4.4 Artifacts in Software Design
Reinhard Keil-Slawik

4.4.1 Introduction

“A scientific discipline emerges with the — usually rather slow! - discov.efy of
which aspects can be meaningfully ‘studied in isolation for the sake of their own
consistency’”! This statement made by E.W. Dijkstra was meant to express &
specific desire, namely, to achieve basic improvements in software development by
means of mathematical tools and concepts allowing us to express algorithms and
data structures in an increasingly precise, unambiguous, consistent and compk?te
manner. The question is, however, whether isolated mathematical PTOPe‘_t‘eS
provide the only — and a sufficient — basis for establishing a scientific discipline.

More than twenty years after the term software engineering was coined, the
aim of turning the development of software into an engineering discipline based
on sound scientific principles has only been partially achieved. Despite some
progress in the development of more powerful tools and mathematically based
specification techniques, the results have often been less promising than €X-
pected. Still, the quality of software is only revealed to its full extent once 118
in use. Software projects fail to live up to the expectations of developers and
managers or the domain experts who ultimately have to use the product. Fre-
quently, up to three or four versions of a software system have to be delivered
before it is considered reliable and sound enough to support performance of the
tasks in question.

In order to understand and deal with the problems involved here, we cal
not view software and its components merely as isolated mathematical objects:
Behind such a strict engineering perspective lies the implicit assumption th.at
thinking is a more or less rule-based process performed by our brain on some 11
ternally stored representations that embody our knowledge of the outside world-
Once we are able to express this knowledge symbolically in the form of docu-
ments or machine-executable programs, these artifacts are said to represent of
process (create, delete, modify, etc.) it. Thus, a ‘transfer’ of knowledge can be 3¢
complished by exchanging artifacts, and, by the same token, human information
processing can be replaced by machine operations.

However, this view does not reflect the idiosyncrasies of real software develop-
ment processes. This, as C. Floyd has already pointed out in her introduction”
involves going beyond what she has termed the traditional scientific paradigh®
of computer science. And this I shall attempt to do, by reflecting on the role

! [Dijkstra, 1982, p. 60]

2 See Chap. 1.1.



4.4 Artifacts in Software Design 169

of artifacts in design processes, in particular how they serve to support com-
munication and learning. In order to do so, I shall have to touch on some basic
philosophical questions concerning how humans acquire knowledge and how they
construct and communicate meaning(s).

I argue that thinking does not take place inside our heads but is an activity
that we perform with our heads. Most of our mental activities need external re-
sources, and very often thinking is merely a grouping or regrouping of objects
in our environment. This perspective emphasizes that humans basically use ar-
tifacts to acquire knowledge and create meaning rather than to represent it.
Knowledge and meaning are attributes of cooperative social processes; they can
neither be located in an artifact, nor are they stored in the brain. A document
or piece of software can only be said to represent knowledge to the extent that
a common framework for interpretation has been established among the parties
involved. T present some guidelines for the design of artifacts that are meant to
support the establishment of such a framework rather than to represent knowl-
edge.

4.4.2 Engineering software

The technological achievements of our western civilization are chiefly built on the
ability to store, modify and retrieve symbolic representations. Without the in-
vention of mathematical formulas, specification standards or technical drawings,
engineering disciplines would be practically non-existent. With the invention of
symbolic representations, artifacts can be designed that would be too large to be
made by a single craftsperson3. An important part of any engineering discipline
1s the development of tools and techniques and the definition of standards al-
lowing us to create suitable design representations. To distinguish the models or
representations produced while employing these means from the artifact being
designed, T will call the former design artifacts and the latter products. With
respect to the actual design process, the design artifacts can be said to embody
the knowledge about the product being designed.

The material of which the design artifacts consist is usually different from
that used for the construction of the product. With the exception of physical
models or prototypes, they are symbolic representations serving two purposes:
They allow the designers to explore the design space and communicate the knowl-
edge about the product that is acquired in the course of design. Since symbolic
representations can normally be created and changed with less effort than is
required for the construction of their physical counterparts (i.e., the products or
physical models), it is often not recognized that design artifacts can only be un-
derstood to the extent that the corresponding physical changes are understood.
Essentially, this is also true of software engineering.

There is, however, one essential difference: traditional engineering focusses
primarily on material structures and their physical effects, whereas software
engineering is mainly concerned with symbolic structures and their cognitive

—_——
* [Jones, 1979, p. 124]



Reinhard Keil-Slawik
170

effects. The reason for this is that there is only one sort of m'aterlal: the design
artifacts and the product itself are both symbolic representations. 'Furthe?rrfriloil‘:é
programming languages are flexible and powerful means that provide an (;n :10

variety of ways to embody system functions. Hence, the problem was to evd 52
professional standards governing how certain phenomena shou]d be expresse ;

as to enable them to be generally understood and communicated. Consequ,e.n d}',
one of the main concerns was to get rid of the designers’ or programmers’ indi-

viduality and make programs and documents more accessible to other members
of the project team.

Phase models and abstract machines

As a matter of fact, ever since goto’s were considered harmful, the overrl'dl'ng
concern has been to turn the grt of programming into a managfeable alcthltY
that uses powerful tools and forma] techniques and is performed by increasing the
division of labour, achieved by assigning specific functional roles to the members
of a project team. This means that the knowledge embodied in a program, a
program component or docurnent must be accessible by locking at the design
artifact or product in question without having to refer to the programmer who
wrote it. Only then can the knowledge embodied in a design artifact or the final
product be ‘transferred’ by handing over the relevant document.

In software engineering, the so-called phase model provides the means for
combining this view of ‘knowledge transfer’ with the scientific ideal put forward
by Dijkstra. The aim was to dissect the problem domain into isolated Chm}ks
with a view to managing software development projects as well as developing
research strategies for this emerging discipline?. )

F. Selig first used a phase model to define the specific problem dqmams
with which software engineering is concerned, namely, analysis, design, imple-
mentation, installation and maintenance®. B. Boehm subsequently introduced
ject management tool, later advocating its use as the

- To allow systematic treatment and separation

s and techniques had to be developed. Phases

cientific enquiry.

* Software engineering as a discipli
model. Cf. [Freeman, 1979, p. 44].

* Cf. [Naur and Randell, 1969, p. 21].

® Cf. [Boehm, 1976, p. 1227] and [Boehm, 1977).

" The reader should bear in mind that a variety of different phase models can be found

in the literature. Since I am here more concerned with the general idea than a specific
instance or refinement, T will continue to use the term the phase model.

n¢ matured roughly along the lines of the phase



4.4 Artifacts in Software Design 171

With respect to the design process, the milestones or documents of the phase
model are the design artifacts, the installed software representing the product®.
Since software can be regarded as a mathematical object, the idea is, then, to
develop mathematical tools and techniques that allow the designers to specify
the behaviour of software in a precise, complete and unambiguous manner. Once
such a specification has been written, it is possible to verify whether the imple-
mentation meets the specification. Consequently, a specification of this sort can
be regarded as an abstract machine, since it already determines the input/output
relation of the software under development. This notion was originally introduced
by Dijkstra as a way of devising a hierarchical software structure by designing
complex general operations which are successively transformed into a combina-
tion of simpler and more specific operations®.

The desire to arrive at a hierarchical structure by designing layers of abstract
machines implies developing these abstract machines in a specific sequence of
steps, because a more abstract machine defines the constraints for realization
of the next-lower (abstract) machine(s). Each such step can be interpreted as
a transformation from a behaviour specification (i.e., what should be achieved)
to an implementation (i.e., how it is achieved). This top-down approach has
been advocated with a view to creating design artifacts or programs (functional
decomposition) as well as creating a sequence of design artifacts (phase model).
According to the latter, an initial set of requirements that defines the problem
space is transformed and refined into successive documents until, finally, a system
is implemented, tested and installed.

However, a closer look at the idiosyncrasies of software development!® reveals
that the design artifacts cannot represent the knowledge about the product in
the way suggested by the traditional engineering perspective.

Top-down considered impossible

According to our modern scientific ideal, knowledge about natural phenomena
and physical structures is largely independent of its creating act, i.e., the creators
and the specific setting of its creation. The experimental philosophy is a means of
ensuring that the observations made and insights gained are independent of the
observer. Thus, as long as the phenomena being studied are stable (repetitive)
and all those involved adhere to a common framework of interpretation — such
as is established, for instance, by education and training — this ideal can, to a

®Ina strict sense, the program code would be a design artifact, and the indispensable
user manual(s) would be neither nor. To avoid confusion, I will in most cases refer
to both of them explicitly, using the term document to denote any of -t.hese art'lfacts.
See [Dijkstra, 1968] and [Dijkstra, 1969, pp. 181-182]. Note that Dijkstra dl.d not
combine this document structure with a temporal development structure, e, a
sequence of transformational steps. In his example of the T.H.E. Operating System,
the hierarchical structure was achieved by restructuring the already finished program
code.

10 Gee also the detailed account given in [Budde and Ziillighoven, 1990] and their sum-

mary in Chap. 6.2.

©



172 Reinhard Keil-Slawik

considerable degree, be maintained. The same holds for the use of design artifacts
In traditional engineering disciplines. But, as I will go on to show, it does not
hold for the development of software.

Traditional engineering focusses primarily on material structures and their
physical effects, whereas in software engineering we are mainly concerned with
symbolic structures and their cognitive effects. There are two main reasons for
this difference, which are closely related to each other:

e the highly dynamic nature of the relationship between the form or artifact
and the usage context, and

o the high degree of uniqueness on various levels of development and use.

As D. Parnas has pointed out, software in general lacks the degree of rept?ti-
tiveness which is so characteristic of materials or artifacts in other engineering
disciplines!!. This is due in part to the complexity and dynamic nature of the
context.

Traditionally, engineering problems consist in finding a new technical solu-
tion for a given function. The functionality of the automobile, for instance, has
remained almost the same for more than a hundred years, but the technical
implementation has improved tremendously. In contrast, a critical step in the
development of software is defining and agreeing upon the required function-
ality of the future system. In most cases, there are different parties and user
groups involved — with different roles and perspectives, and with conflicting
Interests!?, Consequently, the specification of requirements may be the result of
a complex process of bargaining, negotiation and evaluation. The requirements
emerge as a trade-off between various interests and alternatives rather than as
a self-contained specification of a technical solution to a well-known problem.

.First, initial proposals are prepared and rejected. Then specifications are
written and revised. Finally, prog

bl

—_
1 [Parnas, 1985]
12 See the personal accoun

t given by K. N :
" [Lehman, 1980, p. 1067) ) E2rd in Chap. 2.4,



4.4 Artifacts in Software Design 173

to understanding what the system should do or actually does, it is indispensa-
ble to understand what it should not do or what it does not do. Since software
embodies a variety of claims and assumptions about the context and the nature
of the problems to be solved by introduction of the system at the workplacel?,
these properties describing the relations between software and the usage context
cannot be expressed in terms of formalisms. Too many mutually influential fac-
tors have to be taken into account. The nature of the problem as it is perceived
by the designers changes with every new insight, and very often incompatible
requirements lead to design conflicts that have to be resolved.

The knowledge required for design, then, has to be built up in the course
of a tedious and often painful learning process in which the designers learn
which aspects fit into their already developed framework and which ones require
redesign, correction or restructuring of already existing design artifacts and pro-
grams. The reasons and motivations behind such changes, and the arguments
concerning how these changes are achieved while maintaining the overall quality
of the design, are not part of a program or its specification, and they cannot
be documented in their entirety. Programming, P. Naur argues, should not be
regarded basically as an activity concerned with producing program text and its
associated documentation, but as a human endeavour in which the programmers
build up a theory of how the problems in hand can be solved by program execu-
tion. Naur concludes that ¢. . .reestablishing the theory of a program merely from
the documentation is strictly impossible”!®. Therefore, he argues, the meaning
of a program can only be revived as long as there is at least one member of
the original development team available. Merely handing over documents does
not transfer the knowledge. However, if a document fails to adequately represent
the knowledge required to construct the product, then neither a top-down nor a
bottom-up approach will be appropriate for design.

We thus face a dilemma. Design artifacts play an essential role in every en-
gineering discipline and therefore in any design process. In software engineering,
though, they cannot play the same role as in traditional engineering disciplines.
Hence, besides recognizing the problems on a phenomenological level, we must
find a way to resolve this dilemma by going beyond the traditional engineering
perspective.

Limits of the traditional research strategy

The idiosyncrasies outlined above reveal that software development must be
regarded basically as a cooperative learning process. According to J.C. Jones,
cooperative learning should be the primary purpose of any design process.m.
But if learning and communication play an essential role, we must de_al v‘nth
this phenomenon in a more systematic way. Tools, techniques and guidelines

which are meant to document the result of a learning process are not necessarily

T —

1: See J. Carroll, Chap. 4.3.
[Naur, 1985b, p. 258]

16
Cf. {Jones, 1986, pp. 120-122].



174 Reinhard Keil-Slawik

equally well-suited for supporting the learning process as such. To provide a
general framework for this discussion, C. Floyd has introduced the notion of
the complementarity of product- and process-oriented views, arguing that the
traditional engineering perspective is basically product-oriented!?. To illustrate
the impact and limitations of an exclusively product-oriented research strategy,
I will introduce the notion of learning cycles and adapt the waterfall model to
depict the ideal of this strategy.

The waterfall or phase model shown in Fig. 4.4-1 suggests that there is a
‘flow’ or ‘transfer’ from the most abstract kind of knowledge to the increasingly
specific details of everyday affairs. The actual knowledge generated within each
domain is embodied in artifacts such as textbooks, tools, models or specific
experimental settings. Since we are normally used to talking about knowledge
only when it is explicitly given, a learning cycle can be characterized as the
updating or revision of the respective artifacts. A learning cycle in software
development may thus be identified with the production of a new version; m
software engineering it may be the development of a new generation of tools
or methods. We may also regard the notion of paradigm as denoting a specific
instance or kind of learning cycle within a scientific discipline in general. Roughly

speaking, a learning cycle corresponds to the restructuring of knowledge about
a certain domain that is embodied in an artifact.

Theoretical Domain
Computer Science

Learning
Cycle

Software

Calculus Engineering

Knowledge
Transfer

Software

Development

Toals &
Methods

Application
Domain

Fig.4.4-1. The waterfall model of learning cycles and artifacts

17 Cf. (Floyd, 1987].



4.4 Artifacts in Software Design 175

In order to be able to use methods, tools or a formal specification technique,
specific knowledge about the origin and inner structural relations or working
principles of the utilities employed should not be required. In other words, the
application of a formal specification technique should not require the competence
to develop, improve, and maintain the algebraic calculus. Conversely, such com-
petence can only be acquired with sufficient experience in the respective domain.
Programmers may be capable of employing a method in which they have been
trained, but they may not have the competence to develop methods on their
own. And the domain experts may use word-processors to write scientific arti-
cles, but they do not have the competence to develop such systems. Hence, the
development and maintenance of knowledge within a specific domain is gener-
ally associated with a specific role. The general knowledge required for applying
this knowledge is acquired through training and education by those professionals
who develop and maintain the respective knowledge of that domain.

The waterfall model, as outlined here, highlights the general advantage of
any scientific endeavour. In software engineering, however, a crucial problem
arises when this model is combined with the notion of abstract machines and
a top-down development strategy. If it can be said that a design artifact is
indeed a consistent, precise and complete specification of the product to be
built, it has to represent all the knowledge required to construct the product.
Only implementation details, i.e., aspects that do not alter the specification,
would have to be added. Consequently, no learning is required for implementing
the specification. In this case, it is, in principle, possible to execute the remaining
transformational steps mechanically or automatically —i.e, to replace the human
implementor by a machine.

In the course of design, where, by definition, these conditions are not given,
human operations cannot be prescribed by formal procedures or replaced by
machine operations. If, however, the replacement strategy is still in effect, human
beings are invariably forced to perform machine-like operations that fit into
the overall machine-oriented execution scheme. The typical the-machine-always-
performs-better argument actually acquires validity then, because machine—lilfe
operations can be better and more reliably executed by a machine. Hence, 1t
should come as no surprise that in software development the above guideline
turns out to be counterproductive!s.

We need another perspective; the traditional product-oriented view only al-
lows us to develop replacement strategies. To improve this situation, we have
to think about how to support human learning and communication rather than
replacing it. Instead of taking it for granted that a design artifact represents Fhe
design knowledge, we have to study “how to inform the material with meaning
and to extract meaning from the form” 9. The traditional perspective does not
provide an adequate epistemological platform for tackling this problem, because
it restricts us to viewing machines and machine-related features as the only frame

'® Various facets of this problem are presented by D. Siefkes in .Chap. .4.2 and in
. (Hoare, 1981, Naur, 1982, Celko et al., 1983, Floyd, 1986, Keil-Slawik, 1989].
® [Kay, 1984, p. 41]



Reinhard Keil-Slawik
176

of reference. In contrast, I will attempt to outline an ecological Perspect'lveti)ly
reference to our biological and cultural heritage. In .partlc.ula.r, .I will exarmrite ;;
role of artifacts as means for acquiring knowledge in an individual and cultur
context.

4.4.3 On the evolution of meaningful forms

The notion of meaning is an inherent feature of any life_ ttorm. The blqlogls;
J. von Uexkiill was the first to emphasize that the recc')g.mtlon.and creat.ll?ln'o‘
meaningful forms is of primary importance to every living being. Ue'xkll fmn
vented the concept of the functional circle? to denote that t.he meaning of a
object is only established through the activities of a living being and has no 1;1
dependent existence of its own. A man, for instance, who is used _to chmblng.ﬁlé
palm trees and has never seen a ladder in his life will not recognize the sp.eat
function of this device (its meaning) unless he sees someone using it or tries 3
use it himself. Uexkiill has also pointed out that each living being is a.tdapte
with the same degree of perfection to its environment. The simple organism has
a simple environment, the complex organism a complex one. .Hence', the gorllil-
plexity and richness to which the environment may be differentiated is crucially
dependent, on the organisms’ own inner stljuctures. . the

These structures originate in an evolutionary process, which means t.hat
more complex structure emerges from the simpler one through an adaptive pro-
cess with random variations in its reproductive cycles. On the molecular genetic
level, Nobel prizewinner M. Figen and his co-workers have developed an eVO}
lution model that describes the origin of biological information as a process O
selective self-organization®!. On a broader level, cyberneticians such as H. Vog
Foerster have developed theoretical models for self-organization and ex.p10¥e
their epistemological consequences with respect to a broad range of scientific
domains such as biology, psychology, philosophy?2. )

In what follows, I will argue that the essence of perception, human learning or

design is to create meaningful forms, and that this creation can be characterized
as a process of selective self-organization?23,

Creating meaning

On the psychological level, this can be lustrated with reference to the notion of
gestalt. A gestalt is often treated as a static entity or object. Its theoretical fQUHT
dation, however, ties in with the notion of self-organization. W. Kéhler'wrltis-
“wherever a process dynamically distributes and regulates itself, determined by

the actual situation in a whole field, this process is said to follow principles of
gestalttheorie.” 24

0 [y, Uexkiill, 1957]

1 Cf. [Eigen and Schuster,
22 See the selected articles j
2 A more detajled account
** [Kahler, 1035, p. 201]

1979, Eigen et al., 1981, Eigen, 1987].
n [v. Foerster, 1985] and Chap. 3.1.
is given in {Keil-Slawik, 1990).



4.4 Artifacts in Software Design 177

A gestalt emerges when certain objects or phenomena in the environment
are related to each other in a meaningful way. Unrelated physical stimuli are or-
ganized to form a coherent whole which can be distinguished from other wholes.
The relation or organization as such is not present as a physical stimulus - the
perceived gestalt is a construction of the observer. In general, it can be said that
we perceive the world by constructing meaningful relations (gestalten). Conse-
quently, we can only perceive what we construct.

However, these constructions are by no means arbitrary, and often not even
the individual choice of the observer. The way we relate certain distinct physical
stimuli to each other may be part of our subconscious body processes, i.e., fixed
action schemes which we cannot influence by our will. The so-called Kanisza
triangles?S for instance, are wvirtual contours, i.e., they have the power to invoke
this gestalt, and have been created to serve exactly this purpose. Why this is
possible becomes apparent when we acknowledge that as human beings we have a
common history and act with the same bodily means in a common environment.
Hence, what is a well-adapted perceptual structure for one individual may serve
the same need for any other. And what has proved to be useful in an evolutionary
process may become some sort of embodied standard repertoire which does not
need to be constantly learnt afresh by every individual.

Selection implies that there is a trade-off: we gain effectiveness by being
able to react immediately, but pay for this with a loss of flexibility. An optical
llusion, for instance, does not disappear when we know that it is one. But we can
transcend this limitation. We are able to recognize an illuston through our action,
by changing some part of the context and observing how these changes affect
our perception of the phenomenon. We provide the required variation through
our activities. As J.J. Gibson has pointed out, it is through our action that we
can distinguish between what is imagined and what is real, because every close
examination of real objects provides new information, reveals new features and
details. A mental examination of an imagined object cannot pass this test?®.

Through our activities we are able to create ever new meaningful relations
and develop cognitive structures aimed at increasing our ability to relate to the
environment such that we can satisfy our needs and pursue our goals in a more
flexible manner. A new cognitive structure that is formed neither by imitation
nor by trial and error?”? has been called insight by the gestalt psychologists, and
the process is called insightful learning 28

Insights can be characterized as a restructuring of the perceptual field. For
instance, once an ape has come to realize that boxes can be stacked on top of
each other or two sticks put together to get a banana which would otherwise
be out of reach, it is capable of applying this solution repeatedly, without any
hesitation and to any kinds of objects which can be stacked or put together in

————

» Cf. [Rock, 1984). . o
Cf. [Gibson, 1979]. A more elaborate discussion of human action as a validation
cntenon for reality is given by A. Raeithel in Chap. 8.4.

" It should be noted, however, that productive thinking can only take place when all

these forms of learning act together.
® A brief description can be found in {Hilgard and Bower, 1966, pp. 229- 263).



Reinhard Keil-Slawik
178

any similar situation. What has been learned by the ape is not hz)iw tot(s)tai)l;
specific boxes, but the general relation that boxes can be arranged on top
each other so as to enable it to climb up and get what it wants. "
The same holds for human learning: the meaning of a form - th~e gesta
- is a construction of the observer. Consequently, it is not the environment
that changes, but the way an individual relates the objects and phenomena
In its environment to each other to form a meaningful whole - a gestalt, an
organization, an architecture, or whatever. o
Once an insight has emerged, we have not created yet another cogniti
structure, but have revised, modified or enhanced the way we relate the thm%;
In our environment to each other. The new cognitive structure superse?des the ol
ne?®. Hence, gaining experience, learning to better adapt to the env1ropment in
order to achieve a goal or to satisfy a need, is not merely a matter {)f storing more
and more cognitive structures in the same way as data is stored in a computer.
And problem-solving is not a question of finding an internally stored structure
that matches the problem structure. If this were the case, it would ta'mke longer
and longer to search for the appropriate structure, the more experienced W:ii
were. Eventually, we would be unable to react at all; evolution would be a dea
end. .
Instead, the reverse is the case: the more expert we become in a partlcu.lar
domain, the faster we are able to identify a problem and the closer we come with
our first ‘guess’ to the final solution. This ability is the result of an evc?lutlonfarly
process. Knowledge is historical in the sense that we can only make it explicit
and communicate about it properly if we are able to study the learning process
which established this knowledge, i.e., the way the individual being related to
its environment in its complete course of events30. Since we are unable to make
such knowledge explicit by expressing i ' '
how we relate the entities (which include, of course, symbolic representations) in
this environment to each other, we characterize it as a different kind of knowl-
edge. Basically, it can be characterized as the difference between knowledge and

competence (or skill)3!. Ip 5 sense, it can be said that intuition and feeling are
our most advanced means of intelligent behaviour32.

-
%% This is the same characterij

second edition) to character
% The same holds for biologic

zation T.S. Kuhn has given (in the addendum of the
ize the effect of paradigm [Kuhn, 1970]. )

al information. B..Q. Kiippers points out that the mfor—'
nes cannot be derived exclusively from the genetic code;
© the environment. In ap evolutionary process, it is selec-

tively evaluated against the external information embodied in the environment. CL.

[Kippers, 1983].
3! Other authors have made t
as tacit and articulate kno
[Ryle, 1983], symbolic reaso

his distinction by contrasting different notiOHISy such
wledge [Polanysi, 1967], knowing that and knowing how

ning and intuition [Dreyfus, 1979], or by referring to the
paradigmatic and the narrattve modes of thought [Bruner, 1984].

%2 On the role of intuition see [Dreyfus and Dreyfus, 1986] and, with respect to software
development, [Naur, 1985a].



4.4 Artifacts in Software Design 179

To sum up: although we characterize an insight in terms of a specific relation
of objects or phenomena in the environment, it is always the construction of an
individual person. Strictly speaking, knowledge and meaning are neither qualities
of the external world, nor are they stored in our brain in the same way as data
is stored in a computer. Knowledge and meaning are the ways we relate to our
environment. Since they are constituted as self-organizing processes, the creation
of knowledge or meaning can neither be controlled nor prescribed. And there is
no direct way of transporting meaning or information, givingit to another person
as one hands over an artifact, a book or a technical drawing. We can only provide
an environment in which the entities that have to be related to each other are
present in the perceptual field or within reach.

However, merely relating things in our environment to each other in a spe-
cific way does not allow us to transcend the constraints imposed by the given
environment and the restrictions of our bodily capabilities.

Artifacts as external memory

To perform so-called mental operations, we are much more dependent on our
physical environment, and consequently on our bodily actions, than is generally
acknowledged. Our perceptual faculties, for instance, are quite limited. By di-
rect perception, i.e., without starting a counting or calculation process, we can
only distinguish up to four items. As G. Ifrah points out, all additive numbering
schemes (symbolic representations of the tally system) of different cultures intro-
duce a new symbol by the fifth position at the latest3?. This allows us to group
the symbols on a higher level, thus enabling us to perceive greater numbers more
easily under the same perceptual constraints.

Almost every calculation or counting process, however, requires the use of
Perceivable physical means, be they visible symbols or tangible objects. To begin
with, a tally or small calculating stones were used, later on the abacus, the
Indian decimal number system (IDNs), and finally algebraic formalisms, Turing
machines, formal languages, etc. The word calculus, for instance, stems from the
greek calculi which means chalk pebble. And the notion of a formal language is,
according to S. Kramer, already misleading. What mathematicians and computer
scientists develop and work with are, strictly speaking, formal fypographies®®.

The modifications of the physical appearance (states) of artifacts — such
as the positions of the pebbles on a calculating board, the marks on a tally
or symbols on paper — are an indispensable part of our mental activities. The
states of a tool, as well as the calculations performed with a pencil on paper,
serve as an external memory which allows us to check the (interim) results, and
to reflect on the process as such. Calculating reliably on an abacus, for instance,
becomes increasingly cumbersome, the greater the numbers are. \Vithout. storing
intermediate results, i.e., making them perceptible beyond the performmg act,
checking may become impossible because, with every calculation, the previously
T
- [rah, 1987, pp. 169-183]

(Krimer, 1988, pp. 176-183]



Reinhard Keil-Slawik
180

achieved result will be destroyed. The only way to check a calculation is to st?:}c;
the result and compare it with another calculation. This pr'oblem f:hanges th) X
the introduction of (formal) typographies such as the Indian decimal numbe
stem.

M When we perform an arithmetic calculation with Pencil and paper, we Spna(i
tially arrange digits on the paper in a systematic fashion to form numbers a !
columns of numbers representing intermediate results. Where necessary, sym
bolic operators are inserted. Once we have these physical traces of .the p;;)cesst,
it is possible to discover structural relations and invariants l?y rela.tlng di erte)n
calculations to each other. At the end of the 16th century, the 1nvent.1on of algebra
and, parallel to this, the construction of the first calculating m.achmes serv;;dtilo
represent the then accomplished gestalten and insights by physical means. h0 ls’
the replacement of numbers by letters as well as by gears, shafts and cogw geb )
are physical embodiments of a relation which formerly had to be established by
the human mind for every single calculation.

Now, it is possible to reason on the level of structural relations and make t};e
respective consequences visible. The commutative law, for instance,.represen S
an invariant of the calculation process and can be visualized in the written form:

a+b=b+a

This expression asserts that the equation holds for all possible instances of a and
b within a given mathematical framework. By defining operations that preserve
the validity of an equation, this kind of physical representation and its respective
operations of generating and arranging symbols in a specific way open up a new

realm of thinking. With the invention of boolean algebra, for instance, it became
possible to calculate logical deductions.

Finally, a concept such as the Turin
the physical operations of transfo
an explicitly given set of rules in
to describe the symbol manipulat
(atomic) symbol transformation
be performed by a machine com
atomic symbo] transformations.

What is replaced by the machine
forming meaningful relations, i.e.,

g machine provides the means to repFesent
rming and arranging the symbols according to
the same symbolic medium. Once we are able
lon operations as a composition of elementary
processes, this sequence of transformations can
posed of elementary mechanisms resembling the

» however, are not the mental activities Of
the creation of gestalten, but the physica

describe the invariants of the physi
our mental activities, we can try t
technically accomplish the corresp

According to A. Leroi-Gourha
of the human mind js basically ¢

cal transformation processes that are part of
o devise more efficient means to express and
onding state transformations. .

D, it can be generally said that the evolution
he evolution of its expressive means35. These
body a new quality. As the result of insi.ghﬁful
€ sum of their parts. Neither the invention of
arrow could have been achieved by imitating

learning, they are more than th
Zero mor that of the bow and

_
Cf. [Leroi-Gourhan, 1988].



4.4 Artifacts in Software Design 181

something which already existed. And there was no sequence of development
steps or interim results that enabled the artifact to be deduced systematically.

Again, the notion of external memory is crucial to communication and learn-
ing. One essential difference between animals and human beings is not the con-
struction of tools — that animals do as well — but their preservation. This is
essential, because only then does it become possible to compare a previously
built tool with a new one, to communicate about tools, and to use them as
a means for education. All these aspects are essential prerequisites for making
progress in the design of new tools. There is no straightforward way to derive a
tool which will satisfy a certain need merely by individually performing internal
mental activities.

So far, I have emphasized that, owing to their physical nature, artifacts func-
tion as external memory, thus facilitating communication and learning. They
evolve as part of a functional circle which I have characterized as a process of
selective self-organization on various levels, ranging from individual problem-
solving through cooperative learning to the evolution of culture. As I have men-
tioned before, selection implies evaluating a trade-off. I will now discuss this
trade-off function in order to identify the features of an artifact that provide the

selective advantage.

Flexibility versus iconicity

Two subsections earlier, I have given an example of a trade-off function with
respect to embodying human capabilities — for instance, organizing physically
unrelated stimuli as action schemes. Such schemes cannot be influenced or con-
trolled intentionally; greater effectiveness is paid for by a loss of flexibility. One
could say that, in an evolutionary process, these schemes represent the mem-
ory, preserving stereotype behaviour, i.e., fixed action schemes that have proved
successful in the sense of leading to a selective advantage in the past.

However, there is only a pay-off as long as the meaning of the scheme 1s fixed.
With respect to the functional circle, this implies that the environment does not
provide unanticipated events that would require changing the action sequence
embodied in the scheme. If this happens, such an action scheme would lead to er-
roneous behaviour that might have serious consequences for the individual. But
if, as T have pointed out, these schemes are embodied in a more flexible frame-
work of learning, they will enhance the overall flexibility. When they are part
of an individual’s response to changing environmental conditions, they reduce
the amount of cognitive effort required for controlling and performing the over-
all action, thus freeing the human mind to concentrate on the change pattern.
In general, they decrease our dependence on environmental conditions because
they give us free time which the human mind can use to develop artifacts. And
this ~ besides offering the already mentioned advantages — may also help us to
transcend the limitations and constraints imposed by the inflexibility of these
schemes. '

If we now view artifacts as the (external) memory of our cultur.':}l evolution,
we will find that they serve the same purpose. With every new artifact — from



182 Reinhard Keil-Slawik

the tally to the abacus, the Indian decimal r.lumber sy'stem, anc.l finally {a)ltgfi:zl‘:
and Turing machines - the sequence of bodily opera.tlor.xs required to obta ;
result has been reduced. With the tally, every act of making a mark correspon sf
to the act of counting an object. With the abacus, the spatial arrangement'o
beads allows us to move one bead into a specific position to replace the .respectlvg
number of counting acts. The sequentialization of the countin.g process is refiuce '
by introducing a new spatial structure. With the symbolic ’representatlont }?
numbers, the handling of any number of one to nine beads is reduced to he
manipulation of one single symbol (digit). This also allows us to represe.n}f :he
concept of zero as a physical symbol like any other number. Finally, wit ne
invention of algebra it becomes possible to embody the structu.ral pIOI.)eI‘.tleS
of an infinite number of calculations in terms of a single symbolic d.escrlptlon'
By expressing these structural properties through physical f.orces, 1t .becomej
possible to mechanize and later — with the invention of Turing n’lachmes an
computers - to automate them, i.e., to perform a calculation by pushmg'a butt(?n.
As a result, more powerful operations can be performed in less time, with
greater flexibility and reliability. But there is also a new quality: enforced OZ
prescribed sequences of operations that do not allow us to create a geSt'fIlt, bu
which nevertheless have to be performed, are condensed into single objects or
operations that can now be flexibly arranged anew and related to each.other
to form new gestalten or insights. In this sense, the selective advantage in the
evolution of artifacts is that prescriptive temporal structures are dissqlved by
creating physical objects and corresponding spatial structures, or — in more
abstract terms — by providing a state space that allows us to find out how 'we
have to relate the states to each other to form new meaningful wholes. With

respect to human actions, this cultural achievement can be stated as a general
guideline for the design of artifacts:

MINIMIZE THE AMOUNT oF ENFORCED SEQUENTIALITY NEEDED
TO ACCOMPLISH A TASK OR SET OF TASKS.

Enforced sequentialit
formed to form a ge

’

s to be performed in a given order. Either one
impedes the formation of a gestalt.

Consequently, we can say that artifacts that are meant to support l.earnu;g
must put the user in control, i.e., enable him to plan, control and initiate the
to be performed. In some cases, however, we

)

. . J b
Wing a given sequence such as is imposed by

sa ision
may put pressure on individuals to enforce such a decision,
but we cannot enforce insights.



4.4 Artifacts in Software Design 183

The same holds on the symbolic level: the notion corresponding to imitation is
iconicity. We speak of iconicity when the pronunciation of a bird’s name closely
resembles the sound of its voice, as in the case of the cuckoo. Another more
widespread example is the use of icons or pictograms representing an image of
the object they denote. Pictograms may promote understanding by referring to
an already known visual gestalt, but they do not provide sufficient flexibility for
creating new meanings and embodying them in physical means. Thus, part of our
cultural development has been the shift from pictorial expressions to languages
based on an alphabet consisting of arbitrarily chosen symbols.

This is the price we invariably have to pay for flexibility, namely, that the
artifacts we employ become less and less meaningful in the sense that the degree
of iconicity is reduced. Each mark on a tally, for instance, represents a counted
object. This is no longer the case when arranging beads in a two-dimensional
structure by using a calculating board or an abacus. And a digit is of an arbitrary
shape that in no way reflects the amount it stands for. Letters in an algebra or
cogwheels in a calculating machine dissolve the notion of number and amount
even further. And finally, the concept of the Turing machine reduces everything
to a sequence of elementary operations by which arbitrarily chosen symbols (the
alphabet) are read from and written on to an endless tape.

At every stage in this historical process, the human mind first has to find
a way of arranging the visible or tangible objects to form meaningful relations
in the specific context of activities. Once we are able to express these relations
as perceivable objects by writing down rules and structural expressions, we can
perform the physical operations for manipulation in a mechanical way. To ob-
tain the result and to perform the operations, no conscious interpretation is
needed, no gestalt has to be established or insight acquired for completion. The
operations performed have become meaningless, and they only acquire meaning
insofar as they are executed as part of other human activities.

This general view is in accordance with the careful distinction between data
and information as defined by the IFIP37. Data can be transmitted and multi-
plied, but the process which establishes the meaning, i.e., produces the respective
information, has to be carried out by every individual anew. Furthermore, data
can only be interpreted by establishing conventions and standards. The social
processes of defining, revising, applying, reading and teaching such stanfiards
and conventions establish a common history among the parties involved; it be-
comes part of their cultural environment and fosters mutual understanding.

Information, meaning, gestalten or insights are invisible by their very nature
and are brought to the surface only through human activity. In order to.su;.)p.ort.
this activity, we have to provide artifacts which help us to make the invisible
visible38,

A thoughtful account of this definition is given in [Naur, 1974, pp. 18-31]. See also
the extensive characterization of information by K. Fuchs-Kittowski in Chap. 8.5.
® A Kay has used the notion of visibility slightly differently, namely, to highlight the

difference between the program text (visible) and what will happen during program

execution (invisible). Cf. [Kay, 1984].



184 Reinhard Keil-Slawik

4.4.4 Designing software

The ecological perspective presented here emphasizes that artifacts are infils-
pensable means for creating meaning and supporting learning and communica-
tion. Conversely, the design of a product is basically a process of cooperatlv.e
learning®®. To highlight the differences between this and the traditional engi-
neering perspective, I will again use the notion of learning cycles to characterize
the research strategy associated with this ecological perspective.

An ecological approach to software development

The basic difference between the ecological and the traditional engineering per-
spective is that learning cycles within software development and use are now
acknowledged as primary means for promoting understanding and supporting
communication. Its frame of teference is not based on the idea of context-free
knowledge that is transferred by the exchange of (design) artifacts, but on the
concept of person(s)—acting-in-settings as a specific instance of the functional
circle®®. We can then reconstruct the waterfall model into an ecological model
of nested learning cycles as depicted in Fig. 4.4-2

Iterative

— N & Exploration &
ﬁ’ﬁ Communication Understanding
k; (/nga_in

ianer Experts

Designers

Scientific

Design

Fig.4.4-2. The ecological model of nested learning cycles

39 . . i
.Cf‘ th.e definition of design as “the interaction between understanding and creation”
in [Winograd and Flores, 1986, p. 4]

0 Pp: i
* This concept has been employed in particular by J. Lave to study and describe
everyday cognition. See [Lave, 1988] and [Rogoff and Lave, 1984].



4.4 Artifacts in Software Design 185

In the ecological model, the subjects of study are the processes into which
the artifacts are to be embedded, and not the inherent properties of artifacts
as isolated entities. To better understand what actually matters in a specific
situation and to find better ways and means of supporting the design process,
we have to study the human activities of developing and using software.

This is also the basic philosophy underlying the methodological framework
STEPS (Software Technology for Evolutionary Participative System develop-
ment)*! developed by us at the Technical University of Berlin. In STEPS, it is
acknowledged that the quality of software cannot be defined without reference
to the development and usage context. This is not only essential for qualitative
approaches such as case studies, but for quantitative investigations as well. Soft-
ware measurements, for instance, can only be understood and interpreted with
respect to a specific design setting??.

The ecological perspective emphasizes that the result of self-organizing pro-
cesses such as cognition, learning, design, or evolution can only be fully un-
derstood by reference to their history. What this means in terms of design is
establishing a common history among those who are meant to understand the
product. And, since learning and communication are essential for design, a par-
ticipative development approach is advisable. This requires that the participants
are - to a certain extent — able to pursue the matter according to their individual
goals, objectives and personal needs. Thus, finding ways of sharing responsibil-
ity, as explored by G. Bjerknes*?, and developing a subject-oriented approach, as
does M. Nurminen®?, are not only promising attempts at dealing methodically
with the social aspects of design, but also provide ideas on how to improve design
of the products.

In his book “Notes on the Synthesis of Form”, C. Alexander states: “the
ultimate object of design is form”. In real-world situations, he points out, the
problem with design is that we are trying to invent a form to fit into a context
which we do not fully understand. This is especially true of the development of
software. Consequently, it is not just a form but a variety of forms which are
developed, revised, enhanced, or rejected in the course of software development.
Basically, these may comprise the design artifacts which are produced by apply-
ing different tools and techniques, prototypes, and eventually the product and
its documentation. These forms are related to each other in various ways, and
changes in one form have consequences for one or several others. In addition, dif-
ferent people may be responsible for developing and maintaining different for.ms.
Thus, C. Floyd’s characterization of design as “a web of design decisions” 43 gives
a more appropriate account of the actual process. This web, as it is physically
embodied in the design artifacts and products or prototypes, normally changes
very dynamically at the beginning, and becomes then more and more stable,
————————

1 An overview is presented in [Floyd et al., 1989b] and [Keil-Slawik, 19872}, see also
the contributions of C. Floyd in Chap. 3.2 and M. Reisin in Chap. 7.3.

j; Cf. [Basili and Perricone, 1984] and, in particular, [Basili and Rombach, 1987].

“ See Chap. 7.1.

- See Chap. 7.2
See Chap. 3.2.



186 Reinhard Keil-Slawik

until, at the end of the development process, the final product is released. Th(;
general guideline for the development of design artifacts and too.ls that are mebannf
to support this process is to provide means to embody anq n'lam.ta.m‘tl.le .Wed o
design decisions such that the amount of enforced sequentiality is minimized.

On the basis of this view, I will now discuss how this general guideline trans-
lates into features and attributes of design artifacts and products.

Improving design

Our task is to devise design artifacts and tools so as to provide sufficient support
and sufficient orientation without prescribing the course of actions to be taken.
This requires means which allow us to embody gestalten in such a way thatf
they provide a constructive basis for establishing a common understanding o
the problems in hand and the desired solution. _

Unlike the traditional engineering perspective, where a design artifact 1s sup-
posed to be unambiguous, consistent, precise, and complete, the general guldel}ne
only demands that design artifacts — especially at the beginning of the des1'gn
process — allow us to embody only those gestalten or items of informatio.n which
are necessary in the specific situation to continue the (cooperative) learning pro-
cess — and nothing more. Process-oriented development models*®, prOtOprmg
strategies, the development of a project language by establishing a dictionary
containing the technical terms of the participants’ domain languages — all of
i » as does the use of base lines or reference lines instead. of
phase model milestones??. They provide the opportunity to iterate on specifi-
cally chosen problem domains or aspects independently and on various levels‘ of
detail. In contrast, the phase model approach is transformational: each iterative
step comprises the transformation of the whole problem domain.

This difference also applies to the design of products (tools) for the develop-
ment of design artifacts. A tool may either only accept consistent data records as
input, or it may provide a function for checking the consistency or completeness
of a specified set of records whenever it seems necessary. The former allows the

designer to enter only complete data records that fit into the already developed
framework, whereas the latter allows him to s

yet consistent, but may nevert

What all these examples have in common is that they provide means to utilize
the external memory to the extent required by the actual needs of the people
involved without prescribing the form or structure that should be achieved or
the way in which it should be achieved. In the traditional phase model approach,
the latter is derived from the structure of the product.

The same idea has been expressed in a slightly different way by D.E. Knuth
who has developed a too] called Wgn allowing programmers to separate the
final structure of the code as required by the programming language from the
structure they choose during development to suit their needs and preferences.

_
46 Qee [Floyd, 1981, Floyd and Keil, 1983].
47 See [Andersen et al., 1990, Floyd et al., 1989b)].



4.4 Artifacts in Software Design 187

According to Knuth, the basic idea is to write programs not in order to instruct
the machine, but rather to explain to other people what we want the machine
to do for us*®. The point is that now the grouping and sequencing of what
forms meaningful wholes in the course of design is left to the designers and their
understanding. Thus, the structures as required by the programming language
impose less sequencing on their activities.

On a more general level, principles such as user control® or minimalist in-
struction®® are design guidelines that serve the same end. And they can be
applied to the product as well as to the design of user manuals®!.

As regards development of new products, I wish to point out that the explicit
goal of providing support for individual problem-solving and information orga-
nization lead to the notion of interactive systems and, eventually, to two basic
innovations: hypertext technologies and object-oriented systems. In particular
the definition of hypertext as non-sequential text processing explicitly confirms
the guideline for reducing enforced sequentiality. Both technologies implement
the same basic idea: they allow domain experts to easily embody mentally es-
tablished relations in physical terms (links, shared code) and build on these
embodiments later on. However, besides assessing the essential quality of in-
novative technologies, the general guideline presented here can also be used to
derive more specific design criteria that can be fruitfully applied in the design

of use interfaces52.

4.4.5 Summary

The ecological perspective presented here seeks to provide guidance and orienta-
tion in identifying problems and to help direct the search for solutions. It is not
meant as a theoretical framework allowing us to deduce or determine the desired
Properties of either specific design artifacts and products or specific development
methods53. Nevertheless it does provide some ideas on how to improve the design
process.

I have characterized design as a cooperative learning process. The resplt or
outcome of this process cannot be described precisely until the product ls.ﬁn-
ished. The value of any innovation can only be defined once it has been re{ahzed
and appraised, whether it be a new function or algorithm that is to be imple-
mented, a new method to be used, or a new system to be developed. The same
holds for user actions in a learning situation. In a more general sense, it can
be said that the meaning of any activity cannot be described precisely until the
action has been completed®?.

—_——
* Cf. [Knuth, 1984, Bentley, 1986]; an elaborate example is given in [Knuth, 1986],
1 e also Chap. 1.2.
0 See W. Dzida, Chap. 7.4.
o [Carroll, 1990]
Cf. [Carroll et al., 1987]. _ .
*2 A more extensive discussion can be found in [Keil-Slawik, 1990, pp. 47-70].
22 This substantiates the arguments of J. Carroll in Chapter 4.3.
This is also the central theme in [Weick, 1979].



Reinhard Keil-Slawik
188

Since learning is regarded as an evolutionary process of selectivg self-orgal;l(;
zation, artifacts that are meant to support this process m.ust prov1d.e mel:;tnsthe
flexibly create and embody gestalten according to ‘the mmghts acquired yduct
parties involved. Thus, it is no longer the mathematlca.l attrlbuf;es of the pro b
that constitute the frame of reference, but the cooperative learning processes t af
are part of design. Artifacts are viewed as embody'ing the e)‘iterna.l mem(ﬁ‘yrzl
human cognitive processes. By studying the evolution of z.ntlfac.ts in a cu 11t
context I was able to derive a general guideline for their design, namely, to
minimize enforced sequentiality. . y

As is the case with all design principles, this guideline can nelther‘ be consi -
ered in isolation, nor can it simply be optimized along a one-dimensional scalg.
the more flexible, the better. It is dialectical in its nature because every embo. -
iment of a gestalt - such as the fixation of a problem, the choice of a certfaltn
function to be implemented, or a selected module structure — imposes constralnds
on the subsequent actions and limits the possible choices. On the f)ther ha?l ;
without any such fixations no progress could occur. Thus, the crucial question
is where and when to draw the line so as to find the right balance between
flexibility and stability.

This question can be generally answered by the ethical imperative of H,‘vo'n
Foerster: “Act always so as to increase the number of choices.”55 AI.ld this 1s
exactly what should be achieved by minimizing enforced sequentiality. On a
practical level, however, it can only be answered with respect to a given contex.t.
In the course of developing or employing interactive systems, for instance, this
is the analysis of the work environment. However, even then, as I have already
pointed out, it is not possible to deduce a solution purely from the Tlefids or
requirements. We need the traditional engineering perspective as well. Without
the results being produced along these lines, we would not be able to pursue
our goals. Every single interactive step, for instance, embraces already a V?'St
amount of formal operations embodying general insights that are invariant with

respect to the specific setting or problem — and thus, may not have been derived
from the specific context.

as 1

imizing enforced sequentiality with respect to the
development and use of software.

Acknowledgements
I would like to thank Christiane Flo
Ben Shneiderman for their constry

this article. They have been instru
Phil Bacon for polishing

yd, Rodrigo Botafogo, Kim Halskov Madse.n, an(j'
ctive criticism throughout the various versions

mental in shaping my ideas. My thanks also go t0
up the text idiomatically and stylistically.

—
%5 Iv. Foerster, 1984, p. 308]



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 

