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Abstract. A linear search algorithm that recognizes the n-dimensional knapsack problem in 2n*log n
+ O(r") steps is presented. This algorithm works for inputs consisting of # numbers for some arbitrary
but fixed integer #. This result solves an open problem posed by Dobkin/Lipton and A.C.C. Yao,
among others, and it destroys the hope of proving nonpolynomial lower bounds for this NP-complete
problem in the model of linear search algorithms.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—geometrical problems and computations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Linear search algorithms, NP-completeness

1. Introduction

A linear search algorithm (LSA) is an abstraction of a random access machine
(RAM) (see [1]). Although the inputs of the RAMs we consider are assumed to be
integers, inputs for LSAs are real numbers. When dealing with LSAs, one does not
take into consideration the amount of time necessary for arithmetic and stor:tge
allocation, but only the amount of time necessary for branchings of the form,. .If
f(x) > 0 then goto «, else goto B.” Here f: R” — R is an affine function; that is,
fX)y=a-x-b:=3L, ax;— b, where a = (@, ...,a:), x=(x1,..., %) € R",_b €
R. Although it is not true that, during a computation of a RAM, affine functions
of the input are always computed, LSAs are realistic models of computation in the
sense that several lower bounds for LSAs have been extended to RAMs. Examples
of this are the Q(n log n) lower bound for sorting [2, 3] and the Q(n?) lower b(.’u.nd
for the n-dimensional knapsack problem; that is, the problem of recognizing
K, ={x€ R}, IIC{l,...,n with S, x; = 1} (see [4] and [S]).

It is well known that K = U, (K, N Q") is NP complete (see [1]). In this paper
we sce that for every fixed #, K, can be recognized in polynomial time, namely, We
present an LSA that recognizes X, in O(n*log n) steps.

This solves one of the central problems of the theory of LSAs (see, e'g".[6] or
[7]) and destroys the hope of proving nonpolynomial lower bounds for this NP-
complete problem in the computational model of LSAs.
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The above result follows from the construction of an LSA that recognizes a set
(UL, H;) N C where the H,’s are hyperplanes in R” and C is a cube in R". The
time it takes is polynomial in # and log (a/r), where a is the edge length of C and
r is the coarseness of {H,, ..., H,}. This value measures how close together the
hyperplanes lie in R"; that is, the closeness of any two affine subspaces that are
intersections of some of the H’s and that do not intersect each other.

The algorithm is presented in Section 3 after the introduction of basic definitions
from linear algebra in Section 2. A precise definition of LSAs is also given in
Section 2. In Section 4 we relate the coarseness of {H, . .., Hi} to the coefficients
of the H’s. Here we extensively use ideas from [8] where the volume of a polytope
is related to the coefficients of its bounding hyperplanes to estimate the running
time of Khachiyan’s algorithm for linear programming.

In the Jast section the results of Sections 2 and 3 are used to obtain the LSA for
the n-dimensional knapsack problem mentioned above.

2. Definitions and Notations

In this chapter we define LSAs and introduce some notations from linear algebra.
We assume the reader is familiar with the basic concepts of this discipline, including
affine, linear, and convex subspaces of R”; dimensions of such spaces; and deter-
minants of matrices. All definitions and lemmas in the sequel are formulated
relative to R”, but they can be transferred naturally to statements relative to #-
dimensional affine subspaces of some R™ for m = n. This will often be done

without comment. '
An LSA consists of a finite set of labeled instructions of the form

(1) oz If f(x) > 0, then goto B, else goto v
(2) a: accept
(3) a: reject

Wwhere f* R" — R is an affine function.

The language L recognized by an LSA is the set of inputs X € R", such thz}t the
LSA started with % computes “accept”. The number of steps the I..SA takes 1s t.he
maximum number of instructions executed during any computation started with
an input from R”. .

A hyperplane H in R" is an (n — 1)-dimensional subspace of R”"; that is, =
XER a.x~p= 0} for some a € R”, b € R. The left (right) half space of His
the set {x € R", 4.x — b < (>) 0}. Two hyperplanes H = [x € R" a-x= b} and
H' ={x € R" a'.x = b’} are parallel if a = @’ and b # b’. The distance beztvlv/gep
Hand H’ is min{d(x, ), X € H, y € H’}, where d(%, 7) := (Zli (i — y)) " 1
the Euclidean distance between x and .

If we consider an instruction of type | for LSAs, we say that the hyperplane
H = {x € R”, fix) = 0} defines this instruction; often we represent an instruction
by its defining hyperplane. This can be done in several ways. F?r example, xf_L is
an (n — 2)-dimensional space and y & L, then the affine hull of yand L, Aff(y, L)
={Ay+ (1 - % x €L, X\ € R} isahyperplane.

Now leg S= ?H,, ..., Hy} be a set of hyperplanes in R”. Then the connected
components of R™\(UL, H,) are called the components of S. T

Each of them is a polytope P; that is, the intersection of left and right
spaces of the H,’s. Let P be the closure of P. Then the H/’s for which H; 0 Pisan
(n - 1)-dimensional convex set are the bounding hyperplanes of P. If for some / eﬁ
{L,..., k], Ne; H; = {x} and x € P, then X is a vertex of P. Let P be a bound:
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polytope with vertices {Xxi, . .., X,}. It is well known (see, e.g., [9]) that
P =Conv(xy, ..., X,)
14 14
= Z)\,‘X’,‘,)\i>0,i=1,...,p,Z)\,':l.
i=1 i=1
For I C {1, ..., ki, let B, be the intersection of the left half spaces of the H/'s

with 7 € I and the closures of the right half spaces of the other H;’s. Then the
nonempty B;’s build a disjoint partition of R” into the so-called improper compo-
nents of S, each of which consists of one component of .S and some parts of its
boundary.

The ball B in R" with center € R" and radius r > 0 is the set {x € R",
d(x, p) < r}. The inner radius of a polytope P is the maximum of the radii of balls
contained in P.

Finally we introduce two special types of polytopes. A cube C with edge
length a > 0 is the (unique) bounded component of {C), ..., Cs}, where for i =
1, ...,n,

Ci={x€R" x;=d}, Cun={XER" x;=d; + a}

for some d,, . .., d, € R. In other words, C = conv([[ -, {d,, d; + a}).

Let H be a hyperplane, 4 C H an (n — 1)-dimensional polytope, and suppose
V€& H. Then P(y, 4) == {Ay + (1 = )%, X € 4, A < 1} is called an (unbounded)
pyramid with top 7 and base A. If 4,, ..., A4, are the ((n — 2)-dimensional)

bounding hyperplanes of 4 on H, then P(j, A) is a component of {Aff( 7, 41), - - -
Aff( .)—)a Atl)}'

3. An LSA for Recognizing a Set of Hyperplanes

Let Cbeacubeand S = {H,, ..., H:} asetof hyperplanes in R". In this sec’(ion
we construct an LSA that recognizes S in C on R"; that is, an LSA that recognizes
alanguage L C R"where L N C = (UL, H) N C.

The idea of this LSA is to partition C to small cubes, such that for each cube the
hyperplanes from $ that intersect it have nonempty common intersection. We
shall see that the problem of recognizing such a set of hyperplanes can be reduced
to an analogous problem in an (n — 1)-dimensional space and thus can be solved
recursively. How to apply such LSAs for (n — 1)-dimensional problems to -
dimensional ones is shown in the following lemma.

LemMMA 1. Let S:={H,, ..., H.} be a set of hyperplanes in R", L .= ﬂ;ll H#
D. Let A be a polytope on a hyperplane H, L ¢CHyeEL\H. IfS" ={HiNH,..-
H, M H} can be decided by an LSA in A on H in ¢ steps, then S can be decided by
an LSAin P(3, A)on R" in ¢ steps, too.

_ PROOF. Let an LSA that recognizes S’ in 4 on H be given. Now replace 1ts
Instructions as follows: If the instruction is defined by the (n — 2)-dimensional
hyperplane H " on H, replace it by the instruction that is defined by the hyperplan¢
Aff(y, H’) in R". The new LSA recognizes S in P(3, A) on R", because a point
X € P(, A) belongs to UL, H,, if and only if z belongs to Ul (H; N H), where 2
is the point of intersection of the line from ytoxwith 4. O

To apply this lemma, we have to partition the cube C into smaller cubes, such
that for each cube the hyperplanes that intersect it have nonempty intersection.
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For this purpose we call a number r > 0 g coarseness of S:={H,, ..., Hi(on
R"), if, for the every ball B with radius r, 1t holds that if, for some 7 C {1, ..., ki,
HNB#Gforalli €[, then Ny, H; # @.

In the next section, we shall see that such a coarseness exists for every S. We
assume this for the moment.

LEMMA 2. Let r> 0 be a coarseness of S = {H,, .. ., H,} on R", then r is also
a coarseness of 8’ = {H, N H,, ..., H, N H,} on H,.

PROOF. Suppose that r is not a coarseness of S’ on H;. Then there is ball B’ on
H, with the radius r and center ¥y € H,, say, such that for some I C {2, ..., ki,
HNB #@forieland N (H; N H) = Q.

But this would mean, that the ball B on R” with radius r and center j satisfies
Hi n B #* O fOI' iel U “} and nie[(j“‘ H,' = ﬂ,—eI (H, ﬂ H]) = @, Wthh
contradicts the fact that 7 is a coarseness of S on R". [J

Now we are able to describe an LSA that recognizes S in C on R". Let C, . . .,
C2, be the bounding hyperplanes and a > 0 the edge length of C, and 7 > 0a
coarseness of § U {C, ..., Cz,}. Furthermore, let T(n, a, r) be t}}e maximal
number of steps that optimal LSAs need in order to recognize any S in any cube
C with edge length a, if r is a coarseness of S U {C), ..., Cs,}. Then a simple
divide-and-conquer algorithm guarantees that

1,ar < [log ($+ 1)] + 3 (Footnote 1).

Subdivide the cube (i.c., the interval of length a) in [a/r1 intervals of length at most
7. Clearly, there are only llog (a/r + 1)1 steps necessary to decide to vthh of t_hese
intervals some input % belongs. Only one of the hyperplanes (which are single
points) can intersect such an interval, as its length is a coarseness of S U {Cy, Gyt
Therefore, only three further instructions are necessary to dec:c!e whether
X € Uf-;] H;; two for asking whether x lies on the hyperplane of S, which belongs
to this interval; the third to accept or to reject.

Now let n> 1. Letd := fa-vn/rl, D = {D}, ..., D}, e D;, ..., D asetof
hYDerplanes, suchthatfori=1,...,nj=1,...,4d, D,‘ is parallel to C; and C..,
the distance between Diand Di, is r/<n, and their improper components are
(nonopen) cubes with edge length r/vn (respectively, somewhat smaller at the
boundaries of C).

The LSA now begins as follows:

Part 1. Determine in which of the improper components of D the input x lies,
and reject if x & C.

Remark 1. This can be done in n.l log ((a x/ﬁ/() + 1)1 steps by using a dt
vide-and-conquer algorithm for each set {D, ..., Di} of parallel hyperplanes, / =
L...,n

X i i ie i * with edge length at
Remark 2. Suppose x is determined to he in thq cube C wi ngth
most r/+/7. Since this cube is contained in a ball with radius r, the set / = {i €
(L, kK HNC #BhasL = Nig Hi#Dor I =D.

lAulogarithmsinthispap(:raremthebase2.
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Lety€ Landlet F, ..., F; be those (n — 2)-dimensional intersections of two
of the C/’s,i € {1, ..., 2n} for each, on which j does not lie. Then, forje{l,...,
s}, F]:= Aff( , F;) is a hyperplane in R".

Part 2. Determine in which improper component of {Fi, ..., FJ} xlies.

Remark 3. s < 2n(n — 1), because each C,i=1,...,2n, has a nonempty
(ie., (n — 2)-dimensional) intersection with 2(n — 1) many other C/s. Since we

have counted each (n — 2)-dimensional intersection twice, s < 3.2n-2(n - 1) =
2n(n — 1). Thus, Part 2 can be executed in 2n(n — 1) steps.

Remark 4. Suppose that x lies in the improper component Q of {F}, ..., Fi}.
Then Q is a pyramid with top 7 and a base that is a subset of some (n — 1)-
dimensional cube C; N C with edge length a on C, for some i € {1,...,2n}.

Part 3. Determine whether x lies on some of the hyperplanes from §.

Remark 5. By Lemma 1, Part 3 can be executed as fast as recognizing S’ =
{H; N C,, j € I} (I is defined in Remark 2, iin Remark 4) in 4 on C.. A is contained
in a cube on C; with edge length a, and by Lemma 2, r is a coarseness of S’ U
{CGGNC,j=1,...,2n}. Thus Part 3 takes at most T(n — 1, a, r) steps. Clearly the
above algorithm is correct and we obtain

T(l, a,r) < [log (‘—r’+ 1)] +3,

and forn>1

Tn,a,r)<n [log (L;/;l + 1)] +2nn—-1)+T(n-1,ar.

Therefore,

a-vn

T(n, a, r) < nflog < ) + 2n’,
THEOREM 1. Let S={H,, ... H, bea set of hyperplanes and C a cube in R"
with edge length a > 0 and bounding hyperplanes {C,, ..., Cy}. Let r >0 be

a coarseness of S U {C\, ..., Cy). Then S can be recognized in C on R" in
n*log (a Vn/r) + 213 steps.

4. Determining a Coarseness of a Set of Hyperplanes

In order to apply Theorem 1 to concrete problems, we have to determine 2
coarseness of a set § = {H,, ..., Hy} of hyperplanes in R". The first step in this
direction is to relate the coarseness of § to the inner radii of its components.

LEMMA 3. The minimum of the inner radii of the components of S is @
coarseness of S.

PROOF. First we prove the lemma for the case that k = n + 1 and S has 2
.bounfied component. In this case, .S has exactly one bounded component P, which
1s a simplex; that is, which has n + | vertices. Thus each intersection of 7 of t.he
hyperplanes of S intersects in exactly one point. Now suppose that B, a ball with
f‘adlus r and center y € R", is intersected by a set of hyperplanes that has an empty
intersection. As mentioned above, this set must be S. If no hyperplane from §
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separates j from P, then y € P and as B intersects all bounding hyperplanes of P,
its radius r is larger than the inner radius of P. This can be proved as follows:
First we observe

(*) Let x, x;, X, € R" be distinct points such that %, belongs to the line segment
from X to .. Let H be a hyperplane, x € H, x, & H. Then d(x;, H) > d(x,, H).

Now suppose that there is a ball B, with radius » and center j;; say, with
B, C P. Then the line from j to y; has exactly two points of intersection with the
boundary of P, namely, z, and 2,. Let j, belong to the line segment from 2, to y
and f be a bounding hyperplane of P that contains 2,. Then by the definition of
B and by (*), d(, H) < d(3, H) < r, which contradicts the fact that B, C P.

If there is a hyperplane, say H;, from S that separates y from P, let Q be the
pyramid with bounding hyperplanes H;, j= 1, ..., n + 1, j # i, that contains .
Let x be the top of Q. Then x and y are separated by H,, because X is a vertex of
P. Now let 3’ be a point on the line segment from X to y, such that y’ and y are
separated by H; and d(j’, H;) < r. Let B’ be the ball with radius r and center j’.
Then H; intersects B’ since d(j’, H;) < r and all other Hj’s intersect B’ too,
because, for j # i, by (*), we have d(j’, H;) < d(, H,), since x € H;. But ' is
separated from P neither by H; nor by any H; from which y is not separated.
Repeating this process until we have found a ball with radius r whose center
belongs to P, we have proved that r is larger then the inner radius of P. .

Now let & be arbitrary and let S = {H), . . ., Hi} be any set of hyperplanes in R".
Let B be a ball with center y and radius r, for which the hyperplanes from S that
intersect B have an empty intersection. Let J C {1, ..., k} have minimum
cardinality such that H; N B # @ for i € I and Nig; H; = @. Let R := Niey LH);?
then R is a linear subspace of R" with dimension p. .

We claim that #/ = n ~ p + 1. As I is chosen minimally, it holds for every i € /
that R; := Mgy 5 H; # @. L

Let j € I be fixed. Since R; N H; = @, we obtain that L(R;) C L(H}). This implies
that

L(R) = L(R) N L(H))
=L N H N LH)
i€l
ij
= N L(H) N L(H) = R.
f;}f
Thus R, has dimension p and therefore #(7\{}) = n — p, which implies #lzn-

P+ 1 N
Now suppose that #/ >n — p + 1. Forsome j € I, let J C I be chosen minimally

such that R, = N, H,. Then#/=n—pand j & J. Let I’ =JU {j}. Then #I' =
n—-p+1and
el i€l
ivtf

Thus w i diction to the minimality of /. o '
b the or o o ne subspace of R” that contains y and is

Let 4 be the (n — p)-dimensional affi . ' ain
orthogonal to R. Then B’ = B N A is a ball on A with radius r that is intersected
Li4) =

*For any affine subspace 4 in R", L(4) denotes the linear subspace parallel to A; that is,
X~ pix € 4} for some y € 4.
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by every Hj := Hy M A, j’ € I. This is true because the shortest connection
between y and some H,, i € I, is orthogonal to H, and therefore contained in
A because 4 is orthogonal to a subspace of H,. Thus H, N B # & implies H; N
AN B#@. As {H;N 4, i € I} has a bounded component P with vertices RN 4,
J € 1, on 4, we know from the beginning of this proof that r is larger then the inner
radius of P. But then it is also larger than the inner radius of the component P’ of
{H;, i € I} in R”, which contains P, and therefore it is larger than the inner radius
of any of the components of S which are subsets of P’. [

Now we have restricted our problem of determining a coarseness of S to bounding
the inner radii of its components.
This is done by relating the radii to the coefficients of the hyperplanes of S. For

i= 1, .. .,k,letH,’:= {XERH,C—Z,"X:b,’},a,‘:(an, ...,a,-,,)EZ", b,EZ(ZISthe
set of integers). Then we say that S has integer coefficients and define

m(S) = max{|a;|, i=1,...,kj=1,..., n},

M(S) == max({| b;|, i = 1, ces KU (D).

Lemmas 4 and 5 and Corollary 1 are almost identical to [8, lemmas 1 and 2 and
corollary 1].

LEMMA 4. Every vertex of a component of S can be represented as (n/q, . - .
Prl@) With Py, - .., P 4 € Z,1q) < m(S)"- 02" | iy, .. | pul = M(S)"- 2"

PROOF. A vertex x = (x,,..., x,) ofa component of S is the intersection of 7
hyperplanes from S, without loss of generality of H,, ..., H, By Cramer’s rule,
weknowthatfori=1,... n x,= det(D;)/det(D), where D consists of the columns
(dir, ..., am)" fori=1,..., nand D; arises from D by replacing the ith column
by (b], e, b,,)T.

Since det(D) 5 0 and | det(D)]| is the volume of the hyperparallelepiped, spanned
by its column vectors, we may conclude;

|det(D)| < II d(©, a) < (n-m(S)?)/2" = n2n. m(SY'.
i=1

Analogously we obtain
|det(D)| = n'V/27. Al SY. O

COROLLARY 1. Let C be the cube with bounding hyperplanes C; = {x € R’,
~’;h= . Con=IXER" x;=~(} for i = 1,..., n, where c = Tn"/>". M(S)"1 + L.
en

(a) each component of S has nonempty intersection with C, and
(b) each vertex of S U {C,, .. .. Caa} can be represented as a vector of rational
numbers with common denominator at most i M(SY* in absolute value.
PROOF. Let E; = {x € R", x, = O} for i= 1, .... nand let S’ = S U
{E\, ..., E,}. Then each component of S’ has at least one vertex. Thus by Lemma
4 each component of S has a nonempty intersection with C, because M(S') =

?(4:(5)- Tvae;)-ify L_(_lb) we again apply Lemma 4 and notice that m(S) = m(S U
15 -+ -y Copg).

LEMMA 5. The volume of each component of S is at least (n!.,,u/z)n(m)

. m(S')n(n-H))—l.

PROOF. By Corollary 1(a), it suffices to prove the assertion above for the
bounded components of § U {Ci, ..., Ca}. Since each of these components has
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at least n + 1 vertices, its volume is at least the volume of P = Conv(¥y, ..., V),
where ffq, e v, are n + 1 of the above vertices that do not lie on one hyperplane.
Since P is a simplex, its volume v(P) satisfies

det < ! : ) >0
)" )T
Fo'r eachi=1, ..., n, we know from Corollary 1 that the coordinates of ¥; can be
written as rationals with the same denominator ¢; such that |g;| = A/?"-m(S)".
1 1
wP) =

Thus
( qO n )‘
——‘._——4——. et T T
n! 1gol -+ 14l (go¥o) (gn¥n)

Since the matrix above only has integer coeflicients and since its determinant is
not zero, its absolute value is at least one. Therefore, we obtain

1 1 1
[ SN PR S
np) = <F>(| Q| - |q,,|> = 1 7D DSy H

Now we are able to relate the inner radii of the components of S to M(S).

wP) = %

LemMa 6. The inner radius of each component of S is al Jeast (M(S)*™-

nZnZ)—].

PROOF. Again it suffices to prove the lemma for a bounded polytope P =
Conv(¥g, . .., v,) as in the proof of Lemma 5. We first bound W P) from above m
terms of M(S), n and the so-called thickness d of P: that is, the minimum distance
of two parallel hyperplanes, between which P lies. Let Hy, Hz be these hyperplanes.
Since P C C, we know that P C Conv(H,, H2) M C. Since the edge length of C'is
2¢ (compare Corollary 1), we obtain

WP) <= WConv(H,, ) N C) = (Vn-20"-d.

Applying Lemma 5 it follows:
d= (n!_n(l/Z)n(n+1)'m(S)n(n+l)' N -(2C)"")".
0] that says that the inner radius of a polytope with

Now we apply a theorem [1 .
). Combining this with a rough estimate completes

thickness d is at least d/(n + 1
the proof of the lemma. O
d the complexity of the LSA from Section 3.

., Hy be a set of hyperplanes with integer
bounding hyperplanes
-ed in C on R”

Now we can boun

THEOREM 2. Let S = {Hi, ..
coefficients and C a cube with edge length a € Z,a>0 and _
Ci....Co Let b= MSUICy, ... Coal)- Then S can be recognt
in 2n*log n + n*log a + 2n*log b + O(r’) steps.

ProoOF. By Lemma 3, each coarseness of S is bounded by the minimum of the
rting the bound for it from Lemma 6 in

inner radii of the components of S. Inse
Theorem 1 yields Theorem 2. [l

5. An LSA for the n-Dimensional Knapsack Problem -
We now apply Theorem 2 to the n-dimensional kn_apsack problem; that is, we
want to recognize K, = 1% € R}, 3/ C {1 -+ n} with Tier % = 1-

THEOREM 3. K, can be recognized by an LSA in R% in 2n*log(n) + on’) steps.
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PROOF. LCtC,':= {XGR",X,':O}, CH.,,:—"-‘ {)-CER",X;= 1} fori= 1, ...,nbe
the bounding hyperplanes of the cube C with edge length 1. As M(K, U {C,, ...,
Can}) = 1, we know from Theorem 2 that K, can be recognized in C on R" in
2n'log n + O(n®) steps. Moreover, in each component of {C), ..., Cy,) except C,
every element X has some coordinate x; > 1. Thus, in such components, the
problem reduces to recognizing K, in R for some n’ < n, since we only need
consider those n’ components of X with x; < 1. This holds, since it is impossible
that Yje; x; = 1 if there isa j € I with x; > |, because x; =0 fori=1,..., n
Therefore, the following LSA recognizes K, on R%.

If n = 1, then K, consists of one point and can be recognized in three steps. Let
n> 1. Then we apply the following algorithm:

Part 1. Determine in which improper component of {Cy, ..., Ca.} X lies and
accept if it lies on Cpypy . . ., Con.

Part 2. 1If x lies in C, then use the algorithm from Section 1 for it. If x lies in
an other component, use this algorithm recursively to recognize K, in R} for the
appropriate n’ < n as described above.

Let 7(n) be the time this algorithm needs. Then T(1) =3 and forn > 1
T(n) = 3n + max{T(n — 1), 2n'log n + OR%)}.
This implies that 7(n) < 2n*log n + O(n®). O
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