chemisorption betrachtet werden. Seitens der Fluoreszenzanalyse wird zur 

Aufklärung des Stoffübergangs Flüssigkeit/Gas in diesem Kontext das Quenchen bei 

Ruthenium und bei einem Sauerstoff/Kupfer-Ligandenkomplex vorcharakterisiert. Bei der 

Sulfitoxidation soll die Reaktion zunächst direkt mittels Sauerstoff-Messungen im Batch-

Reaktor betrachtet werden, um entsprechende Einflüsse des Sauerstoff-Markers Ruthenium 

(Anwendung Blasensäule) auf den Oxidationsprozess zu untersuchen (Katalyse, etc.). Für die 

Untersuchung dieser Oxidationsreaktion im Mikroreaktor soll als verstärkendes Kriterium die 

Raman-Spektroskopie eingesetzt werden. Im Hinblick auf die geringe Raman-Streuung in 

Fluidsystemen sind geeignete Methoden zur Signalverstärkung zu untersuchen und deren 

Anwendbarkeit für den FMR zu diskutieren. Exemplarisch sollen diesbezüglich zunächst 

Prototypprozesse im Fluidsystem charakterisiert und letztendlich die Sulfitoxidation näher 

betrachtet werden. 

 

 

 

 

 

 

 

 



Abstract 

 
 

Abstract 
 

The original aim of this work is the spectroscopic analysis of chemical material systems with 

regard to the determination of concentration fields inside the microreactor and corresponding 

characterization of the microreactor system. Closely connected to this is the realization and 

the adaption/enhancement respectively of appropriate measurement techniques, which enables 

an adaption of the microreactor system on the one hand and a physical accessibility with 

regard to the material system on the other. Here the µ-Raman spectroscopy is almost 

predestined for the inspection of multi-component systems and represents the main procedure 

in this work. For a subsequent, alternative characterization by means of laser induced 

fluorescence (LIF) possible material systems will be spectroscopically characterized. 

 

The performance of the confocal Raman setup is demonstrated on different solid state 

systems. Determination of relevant system parameters and the validation of the flat 

microreactor method (FMR method) is carried out after a successful realization of the setup 

with corresponding adaption of the flat microreactor system. On the part of the microreactor 

system this particularly contains the examination of the stationarity and the verification of the 

anticipated depth homogenization which is required for a transformation of the three-

dimensional evaluation (detection/adaption calculation) of concentration fields in a two-

dimensional one. Besides different prototype processes the chemisorption has to be primarily 

examined. In this context on the part of fluorescence analysis the quenching of ruthenium and 

of oxide/copper-ligand complex is preliminary characterized for the determination of the mass 

transfer liquid/gas. At the sulfite oxidation the reaction has to be directly analyzed in a batch 

reactor by means of oxide measurements to determine the influence of the oxide marker 

ruthenium (application to the bubble column) on the oxidation process (catalysis, etc.). For 

the investigation of this oxidation reaction in the microreactor the Raman spectroscopy should 

be applied as reinforcing criteria. Regarding the low Raman scattering in fluidic systems 

adequate methods for signal enhancement are to be analyzed and their applicability to the 

FMR to be discussed. Referring to this prototype processes in the fluid system have to be 

characterized exemplarily and finally the sulfite oxidation has to be contemplated more 

closely. 
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Einleitung 
 

Die Intensivierung chemischer Prozesse im Bereich der chemischen Industrie bedingt ein 

tieferes Verständnis von Stofftransport und chemischer Reaktion [RD+05]. Gerade im 

Bereich der chemischen Technik spielen hierbei chemische Reaktionen in der strömenden 

Flüssigphase mit zuvor gekoppelter Absorption aus der Gasphase eine zentrale Rolle. Um 

den Massentransport im Falle einer konsekutiven Reaktion zu beschreiben, bedarf es der 

Kenntnis der inhärenten Kinetik. Für das Auslösen einer chemischen Reaktion müssen die 

Edukte über mehrskalige Transportprozesse zusammengebracht werden, wobei deren 

Einfluss auf die chemische Kinetik von den Reaktions- und Mischzeiten abhängt. Als 

Mischzeit wird hier die Dauer bezeichnet, welche von der anfänglichen Segregation der 

Edukte bis zur nahezu homogenen Verteilung auf molekularer Ebene reicht. Liegt die 

Mischdauer in der gleichen Größenordnung wie die Reaktionszeit, so bezeichnet man die 

chemische Reaktion als mischungsmaskiert [PS74] [Rys92]. Nur chemische Reaktionen, 

die in der Größenordnung von einigen Sekunden ablaufen, sind nicht mischungsmaskiert, 

so dass nur hier die inhärente Kinetik unverfälscht aufgenommen werden kann. Bei 

Flüssigphasen-Reaktionen mit kleineren Zeitskalen lässt sich zur Ermittlung der 

kinetischen Parameter einerseits ein rein experimenteller und andererseits ein 

modellbasierter Ansatz verfolgen. Da im rein experimentellen Ansatz die Voraussetzung, 

dass die Zeitskala der Mischprozesse kleiner sein soll als die der Reaktionen, nicht 

eindeutig belegt werden kann, wäre ein alternativer Prozess die Anpassung eines Modells 

(z.B. Konvektions-Diffusions-Reaktions-Modell, KDR), an experimentell vermessene 

Konzentrationsfelder. In diesem Kontext lässt sich modellbasiert die lokal gültige Kinetik, 

bei der die Reaktionszeiten im Bereich von 1 ms bis 1 s liegen,  über die laserinduzierte 

Fluoreszenzmikroskopie oder die konfokale Raman-Spektroskopie in einem stationär 

betriebenen Flachbett-Mikroreaktor mit laminaren Strömen bestimmen. Bei 

entsprechenden Energieeinträgen (bis 1 kW/kg) kann bei chemischen Reaktionen eine 

homogene molekulare Vermischung vorausgesetzt werden, die sich in der Flüssigphase im 

Bereich von einigen Zehntel- bis Tausendstelsekunden abspielt.  

 

Dabei kann für die Ermittlung der jeweiligen Phasengrenzen die auch in dieser Arbeit 

untersuchte Sulfitoxidation herangezogen werden [ZL+05]. Der ablaufende Prozess ist 

jedoch komplex und die kinetischen Daten sind nicht zweifelsfrei bestimmt, was als 

Ursache die Außerachtlassung von Transportmechanismen bei der kinetischen Auswertung 

haben kann. Auch bei der ebenfalls in dieser Dissertation betrachteten Kupfer-Oxidation in 

salzsauren Lösungen sind die Parameter nicht eindeutig festgelegt [BPO96] [PGR85]. 

Obwohl hier der Reaktionsmechanismus weniger komplex ist, wurde die Kinetik für die 

Analyse von Prozessen an den Phasengrenzen bislang noch nicht ausreichend untersucht. 
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Für den modellbasierten Ansatz ist es notwendig, unter definierten Strömungsverhältnissen 

chemische Kinetiken zu messen und dann entsprechend modellbasiert auszuwerten. Hier 

bietet sich vor allem die Verwendung von Mikroreaktoren an [BSW06] [NAM05]. Unter 

laminaren Strömungsbedingungen (Re ≈ 1) ermöglich die Verwendung des Mikroreaktors 

das definierte Einstellen der Zeitskalen für Diffusion und Reaktion in gleicher 

Größenordnung [KV+98] [FHZ03]. Mittels Anpassungsrechnung, welche auf dem KDR-

Modell beruht, können dann aus den experimentell erfassten Konzentrationsfeldern die 

kinetischen Parameter bestimmt werden.  

 

 

Die Arbeit ist wie folgt strukturiert: 

 

Im ersten Kapitel werden die wesentlichen theoretischen Grundlagen dieser Arbeit 

vorgestellt. Dies beinhaltet sowohl Aspekte der Diffusions-/Reaktionskinetiken als auch 

der angewandten Analyseverfahren. Eine allgemeine Betrachtung der Spektroskopie ist 

dabei eng verknüpft mit den physikalischen Effekten der Fluoreszenz und der inelastischen 

Streuung (Raman-Effekt). Schließlich werden hier auch konkrete Beispiele zur Raman-

Spektroskopie angeführt, welche im Rahmen dieser Promotion an Halbleiterstrukturen 

durchgeführt wurden und die Leistungsfähigkeit dieser Untersuchungsmethode 

unterstreichen.  

 

Im folgenden zweiten Kapitel werden die verwendeten Analyseverfahren hinsichtlich ihrer 

experimentellen Instrumentarisierung vorgestellt. So werden die Aufbauten zur 

Fluoreszenzanalyse und zur konfokalen Raman-Spektroskopie näher betrachtet, was neben 

den optischen Aufbauten auch Aspekte der Regelungs- und Steuertechnik beinhaltet. 

Schließlich wird dann auch auf das adaptierte  Reaktorsystem eingegangen.  

 

Der Hauptteil dieser Arbeit findet sich im dritten Kapitel, in dem die Ergebnisse bezüglich 

der spektroskopischen Charakterisierung physiko-chemischer Systeme präsentiert werden. 

Nach einer Betrachtung der wesentlichen Parameter des optischen Systems erfolgt eine 

Validierung der FMR-Methode bezüglich Stationarität, Tiefenhomogenisierung, 

modellbasierter Auswertung und Prototypprozessen. Zur Aufklärung der Absorption aus 

einer Gasphase in die Flüssigphase (Stoffübergang: Flüssigkeit/Gas) wurden hier, 

hinsichtlich der Detektierbarkeit, Quenchprozesse bei der Oxidation betrachtet. Als 

Prototypprozesse wurden dabei das Quenchen der Fluoreszenz von Ruthenium und die 

Chemisorption Sauerstoff/Kupfer-Ligandenkomplex mittels Fluoreszenzspektroskopie 

analysiert. In Bezug auf die Raman-spektroskopische Erfassung von Konzentrationsfeldern 

im Flachbett-Mikroreaktor wurden Vorcharakterisierungen an verschiedenen 

Reaktionssystemen durchgeführt. So werden hier beispielsweise Ergebnisse zur 
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Veresterungsreaktion von Essigsäure und Ethanol, der Reaktion H2O/D2O und vor allem 

der Sulfitoxidation vorgestellt und diskutiert.  

 

Die Arbeit schließt mit einer Zusammenfassung der Ergebnisse und einem Ausblick auf 

künftige Forschungsvorhaben. 
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1. Theoretische Grundlagen 
 

In diesem Kapitel werden die wesentlichen, für das Verständnis der Arbeit benötigten 

theoretischen Grundlagen erläutert. Im ersten Teil werden chemische Abläufe, wie 

Diffusionsprozesse und Reaktionen, näher diskutiert und die Flachbett-Mikroreaktor-

Methode (FMR-Methode) vorgestellt. Auf die wesentlichen Aspekte der 

spektroskopischen Methoden wird dann im zweiten Teil eingegangen, wobei zunächst die 

Grundlagen der Fluoreszenzspektroskopie näher erläutert werden. Das Kapitel schließt mit 

einer Einführung in die Ramanspektroskopie.  

1.1 Diffusionsprozesse/Reaktionskinetik 
 

Die Diffusion stellt einen auf der thermischen Eigenbewegung von Teilchen beruhenden 

physikalischen Prozess dar, welcher das Ausgleichsstreben von Teilchen in einem System 

beschreibt. Im Fall unterschiedlicher Konzentrationen folgt daraus, dass mehr Teilchen aus 

dem Bereich höherer Konzentration in den Bereich niedrigerer Konzentration wechseln als 

umgekehrt. Aufgrund dieser höheren statistischen Wahrscheinlichkeit kommt es zu einer 

Stoffdurchmischung und somit zu einem Konzentrationsausgleich. 

Analog zu der Wärmeleitungsgleichung nach Fourier lässt sich die Gleichung für den 

Teilchenfluss J  bei konstanter Temperatur und konstantem Druck wie folgt aufstellen: 

 

ܬ ൌ െܭ ൬
ߤ߲
ݔ߲
൰ (1.1) 

 

Hier beschreibt µ das chemische Potential, K einen stoffspezifischen Koeffizienten und x 

die Diffusionslänge. Der Zusammenhang zwischen dem chemischen Potential und der 

Stoffkonzentration lässt sich folgendermaßen formulieren [GH+04]: 

 

ߤ ൌ ଴ߤ ൅ ܴܶ ∙ ln ൬
ܿ
ܿ଴
൰ (1.2) 

 

Dabei stellt µ0 das chemische Potential im Standardzustand, R die universelle 

Gaskonstante, c die Stoffkonzentration im Allgemeinen und c0 die Anfangskonzentration 

dar. Durch Einsetzen des Ausdrucks für das chemische Potential in die Gleichung für den 

Teilchenstrom erhält man: 

 

ܬ ൌ െܭ
ܴܶ
ܿ
߲ܿ
ݔ߲

 (1.3) 
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An dieser Stelle kann der Diffusionskoeffizient D eingeführt werden, der über die Stokes-

Einstein-Gleichung wie folgt mit der bisher verwendeten Konstante K verknüpft ist: 

 

ܦ ൌ െܭ
ܴܶ
ܿ

 (1.4) 

 

Damit lässt sich durch Einsetzen der Diffusionskonstante das erste Fick’sche Gesetz wie 

folgt formulieren [AA10]: 

 

ܬ ൌ െܦ
߲ܿ
ݔ߲

 (1.5) 

 

Aus dem Massenerhaltungssatz folgt für die Konzentration [QC+09]: 

 
߲ܿ
ݐ߲

ൌ
ܬ߲
ݔ߲

 (1.6) 

 

Wird nun der Ausdruck für das erste Fick’sche Gesetz in dieser Gleichung angewandt, 

folgt daraus direkt das zweite Fick’sche Gesetz: 

 
߲ܿ
ݐ߲

ൌ െܦ
߲ଶܿ
ଶݔ߲

 (1.7) 

 

Die hier eingeführte Diffusionskonstante lässt über die Stokes-Einstein-Beziehung mit der 

Temperatur T, der Viskosität η des Lösungsmittels und dem effektiven Radius r der 

gelösten Teilchen verknüpfen [Isl04]: 

 

ܦ ൌ
݇஻ܶ
ݎߟߨ6

 (1.8) 

 

Chemische Reaktionen lassen sich anhand ihrer Geschwindigkeit in Abhängigkeit der 

Konzentration in verschiedene Ordnungen unterteilen. Bei einer Reaktion nullter Ordnung 

ist die Geschwindigkeit unabhängig von der Konzentration, so dass sich die Gleichung wie 

folgt mit der Reaktionsgeschwindigkeit v, der Konzentration cA des Stoffes A zum 

Zeitpunkt t und der Reaktionskonstante k ausdrücken lässt: 

 

ݒ ൌ െ
݀ ஺ܿ

ݐ݀
ൌ ݇ (1.9) 

 

Diese Ordnung tritt bei katalytischen oder photochemischen Reaktionen auf. Im Falle 

chemischer Reaktionen erster Ordnung hängt die Reaktionsgeschwindigkeit ausschließlich 
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von der vorliegenden Konzentration des Stoffes ab. Die Reaktionsgeschwindigkeit lässt 

sich dementsprechend wie folgt definieren: 

 

ݒ ൌ െ
݀ ஺ܿ

ݐ݀
ൌ ݇ ∙ ஺ܿ (1.10) 

 

In Abhängigkeit der Ausgangskonzentration cA,0 des Stoffes A lässt sich die zeitliche 

Entwicklung der Reaktion anhand einer Exponentialfunktion beschreiben: 

 

஺ܿ ൌ ஺ܿ,଴ ∙ ݁ି௞௧ (1.11) 

 

Beispiele für Reaktionen erster Ordnung sind katalytische Vorgänge oder radioaktive 

Zerfallsprozesse. Zur Beschreibung von Reaktionen zweier Edukte zu einem oder zu 

mehreren Produkten eignen sich hier eher Reaktionen zweiter Ordnung. Hier besteht eine 

Abhängigkeit der Reaktionsgeschwindigkeit zu den Konzentrationen cA und cB beider 

Ausgangsstoffe A und B: 

 

ݒ ൌ െ
݀ ஺ܿ

ݐ݀
ൌ െ

݀ܿ஻
ݐ݀

ൌ ݇ ∙ ஺ܿ ∙ ܿ஻ (1.12) 

 

Mit cB,0 als Ausgangskonzentration des Stoffes B folgt dann für die Beschreibung der 

zeitlichen Entwicklung der chemischen Reaktion: 

 

஺ܿ ൌ ஺ܿ,଴
൫ ஺ܿ,଴ െ ܿ஻,଴൯ ∙ ݁൫௖ಲ,బି௖ಳ,బ൯௞௧

஺ܿ,଴ ∙ ݁൫௖ಲ,బି௖ಳ,బ൯௞௧ െ ܿ஻,଴
 (1.13) 

 

Exemplarisch soll nun der Fall einer zweidimensionalen irreversiblen Reaktion betrachtet 

werden, die bei laminarer Strömung mit der Geschwindigkeit U zwischen zwei 

benachbarten Edukten A und B abläuft. Für die Reaktion, bei der das Produkt P gebildet 

wird, lässt sich mit der Reaktionsrate k folgende Gleichung aufstellen [BO+03]: 

 

ܷ
݀ ஺ܿ/஻

ݔ݀
ൌ ஺/஻ܦ

݀ଶ ஺ܿ/஻

ଶݕ݀
െ ݇ ஺ܿܿ஻ (1.14) 

 

Die Indizes A und B bezeichnen hier das jeweilige Edukt, für das die Gleichung gilt. Die 

Koordinate x gibt dabei die Richtung in Flussrichtung der Edukte und y die Richtung 

orthogonal dazu an. Analog zu der Gleichung für die Edukte lässt sich die Reaktions-

Diffusions-Gleichung für das Produkt P aufstellen: 

ܷ
݀ܿ௉
ݔ݀

ൌ ௉ܦ
݀ଶܿ௉
ଶݕ݀

െ ݇ ஺ܿܿ஻ (1.15) 
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Es lassen sich ebenfalls dimensionslose Konzentrationen ca und cb einführen, die 
folgendermaßen gebildet werden: 

ܿ௔ ൌ
஺ܿ

஺ܿ,଴
; ܿ௕ ൌ

ܿ஻
ܿ஻,଴

 (1.20) 

 

Aus der Anwendung dieser neuen Variablen auf die Reaktions-Diffusions-Gleichung 
(1.14) ergibt sich für das Edukt A: 

݀ܿ௔
݀ܺ

ൌ ߯
݀ଶܿ௔
ܻ݀ଶ

െ
ܿ௔ܿ௕
ߚ

 (1.21) 

 

Für das Edukt B folgt analog aus der Reaktions-Diffusions-Gleichung: 

݀ܿ௕
݀ܺ

ൌ
1
߯
݀ଶܿ௕
ܻ݀ଶ

െ  ௔ܿ௕ (1.22)ܿߚ

 

Zur besseren Übersichtlichkeit sind hier die Variablen β und χ eingeführt, für die gilt: 

߯ ൌ ඨ
஺ܦ
஻ܦ

; ߚ ൌ ඨ
஺ܿ,଴

ܿ஻,଴
 (1.23) 

 

Die Reaktions-Diffusions-Gleichung kann unter der Annahme, dass der Diffusions-
koeffizient DP des Produktes dem des Edukts A entspricht und dabei wesentlich kleiner ist 
als der des Reaktanden B, in der dimensionslosen Form geschrieben werden: 

݀ܿ௣
݀ܺ

ൌ
1
߯
݀ଶܿ௣
ܻ݀ଶ

൅ ܿ௔ܿ௕ (1.24) 

 

Die hier verwendete dimensionslose Konzentration cp wird über die Ausgangskon-
zentrationen der Edukte und die Konzentration cP des Produktes bestimmt: 

ܿ௣ ൌ
ܿ௉

ඥ ஺ܿ,଴ܿ஻,଴
 (1.25) 

 

Die Reaktionsrate wird durch die beschriebenen Modifikationen der Reaktions-Diffusions-

Gleichungen eliminiert. Somit zeigt sich, dass die Reaktionsrate keinen signifikanten 

Einfluss auf die Reaktionsdynamik besitzt. Durch eine Variation der Rate würde sich im 

Wesentlichen eine Änderung der Skalierung ergeben, allerdings die Struktur unverändert 
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bleiben. Auf diese Weise kann die Beschreibung der Reaktion auf ein zweidimensionales 

Problem zurückgeführt werden, welches sich durch die Kenntnis der Terme β und χ lösen 

lässt.  

Für eine weitere Vereinfachung zur Beschreibung der Reaktionsprozesse im Mikroreaktor 

lassen sich zusätzlich weitere dimensionslose Kennzahlen einführen. So beschreibt die 

Damköhlerzahl erster Ordnung DaI das Verhältnis der aus der Reaktion herrührenden 

Stofftransformation zum konvektiven Stofftransport. Mit der Reaktionsgeschwindigkeits-

konstante k, der charakteristischen Länge l, der Geschwindigkeit v des Transportmediums 

und der Konzentration c der betrachteten Reaktionskomponente folgt für eine Reaktion 

zweiter Ordnung: 

 

ூܽܦ ൌ
݇ ∙ ݈ ∙ ܿ
ݒ

 (1.26) 

 

Die Damköhlerzahl zweiter Ordnung DaII wird über das Verhältnis zwischen Reaktions- 

und Diffusionsgeschwindigkeit definiert: 

 

ூூܽܦ ൌ
݇ ∙ ݈ଶ ∙ ܿ

ܦ
 (1.27) 

 

Hier geht zusätzlich der mit D bezeichnete Diffusionskoeffizient der betrachteten 

Reaktionskomponente mit in die Gleichung ein. 

1.2 Aspekte der Spektroskopie 

1.2.1 Allgemeine Betrachtung 
 

Die Spektroskopie beschreibt die Aufspaltung von Strahlung in die einzelnen 

Energieanteile. Für diese spektrale Zerlegung werden dispersive Elemente eingesetzt. Im 

Folgenden soll nun die auf Beugung basierte Zerlegung mittels Gitter kurz erläutert 

werden.  

 

Die wellenlängenabhängige Änderung des Beugungswinkels αn, mit einer Gitterkonstanten 

g und dem Einfallswinkel αi, kann wie folgt beschrieben werden [Hec05]: 

 

݃ሺsinሺߙ௜ሻ െ sinሺߙ௡ሻሻ ൌ  (1.28) ߣ݊

 

Für die Ordnung n=0 ergeben sich somit gleiche Winkel für den einfallenden und den 

gebeugten Strahl, was zur Überlagerung aller Wellenlängen führt. 
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über eine radialsymmetrische Funktion h(r) beschreiben, die eine Besselfunktion J1 erster 

Art und erster Ordnung enthält [CK96]: 

 

݄ሺݎሻ ൌ
ሻߥଵሺܬ2
ߥ

 (1.43) 

 

Das Argument der Besselfunktion ist über die Wellenlänge und die numerische Apertur 

definiert: 

 

ߥ ൌ
ߨ2
ߣ
ݎ ∙  (1.44) ܣܰ

 

Die laterale Auflösung eines konventionellen Mikroskops folgt aus der Halbwertsbreite der 

Amplitudenverteilung der Punktspreizfunktion. Daraus ergibt sich für die 

Auflösungsgrenze folgender Ausdruck: 

 

݀௟௔௧ ൌ 0,51
ߣ
ܣܰ

 (1.45) 

 

Da im konfokalen Fall die Anregung und die Detektion durch das Objektiv erfolgen, und 

dieses somit zweimal durchlaufen wird, muss hier die aus dem konventionellen Fall 

bekannte Amplitudenfunktion quadriert werden. Die laterale Auflösung für den konfokalen 

Modus wird dann aus der Halbwertsbreite dieser Funktion gewonnen, für die gilt: 

 

݀௟௔௧ ൌ 0,37
ߣ
ܣܰ

 (1.46) 

 

Die Unterdrückung des Streulichtes durch die Lochblende und die Quadrierung der 

Funktion, durch die eine Abschwächung der Nebenmaxima erzielt wird, sorgen bei der 

konfokalen Anordnung für eine erhebliche Kontrastverbesserung im Vergleich zur 

konventionellen Mikroskopie. Für den dreidimensionalen Fall, bei dem auch der axiale 

Intensitätsverlauf betrachtet wird, lässt sich die Punktspreizfunktion entsprechend 

erweitern, so dass folgende Proportionalität zur Intensität gilt: 

 

ሻݑሺܫ ∝ ቌ
sin ቀ4ݑቁ
ݑ
4

ቍ

ସ

 (1.47) 

Hier wurde ein dimensionsloser Parameter u eingeführt, der sich über die Brennweite f und 

den Abstand d zur Brennebene wie folgt definieren lässt: 

 

ݑ ൌ
ߨ2
ߣ
ଶ݂ܣܰ ൬1 െ

݂
݀
൰ (1.48) 
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Ausgehend von einem punktförmigen Objekt kann das axiale Auflösungsvermögen dz über 

die Halbwertsbreite bestimmt werden: 

 

݀௭ ൌ 1,26
ߣ

ଶܣܰ
 (1.49) 

 

Da bei einer Lochblende aufgrund ihres endlichen Durchmessers nicht von einer punkt-

förmigen Detektion ausgegangen werden kann, wird das theoretische Auflösungsvermögen 

eingeschränkt. Liegt der Durchmesser des Laserfokus, der über die ersten Minima der 

Airy-Funktion festgelegt werden kann, in der Größenordnung der Lochblende oder 

darunter, so wird das örtliche Auflösungsvermögen nicht eingeschränkt. Mit dem 

Durchmesser der Lochblende nimmt dabei die Tiefenauflösung dz linear ab. Mit dem 

Blendenradius a und der Vergrößerung M des Objektivs gilt: 

 

݀௭ ൌ
ܽ√2
ܯ ∙ ܣܰ

 (1.50) 

 

Die Verknüpfung von Blendenradius und Vergrößerung in Bezug auf die axiale Auflösung 

erfordert somit bei der Auswahl der Lochblende eine Berücksichtigung des verwendeten 

Objektivs. Ausgehend von dem jeweiligen physikalischen Effekt und der Messmethode 

muss so ein Kompromiss gefunden werden, der das axiale Auflösungsvermögen und die 

Stärke des Messsignals vereint. 

1.2.3 Fluoreszenzspektroskopie 
 

In nahezu allen naturwissenschaftlichen Disziplinen stellt die Fluoreszenzspektroskopie  

aufgrund breiter und selektiver Markertechniken eine elementare Analysemethode dar. 

Darüber hinaus weist sie eine hohe Sensitivität auf und ermöglicht bei konfokaler 

Anwendung eine dreidimensionale Analyse und Visualisierung. Durch Bestrahlung mit 

Laserlicht werden hier Fluoreszenzfarbstoffmoleküle auf ein höheres Energieniveau 

angeregt, von dem aus sie unter Abgabe von Strahlung wieder in den Grundzustand 

übergehen können. Nach der Stokes’schen Regel kann das Fluoreszenzsignal nur eine 

gleich große (Resonanzfluoreszenz) oder wegen vorhergehender strahlungsloser 

Übergänge eine größere Wellenlänge als das Anregungslicht besitzen (Rotverschiebung). 

Durch die Verwendung geeigneter Filter wird bei der Fluoreszenzspektroskopie das 

Anregungssignal geblockt, während das Fluoreszenzlicht den Filter passiert und vom 

Detektor erfasst wird (siehe Abbildung 1.6). 
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Schwingungs- und Rotationsübergänge betrachtet werden. Bei der Streuung kann zunächst 

zwischen elastischer (Rayleigh-Streuung) und inelastischer unterschieden werden. 

Während bei der elastischen Streuung das gestreute Photon dieselbe Energie besitzt, wie 

das eingestrahlte, kann im Fall der inelastischen Streuung das gestreute Photon eine, im 

Vergleich zum eingestrahlten, erhöhte (Stokes-Streuung) oder eine erniedrigte Energie 

(Anti-Stokes-Streuung) besitzen. Abhängig von der Betrachtung der gemessenen 

Ramanspektren lassen sich unterschiedliche Informationen über die untersuchten Proben 

gewinnen. Mittels Raman-Spektroskopie können beispielsweise Informationen über die 

Materialkomposition (energetische Verschiebung, Linienbreite), die Stoffkonzentrationen 

(Signalstärke) und Verspannungen/Versetzungen (Bandenverschiebung) gewonnen wer-

den.  

 

Klassische Betrachtung 

 

Bei der klassischen Beschreibung des Raman-Effektes wird angenommen, dass die 

Änderung der Polarisierbarkeit eines Moleküls durch eine elektromagnetische Welle 

hervorgerufen wird, welche ein Dipolmoment induziert. Ohne angelegtes 

elektromagnetisches Feld lässt sich die Auslenkung eines Moleküls, das mit der Frequenz 

ω0 schwingt, mittels folgender Gleichung beschreiben: 

 

Ԧݔ ൌ Ԧ଴ݔ cosሺ߱଴ݐሻ (1.52) 

 

Das von der elektromagnetischen Welle induzierte Dipolmoment ߤԦind setzt sich zusammen 

aus dem Polarisationstensor ߙԦ und dem elektromagnetischen Feld ܧሬԦ: 
 

Ԧ௜௡ௗߤ ൌ  ሬԦ (1.53)ܧԦߙ

 

Die allgemeinste Form des Polarisationstensors lautet dabei wie folgt: 

 

Ԧߙ ൌ ൭
௫௫ߙ ௫௬ߙ ௫௭ߙ
௬௫ߙ ௬௬ߙ ௬௭ߙ
௭௫ߙ ௭௬ߙ ௭௭ߙ

൱ (1.54) 

 

Im Fall isotroper Medien kann der Tensor vereinfacht und als Skalar behandelt werden. 

Hier lässt sich die Polarisierbarkeit mit der Ortskoordinate x in Form einer Taylorreihe 

entwickeln: 

 

ሻݔሺߙ ൌ ଴ߙ ൅ ൬
ߙ݀
଴ݔ݀

൰ ݔ ൅
1
2
ቆ
݀ଶߙ
଴ݔ݀

ଶቇ ݔ
ଶ ൅ ⋯ (1.55) 
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Für die weiteren Berechnungen werden hier nur die Terme bis zur 1. Ordnung betrachtet. 

Die Schwingung des ebenfalls in der Beschreibung des Dipolmoments enthaltenen 

elektromagnetischen Feldes mit der Frequenz ωem lässt sich analog zur Schwingung des 

Moleküls anhand folgender Gleichung beschreiben: 

 

ሬԦܧ ൌ ሬԦ଴ܧ cosሺ߱௘௠ݐሻ (1.56) 

 

Demnach lässt sich das induzierte Dipolmoment wie folgt ausdrücken: 

 

Ԧ௜௡ௗߤ ൌ ൤ߙ଴ ൅ ൬
ߙ݀
଴ݔ݀

൰ ଴ݔ cosሺ߱଴ݐሻ൨ ሬԦ଴ܧ cosሺ߱௘௠ݐሻ (1.57) 

 

Für eine Umformung dieser Gleichung kann folgender trigonometrischer Ausdruck 

verwendet werden: 

 

cosሺܽሻ ∙ cosሺܾሻ ൌ
1
2
ሺcosሺܽ ൅ ܾሻ ൅ cosሺܽ െ ܾሻሻ (1.58) 

  

Das Dipolmoment ergibt sich somit nach der trigonometrischen Umformung zu: 

 

Ԧ௜௡ௗߤ ൌ ሬԦ଴ܧ଴ߙ cosሺ߱௘௠ݐሻ ൅
1
2
଴ݔሬԦ଴ܧ ൬

ߙ݀
଴ݔ݀

൰ cosሺሾ߱௘௠ െ ߱଴ሿݐሻ 

(1.59) 
																													 																							 ൅

1
2
଴ݔሬԦ଴ܧ ൬

ߙ݀
଴ݔ݀

൰ cosሺሾ߱௘௠ ൅ ߱଴ሿݐሻ 

 

Die Rayleigh-Streuung, bei der sowohl die Polarisierbarkeit α0 als auch die Frequenz ωem 

der elektromagnetischen Welle unverändert bleiben, wird durch den ersten Term der 

Gleichung ausgedrückt. Im zweiten Term sind eine Veränderung der Polarisierbarkeit und 

eine Verringerung der Frequenz der elektromagnetischen Welle um die Frequenz ω0 

enthalten, die typisch für die Stokes-Streuung sind. Die Anti-Stokes-Streuung wird durch 

den dritten Term der Gleichung beschrieben, bei dem neben der Polarisierbarkeitsänderung 

eine Erhöhung der Frequenz der eingestrahlten Welle enthalten ist.  Die Polarisierbar-

keitsänderung ist wesentlich für die Ramanaktivität eines Stoffes und tritt bei 

antisymmetrischen Schwingungen und bei Deformationsschwingungen auf (Abb. 1.9). 

 

Je nach Auslenkung ändert sich bei diesen beiden Schwingungsarten der 

Polarisationsellipsoid, während seine Form bei der symmetrischen Streckschwingung 

erhalten bleibt (nicht Raman-aktiv). 
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Bei der Stokes-Streuung erfolgt die Relaxation hingegen auf ein bereits angeregtes Niveau. 

Somit verbleibt ein Teil der eingestrahlten Energie in Form von Schwingungsenergie, so 

dass das beim Übergang abgestrahlte Licht eine geringere Energie und somit eine kleinere 

Frequenz als das eingestrahlte besitzt. Bei der Anti-Stokes-Streuung erfolgt die Anregung 

auf ein virtuelles Niveau nicht aus dem Grundzustand, sondern von einem angeregten 

Schwingungszustand. Die Rekombination auf ein Niveau unterhalb des ursprünglichen 

angeregten Schwingungszustandes bei der Absorption führt zur Aussendung von Strahlung 

mit höherer Frequenz. Im Vergleich zur Anti-Stokes-Streuung weist die Stokes-Streuung 

eine deutlich höhere Intensität auf. Dies ist darin begründet, dass die Wahrscheinlichkeit, 

dass das System sich im Grundzustand, d.h. dem Ausgangszustand der Stokes-Streuung, 

befindet, wesentlich höher ist. Das Verhältnis zwischen den Systemen im angeregten 

Zustand (Ni) und im Grundzustand (N0) lässt sich über die Boltzmann-Verteilung 

beschreiben: 
௜ܰ

଴ܰ
ൌ ݁

ି ௜௛ఔ௞ಳ் (1.60) 

 

Hier bezeichnet i die Ordnung des Niveaus, auf welches das System energetisch 

angehoben wird. Der Ausdruck h·ν stellt dabei die Energiedifferenz zwischen den 

einzelnen Niveaus dar, kB die Boltzmannkonstante und T die vorherrschende Temperatur.  

 

Basierend auf dem Hooke’schen Gesetz lässt sich eine parabolische Funktion des 

Potentials analog zum Fall des harmonischen Oszillators herleiten und eine entsprechende 

Quantisierung belegen. Bei der Annahme des harmonischen Potentials handelt es sich 

jedoch um eine grobe Näherung, da in diesem Modell der Anstieg der Abstoßungskräfte 

zwischen den Atomen für geringe Abstände, ebenso wie die Dissoziation der Atome nicht 

berücksichtigt wird. Die Einbeziehung dieser Erscheinungen würde sich zum einen in 

einem steileren Verlauf der Potentialkurve für kleine Atomabstände und zum anderen 

durch das Anstreben eines diskreten Wertes bei großen Atomabständen äußern. Die 

Funktion, die die beschriebenen Atomeigenschaften einbezieht, ist das Morse-Potential: 

 

ܸሺݔሻ ൌ ஽ܧ ቀ1 െ ݁ିඥሺ௞/ଶாವሻሺ௫ି௫బሻቁ
ଶ
 (1.61) 

 

In der Beschreibung des Potentials bezeichnet ED die Dissoziationsenergie, d.h. die 

Energie, die zur Lösung der Atombindung nötig ist, vermehrt um die Grundzu-

standsenergie (E0 = 0,5 ħω).  
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Eingesetzt in die Gleichung für den Übergangserwartungswert folgt: 

 

Ψ௜ۧ|ߤ|Ψ௞ۦ ൌ Ψ௞|Ψ௜ۧۦ଴ߤ ൅ Ψ௜ۧ|ݔ|Ψ௞ۦଵߤ ൅
1
2
ଶ|Ψ௜ۧݔ|Ψ௞ۦଶߤ ൅ ⋯ (1.67) 

 

Die Wellenfunktionen Ψi und Ψk stehen senkrecht zueinander, so dass gilt: 

 
Ψ௞|Ψ௜ۧۦ ൌ 0 (1.68) 

 

Unter Vernachlässigung der quadratischen und höheren Terme vereinfacht sich Gleichung 

(1.65) somit zu: 

 

〈௜௞ܯ〉 ൌ Ψ௜ۧ|ߤ|Ψ௞ۦ ൌ Ψ௜ۧ|ݔ|Ψ௞ۦଵߤ (1.69) 

 

Damit dieser Übergang einen von Null unterschiedlichen Wert annimmt, müssen zwei 

Bedingungen erfüllt sein. Das Dipolmoment muss sich mit dem Ort ändern, damit der 

Term für das Übergangsdipolmoment µ1 nicht verschwindet, das wie folgt über die 

Taylorreihenentwicklung definiert ist: 

 

ଵߤ ൌ ൬
ߤ݀
ݔ݀
൰
௫బ

 (1.70) 

 

Des Weiteren muss der Ausdruck ۦΨ௞|ݔ|Ψ௜ۧ symmetrisch sein, damit das Integral dieser 

Funktion nicht verschwindet, das folgende Form besitzt: 

 

නΨ௞
ݎΨ௜݀ଷݔ∗ ് 0 (1.71) 

 

Bei einem harmonischen Oszillator sind nur Übergänge in direkt benachbarte 

Energiezustände erlaubt, wodurch Δn =  1gilt. Im Fall anharmonischer Potentiale müssen 

bei der Näherungsrechnung auch höhere Terme der Taylorreihe berücksichtigt werden 

(elektrische Anharmonizität). Auch sind die Wellenfunktionen der Schwingungen 

gegenüber denen des harmonischen Oszillators verändert, was ebenfalls in die Rechnungen 

einfließen muss (mechanische Anharmonizität). Daher sind für den anharmonischen 

Oszillator auch Übergänge höherer Ordnungen erlaubt.   
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1.2.5 Beispiele zur Raman-Spektroskopie 
 

Die hier vorgestellten exemplarischen Beispiele für Raman-spektroskopische Analysen 

von Halbleitersystemen entspringen Kooperationen mit anderen Arbeitsgruppen (CeOPP, 

ISFH), welche im Rahmen dieser Promotion erfolgten. Die Ergebnisse aus diesen 

Analysen unterstreichen die Leistungsfähigkeit der umgesetzten Untersuchungsmethode. 

Es wird zunächst eine Messung zur Identifizierung der Struktur einer mit Galliumnitrid 

(GaN) überwachsenen kubischen Siliziumcarbid-Probe (3C-SiC) vorgestellt, der eine 

Ausführung über die Bestimmung der Kristallinität hydrogenisierter Dünnschicht-

Siliziumproben folgt. Das Teilkapitel schließt dann mit Untersuchungen zur 

Strukturänderung von Zinktellurid-Proben durch Bestrahlung mit hoher Leistungsdichte 

ab. 

 

Strukturidentifizierung am Materialsystem GaN-3C-SiC 

 

Aufgrund ihrer vergleichsweise großen Bandlücken und ihrer hohen chemischen und 

mechanischen Stabilitäten sind Gruppe-III-Nitride häufig verwendete Materialien im 

Bereich der Optoelektronik [Wu09]. Dabei treten die Nitride in der stabilen Wurtzit- und 

der metastabilen kubischen Zinkblendestruktur auf [YZ+99]. Während die Wurtzitstruktur 

in der Halbleiterindustrie bereits etabliert ist, steigt das Interesse an der Herstellung von 

Bauelementen basierend auf der kubischen Struktur [WY+97]. Diese bietet gegenüber der 

hexagonalen Struktur einige Vorteile, wie z.B. richtungsunabhängige elektrische 

Eigenschaften (symmetrische Kristallstruktur) oder die Unterdrückung spontaner 

elektrischer Polarisation. Im Rahmen der Anwendung des Nanoheteroepitaxie-Prozesses 

für das Aufwachsen von Galliumnitrid-Strukturen (c-GaN) auf strukturiertem 3C-SiC/Si 

(001) wurde hier die Raman-Spektroskopie angewandt, um die aufgewachsenen Schichten 

auf ihre Kristallisationsart (hexagonal oder kubisch) hin zu untersuchen. Dabei wurde hier 

im Speziellen untersucht, ob das kubische Wachstum durch die Verwendung von Steg- 

oder Säulenstrukturen bevorzugt wird. Als Ausgangsmaterial für die Strukturierung (AG 

Lischka) wurden kommerziell erhältliche SiC-Substrate (525 µm, NOVASiC 100-C502) 

verwendet, die mittels Niederdruck-chemischer Gasphasenabscheidung (Low Pressure 

Chemical Vapor Deposition, LPCVD) mit einer 12 µm dicken 3C-SiC-Schicht 

überwachsen wurden. Die Strukturierung erfolgte dabei nach entsprechender Lithografie 

(Photolithografie, Nanokugellithografie) mittels anisotropem reaktivem Ionenätzen 

(Reactive Ion Etching, RIE) mit den Prozessgasen Sauerstoff (O2) und 

Schwefelhexafluorid (SF6) bei einem Druck von 100 mTorr. Auf die strukturierten Proben 

wurde dann nano-heteroepitaktisch eine kubische GaN Schicht von 440 nm Dicke 

aufgewachsen, die eine geringe Gitterfehlanpassung (3,5 %) zum Substrat besitzt. 

Weiterhin wurde eine unstrukturierte Referenzprobe mit einer 440 nm dicken, planaren c-
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der Flächen Ii unter den jeweiligen Kurven lässt sich die Kristallinität ߶௖ wie folgt 

berechnen [WK+93] [DV+04]: 

 

߶௖ ൌ
ହଵ଴ܫ ൅ ହଶ଴ܫ

ସ଼଴ܫߪ ൅ ହଵ଴ܫ ൅ ହଶ଴ܫ
 (1.72) 

 

Hier bezeichnet σ das Verhältnis der integrierten Ramanquerschnitte von amorphem und 

kristallinem Silizium. Abhängig von den optischen Absorptionskoeffizienten wurden für 

dieses Werte zwischen 0,1 und 0,88 empirisch ermittelt [TG+82] [BCC77]. Unter 

Einbeziehung von optischen Absorptionseffekten, Einflüssen des Streuquerschnitts, 

Effekten durch den Abzug des Hintergrundes und anderer Faktoren kann für die folgenden 

Berechnungen ein Wert von σ = 1 angenommen werden, so dass sich die Kristallinität aus 

dem Verhältnis der Summe der Intensitätsintegrale aus der kristallinen Phase zu der 

Summe der integralen Werte aller auftretenden Signale ergibt. Die Zusammenfassung der 

auf diese Weise ermittelten Werte ist in Tabelle 1.1 dargestellt. 

 

Wavenumber / cm-1 Area93 PC5 1 Area94 PC5 1 Area95 PC5 1 Area101 PC5 1 Area102 PC5 1 

480 1676,20 6204,33 6144,72 9779,27 5505,96 

510 1330,16 1283,74 1227,13 2820,48 1262,88 

520 1542,57 1311,22 1437,49 3125,62 1075,10 

Crystallinity / % 63,15 29,49 30,25 37,81 29,81 

Tab. 1.1: Zusammenfassung der integralen Flächen für die gefitteten Gaußkurven bei 

480 cm-1, 510 cm-1 und 520 cm-1 und daraus ermittelter Kristallinitäten.  

 

Strukturänderung im Materialsystem ZnTe durch hohen Leistungseintrag 

 

Während strukturelle Effekte durch Probenbestrahlung von Lasern mit hoher 

Leistungsdichte im Wesentlichen für das Materialsystem Cadmiumtellurid (CdTe) 

beschrieben wurden [SL+04] [HV+08], gibt es für Zinktellurid (ZnTe) nur sehr wenige 

Untersuchungen, die sich mit der Detektion von Raman-Moden des Tellurs beschäftigen. 

Im Rahmen von Raman-Messungen an ZnTe wurde bei der Bestrahlung mit hoher 

Leistungsdichte des Anregungslasers eine Erhöhung der Signale bei 120 cm-1 und 140 cm-1 

festgestellt, die sich den Linien des Tellurs zuordnen lassen. Durchgeführt wurden die 

Messungen an epitaktischen ZnTe Schichten (Dicke ca. 120 nm), die mittels der Methode 

der so genannten „Isothermal Closed Space Sublimation Epitaxy“ (ICSSE) auf (001) 

Galliumarsenid (GaAs) aufgewachsen wurden [LP+01] [ML+07]. In Abbildung 1.14 ist 

das Raman-Spektrum einer Messung mit hohem Energieeintrag linear und logarithmisch 

dargestellt. 
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3. Ergebnisse 
 

Zunächst erfolgt eine Betrachtung der FMR-Methode, wobei speziell die Validierung der 

antizipierten Annahmen von zentraler Bedeutung ist. Gemäß der Aufgabenstellung dieser 

Arbeit werden die weiteren Ergebnisse nun in zwei Bereiche unterteilt. Zum einen finden 

sich hier Resultate zur spektroskopischen Vorcharakterisierung von Stoffsystemen 

hinsichtlich Ihrer Eignung für eine modellbasierte Auswertung (FMR-Methode) auf Basis 

der laserinduzierten Fluoreszenz (LIF). Zum anderen werden Ergebnisse bezüglich der 

Raman-basierten Analyse präsentiert, was sowohl experimentelle als auch methodische 

Aspekte beinhaltet.   

3.1 Validierung der FMR-Methode  
 

Bei der FMR-Methode basiert die experimentelle Ermittlung der kinetischen Parameter auf 

der Transformation einer zeitlichen Auflösung ( = 1 s …1 ms) in eine örtliche, was nur 

bei einem stationären System mit der erforderlichen Genauigkeit erfolgen kann. Ist diese 

Stationarität gegeben, so kann mit dem jeweiligen Auflösungsvermögen der 

Analysemethode die örtliche Konzentrationsvariation ermittelt werden. Aus diesem Grund 

werden zunächst die Parameter des optischen Systems näher betrachtet. Es folgt eine 

Diskussion zur Systemstationarität, die auf experimentellen Daten basiert. Schließlich wird 

die Annahme der axialen Homogenisierung theoretisch und experimentell validiert. 

3.1.1 Parameter des optischen Systems 
 

Um in konfokalen Systemen eine vom Objektiv unabhängige Darstellung optischer Größen 

zu erhalten, werden diesem zwei dem System eigene Einheiten zugeordnet. Für laterale 

Größen wird dabei die Airy-Einheit (AE) eigeführt, die den Durchmesser der Airy-Scheibe 

repräsentiert und deren Definition mit der mittleren Wellenlänge ߣ wie folgt lautet: 

 

AE ൌ 1,22 ఒ

ே஺
    (3.1) 

 

Analog dazu lässt sich für den axialen Fall die Rayleigh-Einheit (RE) definieren: 

 

RE ൌ ௡ఒ

ே஺మ
    (3.2) 

 

Hier stellt NA die numerische Apertur des Objektivs und n die Brechzahl bezüglich des 

umgebenden Mediums dar. Die mittlere Wellenlänge ߣ ergibt sich mit der 
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Anregungswellenlänge exc und der Wellenlänge des Fluoreszenzlichtes fluo durch 

folgende Beziehung: 

 

λ ൌ
௙௟௨௢ߣ ∙ ௘௫௖ߣ

ටߣ௙௟௨௢
ଶ ൅ ௘௫௖ଶߣ

 
(3.3) 

 

Beispielsweise ergibt sich für die Betrachtung der Fluoreszenz von Fluo-4 eine mittlere 

Wellenlänge von 493 = ߣ nm. Mit einer numerischen Apertur NA des eingesetzten 

Objektivs von 0,7 folgt für das konfokale Fluoreszenzmikroskop eine Airy-Einheit von AE 

~ 850 nm und mit dem Brechungsindex n = 1 von Luft (Trockenobjektiv) eine Rayleigh-

Einheit von RE ~ 1 µm. Bei der µ-Raman-Anwendung ergeben sich entsprechende Werte. 

 

Das axiale und laterale Auflösungsvermögen wird meist über das Halbwertsbreiten-

Kriterium festgelegt (Einzelpunkt-Auflösung). Je nach Durchmesser dBl der konfokalen 

Blende wird zwischen geometrischer (dBl > 1 AE) und wellenoptischer (dBl < 0,25 AE) 

Konfokalität unterschieden. Wie bereits in den theoretischen Grundlagen erläutert, ist zur 

quantitativen Beschreibung die laterale und axiale Auflösung durch die jeweilige 

Halbwertsbreite (FWHM) des zentralen Maximums der Punktspreizfunktion (Point Spread 

Function, PSF) definiert. In den beiden experimentellen Aufbauten wird standardmäßig 

eine Lochblende von ca. 5 AE eingesetzt. Ausgehend von einer homogenen Ausleuchtung 

ergibt sich dann für die laterale Auflösung dlateral auf Basis der Halbwertsflächen der 

PSFexc: 

 

݀௟௔௧௘௥௔௟ ൌ Δݔிௐுெ ൌ 0,51
௘௫௖ߣ
ܣܰ

 (3.4) 

 

Analog gilt hier für die axiale Auflösung daxial:  

 

݀௔௫௜௔௟ ൌ Δݖிௐுெ ൌ 0,88
௘௫௖ߣ

݊ െ √݊ଶ െ ଶܣܰ
 (3.5) 

 

Die konkrete Bestimmung des lateralen Auflösungsvermögens erfolgt experimentell 

anhand der Analyse einer definierten Teststruktur mit bekannten Abmessungen. Die axiale 

Auflösung wurde nach dem Halbwertsbreitenkriterium bestimmt.  
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3.1.2 Güte der Stationarität im FMR 
 

Betrachtet man die Bestimmung bzw. Anpassung (KDR, KD) der kinetischen Parameter 

im FMR unter dem Aspekt der Fehlertoleranz, so zeigt sich, dass die Güte der Stationarität 

die dominierende Größe für die Genauigkeit der Bestimmung dieser Parameter darstellt. 

Da die Stationarität prinzipiell nicht von der Analysemethode abhängt, erfolgt 

konsequenterweise für die Toleranzabschätzung eine Separation von Reaktorsystem und 

optischem System. Somit wird unter Betrachtung relevanter Bestimmungsgrößen eine vom 

optischen System entkoppelte Güte Γ definiert, welche den Grad der Abweichung von der 

Stationarität angibt. Es gilt: 

 

߁ ൌ
1

ටሺΔܥ௠ሻ
ଶ

ܣ ൅
ሺΔݕ଴ሻଶ
ܤ ൅

ሺΔܴሻଶ
ܥ ൅ ܦ

 
(3.6) 

 

Dabei gilt Γ=1 für die vollständige Stationarität und Γ=0 für einen vollständig 

unstationären Zustand. Hier bezeichnet Cm die Abweichung von der „mittleren 

Konzentration“ und y0 den Fehler der Keilausdehnung, während R hier für die 

Abweichung von der Linearität der Konzentrationsänderung steht, welche auch zum Fehler 

der „mittleren Konzentration“ beiträgt. Die Güte soll hier als parameterrelevante und 

spezifische Größe für das tatsächliche Reaktorsystem verstanden werden, welche neben 

der Stationarität auch eine laminare Strömung fordert. Prinzipiell ist dann diese Güte 

experimentell bestimmbar, wobei deren Ortsabhängigkeit (Messbereich im Kanal) hier 

zunächst vernachlässigt wurde. Für das realisierte Reaktorsystem wurden die Koeffizienten 

A, B, C, D experimentell zu folgenden Werten bestimmt: 

 

A 1,52·10-20 mol2/l2 

B 0,065 µm2 

C 1,55·10-22 mol2/µm2l2 

D 0,46 

Tab. 3.2: Übersicht der experimentell ermittelten Koeffizienten zur 

Bestimmung der Stationarität im verwendeten Reaktorsystem 

So ergibt sich beispielsweise bei der Bestimmung des Diffusionskoeffizienten für eine 

beliebige Messung an ein Reaktorsystem der Güte Γ eine Fehlergrenze von: 

 

Δܦ ൌ
Δܦௌ௧௔௧௜௢௡ä௥

߁
 (3.7) 
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Die kongruente Überlagerung der Profile im Mischkanal konnte hier bereits bei einer 

Entfernung von 50 µm vom T-Stück nachgewiesen werden. Betrachtet man für eine Tiefe 

die Entwicklung des Konzentrationsprofils entlang der Flussrichtung (x), erkennt man die 

zu erwartende Verbreiterung entsprechend des sich ausbreitenden Reaktionskeils. Im Falle 

einer Tiefenhomogenisierung muss sich ein entsprechendes Verhalten der örtlichen 

Konzentrationsvariation für unterschiedliche Tiefen (z) ergeben.  

 

Fazit: 

Experimentell zeigt sich eine äußerst gute Übereinstimmung der tiefenaufgelösten 

Konzentrationsprofile für die verschiedenen Entfernungen in x-Richtung, womit eine 

Tiefenhomogenisierung belegt ist. Die Beschränkung auf die horizontalen und axialen 

sowie die Vernachlässigung der vertikalen Transportmechanismen in der modellbasierten 

Auswertung ist damit gerechtfertigt. 

3.1.4 Modellbasierte Auswertung 
 

Die Auswertung der Konzentrationsprofile erfolgt modellbasiert durch Anpassung der 

kinetischen Parameter eines auf „first principles“ basierten Modells an die experimentellen 

Speziesfelder. Aufgrund der stationären Strömung reduziert sich die Modellierung auf die 

Transportgleichungen für die chemischen Spezies. Für den Fall einer einfachen Reaktion 

vom Typ ܣ ൅ ܤ 						௞						ሱۛ ۛۛ ሮܲ mit der Reaktionsgeschwindigkeitskonstanten k, können diese mit 

den Spezies-Konzentrationen ci, deren Diffusionskoeffizienten Di und der axialen 

Geschwindigkeitskomponente w(x,y) analog zu den Gleichungen (1.14) und (1.15) 

aufgestellt werden: 

 

,ݖሺݓ ሻݕ
߲ ஺ܿ

ݔ߲
ൌ ∆஺ܦ ஺ܿ െ ݇ ஺ܿܿ஻ (3.9) 

 

,ݖሺݓ ሻݕ
߲ܿ஻
ݔ߲

ൌ ஻∆ܿ஻ܦ െ ݇ ஺ܿܿ஻ (3.10) 

 

,ݖሺݓ ሻݕ
߲ܿ௉
ݔ߲

ൌ ௉∆ܿ௉ܦ െ ݇ ஺ܿܿ஻ (3.11) 

 

Dabei wird im Modell angenommen, dass sich die einzelnen Koordinaten x, y und z in 

folgenden Bereichen aufhalten: 

 

0 ൏ ݔ ൏ ܮ  (3.12) 

 

െ
ܾ
2
൏ ݕ ൏

ܾ
2

 (3.13) 
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െ
݄
2
൏ ݖ ൏

݄
2

 (3.14) 

 

Hier bezeichnen h, b, L die Höhe, Breite und Länge des Mischkanals. Die Diffusion 

entlang der Stromlinien, d.h. in x-Richtung ist vernachlässigbar, so dass gilt: 

 

∆ܿ௜ ൌ
߲ଶܿ௜
ଶݖ߲

൅
߲ଶܿ௜
ଶݕ߲

 (3.15) 

 

Da die Konzentrationsprofile in guter Näherung unabhängig von der vertikalen Höhe z 

sind, kann anstelle von ci(z,y) das Höhenmittel verwendet werden: 

 

ሻݕ௜ሺܥ ൌ න ܿ௜ሺݖ, ݔሻ݀ݕ

௛ ଶ⁄

ି௛ ଶ⁄

 (3.16) 

 

Aus den Gleichungen (3.12) bis (3.14) und der Tatsache, dass in y-Richtung in guter 

Näherung ein „Plug-Flow-Profil“ vorliegt, folgen dann durch Integration über die Höhe die 

endgültigen Beziehungen. In dimensionsloser Formulierung lauten diese: 

 
߲ ஺ܿ

∗

∗ݔ߲
ൌ

1
ܲ ஺݁

߲ଶ ஺ܿ
∗

ଶ∗ݕ߲
െ
ܾ
ܮ
ூܽܦ ஺ܿ

∗ܿ஻
∗  (3.17) 

 
߲ܿ஻

∗

∗ݔ߲
ൌ

1
ܲ݁஻

߲ଶܿ஻
∗

ଶ∗ݕ߲
െ
ܾ
ܮ
ூܽܦ ஺ܿ

∗ܿ஻
∗  (3.18) 

 
߲ܿ௉

∗

∗ݔ߲
ൌ

1
ܲ݁௉

߲ଶܿ௉
∗

ଶ∗ݕ߲
െ
ܾ
ܮ
ூܽܦ ஺ܿ

∗ܿ஻
∗  (3.19) 

 

Hier wurden mit x* und y* dimensionslose Koordinaten eingeführt, die folgendermaßen 

definiert sind: 

 

∗ݔ ൌ
ݔ
ܾ

mit 0 ൏ ∗ݔ ൏
ܮ
ܾ

 (3.20) 

 

∗ݕ ൌ
ݕ
ܾ

mit െ
1
2
൏ ∗ݕ ൏

1
2

 (3.21) 
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Zusätzlich wurde hier die Péclet-Zahl Pei verwendet, die sich über die Kanalbreite b, den  

jeweiligen Diffusionskoeffizienten Di und die Geschwindigkeitskomponente w wie folgt  

ausdrücken lässt:  

 

ܲ݁௜ ൌ
ݓܾ
௜ܦ

 (3.22) 

 

In den Gleichungen (3.17) bis (3.19) wurde hier ebenfalls die Damköhler-Zahl DaI erster 

Ordnung eingesetzt, wobei in deren Definition cref eine Bezugskonzentration darstellt: 

 

ூܽܦ ൌ
݇ܿ௥௘௙ܮ
ݓ

 (3.23) 

 

Für diese Gleichungen gelten dabei für die Edukte und das Produkt (i= A,B,P) zusätzlich 
folgende Randbedingungen mit der Einlasskonzentration ܿ௜,௜௡

∗ : 

 
ܿ௜
∗ ൌ ܿ௜,௜௡

∗ bei ∗ݔ ൌ 0 (3.24) 

 
߲ܿ௜

∗

∗ݕ߲
ൌ 0 bei ∗ݕ ൌ േ

1
2

 (3.25) 

 

Daraus folgt ein System partieller DGL`s in nur einer Raumvariablen. Die numerische 

Lösung des Modells und die Anpassung der Modellparameter erfolgt mittels eines 

entwickelten Programms, basierend auf dem Software-Tool Matlab. 

 

Fazit: 

Die Reduzierung auf nur eine Raumvariable erlaubt eine zeitlich effiziente numerische 

Berechnung und somit die Parameteranpassung durch nichtlineare Regression. Im Falle 

der Bestimmung des Diffusionskoeffizienten einer Komponente reduziert sich das 

Gleichungssystem auf eine Komponentengleichung ohne Reaktionsterm.  

3.2 Prinzipielle Validierung, Komplexierung von Ca2+ 
 

Um das Ziel der prinzipiellen Validierung der FMR-Methode zu erreichen, wurde zunächst 

auf die Stoffsystemanforderung der Eignung als Modell für Chemisorptionsprozesse 

verzichtet. Dadurch sind Reaktionssysteme einsetzbar, die einfachen Mechanismen folgen. 

Ein solches ist der Nachweis von Ca2+ Ionen in wässrigen Lösungen. Eine Reaktion mit 

Fluorophoren (z.B. Fluo-4, Calcium-Green) ermöglicht die Quantifizierung mittels 

laserinduzierter Fluoreszenz. Die Struktur von Fluo-4 ist in Abbildung 3.8a dargestellt. Die 

betrachtete Reaktion ist die Komplexierung von Calcium durch Fluo-4 (Ca2+ + Fluo-4  
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Die einzelnen Reaktionsschritte sind dabei folgende [Her05]: 

 

1. ሻ	ݑܥା ൅ ܱଶ
								௞భ								
ሱۛ ۛۛ ۛۛ ሮ ଶାݑܥ ൅ ܱଶ

ି         (3.26) 

2. ሻ	ܪା ൅ ܱଶ
ି 								௞మ								
ሱۛ ۛۛ ۛۛ ሮܱܪଶ

ି (3.27) 

3. ሻ	ݑܥା ൅ ଶܱܪ
								௞య								
ሱۛ ۛۛ ۛۛ ሮݑܥଶା ൅ ଶܱܪ

ି (3.28) 

4. ሻ	ܪା ൅ ଶܱܪ
ି 								௞ర								
ሱۛ ۛۛ ۛۛ ሮܪଶܱଶ (3.29)

 

5. ሻ	ݑܥା ൅ ଶܱଶܪ
								௞ఱ								
ሱۛ ۛۛ ۛۛ ሮ ଶାݑܥ ൅ ∙ܱܪ ൅  (3.30) ିܱܪ

6. ሻ	ݑܥା ൅ ∙ܱܪ
								௞ల								
ሱۛ ۛۛ ۛۛ ሮ ଶାݑܥ ൅  (3.31) ିܪܱ

 

Die Summe dieser Reaktionsschritte ergibt sich dann zu: 

 

ାݑܥ4 ൅ ାܪ2 ൅ ܱଶ
௞

ሱۛ ۛۛ ሮۛ ଶାݑܥ4 ൅  (3.32) ିܪ2ܱ

 

Anhand dieser Gleichungen kann die Verbrauchsrate von Kupfer (Cu+) über das Auftreten 

dieses Eduktes bestimmt werden zu: 

 
݀ܿ஼௨శ
ݐ݀

ൌ െሺݎଵ ൅ ଷݎ ൅ ହݎ ൅  ଺ሻ (3.33)ݎ

 

Wird nun die Annahme einer Quasistationarität gemacht, so folgt für die Raten der 

kurzlebigen Zwischenprodukte: 

 

ଵݎ ൌ ଷݎ ൌ ହݎ ൌ  ଺ (3.34)ݎ

 

Daraus kann in Anwendung auf Gleichung (3.33) für das Kupfer folgendes kinetisches 

Zeitgesetz 1. Ordnung erhalten werden: 

 
݀ܿ஼௨శ
ݐ݀

ൌ െ4݇ଵܿ஼௨శܿைమ (3.35) 

 

Analog ergibt sich für den Sauerstoff: 

 
݀ܿைమ
ݐ݀

ൌ െ݇ଵܿ஼௨శܿைమ (3.36) 
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[Cu(btmgp)]-Komplexe wurden in ihren spektroskopischen Eigenschaften eingehend 

untersucht und ihre prinzipielle Eignung als Modell-Oxidationsprozesses gezeigt. 

3.4 Spektroskopische Analyse mittels µ-Raman 

3.4.1 Veresterungsreaktion von Essigsäure und Ethanol 
 
Hier wurde für die Aufstellung eines Prototypprozesses von Ramanmessungen an 

Mikroreaktoren die Reaktion von Essigsäure und Ethanol zu Ethylacetat untersucht. 

Gründe hierfür sind der einfache Reaktionsverlauf, bei dem keine Nebenreaktionen 

auftreten und die Kenntnis der Reaktionskinetiken [Gla62] [FHZ03]. Als Katalysator für 

diese Reaktion wurde Schwefelsäure (H2SO4) verwendet. Die Reaktionsgleichung ergibt 

sich wie folgt: 

 

ܪܱܱܥଷܪܥ ൅ ܪଶܱܪܥଷܪܥ
ுమௌைర
ሱۛ ۛሮ ଷܪܥଶܪܥܱܱܥଷܪܥ ൅  ଶܱ (3.26)ܪ

 

Hier handelt es sich um eine reversible Reaktion 2. Ordnung, deren Reaktionsrate vhin sich 

mit der Reaktionskonstante Khin sowie den entsprechenden Eduktkonzentrationen des 

Ethanols (cEthanol) und der Essigsäure (cEssig) gemäß Gleichung (1.12) wie folgt bestimmen 

lässt: 

 
௛௜௡ݒ ൌ  ௛௜௡ܿா௧௛௔௡௢௟ܿா௦௦௜௚ (3.27)ܭ

 

Die Temperaturabhängigkeit der Reaktionskonstanten lässt sich dabei über die Arrhenius-

Gleichung mit der Aktivierungsenergie EA, der universellen Gaskonstante R und der 

Temperatur T beschreiben: 

 

௛௜௡ܭ ൌ ௛௜௡,଴݁ܭ
ିாಲோ் (3.28) 

 

Analog zur Hinreaktion lässt sich für die Rückreaktion (Hydrolyse) mit der 

Reaktionskonstante Krück und den Konzentrationen cEthyl, cWasser des Ethylacetates und des 

Wassers die Gleichung für die Reaktionsrate vrück aufstellen: 

  
௥ü௖௞ݒ ൌ  ௥ü௖௞ܿா௧௛௬௟ܿௐ௔௦௦௘௥ (3.29)ܭ

 

Über das Verhältnis der beiden Reaktionskonstanten lässt sich eine 

Gleichgewichtskonstante KGG definieren: 
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Neben den gemeinsamen Banden beider Stoffe, die in Tab 3.3 tabellarisch gegeübergestellt 

sind, treten beim Reaktionsprodukt noch weitere Linien auf, die sich teilweise den Edukten 

zuordnen lassen. Unter Berücksichtigung der spektralen Auflösung von 3 cm-1 sind hier 

vier Ramansignale enthalten, die sich mit denen des Ethanols identifizieren lassen (1048 

cm-1, 1100 cm-1, 1272 cm-1, 1455 cm-1).  

 

Fazit: 

Für die Abbildung der Konzentrationsfelder sind hier aufgrund des hohen Intensitätskon-

trastes und ihrer eindeutigen Zuordnung zum Ethylacetat die Linien bei 374 cm-1, 632 cm-1 

und 844 cm-1 geeignet. In Tabelle 3.3 sind die vergleichbaren Wellenzahlen beider Stoffe 

gegenübergestellt, wobei hier die spektrale Auflösung des Raman-Setups berücksichtigt 

wurde. 

 

Schwingungsmode vEthylacetat \ cm-1 vReaktionsprodukt \ cm-1 

δ CCO 374 377 

πi C=O 632 635 

δ OCO  784 787 

v C-C 844 848 

v C-C 937 940 

v C-C 1001 1006 

δr CH3, π CH2 1100 1097 

v O-C 1115 1118 

δt CH2 1272 1274 

δas CH3 1455 1455 

v C-O 1730 1724 
 

Tab. 3.3: Vergleich der Ramanmoden von Ethylacetat und dem Produkt der 

Veresterungsreaktion von Essigsäure und Ethanol mit dem Katalysator 

Schwefelsäure (δ: Deformationsschwingung, πi: Scherschwingung in einer 

Ebene, δr: „Schaukelschwingung“, v: Streckschwingung, π: Scherschwin-

gung, δt: Drehschwingung, δas: asymmetrische Drehschwingung) [MKS87] 

[Nee64].  

 

Kalibrierungsfunktion bei der Veresterungsreaktion 

 

Aufgrund der Überlagerung der Spektren des Ethylacetates und des Ethanols wurde eine 

Kalibrierung hinsichtlich der Konzentrationsabhängigkeit des Ethylacetats zur jeweils 

vorliegenden Ethanolkonzentration durchgeführt, um so direkt aus der Konzentrations-

verteilung des  Ethylacetates die jeweils vorliegenden Konzentrationen des Ethanols 



 

 
 

 

er

Et

 

A

Ü

G

B

di

 

 

 

 

 

Fü

zu

di

au

rmitteln zu 

thylacetat-P

Abb. 3.19: 

Über das Fi

Grades zwis

estimmung 

ie Zusamme

ܿா௧௛௬௟,ଷ଻ସ ൌ 3

ܿா௧௛௬௟,଺ଷହ ൌ 5

ܿா௧௛௬௟,଻ଽ଴ ൌ 1

ܿா௧௛௬௟,଼ସ଼ ൌ 9

ür die Visu

uvor eine K

ie Intensitä

ufgenomme

können. In

Phononen be

Kalibrierk

Abhängig

a)374 cm-

itten der M

schen den 

der Ethano

enhänge: 

3,21 ∙ 10ିସ ∙ ܿ

5,66 ∙ 10ିସ ∙ ܿ

1,23 ∙ 10ିଷ ∙ ܿ

9,60 ∙ 10ିସ ∙ ܿ

ualisierung 

Kalibrierung

äten der Et

en und gegen

n Abbildung

ei 374 cm-1,

kurven für 

gkeit der E
-1, b) 635 cm

Messwerte k

beiden K

olkonzentrat

ܿா௧௛
ସ െ 0,0089

ܿா௧௛
ସ െ 0,0237

ܿா௧௛
ସ െ 0,0428

ܿா௧௛
ସ െ 0,0327

des im M

g hinsichtlic

thanol-Linie

nüber diese

70

g 3.19 sind

, 635 cm-1, 

die Konzen

Ethanolkonz

m-1, c) 790 c

konnte so 

Konzentrati

tionen im R

9 ∙ ܿா௧௛
ଷ െ 0,01

7 ∙ ܿா௧௛
ଷ ൅ 0,24

8 ∙ ܿா௧௛
ଷ ൅ 0,39

7 ∙ ܿா௧௛
ଷ ൅ 0,26

Mikroreaktor

ch der gem

e bei 883 

en aufgetrag

0 

d die Ergeb

790 cm-1 un

ntrationen 

zentration, 

cm-1 und d) 

ein polyno

ionen ermi

Reaktionsber

154 ∙ ܿா௧௛
ଶ ൅ 1

449 ∙ ܿா௧௛
ଶ െ 0

979 ∙ ܿா௧௛
ଶ െ 0,

697 ∙ ܿா௧௛
ଶ ൅ 0

r vorliegend

messenen Int

cm-1 für u

gen (Abb. 3.

nisse dieser

nd 848 cm-1

des umges

ausgewerte

848 cm-1. 

omischer Zu

ittelt werd

reich erlaub

,2632 ∙ ܿா௧௛ െ

,0669 ∙ ܿா௧௛ െ

,4596 ∙ ܿா௧௛ ൅

,1642 ∙ ܿா௧௛ െ

den Konzen

tensitäten e

unterschiedl

.20). 

3

er Kalibrieru
1 dargestellt

setzten Ethy

et für die 

usammenha

den, der e

bt. Im Einze

െ 0,2352 

െ 0,0453 

൅ 0,7572 

െ 0,1328 

ntrationsfel

erfolgen. Da

liche Konz

3. Ergebnisse

ung für die

t.  

 

ylacetats in

Linien bei

ang vierten

eine lokale

elnen lauten

(3.34) 

(3.35) 

(3.36) 

(3.37) 

des musste

azu wurden

zentrationen

e 

e 

n 

i 

n 

e 

n 

e 

n 

n 



 

 
 

 

 

A

 

Fa

D

ei

de

Ko

 

3.
 

Zu

di

m

 

 

D

U

di

 

Abb. 3.20: 

azit: 

Der lineare Z

iner Funktio

er Intensit

Konzentratio

.4.2 Mode

ur Vorchara

ie Reaktion

mit folgender

azu wurden

Unterscheidb

ie aufgenom

Kalibrierk

Zusammenh

on an die M

tätsverteilun

onsfeld entsp

ellreaktion

akterisierun

n von Wass

r Gleichung

n zunächst 

barkeit der c

mmenen Ram

kurve der In

hang zwisch

Messwerte he

ng im Mi

pricht.  

n von H2O

ng von Reak

er (H2O) un

g ausdrücke

ଶܱܪ ൅

die jeweil

charakterist

manspektren

71

ntensität als

hen Intensit

ervorgeht, l

Mikrokanal 

O/D2O 

ktionsproze

nd Deuteriu

en lässt: 

ଶܱܦ ⇄ ܪ2

ligen Spekt

tischen Ram

n für die Ed

1 

s Funktion d

tät und Kon

lässt den Rü

bis auf e

essen im M

umoxid (D2

ܦܱܪ

tren aufgen

man-Signale

dukte Wasse

der Ethanol

nzentration,

ückschluss z

einen Umr

ikroreaktor 

2O) zu HOD

nommen, um

e zu treffen.

er und Deut

3

 

lkonzentrati

, der aus de

zu, dass die

rechnungsfa

r mit Sauers

D untersuch

m Aussage

. Abbildung

teriumoxid.

3. Ergebnisse

ion 

em Anfitten

e Abbildung

faktor dem

stoff wurde

ht, die sich

(3.38) 

en über die

g 3.21 zeigt

 

e 

n 

g 

m 

e 

h 

e 

t 



 

 
 

 

A

D

da

un

D

A

G

en

un

 

Fü

K

 

Abb. 3.21: 

as Spektrum

as sich ohn

nd in guter Ü

as Ergebni

Abbildungen

Gleichung so

ntsprechend

nd das Prod

ür das 

Konzentratio

A

Ramanspe

m des Wass

ne Weiteres 

Übereinstim

is der Sim

n. Das math

owie den K

den Reaktio

dukt (2 HOD

Abb. 3.2

Reaktionsp

onsfeld (Abb

Abb. 3.23: 

ektren von a

sers weist ei

von dem d

mmung mit 

mulation al

hematische M

Konvektions

onsgleichung

D) abgeleite

2: Simula

der Ed

rodukt H

b. 3.23). 

Simulation

72

a) destillier

in charakter

des Deuteri

Literaturwe

ls 3D-Nähe

Modell bas

s- und Diff

g die Diffe

et.  

ationsergeb

dukte a) H2O

HOD ergib

nsergebnis: 

2 

tem Wasser

ristisches M

iumoxids be

erten ist [SS

erung find

siert auf der

fusionsgleic

rentialgleic

nisse: Konz

O und b) D2

bt sich 

Konzentrat

rs und b) De

Maximum be

ei 2400 cm

S+08].  

det sich nu

r inkompres

chungen. Hi

hung für di

zentrationsfe

2O. 

das nach

tionsfeld Pr

3

euteriumoxi

ei etwa 340

m-1 untersch

un in den 

ssiblen Nav

ierfür wurd

ie Edukte (

felder 

hfolgend 

 

rodukt 

3. Ergebnisse

 

id. 

00 cm-1 auf,

eiden lässt.

folgenden

vier-Stokes-

den aus der

(H2O, D2O)

dargestellte

e 

, 

.  

n 

-

r 

) 

 

e 



 
3. Ergebnisse 

 
 

73 
 

Zugrunde gelegt sind dabei die Gleichgewichtskonstante (K=3,88), die jeweiligen 

Diffusionskoeffizienten (DD2O = 4,00∙105 cm2/s, DH2O = 4,92∙105 cm2/s), Material-

konstanten (Viskosität, Dichte) und die reaktorspezifischen Kenngrößen (inklusive 

Flussgeschwindigkeit). 

 

 

Fazit: 

Die prinzipielle Eignung des Stoffsystems H2O/D2O für die Analyse im Flachbett-

Mikroreaktor konnte gezeigt und durch entsprechende Simulationen bestätigt werden. 

 

3.4.3 Sulfitoxidation von Natriumsulfit 
 

Als Prototypprozess für eine Oxidationsreaktion wurde die katalysierte Sulfitoxidation von 

Natriumsulfit (Na2SO3) hin zu Natriumsulfat (Na2SO4) untersucht, die zu den am 

häufigsten untersuchten Prozessen für die Chemisorption gehört. Hier werden verschiedene 

Katalysatoren, wie beispielsweise Kupferionen [KP+08], Eisenionen [TE+06], 

Manganionen [BY+07] und Silberionen [SS+07] eingesetzt sowie auch organische Säuren 

[WZ08] oder Alkohole [WM+09]. Die angegebenen Reaktionsmechanismen sind 

radikalischer Natur und laufen über mehrere Stufen. Aus dieser Komplexität resultiert die 

Widersprüchlichkeit der kinetischen Daten, wobei aber Einmütigkeit über die 

Radikalprozesse besteht. Da oft auch nur integrale Messungen durchgeführt wurden, 

könnte gerade die FMR-Methode Klarheit schaffen. 

Im Allgemeinen wird die Oxidationsgleichung von Natriumsulfit folgendermaßen 

beschrieben: 

 

2ܰܽଶܱܵଷ ൅ ܱଶ ሱۛ ۛۛ ሮ 2ܰܽଶܵ ସܱ (3.39) 

 

Im Folgenden soll folgender Mechanismus angenommen werden: 

 

1. ሻ	݁ܯଶା ൅ ଷܱܵܪ
ି 																
ርۛ ۛۛ ሮ ା݁ܯ ൅ ଷܱܵܪ

∙   (3.40) 

2. ሻ	ܱܵܪଷ
∙ ൅ ܱଶ

																
ሱۛ ۛۛ ሮ ହܱܵܪ

∙   (3.41) 

3. ሻ	ܱܵܪହ
∙ ൅ ଷܱܵܪ

ି 																
ሱۛ ۛۛ ሮ ܵܪ ସܱ

ି	∙  (3.42) 

4. ሻ	ܵܪ ସܱ
ି	∙ ൅ ଷܱܵܪ

ି 																
ርۛ ۛۛ ሮ ܵܪ ସܱ

ି ൅ ଷܱܵܪ
∙   (3.43) 
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selektiven Abbildung, so dass auch für Mehrkomponentensysteme die edukt- und produkt-

spezifischen Felder ausgegeben werden können. 

 

Fazit: 

Prinzipiell konnte die Eignung der Ramanspektroskopie für die Analyse der Sulfitoxidation 

(ohne Marker) gezeigt werden. Für die Signalverstärkung bei der Ramanspektroskopie an 

Flüssigsystemen wurden verschiedene Verstärkungstechniken ausgelotet. Hinsichtlich der 

Sulfitoxidation ist die Anwendbarkeit von SERS beschränkt, da etwaige metallische 

Nanopartikel selbst eine katalytische Wirkung besitzen und zudem ein Absetzen dieser 

beobachtet werden kann. Verstärkungen konnten hier bis zu einem Faktor von 50 gezeigt 

werden. Mit Hilfe spezieller Auswerteverfahren, wie der Multiline-Analyse können schon 

geringe Stoffkonzentrationen mittels integraler Erfassung spezifischer Moden 

nachgewiesen werden. 
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4. Zusammenfassung und Ausblick 
 
Im Rahmen dieser vorliegenden Arbeit wurden spektroskopische Verfahren speziell für die 

Charakterisierung chemischer Stoffsysteme in flüssiger Phase angewandt, wobei je nach 

physikalischer Fragestellung unterschiedliche Methoden zum Einsatz kamen. Die 

Bestimmung der inhärenten Kinetik, bzw. die Ermittlung der Konstanten bzgl. Diffusion 

und chemischer Reaktion, basiert hier auf der Methode des Flachbettmikroreaktors. 

Konsequenterweise bedingt dies eine experimentelle Erfassung der vorliegenden 

Konzentrationsprofile und eine entsprechende modellbasierte Auswertung, bzw. 

Anpassung. Um zum einen eine örtlich aufgelöste Konzentrationserfassung und zum 

anderen ein „störungsfreies Reaktionssystem“ (frei von Fluoreszenzmarkern) zu 

gewährleisten, wurde hier die konfokale Ramanspektroskopie als Methode der Wahl 

eingesetzt. Neben der Ramanspektroskopie erfolgte eine spektroskopische 

Vorcharakterisierung geeigneter Stoffsysteme (auch reaktive Stoffsysteme) auch mittels 

Fluoreszenzspektroskopie.   

 

Zunächst erfolgte eine Realisierung bzw. Weiterentwicklung der spektroskopischen 

Aufbauten und eine geeignete Adaption des Setups zum Stoffsystem (z.B. Reaktorsystem). 

Nach entsprechender Optimierung und Kalibrierung der experimentellen Setups wurde 

eine Ermittlung der optischen Systemparameter vorgenommen. Neben Untersuchungen an 

Flüssigphasensystemen belegen auch Messungen an Festkörpern die Leistungsfähigkeit der 

umgesetzten Analytik. So konnte hier beispielsweise die Kristallinität von hydrogenisierten 

Siliziumschichten bestimmt oder die laserinduzierte Strukturänderung in ZnTe-

Epitaxieschichten untersucht werden. In diesem Zusammenhang erfolgte auch eine 

Analyse strukturierter Proben auf Basis des Materialsystems GaN/3C-SiC hinsichtlich des 

kubischen/hexagonalen Charakters (E2(GaN)-Linie), wobei hier Messungen der 

hochauflösenden Röntgenbeugung bestätigt werden konnten.  

 

Im Kontext der Anwendung der FMR-Methode wurde die Stationarität des Reaktorsystems 

im laminaren Betrieb untersucht. Durch die zeitlich versetzte Aufnahme zweier örtlich 

angrenzender Konzentrationsfelder konnte eine hinreichend gute Stationarität belegt 

werden. Hinsichtlich einer optimierten Bestimmung der kinetischen Parameter wurde eine 

differentielle Messtechnik umgesetzt. Aus der systematischen, tiefenaufgelösten 

Profilbestimmung (quer zur Flussrichtung) an unterschiedlichen Positionen entlang des 

Mikrokanals konnte die Annahme der Tiefenhomogenisierung im FMR durch kongruente 

Verläufe bestätigt werden. Somit kann die modellbasierte Auswertung von einem 

dreidimensionalen in ein zweidimensionales Problem überführt werden und somit den 

Zeitaufwand für die Berechnung substantiell reduziert. 
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Hinsichtlich des Stoffübergangs bei der Absorption aus der Gasphase in die Flüssigphase 

wurden FMR-spezifische Voruntersuchungen mittels laserinduzierter Fluoreszenz 

durchgeführt. So wurde hier die experimentelle Bestimmung der Sauerstoffkonzentration 

anhand des Quenchprozesses von Ruthenium etabliert. Hier zeigte sich eine spektrale 

Überlagerung des Absorptionsbereiches des gebildeten Cu(II) mit den Emissionsbanden 

des Rutheniums. Konsequenterweise kann gefolgert werden, dass der 

Konzentrationsverlauf hier nicht eindeutig bestimmt werden kann. Des Weiteren wurde 

eine fundamentale Fluoreszenzanalyse des Quenchprozesses von [Cu(btmgp)I] mittels 

Sauerstoff durchgeführt. Die Fluoreszenzsensitivität bezüglich Sauerstoff konnte im 

Bereich von 10-2 bis 10-9 mol/l belegt und der Quenchprozess selbst näher charakterisiert 

werden. Zeitaufgelöste Messungen zeigten einen exponentiellen Abfall der 

Fluoreszenzintensität nach der Sauerstoff-Begasung. Insgesamt lässt sich feststellen, dass 

die Cu(I) Komplexe ausreichend fluoreszenzaktiv sind. Problematisch ist dabei jedoch das 

technische Handling aufgrund der extremen Sensitivität gegenüber Sauerstoff 

(Luftsauerstoff), wobei die prinzipielle Eignung dieser Oxidationsreaktion als 

Prototypprozess gezeigt werden konnte.  
 

Seitens der Ramanspektroskopie wurden verschiedene Prototypprozesse untersucht. Einen 

solchen Prozess stellt die Veresterungsreaktion von Essigsäure und Ethanol zu Ethylacetat 

dar. Zunächst wurden die spezifischen Schwingungsmoden für die Edukte und Produkte 

charakterisiert und hinsichtlich einer weiteren Auswertung spezifiziert. Die entsprechende 

Kalibrierung bezüglich der Konzentrationszuordnung des umgesetzten Ethylacetats 

erfolgte in Abhängigkeit der vorliegenden Ethanolkonzentration. Hier zeigt sich jeweils ein 

polynomischer Zusammenhang dritten Grades. Nach geeigneter Kalibrierung konnten den 

aufgenommenen Intensitätsfeldern entsprechend die Konzentrationsfelder des Ethanols 

zugeordnet werden, wobei hier ein linearer Zusammenhang aufgezeigt werden konnte.  

Für die Betrachtung von Flüssig-/Gasphasen-Übergängen wurde die Oxidationsreaktion 

von Wasser und Deuteriumoxid zu 2HOD analysiert. Auch hier konnte eine prinzipielle 

Eignung für eine spätere Analyse im FMR belegt werden. Durchgeführte Simulationen als 

3D-Näherung,basierend auf der inkompressiblen Navier-Stokes-Gleichung, zeigten hier 

die prinzipielle Eignung in Bezug auf das Reaktorsystem. 

 

Als Prototypprozess für eine Oxidationsreaktion wurde die Sulfitoxidation von 

Natriumsulfit untersucht. Da für die Erfassung in der Blasensäule Ruthenium als 

Fluoreszenzmarker fungiert wurde zunächst dessen Einfluss auf das Stoffsystem 

untersucht. Wie angenommen konnte hier eine katalytische Wirkung beobachtet werden. 

Voruntersuchungen am Batch-Reaktor dienten hierbei zur Definition der 

Reaktionsgeschwindigkeit und der Analyse der katalytischen Wirkung des Rutheniums. 

Ferner konnte hier eine Photosensitivität nachgewiesen werden. Vermutlich liegt der 

Ursprung dieser Photosensitivität in der Lichtabsorption des Rutheniumkomplexes. Bei der 
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Raman-spektroskopischen Analyse sind hier die entsprechenden Ramanmoden von Edukt 

und Produkt klar zu identifizieren. Teils zeigte sich hier auch eine Modenüberlagerung. 

Angedacht war hierbei als Verstärkungstechnik die oberflächenverstärkte 

Ramanspektroskopie, so dass hier auch systematische Untersuchungen hinsichtlich der 

Eignung dieser Methode speziell für die Sulfitoxidation durchgeführt wurden. Zum einen 

wurde das Schwebeverhalten der beigegebenen Silber-Nanopartikel durch 

Langzeitmessungen analysiert. Hierbei zeigte sich eine relativ schnelle Abnahme des 

Ramansignals bei entsprechender Anregung im Referenzvolumen (fixe örtliche Lage). 

Daher wurde versucht, den Schwebezustand durch die DLVO-Methode mittels Beigabe 

von Schwefelsäure zu stabilisieren. Jedoch zeigte sich schon bei geringen Konzentrationen 

der Schwefelsäure, dass die Umwandlung von Sulfit in Sulfat aufgrund der katalytischen 

Wirkung zu schnell erfolgte. Um dem Absetzen der Nanopartikel entgegenzuwirken, 

könnten beispielsweise mit  Silber überzogene Polystyrol-Partikel verwendet werden. Des 

Weiteren wäre auch eine Beschichtung des Mikroreaktorbodens mit metallischen 

Nanostrukturen denkbar, so dass bei ausreichender Eindringtiefe des Anregungslichtes in 

den Kanal eine Verstärkung der Detektionssignale erzielt werden kann. 

Mittels SERS konnten für dieses Stoffsystem Erhöhungen um einen Faktor 50 

nachgewiesen werden. Alternativ wurden spezielle Auswerteverfahren entwickelt (z.B. 

Multiline-Analyse), die schon bei relativ geringen Stoffkonzentrationen durch 

entsprechende funktionale Auswertung relativ gute Ergebnisse bei vergleichsweise kurzer 

Integrationszeit lieferten.  
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Anhang: XY-Scanroutine der µ-Raman-Spektroskopie
 

Angesichts der großen Anzahl an Messpunkten bei der Erfassung von Konzentrations-

feldern, bzw. -profilen im Mikroreaktor wurde der Prozess rechnergestützt durchgeführt, 

was die Realisierung einer entsprechenden Messroutine erforderte. Hier soll am Beispiel 

der XY-Scanroutine des Nano-Positioniersystems TRITOR die Funktionsweise eines 

solchen Vorgangs näher erläutert werden. Das Programm wurde in der 

Entwicklungsumgebung der verwendeten CCD-Kamera mit der systemeigenen Sprache 

Andor Basic erstellt. Im Folgenden werden die einzelnen Komponenten des Programms 

vorgestellt, wobei zur besseren Erläuterung eine Nummerierung der Zeilen vorgenommen 

wurde, die jedoch nicht Bestandteil des Programms ist. Zunächst wird hier auf die 

Unterprogramme eingegangen, deren Name jeweils in der ersten Zeile zu finden ist, 

woraufhin das eigentliche Messprogramm mit den Verweisen auf diese Unterprogramme 

erläutert wird.  

 

 

1   .SetupAcquisition 

2  SetTemperature(-90)     

3 cooler(1) 

4 SetReadOutMode(1) 

5 SetCustomTracks(52,63,168,188) 

6 SetAcquisitionMode(2)      

7 SetAcquisitionType(0)      

8 SetTriggerMode(0)          

9 return

 

 

In diesem Teil des Programms werden die Einstellungen des Systems festgelegt. Dazu 

gehört einerseits die Kühlung der Kamera (Zeilen 2,3) für eine bessere Unterdrückung des 

Hintergrundrauschens und andererseits die Einstellung der Aufnahmemodi und –bereiche. 

So kann hier neben der Einstellung, ob der CCD-Chip komplett oder in definierten 

Bereichen ausgelesen wird (Zeilen 4,5), auch der Aufnahmemodus (z.B. Einzelscan, 

Addition, etc.), der Aufnahmetyp (Signal, Untergrund, Referenz) sowie die Triggerung 

(intern, extern) festgelegt werden. 
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1 .getBackground 

2 SetAcquisitionType(1) 

3 k = key("Für die Backgroundmessung vorbereiten und anschließend eine Taste drücken") 

4 SetAccumulate(integrationszeit, akkumulationen, 0.2) 

5 run() 

6 test = GetStatus() 

7 while(test == 20072) 

8 test = GetStatus() 

9 wend 

10 beep() 

11 delay(500) 

12 beep() 

13 k = key("Die Messung des Backgrounds ist beendet") 

14 return 

 

 

Dieses aufgeführte Unterprogramm legt die Systemeinstellungen für die Aufnahme des 

Untergrundes fest. Dabei wird zunächst der Aufnahmetyp auf „Untergrund“ gestellt, 

wonach sich ein Nachrichtenfenster öffnet, das dem Benutzer den manuellen Start der 

Aufnahme ermöglicht (Zeilen 2,3). Die Einstellungen für die Backgroundmessung werden 

aus der Eingabe der Daten in dem eigentlichen Messprogramm entnommen (Zeile 4) und 

der Prozess, realisiert durch eine eine while-whend-Schleife, gestartet (Zeilen 5-10; 20072 

steht hier für das Andauern der Aufnahme). Durch akustische Signale wird der Durchlauf 

des Programms angezeigt, nach dessen Ende ein Nachrichtenfenster den Benutzer auf die 

Fertigstellung der Aufnahme hinweist (Zeile 13). 

 

 

1   .getSignal 

2  SetAcquisitionType(0) 

3  return 

 

1  .openCom 

2  baud(1, 9600) 

3  return 

1   .getVersion 

2  comwrite(1,"ver") 

3  comread(1,version$) 

4  print(version$) 

5  return 

 

Bei diesen Teilprogrammen wird der Aufnahmetyp auf „Signal“ gestellt (links), bzw. die 

Kommunikation mit dem Steuergerät aufgenommen (Mitte, rechts). 
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1  .switchCannelsOn 

2  comwrite(1, "setk,0,1") 

3  comwrite(1, "setk,1,1") 

4  comwrite(1, "setk,2,1") 

5  comwrite(1, "setk,3,1") 

6  return 
 

1  .switchCannelsOff 

2  comwrite(1, "setk,0,0") 

3  comwrite(1, "setk,1,0") 

4  comwrite(1, "setk,2,0") 

5  comwrite(1, "setk,3,0") 

6  return 

 

Mit diesen beiden Unterprogrammen werden die einzelnen Steuerkanäle ein- (1, links), 

bzw. ausgeschaltet (0, rechts). 

 

1  cls() 

2  integrationszeit = 0.5 

3  accumulations = 1 

4  delaytime = 0.07 

5  gosub .SetupAcquisition  

6  gosub .getBackground 

7  gosub .getSignal 

8  gosub .openCom 

9  comwrite(1, "stop") 

10  gosub .switchCannelsOff 

11  gosub .switchCannelsOn 

12  Multiplikator = 3 

13  xSchrittweite = 999        

14  xIntervall = 9999       

15  ySchrittweite = 9999       

16  yIntervall = 999         

17  x = 0 

18  y = 0 

19  z = 0 

20  comwrite(1, "set,0,";x) 

21  comwrite(1, "set,1,";y) 

22  comwrite(1, "set,2,";z) 

23  xMax = xIntervall / Multiplikator 

24  xSteps = xSchrittweite / Multiplikator 

25  yMax = yIntervall / Multiplikator 

26  ySteps = ySchrittweite / Multiplikator 

27  while(y < yMax)  

28  while (x <= xMax) 

29  order$ = "set,0,";x 
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30  comwrite(1, order$) 

31  delay(delaytime) 

32  SetAccumulate(integrationszeit, accumulations, 0.12) 

33  run() 

34  test = GetStatus() 

35  while(test == 20072) 

36  test = GetStatus() 

37  wend 

38       SaveAsciiXY(#0,"D:\Messen\Name_XY_";x;"_";y;".txt") 

39  x = x + xSteps  

40  wend 

41  y = y + ySteps 

42  order$ = "set,1,";y 

43  comwrite(1, order$) 

44  delay(delaytime) 

45  x = 0 

46  wend 

47  beep() 

48  print("Fertig") 

49       end 

 

Im Quellcode des eigentlichen Messprogramms können zunächst die verschiedenen 

Messparameter (Integrationszeit, Mittelungszahl, Verstellzeit) eingestellt werden (Zeilen 

2-4). Zu Beginn des Messprozesses werden die einzelnen Unterprogramme, z.B. für die 

Einrichtung des Messsystems oder die Aufnahme eines Untergrund-Spektrums, aufgerufen 

(Zeilen 5-11). Die Festlegung der Messbereiche und der Schrittweiten in x- und y-

Richtung kann direkt im Programmcode in den Zeilen 13–16 vorgenommen werden, wobei 

hier die Eingabe direkt in Nanometern erfolgen kann. Der Multiplikationsfaktor 3 stammt 

aus der Verteilung des gesamten Verstellweges (ca. 200 µm) auf die Auflösung von 16 Bit. 

Vor der Abrasterung der Probe werden die einzelnen Koordinaten auf Null gestellt (Zeilen 

17-22) und die eingestellten Parameter entsprechend der Auflösung umgerechnet (23-26). 

Mit einer while-wend-Schleife ist dann die Messroutine realisiert, bei der die Werte in txt-

Dateien abgespeichert werden, wobei die x- und y-Koordinaten für spätere Auswertungen 

in den Dateinamen übernommen werden (Zeilen 27-46). Das Ende des Programms wird 

durch einen Signalton und ein Nachrichtenfenster mitgeteilt (Zeilen 47-49).  
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