INFORMATION AND CONTROL 67, 195-211 (1985)

Low.er Time Bounds for Solving Linear
Diophantine Equations on Several
Parallel Computational Models

FRIEDHELM MEYER AUF DER HEIDE*

Fuchbereich Informatik,
Johann Wolfgang Goethe- Universitdl,
6000 Frankfurt a.M., West Germany

We consider parallel random access machines (PRAM’s) with p processors and
distributed systems of random access machines (DRAM’s) with p processors being
partially joint by wires according to a communication graph. For these com-
putational models we prove lower bounds for testing the solvability of linear
Diophantine equations and related problems including the knapsack problem.
These bounds are achieved by generalizing and simplifying a lower bound for
parallel computation trees due to Yao, introducing a new type of computation trees
which models computations of DRAM’s, and by generalizing a technique used by
Paul and Simon and Klein and Meyer auf der Heide to carry over lower bounds
from computation trees to RAM’s. Thereby we prove that for many problems, p
processors cannot speed up a computation by a factor O(p) but only by a factor
O(log(p+1)) and in the case of DRAM’s whose communication network has

degree ¢ by a factor O(log(c+ 1)) only. €

1985 Academic Press, Inc.

[. INTRODUCTION

In this paper we prove lower bounds for parallel random access

machines (PRAM’s) and distributed systems of random access machines
(DRAM’s). PRAM’s are often dealt with in literature (see, €.8. Shiloach
and Vishkin (1981), Fortune and Willie (1978), and Reischuk (1984)) as a
very powerful model of parallel computation in order to design fast parallel
algorithms or to prove lower bounds. DRAM’s consist of a finite set of
RAM's (= PRAM’s with on¢ processor) which are partially joined by
wires according to their communication network. This computational
model is, for example, considered in Galil and Paul (1983), Meyer auf der
Heide (1983) or Meyer auf der Heide (1985) in order to obtain simulation

results.

¢ was visiting SFB 124 of the University of the

* Part of this work was done while the autho
Saarland.

195
0019-9958/85 $3.00

cademic Press. Inc

Copyright € 1985 by A
y form reserved.

All rights of reproduction in an,

196 F. MEYER AUF DER HEIDE

The lower bounds we want to prove in this paper are applied to
recognizing the languages L, = {(4, b), ac R", bc R, 34e N", -a=»h} and
L,,={(ab), acR", beR, Jae{0,..k}" &-a=b}. |J,.vL, is the
language associated to the problem of deciding the solvability of Diophan-
tine equations, |J,.y L, is that language associated with the knapsack
problem. Both languages are well known to be NP-complete (see Garey
and Johnson (1979).

In this paper we apply a version of the “component counting argument”
in order to prove lower bounds. In literature this argument is applied to
prove lower bounds on (sequential) computation trees (CT’s). These are
computations which work up n real inputs, may execute operations from
some subset S { +, —, %, */., <}, and which only may execute direct, but
no indirect storage access. In Dobkin and Lipton (1975), the component
counting argument is applied to CT’s with operation set {+, —, <} (they
are often called linear search programs or linear decision trees in
literature). They prove an Q(log(g)) lower bound for recognizing a
language L = R” consisting of ¢ connected components.

In Ben Or (1983), this result is generalized to CT’s with operation set
{+. = * /. <}. A further application of this argument is
shown by Yao (1981). He proves an Q(/log(g)/n —log(p+ 1)) lower
bound for a parallel version of CT’s (PCT’s) with operation set
{+, =%/, <) and p processors.

In Dobkin and Lipton (1975), the number of connected components of
R**"L,, is proved to be 297 Ip Meyer auf der Heide (1985), he
generalizes this result to 29Floatk + 1h [L, .. This implies lower bounds
Q(n” log(k + 1)) resp. Q(\/n log(k+1)—1log(p+1)) for L,, on the com-
putational models above.

In this paper we improve the bound from Yao (1981) to

Q((log(q)/n log(p + 1))),

if only operations from {+, —, <! are allowed. Furthermore we improve
and simplify this bound and the one from Yao (1981) for the case
that L is the complement of a union of m hyperplanes. For example.
L,; is such a language. In this case we obtain Q(/log(m) —loglp))
resp. Q((log(m)/log(p + 1))) lower bounds, if operations from
{4+, = %/, < resp. {+. —, < are allowed. These bounds are never
weaker than those mentioned above, because a language L = R™\ {m hyper-
planes} has at most (m + 1) connected components as shown in (Klein
and Meyer auf der Heide (1983)). These bounds have several advantages:
We need not compute the number of connected components of the
language, which often can be very difficult, and we get better bounds for
the case that L has only (m + 1)°™ connected components.

We then introduce a new model of computation trees, distributed com-

LINEAR DIOPHANTINE EQUATIONS 197

51}1;2:;11011 trees (DCT’s), with communication graph G and p processors
Al (corr;:spond to DRAM’s. For a language L as above we prove an
holdsgin,:jl;i):ri(;(;;ll))fli);ver bott)md, if ¢ is the degree of G. This bound
of the nu
contained 1n 1he th)i'rd SectiOn'rn er of processors. All the above bounds are
" 1:1 the second section we introduce the computational models and prove
{a the above lgwer bounds for PCT’s and DCT’s with operation set
+h; ;] ? } are txght for a large c.lass of problems, especially if L < R.
dor 1 c.td ourth sectxon. we generalize a method used already in (Meyer auf
. eide, 1985; Klel.n and Meyer auf der Heide, 1983; or Paul and
mon, 1980) for carrying over lower bounds from CT’s to RAM’s to our
Parallel computational models.
th;nt;,h'e fifth s§ctiog we finally apply Fhis result and the lower bounds from
DRA]\,;{d section in order to obtain lower bounds for PRAM’s and
Is. We furthermore show that the bounds already hold for very
Small input sets. This enables us to prove lower bounds for L, too,
although L, is defined by an infinite set of hyperplanes. Therefore L,
tannot be handled by PCT's or DCT's. The bounds we get for L,
depen’d on the input size. An appropriate lower bound for (sequential)
glAMs 1s §hown in Meyer auf der Heide, 1985. Altogether we achieve
¢ following lower bounds for inputs from {0,., (k+1)"}" if p
Processors are available in order to recognize L, or L,:

— Q(nlog{k + 1)/log(p + 1)) for PRAM’s with operations

{+. -, <}

— -Q(\/n log(k +1)—log(p)) for PRAM’s with operations
(.~ % <

— Q(nlog(k + 1)/log(c + 1)) for DRAM’s with operations

{+. —. <! and communication graph with degree c.

_ As we show in the second section, the first and the last bound is often
tight. Thus these results show that in many cases p processors cannot speed
Up a computation by a factor O(p) but only by a factor O(logf p+ 1)) resp.
O(log(c + 1)). Especially, if ¢ is a constant, DRAM's are not faster than

sequential RAM’s for many problems.

II. COMPUTATIONAL MoDELS AND UPPER BOUNDS

.In this chapter we define the models of computation we want to deal
W}th in this paper, namely parallel random access machines (PRAM’s), dis-
tributed systems of random access machines (DRAM’s), parallel com-
Putation trees (PCT’s), and distributed systems of computation trees

198 F. MEYER AUF DER HEIDE

(DCT’s). At the end of this chapter we describe some upper bounds for the
computational models. As we later want to prove lower bounds, we need
detailed definitions of these models.

PRAM’s are considered in many papers (Shiloach and Vishkin, 1981;
Fortune and Willie, 1978; Reischuk, 1984). Our definition generalizes the
usual one for (sequential) RAM’s which can be found in Aho, Hopcroft,
and Ullman (1974) or, tailored to our application, in Klein and Meyer auf
der Heide (1983).

A PRAM with p processors P,,..., P, and operation set S {+, =, %}
consists of an infinite set of registers addressed with positive integers and p
special registers, the accumulators of P,,..., P,. <0),.., <0), denote their
current contents. Each register can store one nonnegative integer. The con-
tent of register k is denoted by (k). Furthermore to each processor P; a

program is attached. It consists of a finite sequence I,..., I, of instructions
from the set below:

(1) c-load (k) <0),«k

(2) load (k) 07+ <k>

(3) i-load (k) 0D, kD)

(4) store (k) k)« <0y,

(5) i-store (k) kY « <0,

(6) 0" (k) 0>, <0>;0¢k>, 0eS
(7) if<0>, >0 thengoto/, je {l,.,q}
{8) stop M stops.

The first instruction executed is always I,. It is always assumed that only
nonnegative integers are computed. If a PRAM M is started with
X¥=(x,... x,)€N", then we assume that initially (i>=x,, i=1,... 1 and
all other registers have stored 0. M is synchronized, i.e., one step consists O_f
the execution of one instruction by each processor. M recognizes L < N”, if
M started with xe N” stops with (0>, =1, if e L. and with (0), =0 else.
There is a problem arising out of the fact that several processors may
manipulate the same storage location in one step by a store instruction. In
literature, there are many solutions described for this conflict (see Shiloach
and Vishkin (1981), Fortune and Willie (1978), and Reischuk (1984)). If‘
this paper we shall assume the most powerful of them, which says that if
several processors want to store something in the same register, the one
with the largest address succeeds. The usual (sequential) RAM can be con-
sidered as a PRAM with one processor.

DRAM’s are considered, for example, in Galil and Paul (1983), Meyer
auf der Heide (1983), and Meyer auf der Heide (1986). Additionally, for
example, sorting networks (Batcher (1968)), permutation networks

LINEAR DIOPHANTINE EQUATIONS 199

(Waksman (1968)), or the cube-connected cycles network (Preparata and
Vuillemin (1981)} can be looked upon as DRAMs.

A DRAM M with p processors Py, P,, operation set S {4, —),
and communication graph G consists of p RAM’s Py,.., P, with operation
set S, which are partially joint by wires. The processors and the wires form
the communication graph G.

Each processor P, has the additional capability of executing an instruc-
tion from

— read (j) o) <o),
— i-read (k) SOTRCOIPN
— write {) (oy;«<o,

— [-Write (k) <0></{>[‘—‘<0>i7

where (/5. denotes the content of register / of P.. If P, or P are not
neighbors of P, in G, then M stops with an error message. M is syn-
chronized.

An input ¥e N for M is stored in the first » processors of each P,.‘the
output (0 or 1) appears in the accumulator of P,. Thereby the FCCOngf.?d
langUage 18 defined as for RAM's. Write conflicts are solved as for PRAM's.

The computational models we define now, PCT’s, and DCT’s, are—as
We see later—abstractions of PRAM’s and DRAM’s in which no indirect
Storage access (i-store {(k), i-load (k), i-read (k), i-write (k)) is allowed and
which can work up inputs from R”. o

PCT’s are introduced in Yao (1981) and a sequential version in Ben
Or (1983), and for operation set { +, — } in Dobkin and Lipton (1975)" _

A PCT T for R” with p processors and operation set S< | +. — .- | is
a finite tree in which each inner node v is labelled with a tupel (J, o) S,
may be a function L: R” — R which is of the form L=1L oL, with 0§
and L, (resp. L,) may be previously computed on the path to v or a con-
Stant or one of the input variables x,,.., x,. J, may .a]so be a question
"L{x,,..,x,)>0" for some previously computed function L. If (J;...:)
Contains p’' < p questions, then v has 27 sons, one for eac.h of the
possible outcomes of the questions. The leaves are labelled~w1th ac.‘cept or
reject. Thereby to each input e R" a unique path to a leaf ls‘assocsztefi fn
the obvious way. The set of inputs passing through a node v is cal B.H((;’]).

The union over all sets ¢(r) for the accepting leaves v of T is the
Iallguage recognized by T, the depth of a degpest node r.w1th of l‘hﬁt %ol;
its complexity. A PCT with one progc;;s)or is a (sequential) computa
tree (CT) as introduced in Ben Or (1 . L

Th(e fo;lowing definition of a DCT is new. A D}CT dT for nfu m\:;tll;og
Processors P,,.., P,, operation set S< {+, —, *, 1/ § 32 co}r]n 108
graph G with vertices P,,..., P, consists of p trees T",..., T”, each s

.....

his

200 F. MEYER AUF DER HEIDE

CT. For ie {1,.., p}, T" describes the computation of P,. The computation
consists of internal computation steps, executed by nodes in even depth,
and communication steps, executed by nodes in odd depth.

We shall attach a function L,: R” —» R to each node v of T. Nodes in
even depth get sons and these sons get functions as described for CT’s.
Now let ie {1,.., p} and v’ be a node in odd depth /in T". Let P, ..., P, be
the neighbors of P, in G. Then for each combination v,,..., v, of nodes in
depth / of T",.., T, v' gets a son v. The edge (v, v) is chosen by inputs
from (\;_, e(v;) and L, e{L,, L,,.. L, }. The leaves of T' are labelled
with accept or reject. The set of inputs arriving at an accepting leaf of 7"
form the recognized language of T. The depth of a deepest node v in T with
c(r) # J 1s the complexity of T.

We now shall describe a PRAM (and a DRAM) with p processors
(whose communication graph is a balanced, c-ary tree) which recognize a
language L= {x,,.,x,} « N. We assume that x, < - < x,. For simplicity
of description we assume that ¢ =p” for some re N. Then the following,
recursively defined PRAM M with p processors p,...., p, recognizes L. Let
x€ N be an input for M.

Ifr=0, (ie, g=1) then P, tests whether x = x,. If »> 0 then partition L
inpsets Ly, Ly, Li={X(_ 11, o Xy 1)

.....

(a) The P/s test in parallel, whether x,_ e

(b) The (unique) P, for which the above holds stores its address i
into register 1.

<X K Xpr-1 holds.

(¢} Each processor reads (1.

(d) M recognizes recursively L,, .

Obviously. the above algorithm is correct. Let T{g) be its run time for a
language with ¢ elements. Then 7(1)<d and for r>0 T(p)< T(p" ') +d
for some constant ¢>0. Thus T(¢)= O(log(q)/log(p))).

A similar algorithm can be executed on a DRAM with p processors
whose communication graph is a c-ary, balanced tree. Here we have to
modify step (b) of the above algorithm. Now the processor P, as in (b)
communicates its address i to all other processors by sending it along the
wires in the communication graph G. This can obviously be done by read
and write instructions in time O{longest path in G)= O(log(p)/log(c))
Then we can go on recursively as described above in (c) and obtain an
analogous recursion for the run time T"(g) for recognizing a language with
g clements, ¢g=p":T'(1)<d and for r>0, T(p)y<T(p ")+d-
{log(p)/log(c)) for some constant & > 0. Thus T'(gq) = O(log(g)/log(c)))-

These algorithms can easily be generalized to arbitrary values of ¢. We
only need the operation “—” because, in our models, a comparison is
executed as “x;— x;> 0.” Thus we have shown

LINEAR DIOPHANTINE EQUATIONS 201

Remark 1. A language L={x,., x,)©N can be recognized by a

PRAM (DRAM) with p processors (whose communication graph is a
balanced c-ary tree) and operation set { — } in

O(log(q)/log(p))) (O(log(g)/log(c))) steps.

We_ shall see later that these bounds are tight within a constant factor,
also if we allow the operation set {+, —} and arbitrary communication
graphs with degree (¢ + 1). Especially this shows that by a DRAM with
bounded degree (independent of p and ¢), a language L as above cannot be
recognized faster than by a RAM.

111. LowER BOUNDS FOR PARALLEL AND
DiSTRIBUTED COMPUTATION TREES

bounds for PCT's and DCT’s by
ment” as it is, for example, used in
and Yao (1981). We first state a
which we will often use in the

In this chapter we shall prove lower
applying the “component counting argu
Dobkin and Lipton (1975), Ben Or (1983),
lemma from Meyer auf der Heide (1985)
sequel.

). Let Hy,.. H, be hyperplanes

LemMma 1 (Klein, Meyer auf der Heide
" connected components.

in R", then R"\\J"_, H, consists of at most (m+ 1)

The following theorem is due to Yao (1981) and makes use of a fairly

deep result from algebraic topelogy.

Let L < R" consist of q connected componenls. Then
L
which

THEOREM 1 (Yao0).
d operation set |+ —+ %

each PCT for R" with p processors an
recognizes L has complexity al least \/log(q)/\:’"n— flog{p).

In Corollary | we present an elementary proof of this theorem for the
case that L is defined by hyperplanes. This result also applies to the knap-

sack problem considered by Yao (1981). .
We now improve the above result for the case that only the operation set

s .
i+, — is allowed.
connected components. Then each

(4. —) which recognizes

THeoREM 2. Let L R" consist of q
n set |

PCT T for R" with p processors and operatio
L has complexity at least log(q)/(n log(p + 1))
he functions attached to a PCT T as
(Xqpems Xn} = S, ax— b for some
de of T in which p'<p if-questions

Proof. Here we first note that t
above are affine, i.c., are of the form L
constants a, ..., ,, b. NOW let v be a noO

202 F. MEYER AUF DER HEIDE

are executed. Let H,,.., H, be the hyperplanes defined by the p’ affine
functions defining the if-questions. Then the inputs which choose an edge
from v’ to a node v form a connected component of R"\{J?_, H,. As their
number is at most (p'+1)"<(p+1)" by Lemma 1, each node in 7 has
degree at most (p+ 1)", if we remove all nodes v with ¢(v)= & from T.
Thus if T has complexity ¢ it has at most (p + 1)™ leaves. As each set ¢(v) is
the solution set of a system of linear inequalities, it is a convex polytope
and therefore connected. Thus if v is an accepting leaf of 7, ¢(v) is con-
tained in one connected component of L, because otherwise it would also
contain elements from R"™\ L. Thus (p+1)">¢ which proves the
theorem. |}

We now shall present elementary proofs and improvements of the gbovg
two theorems for the case that L is defined by m hyperplanes, ie., if
L=R"Ur | H,, where H,,.., H,, are hyperplanes in R".

COROLLARY 1. Let L= R" be defined by m hyperplanes. If L has q con-
nected components, then each PCT in R" with p processors and operation set
{+, = =/} ({+,—}) accepting L has complexity at least

Viog(m+ 1) —dlog(p) (log(m + 1)/log(p + 1)).

We first note that by Lemma 1 these results are never worse than those
from the two preceeding theorems.

As shown in Remark 1 the bound for the operation set { 4, — } is tight
within a constant factor for n = 1.

Proof of corollary 1. By elementary arguments from linear algebra one
knows that there is a straight line g in R” which intersects the m hyper-
planes defining L in m different points. As recognizing L n g for inputs from
g(=R) is not harder than recognizing L for inputs from R" and as L_ﬂg
has m+ 1 connected components we obtain the corollary by applying
Theorems 1 and 2 for y=m+1 and n=1. |

This trick of reducing the problem in R” to recognizing a language in R
shall allow us later to prove lower bounds for PRAM’s over | +, —. %)
too, which seems to be very hard if inputs from N are considered.

We now shall present a lower bound for DCT’s.

THEOREM 3. Let L < R” be defined by m hyperplanes. Then each DCT in
R™ with degree ¢ and operation set |+, —} which recognizes L has com-

plexity at least log(m+ 1)/log(c + 1) (independent of the number p 0
processors).

Also this resuit is shown to be tight within a constant factor in

LINEAR DIOPHANTINE EQUATIONS 203

Remark 1. It further shows that if n=1 and c is a constant independent of
pand g, then a DCT cannot be faster than a (sequential) CT.

Proof of Theorem3. Applying the trick from above of choosing an
appropriate straight line in R", we know that it suffices to prove the
theorem for = 1. In this case L consists of m+1 intervals.

Now let T be a DCT as in the theorem which recognizes L in t steps. We
assume again that all nodes v with c(v)= are removed from 7. Now let
h(l) be the maximum number of nodes in depth / of some of the T”s T con-
sists of. We claim that the following property holds:

Foreach/e {1,.. 1},) <h(l—1)-(c+ 1) h(0)y=1. (1)

Before we prove (1), we conclude the theorem from it.
' By (1) we know that 7" has at most (¢ + 1) leaves. For each leaf v, ¢(v)
is an interval, thus it is connected. The argument from the proof of
Theorem 2 now guarantees that (¢ + 1y = m+ 1 which proves the theorem.
It remains to prove the proposition (1). For /=0, (1) is clearly true. Let
I>0. Then we know as above, that for each node ¢ in depth /—1 of T, c(r)
is connected. Thus for each j€ {1,...,p}, the sets c(v) for nodes v of T’ in
depth (/— 1) form a disjoint partition 4; of R in at most h(/— 1) connected
sets.
Now let ¢’ <c and i,j ., jo € {1,..p} be chosen such that P, ... P,-are
the neighbors of P, in G. Let A be the partition of R in sets of the form
cv)nNe_, e(v,) for nodes r. Ui te in depth (/—1) of T", ... T".
Then obviously A consists of at most B(I—1)- (¢ + 1) <hI=T) (e 1
connected sets. Thus 7' has at most A(/— 1)- (¢ + 1) nodes in depth 1 11

ounds for recognizing L,

prove lower b
Lk G-a=h}. L, canbe

Now we apply our results t0

Recall that L, , = {(d. h). a€ R", be R, 3%€ {0,.- Tk
expressed as |, e 1o..x17x#0 Ha where H, is the hyperplane {{a, b), ae R".

beR, z-a=b} in R"" ' “Thus L, is defined by (k+1)"—1 hyperplanes.
Therefore we obtain the following theorem by applying Corollary | and
Theorem 3.

hold for recognizing L., in

TueoREM 4. The following lower bounds h (:
R™* Y with p processors. For PCT's with operation set \+. =% J:

Q(/nloglk + 1)~ log(p))

For PCT’s with operation set {+, - }:
Q(nlog(k + 1)/logtp + 1))

204 F. MEYER AUF DER HEIDE

For DCT’s with operation set {+, — } and degree ¢:
Q(nlog(k + 1)/log(c + 1)).

The first lower bound is already shown by Yao (1981) for k = 1. We note
here that PCT’s or DCT’s cannot recognize L,, because L, is defined by an
infinite number of hyperplanes. We shall later prove lower bounds for L,
on PRAM’s and DRAM’s which are expressed in terms of the input size.

We finally state a technical remark which is proved implicitly in the
Theorems 1, 2, and 3.

Remark 2. The following upper bounds hold for the number of levaves
of PCT’s or DCT’s in R with p processors (and degree ¢) with complexity .

—For PCT’s with operation set +, —, %, /. }: (p+1)-2"+ 1"
—For PCT’s with operation set {+, — }: (p+1)".

—For a tree T' of a DCT with operation set {+, —} and degree
e+ 1)

IV. SiMULATING PRAM’s AND DRAM’s BY
PCT’s anp DCT’s

In this chapter we shall describe a method how to simulate a PRAM or
DRAM by a PCT or DCT. This method is described for RAM’s and CT’s
already in Klein, Meyer auf der Heide (1983) or Paul and Simon (1980)_)~
We shall see that a PRAM or DRAM without indirect storage access 1S
almost a PCT or DCT and that we can simulate indirect storage access by
direct storage access without loss of time, if we exclude certain subsets of
the input set. These sets will be of the following form. Let M be a parallel
straight line program, i.e., a PCT without branchings, with p processors.
complexity ¢, and operation set S< {4+, — %! in which the functio.ns
fiiR"—> R, i=1..,r} are computed. We assume that the fs are pairwise
different. Let f, ., ... f,, . be constant functions. Then the set {ve R", 3i./€
Vs rb s} i), fUX)=f(X)=0" is called a (p. 1, 5)-set in R" over S. If
S=1{+. — . then the sets {¥eR", f(¥)—f(%)=0} are hyperplanes of
empty, if S={+, —, x}, they are solution sets of polynomial equations
with degree at most 2', because a straight line program can, also if p

processors are available, only compute polynomials of degree at most 2'in
t steps.

Remark 3. A4 (p,1,s)set in R" over {+, —} is the union of at most
(p-t-(p-t+5)) hyperplanes in R", 4 (p, 1, s)-set in R” over {+, —> "f} 15
the union of solution sets of at most (p-t(p-t+s)) polynomial equations
with n variables and degree at most 2.

LINEAR DIOPHANTINE EQUATIONS 205

In th’is chapter we will prove the following theorem about simulating
PRAM’s and DRAM’s by PCT’s and DCT’s.

TurorReM 5. Let M be a PRAM (DRAM) over Sc {+, —» x} with p
processors (and communication graph G) recognizing some Lc N"int steps.
Then. there is a PCT (DCT) T, over S with p processors (and com-
munication graph G) with complexity t and the following property: Let v be a
leaf of Ty,(T',). Then there is a (p,t,p-t)-set ((p, 1, p- (t+1))-set) F. in R"
over S—the forbidden inputs for v—such that T, simulates M for all inputs
from (¢(v)\F,)n N".

' RVOQ]’. We first prove the theorem for a PRAM as above. This proof is
similar to that one shown in Klein and Meyer auf der Heide (1983) for
§equential RAM’S. Let P,.., P, be the processors of M and let the jth
instruction in the program for P, be /.

We now first describe a tree of depth 7 and label the nodes with p-tuples
such that the paths in the tree

(1, 1,;,) of instructions of Pi,.. P,
describe computations of M.
The root t, gets no label but one son labelled with (£; s o)

Now suppose that a path from v, to a node ¢ is defined and labelled, ¢
let be labelled by (1, Lp,): Furthermore let p' <p 1,,'s be if~questions.
w.lo.g. the first p’ ones. Then v gets 27 sons vy, 4€ {0, 117 For each ¢ >p'
and ‘each g with 2, =0 (which means that the else-branch of the if-question
quu is chosen), the gth instruction in the label for v is I, + 1> if 2, =1 then
this instruction id 7,4, where 1o, = if (0), then goto Iy

Now we shall attach functions L{: R" = R to each node v of the tree. one

foreach P,, i=1,...p. For X¢ N7, Li(x)is intended to be /i(¥), the content

of the accumulator of P,, if M started with T executes the computation
associated to the path to . Furthermore, if the instruction [, belonging to
itional function A;:R"—R 1s

the label of r is i-store(k). then an add

fittached to v. AY(X) then is intended to be al(x). the address used for the
fndirect storage access. M started with Ye N" is simulated correctly up to t.
if for each node » on the path to ¢ and for each j& | L pl. LX) =111x)
and if 47(%)=ay(¥) for the case that A is defined.

. The root v, gets L} =0, i=L..p Up to now we obviously have
simulated correctly. Now let " be 2 node such that the attachments of
functions to all nodes on the path to ¢’ (including t') are

labetled with (1, , s 1,,,) and let © be a son of . '
: fc d check for which inputs

We now define L! for some ie{l,...,p} an
and let M

Li(%)=[(x) and, if defined A°(X) = ai(x) holds. Let I=1,
started with ye N" be simulated correctly up to v
(a) If Ie{store(k), if {0),>0 then goto I}, then Le=Le, of

I'=c-load(k), then L= k. Obviously. in this case Li(F)=1(¥):

done. Let ¢ be

206 F. MEYER AUF DER HEIDE

(b) If I=i-store(k), then Lt = L' In order to define 4% we search for
the last vertex w on the path to w and the maximum je {1,.., p} such that
the jth instruction of the label of w is store(k). If w and j exist and L} is not
constant, then A7 =L». If L*=k’, then I is replaced by store(k’). If w, j do
not exist and k€ {1,.., n}, A%(%)=x,, else 41(x)=0.

One easily checks that L(7) = I2(7) holds. 4¢(y) # a®(¥) only happens, if
on the path from w to v, the address, ie., the content of register k, is

changed by an i-store(k’) instruction. In this case the following property
holds:

There is some node w” on the path to v where i-store(k’) is
executed in some P; and A)"(7)=k but 47" £ k. (2)

(c) If I="0"(k) for some oeS (/=load(k)), then we search for
the same w and j as in b). If they exist, then Li =Lt oLy (Li=Ly); if
they do not exist and ke{l,.,n} then L'=L"ox, (L:=x,), else
Li=L{00 (Lt =0). Again Li(7)=1I(7), if (2) does not hold.

(d) If I'=iload(k), then we again search for w, j as in (b). If they
exist, let w' be the last vertex on the path from w to v and j'e {1,.., p} be
maximum such that the j'th instruction in the label of w’ is i-store(k’) and
Ay =Ly If w, j exist, Li=Ly, L;=0 else. In this case, 4} (¥) is the
correct address used after the computation of M started with ¥ up to ¢, if
(2) does not hold. Furthermore L:(¥) = [*(§), if the content of the register
AY(F) is never changed by an i-store(k’) instruction during the com-
putation between w' and v. That means, L!(7) is correct, if (2) and the
following property do not hold:

There is some node w” on the path to ¢ and some j € {1....p} 3)
such that 4" (F)= A(¥) but 42" £ Ay (

(e) If I=stop, then L'=L"". In this case v is a leaf. If we assume
w.lo.g that for i=1. the last instruction executed before is c-load(0) or
c-load(1), L!=0 or L =1. In the first case v is rejecting, else accepting.
Hereby we have described a PCT T,, with complexity . Let v, be a leaf of
Ty, yec{v,)n N". By the remarks above we know that M started with 7 is
simulated correctly, if for no node on the path to v,, (2) or (3) holds for .
The set of inputs which fulfill (2) or (3) for some node v can be charac-
terized as follows: Consider the straight line program with p processors
over § described by the path to ¢,. Let f,,..f, be computed in this
program, and let f, , .., f, be the constants used as direct addresses (as k
in add(k), i-store(k) etc.) on the path to v. Then s<p- and as each

LINEAR DIOPHANTINE EQUATIONS 207

functlon_ AY is some f,, the (p,1,p-t)set in R" over § associated to
{fissf,+,} contains all § which fulfill (2) or (3) for some v from the path
to vy Thus T,, simulates M correctly for each input y from cv)n N,
which does not belong to this (p, t, p-t)-set. This proves the theorem for
PRAM’s.

We now prove the analogous result for a DRAM M as described in the
theorem. For this purpose we almost copy the above construction for p=1
for each of the processors of M, because each processor is a sequential
RAM, as long as it does not execute a read(j), i-read(k), write(j), or
i-write(k) instruction. We first modify M in such a way that it executes
a_lternately communication steps, i.e., each processor executes an instruc-
'IIOH from {read(j), i-read(k), write(/), i-write(j)} and computation steps,
ie, each processor executes an instruction from the set defined for
PRAM'’s. Communication steps are executed after an odd number of steps,
computation steps else.

Analagously to the proof for PRAM’s we now first define 7',... 7", the p
trees of a DCT and label its nodes with instructions. The roots get no label
but one son labelled with the first instructions of the programs for the Ps.
Now suppose that the trees are defined and labelled up to depth (/—1). i
(/—1)is odd, then a computation step has to be executed, and the nodes in
depth / are defined and labelled as described for PRAM’s as above when
p=11is assumed.

If (/—1) is even, then let v" be a node in depth (/—1) of T’ for some
ie !1,..p). v gets asonu for each combination of nodes t.... tin depth
(I—1)in T",., T", where P, .., P, arc the neighbors of P, in G. I " 13
labelled with the ¢th instruction of the program for P,. then r is labelled
with the (g+ 1)th one. The edge (r',r) is chosen by inputs from
N, ele,)mve(r). Now let L. A, I, a be defined analagously to the proof
for PRAM's. We want to attach functions Lt and, if defined. 4] to the
nodes v of each T".

Additionally we define functions Bj: R" = R and b': R"— R for nodes
belonging to a communication step. B(¥) is intended to be h!(¥). the
actually computed address of a neighbor. P; wants to write to or to read

from when M started with X has exe i

cuted the computation up to t in P,
Now we suppose that the functions above are attached to all nodes of

T'..., T" up to depth (/—1). IF(/—1) is odd, then the nodes in depth / in
each T get functions as described for PRAM's whenp=1 is assumed_’ Now
let (/—1) be even, ie{l,pls and ¢’ be a node of T! in depth (1—.1)
labelled with instruction /. We define B¢ for a son ¢t of v. i Ie | read(_ J),
write(j)}, then Bj=/. This attachment obviously is always correct, 1.€..
B =bt. .

If 7e{i-read(k), i-write(k)}, then we search for a node w in T" as
described in (b) in the above proof for PRAM’s. (We need not search for a

64367 1.3-14

208 F. MEYER AUF DER HEIDE

Jasin (b), because p=1.) If L} =j and P, is a neighbor of P;, then B' =}
In all other cases, B may be arbitrary, we shall assume B =i.

This attachment only can be incorrect, if the contents of the register k of
T" is changed by an i-store(k’) on the path from w to v, ie., if tke property
(2) from the proof for PRAM’s holds or if some input ye N”, for which M
started with y passes through v, fulfills

L} is not constant, but L¥(¥)e {j,,..j.}, where D> P, ATC
the neighbors of P,. (4)

Now we define L!. For this purpose we assume that v is a son of ¢’
belonging to the nodes v,,..., v, of T",..., T% in depth (/— 1) as described in
the definition of 7. Let w.lo.g. v,,.., v,., ¢’ < ¢ be those nodes labelled with
write() or i-write(k) and Bit=i h=1,.,¢" Let j. be maximum among
JiswJo I now I, the label of v', is read(j) or i-read(;) and

Bi(¥)=j., then L'=LY else L' = L.

This attachment obviously is correct for inputs 7 which do not fulfill (4)
and which are simulated correctly up to depth (/— 1). The leaves of T' are
accepting or rejecting as described for PRAM’s in (e).

Now let ¢ be a leaf of T'. Let v,,.... v, be the deepest nodes in T2,.., T”
such that ¢(v) = c(v5),..., c(v)=c(v,) holds. Then, as by a communication
step in a node v after which LY for some node v’ from some TV is stored,
¢(v) becomes restricted to a subset of c¢(r’), only the computations in
T°...T" up to r,... v, affect the computation to v in T' Thus for
vec(r)n N”, M started with 7 is simulated correctly, if 7 does not fulfill
(2). (3), or (4) for some node on the paths to ¢ or rs,..., v,in T, T"

Let H be the straight line program in R”" over S with p processors and
length 1. which consists of executing the p computations to r and the ¢;'s in
parallel. Let this program compute {f,..f,}. Let {f,, .../, .} be the
constants used in this program as direct addresses. Then s<p-r and the
associated (p, t, p-1)-set contains all inputs which fulfill (2) or (3). If we
add the contants 1,..., p to this set, the associated (p.t, p-(t+1))-set con-
tains all inputs which fulfill (2), (3), or (4). Thus M started with yec(v)n
N" is simulated correctly, if it does not belong to the above (p.t.p- e+ 1))
set, which proves the theorem. J

V. Lower BouNDs ForR PRAM’s aND DRAM’s

In this chapter we apply the results about PCT’s and DCT’s from the
third section and the simulation result from the fourth section for proving
lower bounds for PRAM’s and DRAM’s recognizing L, , and L,. For this

LINEAR DIOPHANTINE EQUATIONS 209

purpose we again apply the trick of choosing a straight line g in R” and of
considering only inputs belonging to this line. We denote the line segment
between two points ¥, i€ R" by (%, #). (¥ and § do not belong to (%, ©).)

LemMA 2. Let L=R"™\™ , H,; be defined by m hyperplanes in R". Let

i=1
Bc N" and g a straight line in R" intersecting H,,..., H,, in m different points
Xise X, € B, and for i#j, #(x, x)nB=im+1. Let M, bt a PRAM with
operation set { +, —, x}, M, a PRAM with operation set {+, — }, and M
a DRAM with operation set {+, — } and degree ¢. If M,, M, and M have
P processors and recognize L for inputs from B, then the following lower

bounds hold:

(i) M, needs at least \/log(m)/2 — 1 — Hog(p) steps.

(il) M, needs at least Y(log(m)—tlog(p+ 1)) steps.
(ili) M, needs at least {(log(m)— Llog(c + 1)) steps.

In order to prove the lemma we first consider the PCT’s and the DCT
T\, T,, and T; attached to M,, M,, and M, in Theorem 5. Let ¢y, 2. 13
be leaves of T,, T,, or T} and F,, F,,, F,, be the sets of forbidden inputs
for v, v,, v4. Then by Remark 3 and Theorem 5,

(@) #(F,nN"ng)<3(pt)*-2'
(b) #(F,nN"ng)<3(pt)’
(c) #(F,nN"ng)<3(pt)’

where ¢ denotes the complexity of 7y, 75, T;.
Applying Remark 2 we furthermore know that

() T, has at most 3.ptpttt e (pr)? 20 <27 p,
(B) T, has at most p'3(pt)*, and
(y) T, has at most (c+1)" 3(pt)

forbidden inputs at all on g.
Now we consider first M, and suppose that

2% p? > dm.

Then it follows directly that
1> /log(m)/2 — 1 — 3l0g(p).

. . N
If (5) does not hold, then by (1), B*=B\ {forbidden inputs for M, con

’ 1
! o X, m = im. Let
tains at least im elements from {xl,‘..’, X) w.l.o.g.h_x,,f, ;,,E i /,an i
wlo.g x,..., x, be ordered consecutively on g. Then for t(L,’,',"’of o
(x;, x,, ;) B* contains at least one element because at most 3
>

210 F. MEYER AUF DER HEIDE

least 1m + 1 elements of (x;, x;, ;)" B can be forbidden inputs because of
(o) and (5). Thus the language L’ = R” recognized by 7', fulfills that L'n g
has at least m’' > ;L connected components on g thus (i) follows from
Corollary 1.

Analogously (ii) and (iii) follow by (f) and Corollary 1 resp. (y) and
Theorem 3. |}

Now we are able to prove lower bounds for L, , and L,.

THEOREM 6. Let M, be a PRAM with operation set {+, —, }, M, a
PRAM with operation set {+, — }, and M; a DRAM with operation set
{4+, —) and degree c. Let M,, M,, and M, have p processors. If they
recognize L, , or L, for inputs from {0,..., (k +1)>"}", then

(i) M, needs at least \/nlog{k +1)/2—1—1log(p) steps.
(ii) M, needs at least (inlog(k + 1)—1)/log(p + 1) steps.
(ili) M needs at least (3n log(k + 1)— 1)/log(c + 1) steps.

Proof. For the bounds for L,, we have to find a set B and a straight
line g in R” with the properties demanded in Lemma 2. For this purpose,
for heN, let g, denote the straight line {(h h(k+1), h(k+ 1)%...,
h(k+1)""',x), xeR} in R""'. Recall that for &€ {0,.,k}"\ {0} the
hyperplane H; in R"*' is defined by the equation 37_, «,x,— x,,, =0 and
that L, is the union of all such H;’s.

For 7€ {0,.., k}™ {0} let x, be the intersection point of H, and g,. Then
its only variable component, the (n + 1)th one, is a multiple of 4, and the
X,s are pairwise different. Thus choosing g=g, with h=4(k+1) and
B=1{0,.,(k+1)*}" we may conclude the lower bounds for L,, from
Lemma 2.

In order to prove the lower bounds for L,, we apply a trick from Meyer
auf der Heide (1985), where a lower bound for L, on (sequential) RAM’s is
shown.

Let w.lo.g. (k+ 1) be even and

B*=(10,2, 4., (k+ 1)} 'x (1,3, 5. (k+1)"—1})
W (L,,_kﬁ {O,..., (k+])ln },,)-

Then the above lower bounds for L, , also hold for inputs from B*. But for
{a, b)e B* it holds that (@, b)e L, < (a, b)eL,.

“=" holds because L,, < L,.

<=" holds because, if (@, b)¢ L, ,, then by definition of B, a-4 is even
for each e N" and b is odd. Thus a- % # b for each #e N” which implies
(@, b)¢ L,. Thus the lower bounds also hold for L,. }

RECEIVED: July, 1984; ACCEPTED Sept. 2, 1985

LINEAR DIOPHANTINE EQUATIONS 211

REFERENCES

SHILOACH, Y. AND VISHKIN, U. (1981), Finding the maximum, merging, and sorting in a
parallel computation model, J. Algorithms 2, 88-102.

FORTUNE, S., AND WILLIE, J. (1978), Parailelism in random access machines, in “Proc. of the
10-th ACM-Sympos. Theory of Comput.” pp. 114-118.

REIscHUK, R. (1984), Simultaneous writes of paratlel random access machines do not help to
compute simple arithmetic functions, J. 4ssoc. Comput. Mach., in press.

GALIL, Z., AND PAUL, W. J. (1983), A general purpose parallel computer, J. Assoc. Comput.

Mach. 30, No. 2, 360-387.
MEYER AUF DER HemE, F. (1983), Efficiency of universal parallel computers, Acta Inform. 19,

269-296.
MEYER AUF DER HEIDE, F. (1986), Efficient simulations among several models of parallel com-

puters, SIAM J. Comput.

GAREY, M. R.. anD Jounson, D. S. (1979) “Computers and Intractability, a Guide to the
Theory of NP-Completeness,” Freeman San F rancisco.

DoBkin, D., aND LipTON, R. (1975), A lower bound of in? on linear search programs for the
knapsack problem, J. Comput. System Sci. 16, 417-421.

BeN ORr, M. (1983), Lower bounds for algebraic computa
ACM Sympos. Theory of Comput.”, pp. 80-86.

Yao0, A. C. C. (1981), On the parallel computation 0
13-th ACM Sympos. Theory of Comput., pp. 123-127.

MEYER AUF DER HEIDE, F. (1985), Lower bound for solving linear Diophantine equations on
random access machines, J. Assoc. Comput. Mach. 32, 929-937.

KLEIN, P., AND MEYER AUF DER HEIDE, F. (1983), A lower time bound for the knapsack
problem on random access machines, Acta Inform. 19, 385-395.

PauL, W. J.. aAND SiMON, J. (1980), Decision trees and random access machines, in “Sym-
posium iiber Logik und Algorithmik,” Ziirich.

AHO, A.. HopcrorT, J. E., AND ULLMAN. J. D. (1974),
puter Algorithms,” Addison-Wesley, Reading, Mass.

BatcHER, K. (1968), Sorting networks and their applications, AFIPS Spring Joint Comput.
Conf. 32, 307-314.

WAKSMAN, A. (1968), A permutation network.

PREPARATA, F. P., AND VUILLEMIN, . (1981), T
for parallel computation, Comm. ACM 24, 300-310.

tion trees. in “Proc. of the 15-th

f the knapsack problem, in “Proc. of the

“The Design and Analysis of Com-

J. Assoc. Comput. Mach. 15, No. 1, 159-163.
he cube-connected cycles. a versatile network

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17

