Acta Informatica 19, 269-296 (1983}

& Springer-Verlag 1983

Efficiency of Universal Parallel Computers

Friedhelm Meyer auf der Heide

Johann-Wolfgang-Goethe-Universitiit Frankfur(, Fachbereich Informatik,
>-6000 Frankfurt am Main (Fed. Rep.)

Summary. We consider parallel computers (PC’s) with fixed communication
network and bounded degree. We deal with the following question: How
efficiently can one PC, a so-called universal PC, simulate each PC with n
processors? This question is asked in [1] where a universal PC with O(n)
processors and time loss O(log(n)) is constructed. We improve this result in
two ways by construction two universal PC’s which many users can ef-
ficiently work with at the same time. The first has the same number of
processors and the same time loss as that one above. The second has
O(n' **) processors for an arbitrary ¢>0 but only time loss O(loglog(n)).
Finally we define three types of simulations the most general of which
includes all known simulations. We prove non-linear time-processor trade-
offs for universal PC’s associated with the above types.

Introduction

This paper deals with parallel computers. The model of parallel computation
we use is essentially due to Paul and Galil (see [2]). In this sense, a parallel
computer (PC) M is specified by a finite graph with bounded degree and by
processors which are attached to the vertices of the graph. These processors
are random access machines (see [3] or [1]).

Such a PC works as follows: In the beginning of a computation, some
special processors, the input-processors, contain the input. In one step all
processors execute at the same time one of the usual instructions for random
access machines or read the content of some fixed register of a processor which
is (relative to the graph) one of its neighbours. At the end of the computation,
some processors, the output-processors, contain the output.

A multi-purpose PC(MPC) is a PC whose processors are universal random
access machines. A program of a MPC consists of programs for all its pro-
cessors. Paul and Galil asked in [1] the following question which will be the

subject of this paper:

270 F. Meyer auf der Heide

How efficiently can one MPC simulate all other PC’s? We measure the
efficiency of such a simulation by the number of processors of the MPC and
the number of steps the MPC needs, relative to the PC being simulated. A
MPC which can simulated all PC’s from a certain set H of PC’s is callgd
universal for H. The exact definitions of the above terms can be found in
Chap. 1, a discussion of our model of parallel computation in [2].

Paul and Galil constructed a universal MPC for all PC’s with i processors
which itself has »n processors, too, and which has a time-loss O(log(n)), that
means, which is by a factor O(log(n)) slower than the PC being simulated.

If several users want to work with this MPC, that means, if several small
PC’s shall be simulated, the time-loss remains O(log(n)) although these PC’s
have much less than i processors.

The MPC used in [2] are the Cube-Connected Cycles which Preparata and
Vuillemin introduced in [4].

In Chap. 2 we generalize this MPC in such a way that we obtain a

universal MPC which can for each n'<n simulate lf;
each with a time-loss O(log(n')). "

In Chap. 3 we construct a universal MPC which can simulate any set of pPC’s
which together only have n processors. The simulation of a PC with n'=#
processors only has a time-loss of Q(loglog(n’)) and this universal MPC has
O(n' **) processors for an arbitrary ¢>0.

The remaining three chapters contain lower bounds for the efficiency of
universal MPC’s.

For this purpose we define three types of simulations. We suppose that at
each step of a simulation of a PC M by a universal MPC M, each processor
of M is simulated by at least one processor of M,, its representant(s). The
communication between processors is simulated by transporting the corre-
sponding informations along pathes in M. The time-loss then depends on the
lengthes of such pathes.

In Chap. 4 we present the following types of simulations:

j PC’s with »n" processors

Type 1. Each processor of M is simulated by one processor of M.

The universal MPC of Chap. 2 is of this type. Also the simulation of M by
M, (M and M, are described in Fig. 1) is of type 1. if for each ie{1,2.3} P Is
simulated by Q,,.

The time-loss of this simulation is 2.

Now let for ie{1.2.3} P, be simulated by Q, and Q; ;. Then obviously we¢
get a simulation of M by M, with time loss 1. because the neighbours of each
representant of some P, are representants of the neighbours of P. Generalizing
this kind of simulation we obtain:

Type 2. Each processor of M is simulated by at least one processor of M.

The simulations which are used by the universal MPC of Chap.3 do not
belong to one of the defined types. Those simulations allow that the repre-
sentants of some processor of M may vary dependent on the number of steps

of M being already simulated. The following type of simulations also includes
the universal MPC of Chap. 3:

Efficiency of Universal Parallel Computers 271

Py

P3 M

Q.
Fig. 1

Type 3. Each processor of M is at each time of the simulation simulated by at
least one processor of M.

In what follows, a universal MPC which only uses simulations of type i,
ie{1,2,3} is called universal of type i. Let M, be universal for all PC’s with n
processors. M, has m processors and the maximal time-loss of some simulation
M, executes let be k. In Chap. 5 we consider a family of graphs which we call
uniform distributors. The graph of the universal MPC from Chap.3 belongs to
this family. We prove:

If M, is universal of type3 and its graph is a uniform distributor, then
k=Q(log log(n)).

This bound is proved to be asymptotically tied in Chap.3. In Chap.6 we
prove time-processor trade-offs for universal parallel computers.

— If M, is universal of type 1, than k=Q(log(n)) or m=n"".
— If M, is universal of type 2, than m- k= Q(nlog(n)).
— If M, is universal of type 3, then m- k=Q(nlog(n)/loglog(n)).

The first trade-off tells us that a universal MPC of type 1 which is asymp-
totically faster than thatone constructed in Chap.2 must have an exponential
size.

The second trade-off is proved in Chap.2 to be asymptotically tied.

The third trade-off is not proved to be tied but it shows that also with the
help of the very general type 3 of simulations it is impossible to construct a
universal MPC without a significant loss of efficiency.

Chapter 1: Definitions

A parallel computer (PC) M is specified by a tupel (G. [, ¢.PS).

G is a finite graph, I and ¢ are two injective sequences of vertices of G, PS
is a set of processors which contains a processor B for each vertex i of G. P,
and F are neighbours, if the vertices i and j of G are neighbours in G. A
processor is a random access machine with the following modifications:

272 F. Meyer auf der Heide

— Let i be the j’th member of I, je[0, #1~—1]". Then P is the j'th input-
processor and has an input- but no output-tape.

— Let i be the j’th member of ¢, jef0, # ¢ —17.

Then P, is the j’th output-processor of M and has an output- but no input-tape.
— If i is neither a member of I nor of ¢, then P, has neither an input- nor an
output-tape.

— Each processor has a special register, its communication register, and is able
to read in one step the content of the communication register of one of its
neighbours.

M works as follows: In the beginning of the computation, each input-tape
contains a tupel from N*(:= {) N"). (The input-processors are able to read one

nz0
integer from their input-tapes in one step.)

In one step of the computation, all processors execute at the same time one
instruction of their programs. M stops, if all output-processors have stopped.

Suppose M has n input- and m output-processors. If in the beginning of the
computation, x;€IN* is written on the j’th input-tape, je(0,n—1], and in the
end, v,eN* je[0,m—1], is written on the j’th output-tape, then we say, M
started with £=(x,....,x,_,) computes F=(y,..., ¥, _) fe(N*)" is an input,
Fe(N*)™ an output for M.

The measure for the time-complexity of M started with X is the number of
steps, M executes. The size of M is the number of processors of M. The degree
of M is the degree of the graph G of M. We only consider families of PCs,
whose degree does not grow with its size.

A multi-purpose PC (MPC) is a PC whose processors are universal ran-
dom access machines. A program for such a MPC is given by programs for
each of its processors. As the set of processors of a MPC is completely defined
by this property. we denote 1t by the tupel (G, I, ¢) for short.

The task we want to set to a MPC M, =(G, I, () is the following: r users
B,.....B, want to let M, simulate their PC’s M,,.... M, at the same¢ tme.
Each of them gets a sequence of relative to / and ¢ consecutive input- and
output-processors. Each user B; writes a coding of his PC M, on the input-
tapes of his mput-processors. With the help of these codings, M, becomes
initialized such that the following holds:

If each user B; writes an input £, for his PC M, on his input-tapes, then M,
stops with the output on the output-tapes for B,, which is computed by M,
started with .

If M, can fullfil this task. we say. M, can simulate (M, ..., M,). Let H bc 4
set of finite tupels of PC's such that M, can simulate each tupel from H. Then
M, is called universal for H. We are not interested in the time which is needed
for initializing M, but only in the time which is necessary after the in-
itialization to compute the output. More exactly, we denote by the simulation-
time of M, for some PC M started with some input ¥ the maximal number of
steps which M needs to compute the output of M started with ¥ if

F‘or a sequence (set) A. # A denotes the length (cardinality) of 4. N denotes the set of ail non-
negative integers. For some a,belN. a<b. the intervall [a. b} is defined as {xeN, a<x<b}

Efficiency of Universal Parallel Computers 273

— M, is initialized for some tupel from H which contains M,

— the user B who wants to let M, simulate M writes the input X on his input-
tapes, and

— all other users write any inputs for their PC’s on their input-tapes.

Chapter 2

In this chapter, we shall for each n=22%.2% for some kelN construct a univer-

. . nl2) . ,

sal MPC which can for every n'<n be used to simulate lf/J PC’s of size n'.
= n

The simulation-time of some PC M is by a factor O(log(n')) slower than the
time M itself needs. This MPC has 3n processors and is an n-permuter.

By an n-permuter we mean a MPC M =(G, I, ¢) with the following proper-
ties:
— I=0. This sequence is called the base B of M. B has the length n.
— For each permutation = on [0, n—1] M can be initialized such that M
started with (x,, ..., x, ;)€IN" computes (X (). s Xpgu_ 1)) We say, M permutes
(xg, ..., X,_,) according to m. We specify M by (G, B). For some n<n let m:

=l’iJ and ,,...,m, be permutations on [0,n'—1]. Let 7 be the following

'

permutation on [0,n—1]:
For ie[1,m], je[(i—1)n’, in—1}, n(j)::n,-(j—(i—l)n')%»(i— hn'
For je[n' m,n—1], n(j):=J.
If M can permute (Xg....»X,_1) according to = then we say. M can
permute (x,, ..., X,_1) according to (7, ---- T p)- _
Now let n:=2%. 2% for some keN. We shall construct an n-permuter which

. n . ,
can for every n'<n permute (Xg» s Xp JENT according to l;l;J arbitrary

permutations on [0,n' — 1] in O(log(n)) steps. This constrgctipn is based on the
MPC which was introduced by Preparata and Vuillemin in [4]: the Cube-

Connected Cycles.
2.1. Definition (Preparata, Vuillemin). The graph Cl=(V.E) 18 defined as fol-
lows:

V=10, 1]% x [0.2*—1].

E:=E,UE,.
A pair Ly
e={(a0....,azk,pp).(bo,---~bzk,17(1)1cv
s in E,, iff (ag,....az_ 1) =(bo,--sbny) and g=(p+1)mod(2") or 4=
(p—1) mod(2).
e lies in E,, iff p=g and (do, --
p’'th position.

s 1) (bos ooy bow) differ exactly at the

: notes the largest (smallest) integer less (greater) or equal

For some real number x, {x] ([x7) de
to x

274 F. Meyer auf der Heide

2.2. Remark. C. has n=22"-2% vertices and degree 3. For some fixed
(g, ..., ap_1)E[0, 11%", the vertices {(aq,...,dp_,)} x [0,1]%" form a cycle of
length 2% with the help of edges from E,. The edges from E, join these circles
in such a way, that a cube is built whose vertices are the cycles. Let B be any
injective sequence consisting of all elements of V.

2.3. Definition (Preparata, Vuillemin). The MPC V! =(C}, B} is called the Cube-
Connected Cycles. In [4] it is proved:

2.4. Theorem. V,! is an n-permuter. For every permutation m on [0, n—1], it can
permute n numbers according to m in O(log(n)) steps.
Now consider the following graph:

2.5. Definition. C} is the graph which results from C} by inducing the following
additional edges:

If ae[0,1]%, p,pel0,2~1] and p+pe{2~'—1,3-2"1—1}, then
{(@, p).{a,p)} is an edge in C;. A subgraph of C7 which is induced by the
vertices {a} x [0,2—1] is shown in Fig. 2. B ~

For some bh=(by,...,by_,)e[0,11%* let B'i=(by.....bp . _,) and b*:
:(bZ""V"'ﬂbZ";l)'

Now consider for some @e[0,11%*"" the following subsets of V:

D;:={(b,p)eV]a=h', pe[2*~", 2"~ 1]},
DZ:={(b, p)eV|a=h?, pel0.2*~* ~11}.

We define the following mappings
Jio Di=[0,17%7 % [0,2F 1 —1]
for D2=[0, 1127 x[0,2¢ ' —1].

and

Let for he[0,17*
}11(}'_")::(})2’(*!+2k~33 ~-~5b2k‘1,b2k~l,

ﬂbzk/ x+2k-.3,1),

and B
hz(h)::(bp_k—s, ceny bzkn 1 lvbO’ cers bqu, 1),
then, _ ~
futb.p):=(h, (b).(p+ 253 mod (2 1)
15 0
14 1
13 2
12 3
1 4
10 5
9 6
8 7

Fig. 2. A modified cycle in €2

Efficiency of Universal Paralle] Computers 275

and) i
2B, p)i=(hy (B). (p+2"~) mod (24~ 1).

It can casily be verified that f,[f,] is an isomorphism between the sub-
graph of C2 being induced by Di[D] and CP ;. As the sets DL, DZ,
ae[0,17*" " form a disjoint partition of the vertex set V of CZ, we obtain
inductively:

2.6. Lemma. For each r<k, C} can be partitioned in n/2%" 2" pairwise disjoint
graphs which are isomorphic to C}.

In order to construct an n-permuter with graph C?, we recursively define a
base B! for it in which the vertices which belong to one subgraph being
isomorphic to some C}? are consecutive.

2
Let k>0. Bo=((0.0).(1,0).

Then we may assume that for each of the subgraphs G,,....G,. m
=n/22*"". 2k~ 1 which form the disjoint partition of G from Lemma 2.6, such a
base is already defined. Let them be called B(G)). ..., B(G,,). (The order of these
subgraphs may be arbitrary.) Then Bi:=(B(G). ... B(G,)) With the help of
Theorem 2.4 we now get:

2.7. Lemma. The MPC V2:=(C}. B2) is an n-permuter. For every r<k and n':
=2%".2" it can permute n arbitrary numbers according 1o 'l, arbitrary per-
mutations on [0,n — 1] in O(log(n)) steps. n

Now we shall construct a MPC ¥, for which the statement of the lemma
holds even if n’ is not of the form 27 2".

2.8. Definition. Let (C*, BY), (C%.B3) be two examplaries of V%,
=(d,,...,d,_,) and aeN, a=n.

Then C, , is the graph which results from C¥.C% and B, by adding edges
for every ie[0,n—1] from d; to the i'th element of BY and to the
((i+a) mod(n)'th element of B. V, , is the MPC (C, .. By

We now shall find an a such that for any n'=n holds: the neighbours of i’
consecutive elements of the base B, of ¥, either in C* or in (3% are com-
pletely contained in a subgraph being isomorphic to a “small” C;. “small”
means that log(n')= 0(log(2**27)).

For some p,xeN. let the inte
For some set EcN and some s,aeN let E+a((E+a
{y+a, yeE} (v +a) mod(s), yeE).

29. Lemma. Let b,,...,b,eN. by=1. such that for each i€[0.k
k=1

3§tii=:%‘-eﬁ\l. Let a:= ibi. then for every pel[0.b,—1]. ge[1.k] with

and let By:

rvall [xp.(x+1)p—1] be called a p-intervall.
y mod(s)) be the set

—1] it holds:

q Ec[0,b,—1] with length p it holds: E or

(E+a)mod(b,) is completely contained in a b, (- intervall.
k

i i=0
b,_y<p<b, and each interval

~1
Y ¢;b; with [0, d,—1] for

Proof. Each xe[0,b,—1] can be represented as
o

ief0,k—13.

276 F. Meyer auf der Heide

Let for ie[0,k—17 ¢, ¢!, ¢2, c2, c*e[o0, d;—1]. Let p, g, E be as defined in the
lemma. If E is completely contained in a bqﬂ-interlvall, we are ready. Other-
k—
wise E contains an x with the representation x=) ¢;b,. Let Xpi=x=b,, X,
i=g+1)
=x+b,. Then Ec[x,,x,~1] and x, 20, x,<h,, because otherwise E would
be contained in a b, -intervall.

Obviously x, and X, have the following representations:

k=1
xX;=Yclb, with cg=d,—1
i=q

and
1

k-
Xp= Y ¢?b, with c;=1.
i=g

Therefore, each ye[x,,x,~1] has the representation
k-1
y=zoci3 b with ¢}e{0,d,~1}.

Claim. y+a can not be divided by b, .

Proof. Suppose y+a can be divided by b, |, then ¢ =d,~1, ¢} =d;~2 for all
ie[l,q].

Especially, ¢;=d,—2¢[0, d,—1], because d,=3. This contradicts the above
representation of y.

Now we have that [x.x,—1]+a is completely contained in a by, 1"
intervall. As E<[x,, x, 17, it follows that E+a and therefore (E +a) mod(b,)
is completely contained in a b,. -intervall. [

k-1
Now choose by=1, b,=22'.2i o, i€[1.k] and a= Y b, From Lemma 2.9
i=0
it follows that the neighbours of the elements of each interval] E of consecuti\.’e
elements of the base B, of ¥, , either in CY or C¥ are completely contained in
a MPC V72 || where ¢ is defined by b, < #E<h,.
As log(#E):O(log(bq‘ }). we obtain:

2.10. Theorem. V=V, is a l-permuter with size 3n and degree 5, which can

. ,) n . .

for etery 1w <n permute n numbers accordmg to lv7J arbztrary permutations on
n

(0,0 =17 in O(log(n’y) steps. (The claims about the size and the degree of ¥,
follow from Remark 2.2 and the Definitions 2.5 and 2.8)

Now the same algorithm as Paul and Galil used in [2] to construct a
universal MPC for al] PC’s with n processors and fixed degree ¢ (independent
on n) yields the following theorem

2.11. Theorem, Le¢ H, be the ser of all tupels of PC’s with equal size and degree
¢, which together have ar most n processors. Then Vi is universal for H,.

Let M be a PC which appears in at least one tupel of H, and has the size
W n If M started with some input X executes t Steps to compute the output, the
simulation-time of Vi for M started with % is O(r - log(n")).

Efficiency of Universal Parallel Computers 271

Thus we have achieved that the simulation time for a PC M does no longer
depend on the size of the universal PC but only on thatone of M itself.

Chapter 3

Ip this chapter we construct for each neN a universal MPC which can
simulate all tupels of PC’s with degree ¢, which together have at most n
processors. The simulation-time of this MPC for a PC of size n’ <n with degree
¢ is only by a factor O((loglog(n')) slower than the PC itself. The MPC has size
O(n'*¢) for some arbitrary >0 and is a n-distributor.

An n-distributor is a MPC M,=(G, I, ¢) with I=0=(0,1,...,n—1). This
sequence is called the base B of M,. For arbitrary, pairwise disjoint subsets
A(_),....,A"*] of [0,n—1], (some of them may be empty,) it is possible to
initialize M, in such a way that M, started with some tupel
(Xg» ... x,_,)E(IN*)" (each x; may be a tupel of integers!) computes & tupel
(¥os ... v,_,) such that y,=x;, if i€4;, i, je[0,n—1]. Thus, for je[0,n—1]. x; is
transported to all processors of A;. We then say, M, distributes (Xgsoea Xy 1)
according to Ay, ..., A, 4.

' We specify M, by (G, B). (If each 4; has one element, M, permutes the
input.) We now shall construct a family {W,.neN} of n-distributors such that
W, can distribute some input (Xg, ..., X,_,)e(N*¥)" according to arbitrary sets
Ag....,A, , in O(log(n)+s) steps, if each x; has the length at most s. Further-

more, for arbitrary numbers rhg, ..., €N, Y msn, W, can be disjointly
i=1

oW, Thus, r users can use W, at the

partitioned into r distributors W, ..

same time as n-distributors W, , ie[1,r].
The construction of these MPC’s is based on so called Waksman-per-

mutation-networks, which are introduced by Waksman in [51

3.1. Definition (Waksman). The family (G¥.keN) of graphs is defined as fol-

lows:

— G* consists of two isolated vertices 0 and I
sequence of tops of G¥.

— For k>1. G¥ results from two exemp
sequence of 2* new tops.

For ie[0,2%~' —1], the i"th of these tops is joint with the I'th top of G, and
the (i+2%~'yth top of G,. For je[2+~1,2*—1], the I'th of these tops is joint
with the (i— 2% !')'th top of G, and the 'th top of G,.

The concatination of the bases of G, and G, form the base of G¢. The
graph G} which is constructed in [5] is the following: G, consists of two
exemplaries H, and H, of G- Additionally, there are edges for every ie[0.n—1]
between the i-th vertices of the bases of H, and H, and the i'th vertex of
H,(H,) and the (i+ 1)th vertex of H,(H,), if i is even {odd). The tops of H, are
the sources, those of H, the sinks of G!. The two exemplaries of G¥ | in H,
are called B, and B,, those in H, Bs and B,.

The construction of G is illustrated in Fig. 3.

(0,1) is the base and the

laries G, and G, of Gf_, and a

278 F. Meyer auf der Heide

Sources of G,
A Tops of H,

Sinks of GL
~——

...... 2 Tops of H 2
Fig. 3. The graph G}

In the following construction, the base of H, will become the base of a
distributor. Waksman proved in [3]:

) R
3.2. Theorem (Waksman). For each keN, G is a 2-permutation-network, i.e. G,
contains for each permutation 1 on [0,2—17 2* pairwise disjoint pathes of

length 2k —1, such that the i’th of these pathes join the i’th source and the n(i)'th
sink of Gy, ie[0,2*—17.

This theorem shows that the MPC with graph G, whose input-processors
belong to the sources and whose output-processors to the sinks of G} can be
initialized for each permutation 7 on [0, 217, such that this MPC started
With (xo. ... x5)e(IN*)2* computes (xﬂ(o),...,xn(zkfl)), If s is the maximal

length of the x;s. G! needs O(k+5) steps. Now let us consider the following
graph:

3.3, Definition. Let ne[2*"1 41,247, Then G} is the subgraph of G, which is
induced by the first n sources of Gy and by B, (compare Fig. 3). Additionally, it

contains edges for each ie[0, 2+ —2] between the i’th and the (i+1)th vertex
of the base of B, .

This graph is illustrated in Fig. 4.
Now let 7 be a permutation on [0, n — 1jand R, ..., R;, | the first n of the

2* pathes in G!. given by Theorem 3.2 for a permutation on [0, 2*—1] whose
restriction on [0, n — 17is n.

»
; [The first n tops of Gy

__________ ®) Base of Bj { with new edges)
Fig. 4. The graph G2

Efficiency of Universal Parallel Computers 279

Now we subdivide for each ie[0,n—1] the path R; into four parts a;, S;. T7,
b;.
a, is the first vertex of R}, S; the part which lies in H,, T, thatone in H, and
b, is the last vertex of R;. Now we draw the pathes §;, T; (which are pathes in
an exemplary of B¥ ,!) into B, and call them §; and T,. Now it is obvious that
there is a path R, for each ic[0,n—1] in G2, which joins the i'th and the n(iyth
source of G2 and which only uses vertices from S, and T, in B,. (The new edges
in the base of G2 play the role of the edges between H, and H, in G,.) As the
pathes Rj, ..., R, , are pairwise disjoint each vertex of G? is contained in at
most 4 pathes from R, ..., R, ;.

Thus we obtain:

3.4. Lemma. For each permutation m on [0, n—1] there are pathes Rq..... R,
in G2 such that for each i[0,n—1] the path R, joins the i'th and the m(iyth
source of G2. Each vertex of G? belongs to at most 4 of these pathes. Each of
these pathes has the length at most 2Mlog(n)]—1.

Now consider the following graph:
3.5. Definition. G, is the graph with vertex set .V: {cijs ie[O.n.—lj.
Jjel0,[log(n)]1—11}. 4{cij,ci,j,}<:V, j<j, is an edge of G, if j =j.+1 anq‘elther
i=i or |i—i|=2/, or if j=j=0 and |i—il=L The MPC W, is specified by
(G,, B,) where B, :={c;q, i€[0,n— 1]). Figure 5 illustrates this graph.

3.6. Remark. G? is a subgraph of G, in which for i€[0,n—17 ¢; g -1 1 the
i'th source of G2

As we have chosen the first n vertices of the base of H, (see Fig.3) instead
of its sources as the base of G;, we have achieved that the subgraph Gt of G;
which is for some 0sas<b=n—1 induced by the vertices {c;;. i.e[a, b],
jel0, [log(b—a+1)]—1] is isomorphic to G?_,., in such a way that its base

Biti=(c,,, i€[a,b]) is isomorphic to the base of Gi_,., and consists of
¢ ready to prove:

consecutive vertices of the base of G;. Now we ar
3.7. Theorem. W, is an n-distributor with the following properties:

El: W, has n[log(n)] vertices and degree 6.

E2: For a,be[0,n—1], a<bh, the MPC (G*P. B&") is an exemplary of W, . ..
where B®? consists of consecutive vertices of B,.

E3: Let A,,....,A,_; be pairwise disjoint subsets of [0.n—1] am){ let
(Xg, .y X,)E(IN¥Y" such that each x; has the length at most s. then W, can

distribute (xg, .., X,_ 1) according to Ag. .- A, | in O(log(n)+s) steps.
p

87

Fig. 5. The graph G,

280 F. Meyer auf der Heide

Proof. EI and E2 follow from the Definition 3.5. In order to prove E3, let
Ag,...,A,_, befixed and let i <... <i, chosen such that {i,, iy =1jel0,n—1],
A;+0).

Jj-1
Lets,:=0and s;=) #A4, for je[2,p+1].
1=1

Now we consider two permutations 7 and 7' on [0.n—1] with the follow-
ing properties:

n(i)=s; for je[l,pl,
m([s;,8;,,— 1D =4, forall je[l.p].

As [s5;.5;, ,—1]=s;, —s;= %A, , such a ' exists.

Now let R,....,R,_, and Rj,...,R, , be the pathes given by Lemma 3.4
for = and #".

Now an input (x,, ..., x,_ Je(IN*)" is distributed as follows:

1) For all ie[0,n~1], transport x, from the i’th vertex of the base to the
i’th source.

2) For all ie[0,n— 1], transport x, from the i"th source to the n(iyth source
along the pathes Ry..... R

n—1°
Remark. For each je[l.p], x; is contained in the s;th source of G,.

3) For all je[l, p] transport x; from the s;'th source to all I'th sources with
lels;. s, (—11

Remark. This transport can obviously be executed along trees in G,,.

(4) For all je[1,p] and all [e[s,s;, , —1], transport x;, from the I'th to the
n(l)’th source along the pathes Ry, ..., R]

n—1-

Remark. Now for each je[1, p], x;; is contained in every I’th source with le ;-

Sy For every je[l,p] and every le4, , transport x; from the I'th source t0
the I'th vertex of the base. ’ ’

Thereby, we have distributed (xq, ..., x,_,) according to Ag, ..., 4, 1

The Lemmas 3.4 and 3.6 imply that for the parts 2 and 4. O(log(n) +s) steps
are needed, if each x,. ie[0.n—17. has length at most s. Obviously the same
holds for the other parts and thereby the theorem is proved. [

Now we shall show that W, is a universal MPC. Let M be a PC with size 1
and degree ¢. B,..... P, _, are the processors of M.

For some processor P of M let K, be a configuration of F. K:
=(K,.....K,) then is called a configuration of M. I{ M has the configuration
K. executes r steps, and has afterwards the configuration K', then K' is called
the r'th successor configuration of K.

For some ie[0.n—~1], Info(M. P, K, r) denotes the sequence of contents of
communication registers of neighbours of P, which are read by P, during the 7
steps of the computation of M started in configuration K.

If A is a subset of the vertices of the graph G of M, then the PC which is
defined by the subgraph of G being induced by A and the processors of M
belonging to vertices of A is called the restriction M' of M on A.

Efficiency of Universal Parallel Computers 281

If P is a processor of M’ and Q a neighbour of P in M which doesn’t
belong to A, then the instruction “read the content of the communication
register of Q™ is replaced by “read a zero”.

Now let A be a subset of the vertices of G which contains all vertices from
the r-environment of some processor B, of M. Let M’ be the restriction of M
on 4, K=(K,,..,K, ,)a configuration of M and L the configuration (K. P
Is processor of M').

Then, obviously the following lemma holds:

38. Lemma. Suppose M and M’ are started with the configurations K and L.
Then the configurations of B in the v'th successor configurations of K and L in
M and M’ are the same. Furthermore, Info(M, P, K, r)=Info(M’, B, L,y

Now we shall define a simulation of M by the m-distributor W, , where m is
chosen in a suitable way. For some suitable reN let M;, ie[0,n—1]. be the
restriction of M to the r-environment of PB. The idea of the simulation is the
following: In order to simulate M, we recursively simulate all M/’s at the same
time by “small” W,,’s which are contained in W, by Theorem 3.7.

By Lemma 3.8 we know that after the simulation of r steps of the Ms
there is for every ie[0,1n—1] at least one processor of M which simulates P,
“correctly” relative to M. This will be called the main-representant of P. The
other processors, which simulate P, but perhaps go wrong sometimes, are called
Potential representants of P. After the simulation of these r steps we use that
W, is a m-distributor to transport the information about the “tr_ue” con-
figuration of every P from its main representant to all its potential repre-
sentants.

They execute an “updating” to compute the “true” configuration of P, too.

Now we describe the parameters m, r and the size of M, dependept on n.

The size of every M, is f(n), the length m of the base of W, is gln), the
number » of steps, for which we simulate the M,’s, is h(n).

The simulation is illustrated in Fig. 6.

Wew
1 2 i n
, . . W
Wzl!mn W;:(./’(nn wzu‘mn) g finn
Here M, is
simulated.
Fig. 6

3.9. Definition. Let pelN, p>1. Then f,g, h: N—N are defined as follows:

— For n<e? (¢ is the degree of M), J=hm=1. i 0 and
— For n>¢? let keN be chosen such that c” <n<c” ™. Then f(n)=c¢ an

h(n)=pt-1,

- g(n)=Ln‘jHJ.
Thus f(njxn# and h(n)xlog(n).

282 F. Meyer auf der Heide

3.10. Remark. f, g h have the following properties:

a) f(ny<nfor all n>1.

b) If G is a graph of degree ¢ and x a vertex of G, then the h(n)-
environment of x has at most n vertices,

¢) g(n)=n-g(f(n) for all neN.

By 3.10b), there is for every i€[0,n—17 a set D, of processors of M which
contains the h(f(n))-environment of P and has f(n) elements. The restriction of
M on D, let be called M,.

Because of 3.10¢) the MPC’s

W,: = W00 i+ Datrm 1 (compare Theorem 3.7)
exist for every ie[0,n—1].

By Theorem 3.7 we know that cach of these Wrs is a g(f(n))-distributor
w/.;(f(n))'

Now we define inductively the potential and main representants of the
processors of M in W, -

Let n<c®, then for every ie[0,n—1], the i’th vertex of the base of W,
the (only) potential and the main representant of P,

Let n2>cP. Because of 3.10a) we may inductively assume that for every
j€l0,n—17 the potential representants and the main representant of every
processor of M; in Wj are already defined, because M; has f(n) processors and
W, is the g(f(n))-distributor W, o
For each ie[0, n—1], a vertex Q of the base of Wg(") is a potential repre-
sentant of £ in W, iff there is a je[0, n— 1] such that P, is a processor of M,
and Q is a potential representant of F, (the processor of M) in W,

The main fepresentant of K in W, is the main representant of P, (the
processor of M) in W,.

Now we shall describe how h(n) steps of M can be simulated by W, .

Let K=(K,. -« K,_ 1) be a configuration of M.

We say. W... 18 prepared for K., if for every i€[0,n—1], every potential
representant of B in W, has stored K..

Let K=(K,, - K, |) be the h(nyth successor configuration of K. We say,
W can compute K from K, if it is possible to initialize W,., in such a way
that the following holds: If Wem is prepared for K and starts its computation,
then afterwards W, is prepared for K and K and for every ie[0,n—1] the
main representant of P, has stored Info(M, P, K, hin)).

is

3.11. Lemma. If W Is prepared Jor K then it can compute K from K in
O(log(n) log log(n)) steps.

As h(n)=0(log(n)), Wem needs O(loglog(n)) steps on an average to simulate
one step of M.

Proof of Lemma 3.11. We describe a recursive program for W,
putes K from K. _

If n<c? (compare Definition 3.9), it is obviously possible to compute K
from K with the help of the techniques used in the proof of Theorem 2.11 in a
constant (i.e. only dependent on ¢ and p) number of steps.

which com-

Efficiency of Universal Parallel Computers 283

Now let n=c?. Then we denote the A(f(n))'th successor configuration of K
by K'=(Kjy,...,K,). For ief0, n—l] let I/ be the configuration (K, P is
processor of M,) for M, and I'= (L;, B is processor of M) its h(f()) th
successor configuration. As Wm is prepared for K, it follows from the de-
finition of the potential and main representants that for every ie{0,n—1], W,
prepared for [,

Our simulation begins as follows:

Part 1. For every ie[0,n—1], W, computes I from L. This is done recursively.

Now we know that for ie[0,n—1] the main representant Q of P (the
processor of M,) in W, has stored Info(M,, P, L, h(f(n)). By Lemma 3.8 it
follows that this tupel is Info (M, P, K, h{f(n)), as Q is the main representant of
£ (the processor of M) in W,,, too.

Now let je[0, g(n)—1], ie[0,n—1] such that the f'th vertex of the base of
Wewm is the main representant of P. Then x;:=Info(M, E, K, h(f(n)) and B; is
the set of all potential representants of P. All other x;'s and Bjs, je[0, g(n) - 1].

are empty.

Part 2. Distribute (x,, cees Xy 1) @ccording to (Bg, ..., By,).
Now, for every ie[0,n— 1], every potential representant of P has stored K;
and Info(M, B, K, h(f (n))). Therefore the following program can be executed:

Part 3. For every ie[0,n— 1], each potentiaf representant of £, computes K.

After having executed these three parts, W, is prepared for K and K and
for every ie[0,n—1], the main representant of P in W, has stored
Info(M, B, K, h(f ().

times. Thereby, W, . computes

Now we execute these three parts f()) -

K from K. We have to count the number of steps, this program needs.

Let T(n) be the maximal number of steps which W, needs to compute the
h(nyth successor configuration of some configuration of some PC with size n
and degree c.

Then, part 1 needs T(f(n) steps. As Info(M,K, B
length h(f(n)) for every ic[0,n—1], we know from Theorem 3.7 that part

needs O(log(g(n)-+h(f(n) steps. Obviously, part 3 needs O(h(f(m))) steps.

h(f(n})) has at most
5

h(n) . .
As each part is executed ———— times we obtain:

h(f(n)

h(n)
)+ O(log(g(n))+ h(f (1))
T(”)éh(f(n))((f (n)+Ollog(g(n))

for n>¢P, T(n)=constant otherwise.
h(n) -
.) =p, loglg(n)=0(og(n). h(fin)
By Definition 3.9 we know that —_—h(f(n)) p, logig

1
=0O(log(n)) and f(n)<|nr).
Therefore e get:
T(n)gp(T([n;J)-{-0(log(n))) for n=c? and therefore T(n)=O(log(n)loglog(n).
which proves the lemma. [

284 F. Meyer auf der Heide

In order to simulate M started with some input (x,.xqfl)e(]N*)q, %(")
first has to transport for each ie[0, g —1] the input from the 4'th element of its
base to all potential representants of the i'th input processor of M. As W, 1s a
distributor, this can be done in time O(log(g(n))+s), where s is the maximgl
length of the x;'s. Afterwards it simulates M as described in Lemma 3.11, until
M has stopped. Then the output is transported from the main representants of
the output processors of M to the corresponding vertices of the base of Wy,
This needs O(log(g(n))+ ') steps, if every element of the output tupel has length
at most s'. Obviously, s,5'<¢, if ¢t is the number of steps M executes started
with (xp, ..., x,) Therefore we obtain that the simulation time of M started
with (xg, ..., x,_;) is O(tloglog(n)+log(n)).

Now let H, be the set of all tupels of PC’s M,, ..., M, with degree ¢ for

which the following holds: if n, is the size of M,, ie[1,r], then) g(n)<gln).
i=1
(H, contains among other tupels all tupels which consist of PC’s with degree ¢.
which together have at most n processors.)
With the help of the above and Theorem 3.7, E2 we obtain:
1

3.12. Theorem. Let peN, g(n):anHllej for every neIN. Then W, is univeil'-
sal for H,. Let M be a PC with size n' <n and degree ¢, which needs t steps, if
it is started with some input . Then the simulation time of M started with X in
W, is O(tloglog(n')+log(n)).

Chapter 4: Types of Simulations.

In this chapter we present three types of simulations of a PC M by a MPC M-
In the two following chapters we prove lower bound for the efficiency of
universal MPC’s which can simulate all PC’s with n processors and degree ¢,
and which only use simulations of one of the above types.

The efficiency of such a universal MPC M, we measure by its size and its
time-loss, i.e. the maximal factor by which the time some PC M with size 7
and degree ¢ needs started with some input ¥ and the simulation time of M,
for M started with ¥ differ.

We assume that each processor of the PC M being simulated by M, is at
every time of the simulation simulated by at least one processor of M. its
representant. Furthermore. each representant of some processor P of M shall at
cach time be capable to communicate with representants of all the neighbours
of P. This communication is executed along transport pathes. Their lengthes
determine the time-loss of the simulation.

As these kinds of simulations only depend on the graph of the PC’s being
simulated, we define the types of simulations in a graphtheoretical way.

Let G(n, ¢) denote the set of all graphs with n vertices and degree c.

Let M, be an arbitrary graph with vertex set V, and GeGin. ¢) a graph with
vertex set [1,n].

The easiest type of simulations we present here is the following: Mg
simulates G by attaching one representant ie. one vertex of M, to each vertex
of G. The communication between neighbours in G is simulated by transport-

Efficiency of Universal Paralle] Computers 285

ing the corresponding information along transport pathes between their repre-
sentants. These simulations we will call “of type 17

In the introduction of this paper we have seen an example which shows
that it can be reasonable to attach several representants to every processor of
G. Such simulations are of type 2.

4.1. Definition. A simulation of G by M, of type 2 is specified by n pairwise
disjoint, nonempty subsets By, ..., B, of ¥,, and a set W of pathes in M,.

For ie[1.n], B, is the set of representants of the vertex i of G. W contains
for all neighbouring vertices i and j of G and every representant of i a path
from this representant to some representant of j. These pathes are called
transport pathes. The time-loss of such a simulation is the length of a longest

n

transport path. The number of representants is Y #B,. M, is k-universal

i=1
((h, k)-universal) for G(n,c) of type 2, if for every graph GeG{n.c) there is a
simulation of G by M, of type 2 with time loss k (which uses at most A
representants).

4.2. Definition. M, is k-universal for G(n,c) of type 1 if it is (n, k)-universal for
G(n, c) of type 2.

In Chap.2 we have got to know a O(log(n))-universal MPC for G{n. ¢} of
type 1.

pThe simulations executed by the MPC from Chap.3 are not of type [or 2.

In these simulations, the sets of representants vary dependent on tirpe. For
example sometimes only the main representants are representants, ie. SImulate
“correctly”, some times all potential representants are representants in the
sense described in the beginning of this chapter.

Also the transport pathes vary dependent on time and the numb_er of steps
necessary to simulate one step of G, too. We now shall define a third type of
simulations which includes the simulations shown in Chap. 3.

4.3. Definition. A simulation of T steps of G by M, of type 3 is specified by n
pairwise disjoint, nonempty subsets B, ,.... B, , of ¥, for every te[0,T]. and
by sets W, of pathes of M, for every te[1, T]. . ')

For te[0,T], je[l,n). B;, is the set of representants of i at time (. For
1€[1, T], W, contains for every pair i, j of vertices of G which are nenghbours or
which fullfil i=; and for every representant of i at time f a path to some
representant of j at time (r—1). Such a path is a t-transport path and the
length of a longest t-transport path is the t-time-loss k.. The time-loss of the
simulation is %_ Y k,. The number of representants of this simulation 1s

f=1

max {i #B,,.te[0, T]}.

M, is k-universal ((h, k)-universal) for G(n, c) of type 3, if for every GEG,(}ZIfC}I)
and every TeN there is a simulation of T steps of G by M, of type 3 whic
has a time-loss of at most k (and uses at most h representants).

286 F. Meyer auf der Heide

If x is a representant at time te[1, T] of a vertex i of G in M, then we call
each representant at time (¢ —1) which is connected to x by a t-transport path
G a predecessor of x (on level {t —1)).

Inductively, we call for j>1 every predecessor of a predecessor of x on level
t—(j—1) a predecessor of x on level t—j, if j<t. We finish this chapter with the
following observation:

4.4. Remark. If t=j and i and i’ are vertices of G, such that i’ is containegi in
the j-environment of i, then for every representant x of i at time t there 1s a
predecessor of x on level (r—j) which is a representant of i’ at time {t —j).

Chapter 5

In this chapter we prove a lower bound for the time-loss of a universal MPC
for G(n,c) of type 3 whose graph is a so-called uniform distributor. These
graphs are interesting, because the graph of the universal MPC from Chap. 3
belongs to them. We shall show that this MPC has an asymptotically minimal

time-loss among all universal MPC’s for G(n,c) of type 3 whose graph is a
uniform distributor.

5.1. Definition. A uniform n-distributor is a graph which has » distinguished
vertices by, ..., b,, the base B of the graph, with the property: For all b, b,eB,
d(b,. b,)=Q(og(lp—q))." o

Obviously the graphs of the distributors of chapter 3 are uniform distri-
butors.

Let D be a balanced, binary tree with n vertices.

5.2. Theorem. Let meN, M, a uniform m-distributor, and T=|(log(n)]. Then
every simulation of T steps of D by M, of type 3, which only uses vertices of its
base as representants, has a time-loss of Q(loglog(n)).

Especially, M, is Q(loglog(n))-universal for G(n,c) of type 3, if it only uses
vertices of its base as representants.

Proof. Let Tz{log(n)]. We consider a simulation of T steps of D by M, of
type 3. which only uses vertices of its base as representants. Let a>0 chosen
such that d(b,.b)za-log(lp—q)) for p,qe[1.n]. Let b, be a representant of a
vertex of D at time 1. te[0, T). Let the t-time-loss of this simulation be k,. If b,
is a predecessor (if b,. we have d(b,.b)<k, Therefore, a-log(lp—gl)<k, which

t

implies. {p—¢|<2¢. Induction guarantees that for each predecessor b, of b, on
level (t—j). j=t. it holds that lr—pl_,<zji1 2’%5.

Therefore it follows: "
5.3. Lemma. b, has at most

i1 ke
2- Z 2 predecessors on level (t—j).
i=0

? dib,.b,) is the length of a shortest path in the graph between b, and b,

Efficiency of Universal Parallel Computers 287

Now let te[[log(n)], T, jel1, [log(m]—1], and b, a representant of the
root of D at time t. Then by Remark 4.4 every vertex of the j-environment of
this root has a representant at time (£ —)) which is a predecessor of b, on level
(t—j)- As these representants are pairwise disjoint and the j-environment of this
root has 27+ ' —1 elements (j<|log(m)]—11) it follows by Lemma 5.3:

Jo1 ke

2122y 2.

i=0

Therefore, there is a i,e[0,j—1], such that
ke —ip

2T 1£2:5-2 4.

Let t,=t—i,, then we obtain:

2j+1_1
k,OZa-log(57)ga’-j for some suitable a'>0.

Thus we have proved:

54. Lemma. There is a' =0 such that for every te[[logim]. T] and ecery
jell, |log(n)]—1], there is a toelt—j+ 1.t such that k, Zd'j.

Now let h::Llog(Llog(n)J—l)J. Then 2"<|logm)]—1. We partition for
some re[0, h] the intervall [t—2"+1,t] in 2h=r pairwise disjoint intervalls of
length 2". By Lemma 5.4, each intervall contains a t, with k,za?.

Let C, denote the set of numbers t,e[t—2"+1,1] with k, za'2’, then we
may conclude that #C, 22" and C,= C,_ ,c..cCo Obviously, for every
re[0, k] there is a subset C, of C, with 4,22~ " such that Co..... C, are

pairwise disjoint. Thus we obtain:

2k 1 h
Z kt—ig Z Z kr’
) r=01eC,
h
= Y arzad Y 2"”'12':(1’~h-2"’1
r=01eC, r—0

>ga-2"-loglog(n) for some suitable @>0.

Let S::l;;'J (=1, because T=|log(n)])
Now we partition the intervall [1. 7] in (s+1) (not neccecarily pairwise
disjoint) intervalls I,,.... Iy, 1 Of length 2".
Obviously this can be done in such a wa
contained in at most two of these intervalls.
Therefore we get:

y that every element of [1.7] 1s

+1
Yy Zlk,.
=1tel;

1

b =

s
i

T
T k2
i=1

238 F. Meyer auf der Heide

As ¥ k, is proved to be at least

tel;

a-2"-loglog(n) for every jefl,s+1],

T
and as s+1 g? it follows:

T 1s+
Y kzz Y a 2% Joglog{n)
i=1 2j=l
=L1.4.(s+1)-2" loglog(n)
1
g% ;;2 loglog(n)= ETﬁloglog(n).

1 :
Thus the time-loss T ¥ k, is bounded from below by ;-a-loglog(n) which
i=1

proves Theorem 5.2. (O

In order to finish this chapter we notice that for a k-universal uniform m-
distributor of type 2 which only uses vertices of its base as representants it
follows that k= Q(log(n)).

This follows by evaluating Lemma 5.4 for j=|log(n)|—1, and by taking
into consideration that a simulation of type 2 is a simulation of type 3 in
which (among other things) all r-time-losses are equal.

Chapter 6

In this chapter we prove that universal MPC’s for G(n, ¢) of type 1, 2, or 3 can

not have a “small” time-loss and a “small” number of processors at the some
time.

In what follows let ¢, d 2 3.

6.1. Theorem. Let M eGim,d) be (h.k)-universal for G{(n,c) of type 2 then hok
=Q(nlog(n)) or m= g

6.2. Corollary. Let M eGim,d) be k-universal for G{n,c) of type 1, then k
=Qtlog(n)y or m=n™",

Thus a universal MPC of type 1 which has an asymptotically smaller time-
loss than that one from Chap. 2 has an exponential size.

6.3. Corollary. Let M,eG(m.d) be k-universal for G(n,c) of type 2. Then m-k
=Qfn log(n)).

This bound is asymptotically achieved by the universal MPC of Chap. 2.
6.4. Theorem. Ler M,eG(m,d) be (h, k)-universal for G(n,c) of type 3. Then h-k

(nlog(n))

=Q(nlog(n)/loglog(n)) or m=n_*

Efficiency of Universal Parallel Computers 289

6.5. Corollary. Let M eG(m.,d) be k-universal for G(n,c) of type 3. Then m-k
=Q(n log(n)/log log(n)).

The corollaries are easy conclusions of the theorems.

The rest of this paper is devoted to the proofs of the Theorems 6.1 and 6.4.

These proofs follow this pattern:

Let M,eG(m,d).

To each simulation S of a graph by M, of type2 or 3 with time-loss k,
which uses at most h representants, we attach a fragment, ie. an object from
which we can still recognize the graph being simulated. Therefore the number
of these fragments is an upper bound for the number of graphs for which there
are such simulations by M.

In order to get better estimentions, we only consider the number Y of
fragments, which belong to graphs from a certain subset G'(n.¢) of G(n.c).

On the other hand we bound #G'(n, ¢) from below. As M, is (h, k) univer-
sal for G(n,c), therefore for G'(n, ¢). too, we obtain that 4+ G(n.c)<Y. This
unequality proves the respective theorem.

First we note some estimations which we need in the proofs.

6.6. Lemma.

a) For all k, neN, 1£kZn, (Z>§r1".

n

b) #{(al,...,an)e(N\{O})"y; a,<hy <2t

i=

c) Let (ay,...,a,), by, .-s bye(N {0})"

Let peN such that p-a;2b; for every ie[l.n], and Y a;<h. Y b,<h. Then.
i=1 i=1t

" p-ai)< 20k
<e?h-pt.
H(b =

hall estimate more carefully if it is

The stimation in a) is very ruff. We only s _
ions in order to get simpler terms.

necessary. Otherwise we use such ruff estimat

Proof of Lemma 6.6. 2) and b) are standard estimations.

For the proof of c) we use¢ the well known unequality:
3

n ne
For n.keN, 1Zk=zn, (k)é (7) .

Thereby we obtain:

ECE
It remains to prove: (’l) se
1

290 F. Meyer auf der Heide

We need the following, well known unequatlity:

x\" .
For every neN and every real number x=0: (1 +;) <e.

Now we get:
n a, bi (ai>bx
2 o< i
il:—IL (b¢> _iegn] b;
a;>b;
— bk
SO () s e

Now let ¢'<c and GyeG(n,). Let G(n, ¢, G,) be the set of all graphs from
G{n. ¢) which contain the subgraph G,. We now shall bound the cardinality of
Gln, c, Gg).

Let a graph be called r-colorable if there is a mapping from its edges to
[1.r] such that neighbouring edges have different images.

6.7. Lemma. Let ¢ <c and let Gye(n,¢’) be a r-colorable graph. Then

-7

#G(n, ¢, Ggy=n 2 -279" for some suitable a, > 0.

Proof. Let ¢":=c¢—r and let G,,...,G_.€G(n, 1). A (n,¢”)-multigraph with mar-
ked edges is defined by the vertices [1,n], such that two vertices a, be[1,n] are
joint by an edge marked with i, if {a,b} is an edge of G,, ie[1,¢"]. (Maybe
there a serval edges with different marks between two vertices).

Let B be the set of all (1, ¢")-multigraphs with marked edges.

o’
<,)
Claim 1. #Bzn? -2-“ for some suitable a >0.

Proof. Obviously, #G(n. 1) 2 (g) !

By Stirlings Formula we obtain that # G(n, 1)=n2-2"¢" for some suitable
a >0,

Therefore, # B=(#G(n. 1))“'2116”5»2" <“@'n which proves Claim 1.

Now let B be the set of all (n.¢)}-multigraphs whose edges marked with [¢
~r+1.c¢] form the graph G,. As G, is r-colorable, G, can be formed in this
way.

Let g: B'— G{n,c.G,) be the mapping which attaches to some HeB' that
graph which has an edge between exactly those pairs of vertices between which

there is at least one arbitrarily marked edge in H. Obviously, g is well defined
and surjective.

Claim 2. For every GeGin,¢,G,), #g HG)<S(c-2°-)"

Proof. Let GeG(n,c.G,). x a vertex of G and x, ..., x,, b<c the neighbours of
X.

Efficiency of Universal Parallel Computers 291

Then we know about every multigraph Heg 1G):

1) The number b of neighbours of x in H is at most c.

2) There is a tupel (a;....,a,)eN\{0})* with ¥ =}, such that exactly a.
edges are between x in x, in H. =1

3) The edges in H are marked with numbers from [1,c]

Therefore, there are at most ¢ possible choices of b. By Lemma 6.6.b, there
are at most 2° possible choices of a,, ..., a,. The number of possible choices of

the marks of the edges starting from x is ¢® <¢“.

Thus, there are at most ¢-2¢-¢¢ possibilities to fix the edges and their marks
between x and x,, ..., x, in H.

As every element of g~ '(G) is specified by fixing these edges and marks for
all of its vertices, we obtain:

#g (G)=(c 2% "

Obviously, # B> #B.
Therefore we may conclude from claim 1 and 2 that

c—r
B "'27axn

$Gn, ¢, G)Z(#B)-(c-2-¢) " zn ?

for some suitable ¢, >0. O

Proof of Theorem 6.1. Let M ,eG(m,d) be (h, k)-universal for G(n. c) of type 2.
We assume that the vertex set of M, is [1,m] and that one of some graph
from G(n, ¢) [1,n].

Let CoeG(n, 1) be the cycle with n vertices and edges {i.i+ 1] for every
ie[1,n—1] and the edge {n, 1}. ’ 4

Let GeG(n,c, Cy). As G(n, ¢, Co)=G(n. ¢), there is a simulation of G by M,
of type 2 with time-loss at most k which uses at most h representants.

Let it be specified by the representant sets B,,...,B, and thg set W of
transport pathes. Then (B,, B,, W) let be called a (h, k)-strategy _to_r G.

Let S:={(x., y)e[1,m]*|x=min(B,) for some ie[l,n}, and there is a trans-
port path from x to y in W}.

Then (B, ..., B,.S) is called a fragment of (B,..... B,. W) . '

This fragment doesn’t specify any longer how the strategy simulates. but it
still specifies which graph is simulated. ' '

Let R be the number of graphs from G(n, ¢, C,) for which there is a (h.k)-
strategy, and Y the number of fragments of (h, k)-strategies of graphs from
Gn,.c. Cp).

Then it follows:

6.8. Proposition. R<Y. Now we shall bound Y from abote.

h
6.9. Proposition. Y<mn.e3h gD ghsbe.on,
Proof. Let Y, be the number of possible choices of representant sets B,.....B,
in fragments of (h, k)-strategies of graphs from G(n, ¢, Co).

"
Claim 1. Y, Smn - 3. %+ D%,

292 F. Meyer auf der Heide

Proof. Let (hy,....h)e(N\{0})". ¥ h,<h. First we bound the number Z of

i=1

possible choices of B, ..., B, with #B;=h,, ie[1.n].

Let i, be chosen such that h; is minimal among h,,....h,. and let (i;,...,1,)

=(i,i,+1,..,n1 . i —1)

Thus for every jelt, n~1] {i;,1;.} is an edge in C,,.

Let the k-environment of some subset B of the vertices of M, be denoted
by U,(B).

Then the following holds:

— There are (:l) possible choices of B; .

iy

— Let 1=p<n, and suppose that B, , ..., B; are already fixed.
~ As{i, i, .} is an edge of every graph from Gin, ¢, C,), each representant of
i,. 1> i.e. each element of B; ., is joint to an element of B, by a transport

path of length at most k.
Therefore B- = U(B,).

k+ 1
As #U(B;)= <dirt. h;,. there are at most (0 i") possible choices for
B, i

. 14
ip 1

Thus we obtain:
k+1
Z= () (")
T \hy, S oy
<P
n

As h;, is chosen minimally among h,, ..., h,, h

R Lt 21

+1

d therefore, | <(m>
and therefore, (hi‘): nn)’

Applying Lemma 6.6a) and ¢) we obtain: Z§m" dErim. g2k
By Lemma 6.6b we know that there are at most 2" possible choices for
hy.....h,. Therefore Y, £Z 2" which proves claim 1.

Now let B,,.... B, be fixed. We now bound the number Y, of fragments
with representant sets B,,..., B

Claim 2. Y, <d*+Dem.en,

L

Proof. For ie[l.n] let b,=min(B) and (B,.....B,.S) a fragment of a(h,k)-
strategy.

Then it holds for S:
— for every ie[l,n] the number ¢, of vertices Y of M, with (b,, y)eS is at
most ¢.
— Every pair from S has the form (b, y) for some ie[1, n] such that ye Uy(h)-
Therefore in follows:

In order to specify S, there are for every ie[1,n] at most ¢ possible choices
for ¢; and

A

(# Uk(bi))

¢

(# Uk(bi))

c

possibilities to fix the ¢; pairs (b,, y).

Efficiency of Universal Parallel Computers 293

dk +1y\n
Therefore ¥, <c"- () .
¢

With the help of Lemma 6.6a), Claim 2 follows. Proposition 6.9 is now
proved by Claim 1 and 2 because Y< Y-Y,. O

Now we are able to prove Theorem 6.1.
W.Lo.g. we may assume that n is even. Then C, 18 2-colorabie and Lemma

6.7 shows that
_2

G(nv C, CO);n 2

",24(11!1

Therefore we obtain with the help of Proposition 6.8 and 6.9:

c—2

n2 2" "< % Gn o, C)SRSY =)

k
<mn- 3. g+ gk+1yen on

Now let a,,a;>0 be chosen such that

%%>a3 =a,(log(d)(c+1)+3log(e)) and h-(k+1)<a,nlog(n).

The theorem is proved, if we now can show that m=n2""®_ This is done by
manipulating the unequality ().

> 2% (‘;2 nlog(n)— 3hioge)— (k+ 1} klog(d)(c+ 1) — O(n))
m =

nge—2

——=—as) nl g(n)-O(n)) 2/
22"((2 M) ° =2,

Proof of Theorem 6.4. Let M, be (h, k)-universal for G(n, ¢} of type 3. Again let
the vertex sets we consider be [1,m] and [1, n].

Let DeG(n,3) be a balanced, binary tree. D has depth |log(n)]. Now let
A€N be fixed, A<n. A will be specified later. ' ‘

Let reN and V,,.... ¥, be r subsets of [1,n] of cardingllty A which cover
[L,n] such that for every ie[l,r], the subgraph of D induced by ¥ is a
balanced, binary tree of depth |log(A4)]. Obviously, V,...., ¥, can be chosen

such that rg@ and every ie[1,n] is contained in at most two of the ¥{’s. Now
T A4

we consider a graph GeG(n,c, D) and a TeN. As G{n.c. D)= Gin, ¢). thfere is a
simulation of T steps of G by M, of type 3 with time-loss at most k which uses
at most h representants. Let it be specified by the representant sets B, ,..... B, ,
for every ts[0,r] and the sets W, of r-transport pathes for every te[1, T]. We
assume that T22|log(4)]+1 and call (B, ,,.... B, ,. W), <1 a (h k)-strategy for
G. For te[1, T] let k, be the t-time-loss of the strategy.

We count the number of graphs for which there is a‘(h, k)-strategy as
follows: For some t, we count the number of possible choices of B,, B,
=BY,...,BY in a strategy. Afterwards we estimate the number of pOSSlvt‘)le
choices of sets S of edges of graphs which can be simulated by a strategy with

294 F. Meyer auf der Heide

the above representants at time t, and (to+ 1)-time-loss k, ;. Unfortunately,
this method, ie. the choice of (B,,...,B,,S) as fragments, is to weak for our
purpose, because there are too many choices for By, ..., B,. Therefore we first
fix the representants B, ..., B, of r suitably chosen vertices of G - one from
each V, - at time t,—2|log(A)}. Their number is not too large if ¢, is chosen
reasonably. As all considered graphs contain a balanced binary tree, after

having fixed B ...B, the number of choices of B, ..., B, decreases considera-
bly.
Formally a fragment is defined as follows:
to+ 1
Let t,e[2log(A4)), T—1] be chosed such that Y k,) is minimal

relative to the choice of t,. This sum is called R,. t=to~2Hostdi+1
Now a fragment of the strategy (B, ,.... B, ,, W), <1 Is specified by a tupel
(B,,...,B,.B},....B,.,S) as follows:

(B,,....B)=(B B,.)

n 1.t """ g

If je[1,r] and i,€V; such that B; , ;)44 has a minimal cardinality relatjve

to the coice of i;, then Bi=B; . ;10504

§:={(x,y)e[1,m]?/xeB, ,, and there is an ie[1,n], such that there are two
(to+1)-transport pathes in W, _, which join x and y

to the minimal element of B, , _}.

Let R" be the number of graphs from G(n,c,D) for which there is a (h k)
strategy in M, and Y’ the number of fragments of (h, k)-strategies for graphs
from G{n, ¢, D).

Obviously a fragment still specifies the graph being simulated. Therefore,
the following holds:

6.10. Proposition. R'<Y".
Before we bound Y, we state some properties of the fragment described above.

6.11. Proposition. a) K, | SR, <2k(2]log(4)]+1).

to+1=
I) 2 ,<_,l

i=1
¢) For every je[l.r] and every i€V, B;< Uy (B)).

Proof. a) and b) follow easily from the definition of the fragment. c) follows
from Remark 44. [

Now we bound Y.
ﬂ h n
6.12. Proposition. Y <m4 . gth+2em (Sklestan 4k, (~) .
n
Proof. First we bound the number Y| of all tupels (B,, ..., B,, B}, ..., B), which
belong to a fragment of a (h, k}-strategy of a graph from G(n, c, D).

2h
Claim 1. Y/ Sm4 . e*h. ghtRo+ 1),

Efficiency of Universal Paralle]l Computers 295

Proof. Let the cardinalities hy, ..., h,, hy, ..., h, of By,....,B,. By, ..., B, be fixed.
— By Lemma 6.6b), there are at most 2°* possible choices of
Byseosh Iy B

— There are at most [(hm) possible choices of By, ..., B,.
i=1 i
— For je[1,r] let ¥V, chosen such that V;, ..., ¥/ form a disjoint partition
of [1,n]. By Proposition 6.11c¢) follows for every je[1,r] and every ieV/: There
/. JRo+ 1
are at most (j b > possible choices for B;. Therefore we obtain:

i

r r h/--dR°+1
v 1) A ()
q

g=1 j=1ieV; i

Applying Lemma 6.6 a) and c) we obtain

I
Y, <2 migl JHRot 1) g2k,

. 2} . .
By Lemma 6.11b), Y h;§7}, which proves Claim 1.
i=1 ,

Now we bound for some fixed sets By, ..., B,. By, ..., B, the number Y, of

fragments of (h, k)-strategies which can be formed by these sets.

Claim 2. Y, < (ﬁ) . dPUeg 1+ Den,
n

Proof. If (B, ..., B, B, ..., B,.S) is a fragment of a (h, k)-strategy. it follows for

S:

— There are at most n different first components of pair

each B;, ie[1,n].

— At most ¢ second components belong to each first ¢

contained in Uy, . H{x)-

n>

s occuring in S, one in

omponent x. They are

i "' possibl
For ie[1,n] let h;=#B;, Then there are at most il:ll h,.g(h) possible

choices for the n first components of the pairs of S.
In order to fix the second components for some first component x, there

2heprr+ 1) ' (.
are at most (d i) possible choices. Therefore 1t follows by Lemma 6.6a):
¢

" d2k,0+x+l n
ns() ()
T \n c

< (ﬁ)"_d(Zkt0+1+l)cn.
“\n
As Y'SY]-Y; the Proposition is proved by Claim 1 and 2 and the bounds for

R, and k, , from 6.11a). [J

0+ 1

296 F. Meyer auf der Heide

Now we are ably to prove Theorem 6.4. As D is 3-colorable, it follows from

Lemma 6.7 that .

#Gn,¢,D)zn 2 "p-an

W.lo.g. we may assume that ¢ =4. An analogous argument as used in the proof
of Theorem 6.1 guarantees with the help of the Proposition 6.10 and 6.12 that

c—3 2h I’l n
nwz n'27a1”<27.e4h.d(h+2cn)(5klog(.4))_ (4) .
- n
Therefore,

i(cr3
mz=22h\ 2

h
nlog(n) — ay n— 4hlog(e) — log(d) (h+ 2cn) (5 klogl A)) — mg(';) n)

Let a4, a;>0 be chosen such that

c—3

5 >as=a,(4logle)+5(2c+1)log(d))

and let h-k-log(4)<a,nlog(n).
h
Then log (;) <loglogla,n) and it follows:

A (¢~ 3 1 logl
23; 3 ”“5)" og(n) - ayn —nlogloglaqn))

o)
no\h7,

Now we choose 4=|log(n)] and obtain Theorem 6.4.

m

v

v

References

. Aho. A.V.. Hopcroft, J.E.. Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Reading. MA: Addison-Wesley. 1974

. Galil, Z.. Paul, WJ.: A Theory of Complexity of Parallel Computation. Proc. 13th Ann. ACM
Symp. Theory Comput. Milwankee, pp. 247-262, 1981

. Paul. W.J.: Komplexitiitstheorie. Stuttgart: Teubner Verlag, 1978

. Preparata. F.P.. Vuillemin, J.: The Cube-Connected Cycles: A Versatile Network for Parallel

Computation. Proc. 20th Ann. IEEE Symp. Found. Comput. Sci.. Puerto Rico. pp. 140-147.
1979

5 Waksman, A.: A Permutation Network. J. ACM 15, 159-163 (1968)

[£9]

(9%}

Received May 10, 1982, November 30, 1982

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28

