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We study the relation between the number of pebbles used in the black and the
black-white pebble game and show that the additional use of white pebbles cannot

save more than a square-root and give an example in which it does save a factor 5 -

(1)

(2.1)

Introduction:

This paper deals with two kinds of pebble games:

- the "black pebble game" which was used to exhibit a space efficient
simulation for time-bounded Touring machines.

(DTIME(t(n)) = DTAPE(t(n)/Tog t(n}))) [5] .

- the "black-white pebble game" which was Hs%d to show that there is a
language SP € P which uses at least Q{n / ) space in a special model

of machines (Scund-Path-Machines) [3] .

Description of the games:

Let G always be a directed acyclic graph with vertex set V and edge
set E, Pél(x) the set of all direct predecessors of the vertex X

* -
and Pél(x) the set of all predecessors of x, i.e. the set of all

in .G . If it is

vertices, from which there is a directed path to_ x e
r-+(x) . For

clear which graph is concerned, we only write I~ (x),
x €V let V. be the set rzl(x) U{x} and G, the induced subgraph
X

of G with vertex set Vx .

The black-white pebble game is played on a DAG G by placing black or

white pebbles on some vertices of G according to certain rules which
are implicit in the following description:
(B,W) with B,NcV and BnwW=p.

A configuration of G is a pair _
B s the set of vertices, on which black pebble are lying, W that one

for white pebbles.

We say "(B,W) directly derives (B', W') using k pebbles” and write
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"(BsW) = (B', W')" iff BUWNGB' UMW or B' UMW cBUW and

etther (i) W=W', #(B~B')=1
or (1i) W=W', B'B={x} and r_l(x) cWUB for some x€V
or (iii) B=B', g(W'<K)=1
or (iv) B=B', WW'={x} and T l(x)cWUB for some x €V
or (v) B=B*', W=W'

and s W+#B<k, #W +#%#B' <k

where for some set A, % A is the number of element of A . A sequence

[(B;s W.}, i =1...n1 s called a b/w-k-strateqy from (B,H) to (B'.W'}

in G, iff (Bi’ Ni) are configurations of G and (Bi’ wi) L

(Bif1» ¥i41) for all i and (Bys Wp) = (BW) , (B, W)= (B'W') .

The black pebble game is a special kind of the black-white pebble game:

A~ b/w-k-strategy [(B,.W.), i =1...n] in G {is called a b/w-k-stra-

tegy from D to D' in G iff Wi =9 forall i and B =D,

Bn = D' . In this case we write [Di’ i=1...n1 for the strategy.

The object of both games is to find a strategy which begins with the empty
configuration and ends with one black pebble on a distinguished vertex
and no white pebbies using a number of pebbles as small as possibie.

Notations: Opt(G,r) = number of pebbles used in an optimal b/w-stra-
tegy (i.e. in a strategy which uses a minimal
number of pebbles) from (p,p) to ({r}, @) g
We define Opt, (6,r) for b-strategies analogousty-

—_—

Remark: 1In {3] and [4], the object of the game is defined in an other

way, but optimal strategies in the sense of [3] and [4] and in the sense
of (2.3) differ by at most one pebble.

Intuitively, we can think of the black-white pebbie game as a model of a
proof:
The sources (

vertices without predecessors) are the axioms, known theorems
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etc., a distinguished vertex r is the theorem which shall be proved and

the other vertices are lemmas. Fach lemma and the theorem can be deduced

from its predecessors. Placing a black pebble on a vertex corresponds to
proving the lTemma (theorem) by its predecessors, placing a white pebble on
a vertex corresponds to assuming this lemma (theorem) to be true, intending

later to justify it by its predecessors. The maximal number of pebbles used
in some configuration corresponds to the maximal number of Temmas, one must
have “in mind" at one time.

The black pebble game can be looked upon as a model for an evaluation of a
(for example boolean) expression by a register machine:

A vertex is an operator, its predecessors are its operands, the sources are
the variables and the pebbles the registers. Placing a pebble on & vertex
X corresponds to computing the value of the subexpression in the register

(Notice that all predecessors of x are pebbled, i.e. all operands are
available). Removing a pebble from a vertex corresponds to freeing the re-

gister. Thus, the number of pebbles used in the game corresponds to the
number of registers used in the computation.

Some known results about pebble games

For both games, it is known that if G is a DAG with indegree 2 (i.e.
#(r-1(x)) <2 for all x€ V) and n vertices, then an optimal strategy
from (#, ) to ({r}, §) for some r € V uses less or equal to
2(n/log n) pebbles and there exists a family of graphs which needs this

number of pebbles [11, [2], [6].

If Sm is a pyramid with m Tlevels and sink r (55 is shown in figure

1) then 0pt, (S..r) 2 /’%-1 [31 .

Opty (S or) =m+ 1 D41 .

Figure 1:  The pyramid 5S¢

We state without proof 3 simple, technical lemmas:
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Lemma 1: Let [(Bj, W.}), i=1...n] bea b/w-k-strategy in G , then
i = i -k- i Let us call this
[(wn-i+1’ B_is1)s 1= 1...n1  is a b/w-k-strategy in G.

strategy the contra-strategy of [(Bi’ wi), i=1...n].

Lemma 2: Let [(Bi’ Ni), i=1...n] bea b/w-k-strategy in G, H an
induced subgraph of G with vertex set V(H) , then [(B,NV(H), W,nV(H)),

i=1...n] is a b/w-k-strategy in H ., If H = GX for some x , then

(B, n V(H), W.nV(H)), i =1...n] is also a b/w-k-strategy in G .

Lemma 3: If G is a DAG , (B,W) a configuration in G , G§ the induced

subgraph of G with vertex set V(B U W) and [(Bi’ wi), i=1...n] is
a b/w-k-strategy in G , then [(B U B, W, UMW), i=1...n] isa b/w-
i

(k + #(B U W))-strategy in G .

In the first thecrem we shall see that for the family of pyramids, the b/w-

pebble game does save at least a factor % .

Theorem 1: Opt(Sm, ry < r%1 +2 for m>2 .

Proof by induction on m .
Obviously, 0pt(S;, r) =1, Opt(S,, r) =3, Opt(Sy, r) =4 .

Mm-21 for S ,
let m>4 and [cn_Z] be the ( —— + 2) - strategy m-2

given by induction hypothesis and [Cn_2

. : 2).
Then consider the following strategy: (We use the notations of figure )

] the contra-strategy of [C ol -

1) place a black pebble on a by [C__

2) place a black pebble on ¢ by (c,_,!
3) place a white pebble on b

4) go on as shown in figure 2

*

5) remove the white pebble from b by  [Chopls
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hi rm-Z-'
This strategy needs max {{ ==t 2) +1, 4} pebbles. As m > 4 , we need

-2 7

—%— +2+1= + 2 pebbles.

I\J|S_,

NN AN

(6.2)

Figure 2: The top of Sm

The following theorem gives a method to change b/w-strategies into b-stra-
tegies. As a corollary we improve the lower bound in (3.2) by a factor of 2.

Theorem 2: Let G = (V,E} bea DAG, r €V, Opt(G,r) = k then

2 |
K-k s 0pt, (6,1) - 13

2

™~ —

+1, i.e. 0pt{G,r) >

Optb(G,r) <

1

, 1 ' 3
Cor: Opt(sm) > 5 4 //2 cm+ 1) -1y
The idea of the proof is to replace a move of a b/w-strategy in which a

white pebble is placed on a vertex by a b-strategy which places a black

pebble on it. The observation that it is not useful to place a white pebble

on a vertex x , if Opt(G , x) = Opt (G,r) yields the recursion: if F(k) =
max {0pt, (G,r), G,r chosen such that Opt(G,r) < k} then F(1) =1 and

F(k) < F(k - 1) + k - 1 which implies the theorem.

Main lemma: Let G be a DAG , [(B., wi), i =1...n] a b/w-k-strategy

from (p, @) to ({r}, ) in G , then there exists a b/w-k-strategy from

(0, ) to ((r}, @) - [(B?, w:), i =1...m] - with the property:

(*) For all ¢ , if wz\wz-l = {x} for some x and Sf”l is the induced

* -
subgraph of G with vertex set Vx\(Bz-l U Wp_q) » then there is a b/w-
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(k - 1)-strategy from (@, @) to ({x}, @) in st
Proof:
* 0 - .
We construct a new sequence [(B:, wi), i=1.,.n] and show that it is a

b/w-k-strategy in 6 from (@, @) to ({r}, §) with (*) .
Let G, [(B., W.)s i =1...n] be as in the hypothesis of the main lemma.
i

Transform it into a new sequence by executing the foliwing algorithm:

Begin:
Let {Kl...ﬂp} be the set of indices such that

*%) W W = {x.} for some x. and there is a
(=) Ky 2, W i

' : : =k . j. be the maximail such
J> ﬂi : %((Nj U BJ) n in) k Let J; be
J and ti = max {hlxi e W ....w

.
L, h

Loop:

For i=1 unti1 p do

if 3 < ti

Comment: One move after k pebbles are the last time in VX , the white

i
pebble is still on X5 3

. ¥ %]
then [(8., W)y i =1...n] « [(B; n 1 *(x,), Wy e (X)) ns
(B, 1

0 rtoc) W e, 6. Lo il
J;tl LR LA P i

1%

%] .
(wji+1 nr (Xi)) U {xi}), (Bj1+25 wjj+2)s-.-,(Bn, wn)] ’
else

. . . ; t
Comment: t. < Jj » i.e., the white pebble on x is removed in the Tas

move which reduces the number of pebbles in Vx from k to
(k= 1) or earlier;

= * Won ool
[(Bi, wi)’ 1= 1-..”] A I(Bl nr (Xi)’ 1

3| ¥]
(Btin T xy), wtin Ixy))s (Bt1+l NV, W
(Bjin v

(xi)),...,

ny ),...,
X.
; t1+1 i

s M V) (Bl s W )ae (B, W
X1 Ji Xi Ji+1 J1+1 n n
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End;
We conclude the main lemma from the following 3 propositions:
Let [(Bi’ wj), i =1...n] be the input sequence for some pass of the loop

and £, x, j, t the actual values of Zi’ X ji and ti then:

(6.2.2) - the output sequence of the pass of the loop is a b/w-k-strategy from
(2. 09) to (r, @),

(6.2.3) - if a configuration (B,W) 1is inserted in the "then-clause" between

(Bj+1, Hj+1) and (Bj+2’ wj+2) , then #(BUW)<k-1 and after

the pass of the loop, #((Bq ] Nq) n VX) <k-1 forall g>2j+2,

NV )seees(By 0 Vs Wy V)]

6.2.4) - i
( ) if for some y and g [(B NV, W v

q
is a b/w-(k - 1)-strategy, then it is still one after the pass.

If we have this, it foliows that the output-sequence of the algorithm

- [(B;, W.,), i =1...m] - is a b/w-k-strategy in G from (@, ) to
({r}, ) with the property:

For all £, if wz\wz_l = {x} for some x , then the sequence

[BX NV, W nv),i=£...ml isa b/w-(k - 1)-strategy in G . By
1 X 1 X

Lemma 2, (4.5), it follows, that

* * * * * * s
EC(BS N VNGB, U Wy 1))s (W 0V N(By g U W), 1= 2o
is a b/w-{k - 1)-strategy in Sf’l
* * *
Notice that (B, 0V )~(Byy U Wep) = Bu (M N VINByy U W q) = 100

*
(W 0V )N(B,_ U W, ;) =8 and

g, x #r
(B 0V )N,y U W, ) -
m X £- - {r}, x =r (®*) .

In the case (***) remove the black pebble from r in a new move. Now we

have a b/w-{k - 1)-strategy in Sf-l from (P, (x}) to (P, @) and with
the help of Lenma 1 (4.1), the main lemma follows.
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It remains to prove (6.2.2), (6.2.3), (6.2.4) .

Proof of {6.2.2):

Case 1: The "then-clause" is executed.

! l(x)),...,(Bj+1 n r*(x), s,

x]

- ey nr (x), W 0t L0 )

is @ b/w-k-strategy because of Lemma 2 (4.2) .

1]
= By 0T Wy,

*]
(Byyy 017 (x),

to place a white pebble and because of the foliowing:

L0 ) -

1

L r* (x}) U {x})), because it is always allowed

As #((BJ u WJ) NV ) =k, it follows that BJ u WJ <V, an
in the next move, one pebble will be removed (j maximal!) .

Therefore, 1’#(8‘].+1 U wj+1) <k-1 and as x € wj+1

*((Bju n 1”t1(><))U(Hj+1 n Pﬂ(x)))g k -2 and

(6.2.5) B, 0t x)u Wy 075 x)) U 00) <k - 1.

¥] ¥1
- (Bj+l nT o(x), (wj+1 0T (x)) U {x}) 2 (Bj+2’ wj+2),

x] B *] -
because Biyp N T(x) = Bjsp and Wy 0 r7(x)) U (X = Wil »

) [(8j+2’ wj+2)""=(Bm’ W)l dis b/w-k-strategy in G .

Case 2: The "else-clause" is executed.

- 18y 0t tH00)se (8, 0 1 x), W, 0 o¥l)]

and [(Bt+1 nv., W 0 Vx)""’(Bj nv., wj nval are

b/w-k-strategies because of Lemma 2 (4.2) .

£] £1
- (B, nr , W,on
(By () W nr™i(x)) = (B MV, W0 V), because

%]
Bt nr-(x) = Bt+l n VX and wf\wt+1 = {x}, therefore:

- %]
Nt+1 nv, = We nri(x) .

- (Bj n Vx’ wj n VX) = (Bj+1’ wj+1), because

BJ.,HJ.C:Vx .
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[(Bj+1’ wj+1),...,(Bm, Wm)] 1S a b/w-k-strategy.

Proof of (6.2.3):

Hx)a( g,y 0 T (0)u0)

#(BUMW) <k -1, because (B,M) = (Bj+1 nrt
and because of (6.2.5) .
#(B UW )<k=-1 forall g>j+ 2, because none of these

configurations is manipulated by the pass and j was chosen maximally.

Proof of (6.2.4):

The algorithm inserts new configurations only in the "“then-clause”,

and in (6.2.5) we have seen, that these new configurations always use
less than k pebbles. If the algorithm manipulates some configuration,
it never enlarges it. (6.2.4) follows by Lemma 2 (4.2) and (6.2.2) .

Proof of theorem 2:

By induction on k we prove:

On every DAG , on which we have a b/w-k-strategy from (@, 2) to

2
({ri, ), we have a b-(kz'k + 1)-strategy from @ to {r} .

For k=1, (6.3) is obvious.

let k>1 and G bea DAG, [(By, W), i=1...n] a b/w-(k+1)-

strategy in G from (§, @) to ({r}, @). Then by the main lemma,

there is a b/w-(k + 1)-strategy in G from (@, p) to (iri, @)

.
with property (*) . Let this strategy be [(B,, W;), 1 = l...m] .

* *
Let {Kl...tp} be the set of numbers such that wﬂi\ wzi'l = {x;} for
i
some X, . Then for every 1 , there is a b/w-k-strategy [(Bj’ wj),
£i-1 ‘ _
i=1...n;1 in Sx] from (@, ) to (Xi’ P} . From the induction
i .
! 2
. k™-k
hypothesis we know that there is a b-(—— + 1)-strategy from @ to
£;-1 .
{x;3 in S, for each i =1...p .

i

The induction hypothesis for k + 1 follows jmmediately from the

following
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Lemma: Let [(Bi’ W.), i =1...n] bea b/w-k-strategy in G . If a white

i

pebble is placed on x in (Bz, wz) and removed in

(Bt+1’ Wt+1), #ft(Bl,'_l u wﬂ_l) =d and there is a b-k1~strategy

. . £-1
[D.s i =1...p] in SX

i from @ to {x} and ¥ = max {d + kl’ k},then

LBy Wy ) (By s Wy p)s (B,y U D, Woo)s(Byy U DL Wy ) s
(B£+l U {x}, w£+1\{X})""’(Bt U {x}, wt\{x}) s

(Byye Wt+1),...,(Bn, W,)] is a b/w-kK-strategy in G .

Now for all ﬂi we have:

*(Bz Y WE -1) £k, because in the next move a pebble is placed on
i i
the graph. By the lemma and the induction hypothesis it follows that there
2
isa b '(5—55- +1 + k)-strategy from @ to (r} in G .

2 2
K-k . (k)= (k1)
As ~——+1l+k= > + 1, the theorem follows.

It remains to prove the Jemma:

Proof of the lemma:

It is clear, that the maximal number of pebbles used in some configuration
is k

[(8,, Hpdseoa(By s Wp1)1 and [(B1u W .)...(B , W )]

t+1 n® n
are b/w-k-strategies in g .
- (B

2-1° wl—l) =t (B£~1 U Dl’ wz _1) » because Dl =9 .

- B, U D, ”z-l)""’(Bz-l UD, W, )1 s a

b/w-k-strategy because of Lemma 3 (4.3) .

- <B£'l U Dp, we_l) =’_k_ (B£+1 u {X}, w£+1\{x}) because Dp = {x}

and theref =
efore B£ U Nﬂ B£”1 U Dp u ”3-1 .

[(B£+1 U {x}, N£+f\{x}),...,(8t U {x}, wt\{x})] is a b/w-k-strategy
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because By UWp,s = (B£+i U {x}) U (W NMx3) .

- (Bt U {x}, Nt\{x}) o’ (Bt+1’ Nt+1) , because Nf\{x} = wt+1 .

Bt+1 = Bt and it is always allowed to remove a black pebble.

Conclusion:

We have seen that, if we have an optimal b-strategy in G with k

1/2

pebbles, then every b/w-strategy needs at least (k") pebbles, but

no example is known 1in which the b/w pebble game saves more than a

constant factor.
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