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ﬂ@ﬂ{ﬁgﬁi Various kinds of simulations among parallel computers are
considered. We prove that it is not possible to simulate all parallel
Combuters by one without an additional expense of time or of processors.
Then we present a parallel computer which can simulate all parallel com
puters with n processors and which needs c-n®log(n) processors and

extends the time only by a factor d-log log(n) .

1. Paraltel computers

In 1980 Paul and Galil introduced a model of paraliel computation and
dealt with the question: How good can one parallel computer simulate
811 others? (1). They found a simulation which doesn't need more pro-
Cessors than the computers being simulated but demands an additional
expense of time of a factor being logarithmic in the number of proces-
sors,

In this paper we want to get deeper insight into the behaviour of time

and number of processors necessary for these simulations.

First we give a short description of a model of parallel computation

Essentially due to (I).

A parallel computer (PC) M is given by

- aset P={p,,...,p.} of processors which may be finite automata
'n

random access machines etc. (see II),

T a set IcP of input processors,

2 set 0cp of output processors and

- a graph G with vertex set V(6) =P and edge set E(G) -




434

A processor Pi is neighbour of Pj if the edge {pi’Pj} is in E(G).

The maximal number of neighbours of some Pi is called the degree of
G or the degree of M .

Thus M s specified by a tupel M =(P,1,0,G) .

Suppose, the processors are random access machines. Each of them shall
have a communication-register. Then such a PC M works as follows:
The processors of I contain the input X =(x1,...,xn) E{O,I}P for
some p .,

In one step each processor works for a bounded amount of time dependent
on its own configuration and the contents of the communication-registers
of its neighbours. M stops when each processor has stopped. The con-
tents of the communication-registers of the output processors at this
time are called the result of M started with x .

The number of steps M executes started with x 1is denoted by ELELEL;

In this paper we consider PC's which can simulate other PC's . They
are called simulation PC's (SPC's) .

Their processors are universal (compare (II)) and their input and out-

Put processors are not specified. Therefore we can refere to them as 2a
graph.

We say "a SPC M, simulates a PC M" if it is possible to initialize
the (universatll) p;ocessors of My and to fix input and output proces-
sors in M, such that the resulting PC M, computes for each input

X the same result as M does. If for some k t(M,x) k st(Ml,i) for
all inputs X then the simulation has time loss k .

Let M(n,c) (L{n,c)) be the class of all PC's (SPC's respectively

graphs) with n processors (vertices) and degree ¢ .

A SPC My is k-universal for M(n,c) if each PC M of M(n,c) can
be simuTated by MO with time Toss k.

2. Whatcan a universal parallel computer look 1ike?

A simple method to simulate a PC MeM(n,c) by a SpPC MO is the fol-
lowing:
- Choose n simulation processors P, seeesPs in Mo and let the

J'th processor of M be simulated by Pj
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- Use the other processors of MO to transport the contents of the
communication-registers of simulation processors which simulate neigh-

bouring processors of M.

The time loss of this simulation is the time required for the transport

between such simulation processors.

Such simulations are of type I . Consider the PC M and the SPC Mg

of figure 1. (The choice of the processors is arbitrary).

" Q
M:o Py My . s
b, @ Qs
Qs
Figure 1

L . ‘ ) .
et Q21 s 1=1,2,3 simulate P1 . Then we obtain a simutation of M

in ) .
My of type I with time loss 2.
Qi and Q1+3 simulate

N .
OW consider the following simulation. Let
on of M in M0 but it has

P. : .
i» 1=1,2,3 . Surely we obtain a simulati
the time Toss 1!

S . .
Uch a simulation is called of type IT .

I .
N general, a simulation of M in Mgy of type II [with ¢ repre-

S : -
*EﬂEiﬂiil is given by:

- . - 13 n .
N pairwise disjoint, non-empty sets Al""’An [with 151 tAi <11%;
A; is called the set of representants of the i'th processor a; of

tants e 1
M. Each processor of A simulates Qj -

- Pathes from each P €A, toa p €Aj , if Q4 and Qj are neigh-

Bours in M. These pathes are called transport-pathes.

T

; .
Or a set AmA denotes the number of elements of A .
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The time loss of such a simulation is the length (number of edges) of
a longest transport path.

MO is called (k,%) wuniversal [k-universall of type II for M(n,c

if each MEeEM{n,c) can be simulated of type II by M
loss k f[and & representants] .

1 ime
0 with tim

We notice that for £ =n the above is a definition for universality
of type 1.

Let c¢,d >3 be fixed integers. In this paper we prove the following:

Main Theorem: Let M0 €L(m,d) be (k,2)-universal of type 1l for
M(n,c) then there are aj;,a, >0 such that g.kzayn log(n) or

The following 2 theorems are direct consequences of this Main Theorem:

Theorem 1: Let My€ L(m,d) be k-universal of type I fgrn L{n,c)

then there are aj,a, >0 such that & 3a3log(n) or m=2n

Theorem 2: Let MO €EL{m,d} be

k-universal of type 11 for L{n,c)
then there is ag >0 such that

m-k >ag nlag(n) .

In the second part of this paper we present an efficient SPC .

In (I) an SPC€l{n,4) was constructed which was for some ag >0
(a6 Tog (n)}-universal of type I for M{n,c) .

We will prove the following:

Theorem 3: There is a SPC My el{2,Z70q(n),4) and a; >0 such that
Mg s (a; Toglog(n))-universal for M(n,3) .

IT. Proof of the main theorem

The following is a graph-theoretical translation of a k-simulation of
type II with 12 representants. Let GO €L{m,d) and G eL(n,c) -

A subgraph H of Gy s called a (k,2)-embedding of G in Gy i
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- V(R) =V, UV, , #Vy<g and V; s the union of pairwise disjoint,
non-empty sets Al,...,An R

- for neighbouring vertices i and j of G there is for each c €A,

a b EAj such that ¢ and b are connected by a path of Tength at

most k .

Ai is called the H-representant of the vertex i of G in GO‘

GO is called (k,%)-universal for a class A of graphs if there is a
(k’l)'embEGding for every G€A . Let CO denote the circuit with ver-
tices {l,...,n} and edges {i,i+l} for i=1,...,n-1 and {n,1}.
The set of all G el{n,c) which contain the subgraph Cq 1s denoted
by K(ne) .

We prove the following

be (k,&)-universal

Proposition: Let ¢ »6,c even and Gy €L(m,d)
2.k zagn loa(n)

for K(n,c)_, then there are ay,a, >0 such that
ad,n%/
>n2

Of‘m
ble to extend

BY a simple graph theoretical construction it is possi ‘
this proposition such that it holds for all ¢ >3 . Therefore, this

Proposition obviously implies the main theorem.
Let frop now on c>6 be even, d arbitrary.

The proof of the proposition follows this pattern:

~ Bound #K(n,c) from below,
- bound the number b(n,c) of graphs G €K(n,c) for which there 1is
@ (k,2)-embedding in Gy from above.

(k,g)—embedding in Gy

AS for every g €KX(n,c) there must be a
b(n,c) ># k(n,c) .

(GO is universal for K(n,c)!) . We obtain that

This Unequality will prove the proposition.

Le_'"ﬂé_li #k(n,c)zn—z—n .e .C

. (k+1)2 (dk+1e
[

cn
Lemma 2:  b(n,c) < (TE)T ed? 4 ) en

From these two lemmas we can conclude the proposition:

As b{(n,c) >#K(n,c) , we obtain that



438

£ k+1 €-2, - -
)T 32 d(k+1)2(d &Y chn2n T, cn g-cn

men
(T c

L

A ruff estimation guarantees that

-2 2 2 1/2
(55 n®log(n) - 2 Tog(d)k n® -2 1ogd k ¢n) .
m>2

a '—C2—4a 1o (d)>0
X __._2__ 1 g R

Suppose that k t<a;nlog(n) ., Then as L2n we may conclude that
k<allogn.

Therefore we obtain:

We don't prove lemma 1.

Sketch of the proof of lemma 2: |et Al""’An be pairwise disjoint,
—————————=_Proor of lemma 2:

n
non-empty subsets of {l,...,n} with I#A. <92 and @

in the
. i o 2% 1n
i=1

Propositign.

We need the following sublemmas.

Sublemma 1: et R be the number of graphs of K(n,c) for which
2ddlemma 1:

there is a (k,z)-embedding H in GO such that for all
T€(l,...,n} , A. is the H-representant of the vertex i of G in
dk+1e

cn n
c ) :

C

G0 - Then R <

Sublemma ?2: et S be the number of choices of A1""’An such that
=2olemma Z:

there is a (k;2)-embedding § of Cy inm Gy for which A, is the
H-representant of i 1in GO for al1 €{1,.

L 3p {(k+1)g
Then 5 ¢ (mEMym “¥d

.

We don't prove these two SubTemmas here but show how they vield lemma 2-

As each g €K(n,c) contains Co we only may choose a tupel Al,--"An
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with the property of sublemma 2 in order to obtain a (k,#)-embedding

of 6 1
in GO.

As .
As...,A, cannot deliver a (k,2)-embedding in G, for more than

R .
] graphs of K(n,c) , it follows that b(n,c) <R-S which implies
emma 2,

[I1. Proof of theorem 3

We i ]
consider PC's whose processors are random access machines.
let q =27 for some integer p .
We :
need a graph G with the following properties:

L. = :
V(G)_VIUVZ, V1={a1,...,a }-

q
2. .

For each a,b, a-bsp and for each set of permutations
{ﬂl,...,wb} on {1,...,a} there exist pairwise disjoint pathes
fron i.a+j to i-a+n,(j) for all 0ci<a, 0= <b . Each of
these pathes has length at most ag Tog(a) for some syitable
a8>0 .

is called

Suc .
. h a graph is called g-permutation network (g-PN} - V4
he base of the gq-PN .

L . :
=fMma 3: There is a q-PN Gq with 2q log(n) vertices and degree 6.

Suc i
h'a G can be constructed similar to a Waksman permutation network

(Compare III).

B The following lemma implies theorem 3.
emma ;L i 2_pN . Then M_ s
(1o et M bea SPC whose graph is a n . n

7 1ogl0g(n))-universal for M(n,c) and the processors of the graph

to .
be simulated are simulated by processors from the base of M, -

-1 _ .
for=1 , the simulation is trivial.
ow the simulation

We show h
n?-PN Gy . Divide

- r
Suppose the lemma holds for n - 2°
for m-2.22" \yorks. Let M be specified by e
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the base of G0 into m parts Cl""’cm of length m . Each Ci
can be identified with a SPC Mi which is specified by a m-PN .

We want to simulate N €EM(m,3) . Let G be the graph of N . Consider
for each 1 €V(G) the set U (i) with s=2""% =2 Tog(n) .
1

Then #Us(i) <mf =n . Initialize G, such that G; simulates L; - the
induced subgraph of G with vertex set U (i) - for a1l i,

Claim 4: Consider the PC Ni which is the restriction of M on the
Processor set U (1) . If thé processors of N. have the same configu-
ration as the corresponding processors of N s then after 2r—3 steps
the configuration of the processor 1 of Ni resp. N are still the
same,

The proof 1is obvious.

The information about a Processor i 1is the contents of the communica-
tion registers of its neighbours during the last %—1og(n) steps.

The information is a string of length dg log(n) for some suitable ag-

The simulation for 272 =%-log(m) steps:

Do two times the following:
1. Simulate every N, in M; for % log(n) steps.

2. For all j transport from each Mi the information about the

processor Ri which simulates i » to all other processors which
simulate 1§ .

Let T(m) be the time necessary for %—1og(m) steps of such a simula-

tion. As 2) and 3) can be executed in logarithmic time we obtain the
recursion:

r r-1
(2% ) s21(22 7y 44,71

and
T(4) <a

for a suitable a . This recursion in solved bv
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r
T(22 ) <ar 2 -1

respectively T(n) 5%~1og(n) Toglog(n) .

This yi :
.1: yields a time loss of a; loglog(n) for a suitable a; >0 . a,
is

arger then 2a , because the time t which M works need not be

2 multiple of 7 log(n).
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