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Abstract:

We present a Linear Search Algorithm which

decides the n-dimensional knapsack problem

4
in n log(n) « O(ns) steps. This algorithm

works for inputs consisting of g numbers

tor some

arbitrary but fixed integer n.

This resylr solves an °Pen problem posed

for example jin [6] ang (7] by Dobkin /

Lipton and a,c.c. Yao, resp,. 71t destroys

the hope of Provirg large lower bounds for

this NF-complete froblem in the model of

Linear Search Algorithpg.
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"If £(x)>0 then goto o, else goto B."

n 3 3 i i .
Bere f:p »n g 4 affine function, i.e

Although it ig not true that during a com-
putation of a RaAM always affine functions
of the input are computed, LSA's are a
realistic model of computation in the
Sense that several lower bounds for LSA'S
can be extended to RAM's, for example the
2(n log(n)) lower bound for sorting ([2],
{3]) and the Q(nz) lower bound for the n-
dimensional knapsack problem, i.e. the

proklem to decide

K :={xrr", 3 Icil, ... n} with I x =1}

n + . L
iCI

{see [4],[5]y,

It is well known that xk=\U x_ is NP-
n21i 11
complete (gee [t1. 1n this paper we sha
see that for every fixed n, Kn can be de-
cided in polynepial time, namely we pre-
) 4 (n}}
Sent a LSA which decides K in 0(n log
n
steps.
5
This solves ope of the central problem
of the theory of 19a'¢ as stated for
éxample in [g] or [7], ang destroys the

hope tgo Prove large lower bounds for this

NP-complete Problem in the computational



model of LSA's.
The above result is a conclusion of the
construction of a LSA which decides a set
k
(\J Hi) N C where the Hi's are hyperpla-

i=1
. n . ) n
nes in R and C is a cube in R,

The time
it needs is polynomial in n and log (%),
where a is the edge length of C and r is
the "density" of {Hl,...,Hk}. This value
measures how close the hyperplanes lie in
Rn, that means how close any two affine
subspaces are, which are intersections of
some of the Hi's, and which do not inter-
Sect each other.

This algorithm is presented in chapter
2 after having introduced basic definitions
from linear algebra in chapter 1, Here al-
S0 an exact definition of LSA's can be
found. 1n chapter 3 we relate the density
of {Hll...,Hk} to the coefficients of the
Hi's. Here we extensively use ideas from
(8] where the volume of a polytope is re-
lated to the coefficients of its bounding
hyperplanes in order to estimate the run-
"ing time of Khachiyan's algorithm for
linear Programming.

In the last chapter the results of
¢hapter 1 and 2 are applied to achieve
the LSA for the n-dimensional knapsack
Problem mentioned above.

Ch . .
~Z2pter 1: Dpefinitions and Notations.

In thisg chapter we define LSA's and intro-
duce some notations from linear algebra.
¥e assume the reader to be familiar with
the basic concepts of this discipline as

affj . n
Ne, linear and convex subspaces of R,
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dimensions of such spaces, and determinants
of matrices etc. All definitions and lemmas
in the sequel are formulated relative to
Rn, but they can in a natural way be
transfered to statements relative to some
n-dimensional affine subspace of some Rm,
m2n, This will often be done without com-
ment,

A LSA consists of a finite set of label-
led instructions of the forms
1) @: If £(x)>0 then goto B, else goto ¥
2) o: accept
3) a: reject
where f:Rn + R is an affine function.

The language L decided by a LSA is the
set of inputs x = Rn, such that the LSA
started with X computes "accept". The num-
ber of steps the LSA reqguires is the maxi-
mum number of instructions executed during
some computation started with some input
from Rn.

A hyperplane H in Rn is a (n-1)-dimen-

n .
sional subspace of R, i.e.

,— n - = | - n -
H:={i{x € R , a+x-b=0j for some a € R ,b £ R.
H+(H—) is the left {right) halfspace of H,
w'(g7):={x € R", arx-b<(»)0}. Two hyper-

_ no— -
planes H={x € R, a*x=bs and

gr={x £ 8%, a'*x = b'} are parallel if

where d(x,y):=( (x,=y, )7 is the
i=1 N -
Euclidian distance between x and Y.
I1f we consider an instruction of type !
for LSA's we say that the hyperplane

H={x € Rn, £(x)=0} defines this instruc-

tion and often we represent an instruc-



tion by its defining hyperplane. This can
be done in several ways. For example, if
L is a (n-2)-dimensional space and ; gL,
then the affine hull of ; and L,
AEE(y, L) :=(Ay+(1-)) &, ¥ € L, X € R} is
a hyperplane.

Now let § = {Hl""'Hk} be a set of

hyperplanes in Rn.
k

ponents of Rn\(\j Hi) are the components
i=1

Then the connected com-

of §S.

Each of them is 3 (convex) polytope p,

i.e. the intersection of left and right

halfspaces of the Hi's. Let P be the

closure of p, Then the Hi's for which

Hi NP s a (n-l)-dimensional convex set

are the bounding hyperplanes of P. If for

some re{y,.,  k}, N Hi={;} and x ¢ P,
i€l

then x is a vertex of P. Let P pe a boun-~

ded Polytope with vertices {;1,...,; 1.
P
It is well known (see for example [9])

that

P= conv(;l,...,x Yi={

n
=1, ..,n, 13 =1}
1=1

The ball 8 1n g® .,y center y € 3" 14

BaxXimum radiyg of some ball Contained i

P.

Firally we introduyce tWo special types

of Polytopes, 3 cube € yity edge~1ength
2*C {5 the (unique) boundeq Component of

N
2n’

C ={x L
clxenr rx=d }, c,

fCl. + Where for i=1,...,n,

= n

*n-{x €nr 1%;=d. +a}
for some d +-v0d € R
1 n ’

n
C=conv | X {a
i=1

In otheyr words,

i’ di#a}) .
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Steps,

Let H be a hyperplane and A C H a (n-1)-
dimensional polytope and y € H. Then
P(;,A)=={A§+(1-X);,; € 2,281} is a pyranid

with top ; and base A. If A& _,.

are
1

.. A
q
the ((n-2)-dimensional) bounding hyper-
planes of A on H, then P(?,A) is a compo-
nent of {Aff(?,Al),...,Aff(y,Aq)}. Note

that P(y,a) is unbounded.

Chapter 2: A LSA for deciding a set of

hyperplanes.

t of
Let C by a cube and S={H1,...,Hk} a se

. con-
hyperplanes in R™. Ipn this chapter we
n
. ; R
Struct a LSA which decides S in C on R,

n
i.e. which decides a language L < R where
. .
{(VE) N c.
i=1 ¢ s c
The idea of this Lsa is to partition

Lncec-=

nes
to small cubes, such that the hyperpla

\ . have &
from S which intersect one of themn
common,

. hall
Non-empty intersection. We S

See that the problem to decide such a set
°f hyperplanes can be reduced to an anolo”
9ous problem in a5 (n-1)-dimensional spacé:
and thus can be solved recursively. How
aPPLly such LSA's for (n-1) -dimensional

Problems to n-dimensional ones is shown if

the following lemma.

et of
Lemma 1: pet S:={H1,...,Hk} be a s

n X A be 2
hyperplanes in RV, 1:= f\Hi*ﬂ- Let
i=1 —_ € jAN:E
Polytope on 4 hyperplane n, L ¢ H, v €
If s':={H1 N m,

i ded
S B N B} can be decide

. can
by a Lsa ip 3 °n H in t steps, then S

— nint
be decided by a 15 iy P(y,a) on R

too,



Proof: Let a LSA be given which decides S'
in A on H. Now replace its instructions as
follows: if some of them is defined by the
(n-2)-dimensional hyperplane H' on H, rep-
lace it by the instruction which is defined

by the hyperplane Aff(g,H') in Rn. Clearly

the new LSA decides S in P(y,Aa) on R'. B

In order to apply this lemma we have to
partition the cubé C to smaller cpbes, such
that for each of them the hyperplanes which
intersect it have a non-empty intersection.
For this purpose we call a number r>0

.,H }(On RnL if for

a density of s:={H_,..
1 K

every ball B with radius r it holds that

if for some ¥ < {1,...,k}, H, N B % ¢§ for
1
all i € 1, then (Y H. % 0.
i€ *
In the next chapter we shall see that

Such a density exists for every 5. We

assume this for a moment.

Lemma 2: rLet r>0 be a density of

S=
{le-v-,Hk} on Rn, then r is also a

de“si‘y of §'=
=1H H ,...,H N H on H, .

P . .
2r00f: Suppose that r is no density of S'
on with

H,- Then there is a ball B' on H,

t ; -
he radius r and center y € H,, say, such

t
hat for some 1 c {2,...,k}, By ne +#¢
for i € 1 ana (Y (u. n &
. i 1
But i€l
is would mean, that the ball B on R

) =0.

n

wit ; —
% radius r and center y fulfils:

H f
iM"B % fori g1 {1} and

- N

i€1

) = gl

(Hi n H1

. H
1€ru{y} 1

whi
ich contradicts the fact that r is a den~
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sity of S on Rn. 4

Now we are able to describe a LSA which de-

be the

cides $§ in C on Rn. Let C ,...,C2
n

1
bounding hyperplanes and a>0 the edge-length

of C, and r>0 a density of § U {Cl""'CZn}'

Furthermore let T(n,a,r) be the maximal num-

ber of steps which an optimal LSA needs in
order to decide some S in some cube C with

edge-length a, if r is a density for

s U {Cl""'CZn}' Then a simple divide-

and conquer algorithm guarantees that
L]
T(1,a,r) & [1og(—i- ]+ 3

subdivide the cube (i.e. the intervall of

length a) in [%] intervalls of length at
most r. Clearly there are only flog(% + 1)]

steps necessary to declide to which of these

intervalls some input X belongs. As only

one of the hyperplanes (which are single

points) can intersect such an intervall, as
its length is the density of S U {CI'C2}'
there are only three further instructions

k
necessary to decide whether x € \/ B,

i=1
two for asking whether x lies on the hyper-

plane of S which belongs to this intervall,

the third to accept or to reject.

Now let n>l.
Let d:=[2;££],
r
Dz{Di,...,D;,...,D?,...,Dg} a set cf hyper-
planes, such that for i=1,....,n, 3=1,...,4&,

D% is parallel to Ci and Ci+n' the distance

i i . r
between D% and D§+1 is —, and these hyper-
J n

planes partition C in cubes with edge-length

(resp. somewhat smaller at the boundaries

5 =

(*) All logarithms in this paper are to

the base 2.



of C). Note that these cubes are not open,

but contain some parts of their boundaries,
But this doesn't disturb what follows. The

LSA now begins as follows:

Part 1: Determine ip which of the cubes

defined by D the input x lies,

Remark 1:

I~

n-[log<5;3 + 1]

This can be done in

steps by using a divide-
and-conquer algorithm for each set

] i
{p* ,DY}

prereeDy of parallel hyperplanes,

i:I,...,n.
]

Remark 2: Suppose x ig determined to lie

in the cube C' with edge-length at most

-E. As this cube is containeq in a ball
vn

with radiys r, the set

T={i € {1,.. k), He oNMer ¢ ¢} fuleig

that L:= N Ho# 8 or 1

= q.
i€1

Let ; € L and Ci'i €1I'c {1,...,2n} be

those bounding hyperplanes of C witp

y € ci. Let FI""'Fs be the (n-2)~dimen~

sional intersections of two of the C,'sg,

P CI', each, Then for y ¢ {1,...,

s},

F;:: Aff(y,?j) is a hyperplane in Rn.

Fart 2. Deternm

ine in which component of

iF;,..A,Fé‘ X lies. (The Components cop.-

tain partg of their bcundaries.)

Remark 3. s ¢ En(n-l), becayse each
Cl,i:l,...,2n has a non—empty, i.e. (n-2)-
dimensional intersection with 2(n-1) many

other Cj's. As thys we have Counted each

1
5 n - 2{n-1) = 2n(n-1), Thus part 2

can be €xecuted jip 2n(n-1) Steps,
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Remark 4: Suppose that x lies in the com-

ponent O of {Fi,...,Fé}. Then Q is a pyra-
mid with top 5, a base of which is a subset
of some (n—l);dimensional cube Ci nc with
edge-length a on Ci for some i € 1'.

Part 3: Determine whether x lies on some
of the hyperplanes from s, if gNc+p.

Otherwise reject.

u-
: art 3 can be exec
Remark 5. By Lemma 1, P

. j €1}
ted as fast ag deciding S'={Hj n Cyr 3
A 4
(I is defined in remark 2, i in remark 4)
. C,
in aonc¢.. a is contained in a cube on ¢
1

is a
With edge-length a, and by Lemma 2, t

nec,, j=1l""2n}'

density for s' y {Cj i

steps.
Thus part 3 needs at most T(n-1,a,r) P

D and
Clearly the above algorithm is correct

we obtain )

. 1 > 1
T(l,a,r) < |‘log[i + 1y 3, and for n
r

T(n,a,r) s n[log(iéE + 1)] + 2n(n-1)

+ T(n-1,a,r).

2, a/n

Therefecre, log( 7

3
T(n,a,r) € n ) + 2n .
Iheorem 1: pet 5={H1,...,Hk} be a set of
hyperplanes ang C a cube in R" with edge-
length a > ¢ and bounding hyperplanes
{CI""’CZH}- Let r > 0 be a density of
s {C1""'C2h}‘ Then § can be decided BY

3 c.
n (]
3 LSA in ¢ on " j; 42 log(32)+2n” step

r

Chagter 3:

. set
Determining a Density of a

of ngerglanes.

e
In order to apply Theorem 1 to concret

ity
Problems we have to determine the densi

n
s in B -
of a set S={H1""'Hk} of hyperplane

: re-
The first step in tnis direction is to



late the density of S to the inner radii
of its components.

Lemma 3: The minimum inner radius of the
components of § is a density of S.

Proof: First we prove the lemma for the
case that k=n+1 and 8 has a bounded compo-
nent, In this case, S has exactly one boun-
ded component P, which is a simplex, i.e.
which has n+1 vertices. Thus each intersec-
tion of n of the hyperplanes of § inter-
sects in exactly one point. Now suppose
that B, a ball with radius r and center

Y € 8", is intersected by a set of hyper-
planes which has an empty intersection. BAs
Dentioned above this set must be S. If no
hyperplane from s separates y from P, then
Y€ and as B intersects all bounding hy-
Perplanes of P, its radius r is larger than
the inner radius of P. If there is-a hyper-
Plane, say Hi' from S which separates v
from p, 1et Q be the pyramid with bounding
hyperplanes Hj' $=1,...,n+1,3j % i, which
tontains ;. Let x be the top of Q. Then
*and y are separated by H , because x is

2 _
Vertex of p. Now let y' be a point on the

Straj . — —
Taight line between x and y, such that

1

7' and y are separated by Hi and d(;v,Hi)<r.
Le

B’ be the ball with radius r and cen-
ter ' v

T'Y' then H, intersects B' as dly',H,1<T

andg
4 all other Hj's intersect B', too,

bec .
ause they intersect B and § tapers to
x. e
But y' is neither separated from P by

B,
i "0 by any Hj from which B is not sepa-

rate ; . ;
d. Repeating this 'process until we
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have found a ball with radius r whese cen-
ter belongs to P, we have proved that r is
larger then the inner radius of P.

Now let k be arbitrary and let S=
{Hl,...,Hk}be any set of hyperplanes in Rn.
Let B be a ball with center ; and radius r,
for which the hyperplanes from S which in-

tersect B have an empty intersection., Let

1 c {i,...,k} have minimum cardinality such
that B, N B £ @ for i € I and (\ H.=@. Let
i X i
i€I
R:= /\ L{(H,) (*), then L is a linear sub-

i€I
space of Rn with dimensional p, say.
R

Wwe claim that #I=n-p+l.
As I is chosen minimally, it holds for
every i € I that R, := nH,¢¢. Let j €I
T
i#]
be fixed. As R, M Hj = ¢ we obtain that
i ;

This implies that

L(R,) © L(H,).
] 3
LR = n®) nut) = Ve ML)
i 3 i jer * 3
i%3
= r\ L(Hi) N L(E,) = R.
i€1 J
i%j
Thus R, has dimension p and therefore
J

#(1~{j}) 2 n-p which implies #I 2 n-p+l.

Now suppose that #I > n-p+l.

For some j € I let J C1 be chosen minimal-

= f\a_. Then #J=n-p and
igg *
3 £ J. Let 1'=3u{j} then #I'=n-p+1 and

1y such that Rj

:({\ Hi) N H, = ¢. Thus
i€1 ]
i%j

Yy #, = R_ N H,
iert 3 )

we obtain a contradiction to the minimalli-

. n
(*) For some affine subspace A in R, L(A)
denotes the linear subspace parallel to A,

L(a):={x-y | x € A} for some y €A,



ty of I.

Let A be the (n-p)-dimensional affine sub-
space of R" which contains ; and is ortho-
gonal to R, Then B'sB 0 A is a ball on A

with radius r which is interxrsected by every

H' :=H

., DA, 3" € I. This is true because
3 ]

the shortest connection bhetween } and sone
Hi' i € I is orthogonal to Hi and there-~
fore is contained in A, because A is ortho-
gonal to a subspace of Hi. Thus Hi nNBes%dg
implies Hi NARB 4 F. s clearly

{Hi N A, i € I} has a bounded component P
on A we know from the beginning of this
proof that r i1s larger then the inner ra-
dius of P. But then it is also larger than
the inner radius of the component P' of
EHL' i €1} in Rn, which contains P, and

therefore it is larger than the inner ra-

dius of any of the components of S which

are subsets of P'. |

Now we have restricted our problem of de-~

termining a density of § to bounding the

inner radii of its components.

This will be done by relating them to

the coefficients of the hyperplanes of §.
Let for i:i,...,k'ﬁi;:(; € Rn, 3% o= b })
i
a ={a P \F?n b €z .
i il int %t i . {2 is the
set of

integers). Then we say that S has
integer coefficients and define

w{8):=maxi a

ad=l, 00,
11

X. 3=1,...,n} ana
M(S}:= {ip ! =

(8} :=max{{ LR RIS PR SR CYEI RN
The following twg lenmas 4 and 5 ang the

corollary i are almost identical to the

lemmas 1 and 2 and the coxollary 1 from [8].
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Lemma 4: Every vertex of some component
P P

1
of S can be represented as (7;,...,—4

n

|
with pl,...,pn,q 3 Z,\q[ < m(S)
in

o, 1o lp,l € M) n

— ot
Proof: A vertex x:(xll---:xn) of some C

ponent of S is the intersection of n byper-

planes from S, wlog. of H, ,.../H - By

1 n

Cramexr's Rule we know that for

det(Dji) sists
P = o A=A/ where D con
i=t,...,n, Xi aet(D) '
T P n
c..,a, ) for i=lyeew
of the colums (ail' in

N . Ith
and D, arises from D by replacing its?
i.
column by (bl""'bn)'
i Juze
As det (D) # 0 and |det (D)| is the VO
' . its
of the hyperparallelepiped spanned by

column vectors, we may conclude:
1
o =n n
2.2 _ 2 sy
ldet (D) [ T a(0,a )S(nem(s)) " =P "
i=1

Mnalogously we obtain
: 1
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ldet (Di)i $n

cMis). ®

: houn'
Coxrollary 1: Let C be the cube with

_ n -
ding hyperplane Ci={x £ R, Xi’C}’

C.

ere
- n . n, ¥h
={x € r =-c for i=l,..¢
i+n v Xy }

1
[ 50
¢=n

M(S)® +1. Then

-empty
a) each component of § has a non ewpty
tersection with C, and

be
an
b) each vertex of § U {Cl,...:c be

2n
up”
opal B
represented as a vector of ratioP
. . ost
bers with common denominator at ®
1
=n

n « M(5)" in absolute value-

n
—_ . S |
Proof: Let Eiz{x € Rn, xi=0} for izl
om”
and let §'=5 | {Ex""'E }. Then each €
n

Thus
ponent of S' has at least one vertex:



by lemma 4 it has a non-empty intersection
with ¢, because M(S8')=M(S). To verify b)

we again apply lemma 4 and notice that

h. B

S)=m(S L
n(s)=m(s U {C1' iy

Lemma 5: The volume ?f each component of
-n

2 2 1
S is at least (n! + n . m(S)n ) .
Proof: By corollary 1 a) it suffices to

prove the assertion above for the bounded

}. as each of

components of S U {¢. ,...,C
1 2n

these components has at least n+l vertices,

its volume is at least the volume of

P=Conv (vo,...,vn), where v peeea Vo are n+l

0

of the above vertices which do not lie on
one hyperplane. As P is a simplex, its vo-

lume v(P) fulfils

1
v(P) = ~ | det(l .. ) | > 0, where the
n! vo'l v,

]
Vi $ are column vectors. For each
i=1,...,n we know from corollary 1 that its

¢
omponents hav? the same denominater q,
-n

H
Where 'qil < n2 . m(S)n.
Thus v(p) = _%.. 1 .
n: PR
190 2y
QO qn
det( )
v .

0% v, 4
As the matrix above only has integer
coefficients and as its determinant is un-

€qual to zero, its absolute value is at
least one. Therefore we obtain
1 1 1

— >
n! = T4
qu,"'lqn| n! nzn

v(P) 2

z B

n(s)”

No .
©W we are able to relate the inner radii

of
the components of S to M{S).
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Lemma 6: The inner radius of each component
of § is at least
2
2n 3n~, -1
(M(S) 0 ) .
Proof: Again it suffices to prove the lemma

for a bounded polytope P= Conv (vo,...,vn)

as in the proof of lemma 5. We first bound
v(P) from above in terms of M(8), n and
the so-called thickness d of P, i.e. the

of two parallel hyper-

minimum distance
planes, between which P lies. Let HI'HZ
be these hyperplanes. As P © C, we know

that P € Conv (HI'HZ) nec.
1
=n

2([n2 M(S)n]+1) be the edge-

Let ¢ =
length of C then we obtain:

v(P) € v(Conv (H ,H)) N C) < (are) ' lea,

Applying lemma 5 it follows:

an 2
-1 -1 -1
a2 (n!'n2 . m(S)n < /at T T
Now we apply a theorem due to Blaschke [10]

which says that the inner radius of a poly-

tope with thickness d is a least ot

This theorem and a ruff estimation prove

the lemma. B

Now we can bound the complexity of the LSA

from chapter 2.

Let § = {Hl""'Hk} be a set of

Theorem 2:

hyperplanes with integer coefficients, and

C a cube with edge-length a € Z, a > 0 and

bounding hyperplanes

;b oz = M(S U {C1""’c2n})'

C ,...,C2n

1
. n
Then § can be decided in C on R in
)

2 log(a) + 2n4 log(b) + 0(n3)

3n4 logi{n) + n



steps.
Proof: By lemma 3, each density of § is
bounded by the minimum inner radius of the
components of S. Imserting the bound for

it from lemma 6 in theoxrem 1 yields theo-

rem 2. &

Chapter 4: A LSA for the n-Dimensional

Knapsack Problem.

We now apply theorem 2 to the n-dimensional

knapsack problem, i.e. we want to decide

X :ﬂ{;ER?, 1c{!,...,n} with T x, = 1},
r

ifI

Thegrem 3: Kn can be decided by a LSA in

4 3
RT in n log{n) + 0{n") steps.

Proof: Let

c‘::e§€a“,x‘:0}, C. :={§ER“,X,=1} for
1 i i+n 1

t=1,...,n be the bounding hyperplanes of
the cube C with edge-length 1. as

MiK_ U {c.,...,c. h

. | n = 1, we know from

N

theorem 2 that Kn can be decided in ¢ on R“

) 4 . 3
in n login) + Q(n") steps. But for each
component of {C1'°"’C2n} except C, each

element x of it has a component x> 1,
1

Thus in such components we have to decige
-
KW, in R* for some n'

< n, where we only
have to consider those p' components of x
with x5 1. This holds
that [ x .=

i€r *°
X > 1, because x, 2 Q0 for isy, ...,
i i

1 if an i € 1 exists with

n.

Therefore, the following LSA decides K on
n

Rn.
S

]
If a={ then ﬁn consists of one point and

a%$ it is impossible

can be decided in 3 steps.
Let n > 1. Then we apply the following al-
gorithm.

Part 1: Determine in which component of

{c reeeiCy } %X lies and accept if it lies
1 n

on C l"'lC

n+1 2n°

_ .-
part 2: 1f x lies in C, then use the 3alg

it. If X
rithm from the first chapter for it.
. o-
lies in an other component, use this alg
nl
: i for
rithm recursively to decide Kn- in R,
the appropiate n' < n as described above.
i ds.
Let T{n) be the time this algorithm nee
Then T(1)=3 and for n>!
4 o(ns)}
T(n)$2n + max {T(n-1), n log(n) *

3
4 )}_
This implies that T(n)<n log(n) + 0(B
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