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Abstract : The "component counting lower bound"
known for deterministic linear search algorithms
(LSA’s) also holds for their probabilistic versions
(PLSA’s) for many problems, even if two-sided error
is allowed, and if one does not charge for probabilistic
choice. This implies lower bounds on PLSA's for eg.
the element distinctness problem (nlog n) or the knap-
sack problem (n2). These results yield the first separa-
tions between probabilistic and non-deterministic
LSA’s, because the above problems are non-
deterministically much easier. Previous lower bounds
for PLSA’s either only worked for one-sided error
"on the nice side", i.e. on the side where the problems
are even non-deterministically hard, or only for prob-
abilistic comparison trees. The proof of the lower
bound differs fundamentally from all known lower
bounds for LSA’s or PLSA’s, because it does not
reduce the problem to a combinatorial one but argues
extensively about e.g. a non-discrete measure for
similarity of sets in R". This lower bound result solves
an open problem posed by Manber and Tompa as
well as by Snir.

Furthermore, a PLSA for n input variables with
two-sided error and expected runtime 7 can be simu-
lated by a (deterministic) LSA in T2n steps. This
proves that the gaps between probabilistic and
deterministic LSA’s shown by Snir cannot be too
large. As this simulation even holds for algebraic
computation trees we show that probabilistic and
deterministic versions of this model are polynomially
related. This is a weaker version of a result due to
the author which shows that in case of LSA’s, even
the non-deterministic and deterministic versions are
polynomially related.

1. Introduction

Linear search algorithms (LSA's) and algebraic com-
putation trees (ACT’s) are abstractions of random
access machines (RAM’s) with operations {+,-} or
{+,-*}. They have turned out to be a convenient

computation model for proving lower bounds for
many interesting problems (see [DL), [R}, or [M1I] for
LSA’s, and [B] for ACT's). As these lower bounds
for LSA’s can be carried over to RAM's (see [KAM],
[A{1]), they even hold for a very realistic computa-
tional model.

Recently some effort was done to understand the
power of probabilistic versions of LSA’s (PLSA’s).
Manber and Tompa in [A7] and Snir in [S$] proved
lower bounds for PLSA’s with one- or two-sided error.
A PLSA with runtime T recognizes a language L < R”
with two-sided error a, if, for each input, it computes
the wrong output with probability <a and in expected
time at most T. The error is one-sided, if for inputs
from L, the output is always correct. One has to

assume that a ¢ % because otherwise every language

can be recognized by the PLSA which just flips a
coin to determine the output.

Manber and Tompa showed rlogn lower bounds on
PLSA’s for comparison problems as the element dis-
tinctness problem, if only comparisons are allowed
as queries and one charges for probabilistic choice,
They allowed two-sided error.

In [DL], Dobkin and Lipton proved the "'component
counting lower bound" which says that an LSA which
recognizes a language with s connected components
has depth at Q(logs). Snir showed how to carry
over the “component counting lower bound” for
LSA’s due to Dobkin and Lipton from [DL] to PLSA’s
with one-sided error. He does not charge for probabi-
listic choice. But the important examples for his
bound all have the property that they are even non-
deterministically hard, as shown in {M7). Snir’s meth-
od does not work for the (non-deterministically easy)
complements of these languages.

Thus, as pointed out by Manber and Tompa as well
as by Snir in the papers mentioned above, the remain-
ing open question is
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For which languages does the component counting lower
bound also hold on PLSA’s with one-sided error on the “hard
side", or, more generally, on PLSA's with two-sided error.

As shown by Snir in [$], we may not expect that
all lower bounds for LSA’s also hold for PLSA’s. He
showed counter examples, even for randomized LSA’s
where no errors are allowed.

We will show the following result.

Let L be a union of m hyperplanes in R" with s = m")
connected componenis. (As shown in [KM], L then has almost
as many connected components as possible.) Then each
PLSA with two-sided error which recognizes L has runtime
Q(logs).

These bounds hold even if we do not charge for
probabilistic choice and allow this choice to be very
powerful : the algorithm may pick randomly real
numbers from reg/ intervals.

This implies e.g. the nlogn lower bound for the
element distinctness problem or the n* lower bound
for the knapsack problem previously known for
LSA’s. As the complements of these langunages are
non-deterministically easy (O(logn) and O(n), resp.),
we establish the first separation result between
non-deterministic and probabilistic LSA’s,

The second result of this paper deals with ACT's.
We show for their probabilistic version (PACT's)
with two-sided error the following result, if one
charges for probabilistic choice. Assume that we
consider inputs from R"

Each PACT or PLSA with two-sided error and expected

runtime T can be simulated by an ACT or LSA with depth
O(T*n).

This result for LSA’s shows that the gaps between

deterministic and probabilistic LSA’s shown by Snir
cannot become too big,

The result for ACT’s is important in the spirit of
the papers [M2] and [M3]. There it is shown that the
property of LSA's only to handle inputs consisting
of a fixed number of variables, i.e. only to deal with
n-dimensional restrictions of problems, makes them
ppwcrful enough to compute n-dimensional restric-
tions of some NP-complete problems as the knapsack
problem or the traveling salesman problem in polyno-

mial time. Also ACT’s only deal with n-dimensional
restrictions of problems. Thus the question arises
whether this property makes also ACT’s very strong.
Our result shows that they are at least so strong that
their probabilistic and deterministic versions are
polynomially refated.

The paper is organized as follows. In section II we
define PLSA's, give some geometrical definitions and
state our main theorem, namely the lower bound. This
will still be slightly different from the component
counting lower bound mentioned above.

In section III we conclude the component counting
lower bound from the main theorem and show appli-
cations.

The sections [V and V contain the proof of the main
theorem. In section IV we state the main lemma. It
is easy to see that the inputs arriving at a leaf of
an LSA D form a convex polytope. The faces of these
polytopes are called the faces of D. Let L c R" be
a the union of hyperplanes, which intersect in exactly

one point. Let L’ € R” be some other language. The
main lemma says :

If L & similar to L, ie. L'N L contains “a large part"
of L, and L' N L contains “a large part" of L, then D has
a face of "small" dimension.

The proof of this lemma differs fundamentally from
all known lower bound proofs for LSA’s or PLSA’s,
because it does not seem to be reducible to a combina-
torial argumentation by explicitly defining a finite
set of inputs, for which the bound is shown. In our
case, the measure for similarity of languages men-
tioned above is 2 non-discrete measure, and the proof

of the main lemma does not seem 1o have a discrete
analogy.

In section V we conclude the main theorem from the
main lemma by showing the existence of an LSA,
constructed from the PLSA by fixing the probabilistic
choices suitably, which has many different faces of

small dimension. Now usual combiatorial arguments
apply and the lower bound follows.

Section VI contains the simulation. The proof of this
result is based on a technique to simulate probabilistic
computations with two-sided error by deterministic
computations, if only finitely many inputs are al-
!owed. Such a technique is introduced by Gill in [G]
In connection with probabilistic Turing machines.



In order to obtain simulations for our computation
models (in which the input set, R", is infinite), we
have to consider the structure of functions computed
in ACT’s and LSA’s. Here we again, as in {B], make
use of Milnors bound from [Ai] for the number of
connected components R" can be subdivided into by
the set of roots of a polynomial with given degree.

Il. Definitions and the main theorem

A linear search algorithm (LSA) D is a finite, binary
tree whose inner nodes v are labelled with queries
of the form "f{x) > 0", where f:R” + R is an affine
function, ie. f(x) =ax -5 for some de R", b e R.
H={x ¢ R", fix) = 0} is the hyperplane defined by
v. The leaves are accepting or rejecting.

Started with some input X e R”, the tree is traversed
from the root to a leaf always following the left or
right branch of a node according to whether its query
is fulfilled or not. The language L < R" recognized
by D is the set of inputs arriving at accepting leaves.
Let Tp(x) denote the length of the path followed by
X in D.

A probabilistic LSA (PLSA) D is a collection
{D.,c € [0,1]} of LSA’s D,. Started with some input
X € R", D first chooses randomly, with uniform distri-
bution, a ¢ € [0,1] and then starts D, with x. D accepts
L < R™ with error probability a, i.e. D is an a-PLSA
for L, if for each x € R" the following holds.

-If x e L then Prob(D rejects X) < a, and
-if x ¢ L then Prob(D accepts X) < a.

The expected runtime of D started with x is
T(x) = E(Tp(x)). The runtime of D is

max{T(x),x ¢ R"}.

In order to make sure that the above probabilities
and the (expected) runtime exist, we assume that the
function which maps each ¢ ¢ [0,1] to D, (described
by the vector of the the coefficients of the queries
at the nodes of D,) is measurable.

The fact that the probabilistic choice is only done
in the beginning of a computation does not weaken
the model, because we can simulate the model in
which probabilistic choices are done step by step in
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the obvious way. Note that we do not charge for
probabilistic chaice.

Now, in order to describe our main result, we first
need some geometrical definitions. Let L be defined

by m hyperplanes H;,...H, in R",ie. L= UH, L
=1

denotes the complement of L in R™. For J ¢ {1,...m},
an affine subspace B = N H, is a face of L. The
1e]

O-dimensional faces of L are the vertices of L.

The set ¢(v) of inputs arriving at a leaf v of an LSA
D is defined by the queries on the path to v. As they
are defined by affine functions, c(v) is a (convex)
polytope. The faces of ¢(v) are the closures of the
faces of D. They are (perhaps lower-dimensional)
polytopes.

Now let L ¢ R" be defined by m hyperplanes Hi,. . H,
Let D be an a-PLSA for L with runtime T.

Remark : We may w.lo.g assume the following.

1) Each D, has depth T.

2) There is ¢ > 0 with the following property. Let
H be defined by 2 node in D, x be a vertex of L,
X ¢ H Then the distance d(H,x) between % and H
is greater than e.

Proof : (1) is shown in [M7T]. To see (2) let
1(¢)=min{d(x,H), x is vertex of L, H is defined by a node
of D, x ¢ H}. 1(c)>0 holds, because D, is a finite tree.

Fore > 0letA.= {ce[0,1], r(c)>e}. A, is measurable,
and its volume tends to 1, if £ -~ 0. Now replace each
D. with ¢4 A, by the trivial LSA with one node, which
accepts everything. The resulting PLSA is a o’-PLSA
for L, and a' > a can be chosen arbitrarily closed to
a by choosing £ sufficiently small. g.e.d.

We will assume that the remark holds for all PLSA's
considered in this paper.

Now we are ready to state the main result of this
paper.

Main Theorem : Let L= UIH, have s vertices. Let D be
an a-PLSA for L with

27 = (-2,
m3¢n

runtime T. Then



In the next section we will derive concrete lower
bounds from this result.

111, Applications of the main theorem

In this section we shall relate our main theorem 1o
the known lower bounds for (deterministic) LSA’s
based on the "component counting argument” due
to Dobkin and Lipton from [DL]. This argument
proves that an LSA needs {(logs) steps to recognize
a language with s connected components.

Theorem I : Let L = U‘H, such that L has s> m""
connected components for some B> 0.Then for
a< % each a-PLSA for L has runtime (logs).

First we note that the restriction "a < %” is neces-

sary, because, for larger a, L can be recognized in

one step just by flipping a coin to determine the
output.

For the proof we first state a lemma based on an
idea due to Bennett and Gill from {BG). (See also
the idea of the proof of lemma 6.) It shows that lower
bounds on PLSA’s are independent of the error proba-

bility, as long as this probability is smaller than %

Lemmal :let a g % and D be an a-PLSA for some

L with runtime T. Then, for each o < l, there is

an o/-PLSA for L with runtime O(T).

Nmz we relate the number of connected components
of L to the number of faces of L.

Lemma 2 : Let L have [ faces, and let L have s
connected components. Then /> 5 =~ 1.

Proof : We proof this lemma by induction on m and
n. If n=1, then obviously I = m,5s = m+ 1, and the
lemma holds. If m=1, then s=2,/= 1, and the
lemma also holds. Now let ma > 1. Let Li=L~H,
and Ly = LiNH,. Let Iul3.51.5; be the respective pa-
rameters for L, and L,. Then we get 5 = 51 + 5 and
I=hL+15+1 By induction hypothesis, #, > 5, ~ 1

and L2sy~-1 Thus
I=h+hL+1 251‘{"52—1 =s~1. ged

Proof of theorem 1 ; Let I, denote the number of

-1
p-dimensional faces of L, = 21 I By lemma 2,
Px

I>s~1. Therefore there is p such that
fin ,

2 5;;—12 5‘—7:—1-?_ m’" for some B <8 Let
n'=(n-p) and B be an n’-dimensional affine subspace
of R" which intersects each p-dimensional face of
L in one point. (The existence of B follows from
elementary linear algebra.) We now only consider
inputs from B and view D as a o-PLSA D’ for
L'c R",L'= LN B. By construction, L’ hass' > m""
vertices.

We now want (o apply the main theorem to D’. Let
a= %B'. Then the main theorem  yields

n 8'n l[i'u
22’=ﬂ(;"’3—¢—“,)=n(ﬂ—) Q(m* ). Thus

m3nn

T = Qnlogm) = Q(logs). By lemma 1, this bound

holds for arbitrary a < % ged.

The following examples generalize lower bounds for
(deterministic) LSA’s due to Reingold, Dobkin and

Lipton, and Meyer auf der Heide from {R], {DL], and
(M1}

Examples ; 1If a < % then the following lower bounds
hold for the runtime of a-PLSA’s :

Q(nlogn) lower bounds hold for
1) element non-distincmess

recognize {XeR"| x, = x, for some i # .

2) set inclusion :

recognize {XeR>| {xy,...x,} € {X,010nx2,}}.

3) set non-disjoinmess

recognize {XeR" | {xy,...%,} N Xy 10020} # 01

An Q(n*log(k + 1)) holds for

4) Integer programming with solutions <k :

recognize {(ay,....anb) € R™'| 3,... 4, € {0,..k} st

éa‘y, = b}.

(For k=1 this implies an R(n®) lower bound for the
knapsack problem.)



Proof : The first three languages are defined by %V
hyperplanes, and their complements have
0"y = 0(n®™) connected components as shown
by Reingold in [R]. Thus these lower bounds follow
from theorem 1.

The fourth language is defined by (k+ 1)
hyperplanes. As shown by Meyer auf der Heide in
[M1], generalizing the respective bound for the knap-
sack problem due to Dobkin and Lipton from [DL],

2
its complement has (k + l)n('I ) connected compo-
nents. Therefore this lower bound follows also from
theorem 1. q.e.d.

1V, The main lemma

In this chapter we state and prove the main lemma
. For this purpose we define a measure for the
"similarity" of languages. Let for this purpose

m
L= UIII,- be as in the last section. Let L'« R" be

another language. Informally, D,(L’,L) denotes -;—(ran‘o

between the (n-dimensional) volumes of LNL' and L )
+ (ratio between the ((n-1)-dimensional) volumes of LN L'
and L). As the (n-1)-dimensional volume of eg. L
is infinite, we have to be a bit more careful with
a formal definition.

A set 4 < R" is p-dimensional, if the lowest dimen-
sional affine subspace of R" containing A is p-
dimensional. Let now A be at most p-dimensional,
bounded, and measurable. (All sets we deal with in
the sequel are obviously measurable, we shall no
longer point that out in this paper.) ¥,(4) denotes
the p-dimensional volume of A. Now let B be a
p-dimensional subspace of R", 4 < B. Then the "ratio
— V(4N UL(0)

between A and B " is 1,(4,B) = lim —,
AR = V(BN UL0)

where U,(0) denotes the ball around 0 with radius

e in R™. The "ratio between the volumes of L'NL
and L " can be measured by

RYL'L) = ;},- §11"_,(L' NH,H), and for the comple-

ments, R'(L’.L) = I(L'.R™. In this case we do not
have to care about in L, because V(L) = 0.
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Now, we can define the "similarity of L’ to L "' to
be R,(L'L) = Z(R*(L'L) + R'(L' L))

We now state some elementary properties of R,(L’,L).
For this purpose we make the convention that, for
a hyperplane H, R,_(L'N H.LNH) is meant to be

defined relative to H (= R™™).

Lemma 3 (Properties of R, (L'.L)) :
) 0SRAL\L)S 1.

b) Ry(L'L) € RL'.L - H) + -
2m

c) If H is not parallel to any H,, then there is H’
parallel To H such that
RAL'\LY<R, (L'0NH .LONHY.

d) If H is parallel to H,, then there is H' parallel to
H, H'# H, such that
R{L'\L~H) <R, y(L'NH'LNH".

These results follow directly from the definition of
R(L'.L) and elementary measure theory.

In the sequel let L = U1 H, D an a-PLSA for L, and

L, the language recognized by D, The following
lemma will justify the above definition. All over this
paper E(...) denotes the expectation of some random
variable defined on all c e [0,1). For I c {1,..,m} let

L= l}IIL.
Lemmad :Foreach I c {1,..m}, ER,(L.L))2 1-a.

Again, this lemma follows by the definitions and
elementary measure theory.

We are now ready to state our main lemma. Let L
be as above. If m = n and L has (exactly) one vertex,
then L is called an n-siar.

Main Lemma : Let L be an n-star and L’ ¢ R" such
that R,(L'.L) = y. Let D be an LSA recognizing L’.

Then D has a face of dimension < min{n,(% -Dn}.

Proof : For an LSA D let B(D) denote the smallest
dimension of a face of D, and B(n,y)= max {B(D) |
D recognizesan L' © R" with R,(L',L) > vy for some n-star
L}. The lemma is implied in the following proposition.



. 1
Propesition : () Blny) <n-11if v> 5

(i) B(ny) < B(n -1y - 51’;).

The lemma can be concluded as follows. By (1),

. ) 1 1
< —_y - — - ...
By s Bin—iy =50 =507
1 . i
-———) <Bln-iy~ _———————), because
2(n—¢’+1)) <Bln - Ly 2(n-—i+1
B(n,y) increases wlen y decreases. If y < 5 the main
lemma is trivial. If y> % we may choose
i=(@~Y-1 and get that y=————> 1
Y An—-i+ 1)~ 2
Thus, by i,
. i .
B » < B(n- WY~ . S -fi=1=
(ny) € Bln—iy 2(n—-i+l)) n—i

(% —Dn. As B(n,y) < n always holds, the main lemma
follows.

Proof of the proposition : It is easy to see that
R, R"L) =R, (0,L) = % Therefore (i) holds, because

an LSA without an (n-1)-dimensional face has no
query and therefore accepts either R” or nothing.

To prove (ii) let D be an LSA as described in the

main lemma. Let H be the hyperplane defined by the
first query in D.

Claim 1 : Let H' be parallel to H, H' ¢ {H,,...H.}.
D restricted to H’ has a p-face, i.e. if there is a leaf

v of D such that c(v) A #’ has a p-face, then D has
a p-face, too.

Proof : Let B be the p-face of c(y) NH’, and B * the
faceof DwithB*NH' =B IfB* < H',thenB = B*
and we are done. Otherwise B * has dimension (p+1).
Let A(B*) denote the (p+1)-dimensional subspace
containing B*. As H is defined by the first query
in D, each set c(v) is contained in one halfspace of
H. Thus B* # 4(B*) and therefore B * must have

a p-dimensional face. As this is a face of D, the claim
is proved. q.e.d.

Now we are ready to prove (ii) of the proposition.
Recall that H is defined by the first query of D.
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If H is not parallel to any H,, then we apply lemma
3 (c) and get some H’ parallel to H such that

R,_(L' NH LNH) > R L) =y But LNH'is no
(n—l) star. Therefore we temove a suitable H; from
I to obtain that L* = (L - H)ﬂH is an (n- 1) star
{(on H). By lemma 3 (b) R, (L' NH'.L%

1
>R, (L'NH .LﬂH)—~>y -5 by the above.
Thus the proposition follows by claim 1.
If H is parallel to H, say, then choose H’ parallel

10 H as in lemma 3 (d). In this case LNH' is an
n-star, and, by lemma 3 (d),

Ro(L'NH LNH)Y >y~ ZLn Thus, the proposition

follows again from claim 1. qed.

m
Corollary : Let L = U H, have at least one vertex. Let
i=1

D be an a-PLSA for L. If d(c) denotes the smallest
dimension of a face of D, then E(d{(c)) < 2an.

Proof : As L has a vertex, there is an n-star LclL.
Let L, be recognized by D, By lemma 4,

ERML,L)>1-a By the

d(e) < (min{l,3- =1 with v, = (Ry(LoL)). As for

main lemma,
x ¢ [0,1] it holds that min{1,1 1} < 2(1 - x), we get

Q@) SE(min{1, (3~ D))
=2(1 = E(+))n € 20n. q.ed.

SE(Z(I - Yc)n)

V. Proof of the theorem

m
Let in this section L = U H, be arbitrary, and let D
1=l

be an a-PLSA for L. Let %,,...%, be the vertices of

L. Let h(c,j) denote the smallest dimension of a face
of D, containing ¥ -

Lemma 5 : For each j, E(h(c,j)) <2an.

Proof : Let L/ < L be the n star with vertex X, consist-
ing of all those H,'s which contain x; By the remark
from section I there is ¢ > 0 such that all hyperplanes
H defined by nodes of D with d(H, x )<t contain
X, Now let U be the ball with radius ¢ around X; F
We construct the PLSA D’ from D by removing all



branches from each D, which are not chosen by some
input from U.

Claim 2 : I’ has the following properties.

1) Each hyperplane defined by a node of D’ contains
X

2; For inputs from U, D and D’ do the same, and
for sufficiently small e, LNU=L/NU.

3) Each face of each D', is contained in a face of
D, with the same dimension.

4) D’ is an «-PLSA for L’

Proof : (1), (2), and (3) are clear by the definitions
of D’ and L/. To prove (4) let ¥ ¢ L’. We have to
show that Prob(D’ rejects x)<a. (For x ¢ L/ the proof
for "Prob(D’ accepts x)<a' is analogous.)

Let g be the straight line between x ;and x excluding
%, and ¥' e gNU. As by (1), all hyperplanes defined
by nodes of D contain X, X and %’ reach the same
leaf in each D, Thus Prob(D’ rejects ) = Prob(D’
rejects x'). As by (2), xeL’ holds if and only if 'eL/,
and Prob(D’ rejects x’) = Prob(D rejects x')<a, we
get that Prob(D’ rejects x)<a. q.e.d.

Now, in order to finish the proof of lemma §, we
apply the corollary from the last chapter to D’. This
yields, that the expected smallest dimension of a face
of some D', is <2an. But this bound even holds for
the expected smallest dimension of a face of some
D'c containing X ;, because all faces of each D', contain
x; by (2). As each face of D’, is contained in a face
of D, with the same dimension by (3), the lemma
follows. q.e.d.

Now we are ready to prove the main theorem. Let
h(c)= 2 h(c,j). Then E(h(c)) <2ans by lemma 3. Thus
j=1

there is ¢ such that h(c)<2ans. Let D* denote the
LSA D;. Let p be the number of vertices of L which
belong to a 3an-dimensional face of D*. Then, as

h(c)>(s ~ p)3an, we get (s — p)3an < 2ans, which
implies p > %—s, i.e. at least %s vertices of L lie on
a 3an -dimensional face of D*. As, by elementary
linear algebra, at most (3':’1) vertices lie on the same

such face, we have shown
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o1
3 3 .
= > == different

Claim 3 : D* has at least

(3an)
3an-dimensional faces.

Now, because of the remark from section II, D* has
depth T, where T denotes the runtime of D. Therefore

D* has at most 27 leaves. By elementary arguments
from linear algebra, each set ¢(v) associated to a leaf

v has at most (3:’1) i many 3an-dimensional faces.

1
=5
Thus, by claim 3, 227 > 3 which proves the main

3an’

theorem. q.e.d.

¥1. The simulation

In this section we assume that probabilistic choices
are fair coin flips, and each coin flip adds one step
to the runtime of the algorithm. We first consider
a very general type of computation trees.

Let A be a set, and let F be a family of functions
fi4 - R. A probabilistic computation tree (PCT) D
with queries defined by F is a binary computation
tree which takes inputs from A. An inner node v
of D is either a probabilistic node or a query node.
At a probabilistic node, a coin is flipped to determine
which branch to follow. At a query node a query
f(x)’c’0 is asked to determine which branch to follow.
Here feF, xeA is the input, and cef<,>,=}. Each
leaf is either accepting or rejecting. The complexity
of D is the maximum over the expected runtimes of
D started with x for all xeA. An o-PCT for some
L c A is defined as for PLSA’s. D is deterministic,
te. a CT, if it contains no probabilistic nodes. A
computation of D is a sequence of functions from
F used for queries on some path of D, Let in the
sequel D be an a-PCT with queries defined by F and
with complexity T which recognizes L ¢ 4. By the
first part of the remark from section II we may
assume that D has depth T.

We say, 2 CT strongly simulates D, if it recognizes
I. and if its computations are concatenations of
computations of D.



Next we show how to simulate D by a CT if A is
finite. Similar forms of the following lemma are
already implicitly used in [BG] and {Re].

Lemma 6 : If A is finite, then D can be strongly
simulated by a CT with depth O(T log(|Al)).

The idea of the proof of this lemma is to let D run
s times started with input x and to accept if the
majority of the runs was accepting. The error proba-
bility decreases exponentially with s. Thus, for
s=0(logT), the error probability 8 is smaller than

——1&. Now we suitably fix the resulis of the coinflips
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and obtain a CT with depth O(Tlog | A]) which

treats at least (1 =8)1A4| > 141 -1, i.e all inputs
correctly. This is the desired CT.

Lemma 6 shows an efficient simulation of probabilis-
tic by deterministic computations, if the input set
is finite. But for the computational models we are
interested in the input set is infinite, namely R™. On
the other hand, in lemma 2 we have not used any
properties of the set F of functions defining the
queries, We now shall see how to take into account
the 'structure’ of F in order to get results similar to
lemma 2 when the input set is infinite.

Let F={f,,.. I}, and let ¢ = (cp,..tm)el<, >, =™
Then I:={xed, f;(x)'c/0 for i=1,. m}.

Lemma 7 : Let k= |{cef<,>, =}",L # 0}]. Then

D can be strongly simulated by a CT with depth O(T
log(k)).

Proof : For Cef<, >, =}" with I, # ¢ let x.eL. By
lemma 2 we know that there is a CT D’ with depth
O(T log(k)) which strongly simulates D if we only
allow inputs from {x;,I: # 0}. The following claim
will prove lemma 7.

Claim 4 : D’ recognizes L (for all inputs from A).

Proof : Let xeA. As the non-empty I’s partition A,
there is a unique ¢ with x el.. By the definition of
I, no query defined by a function from F can distin-
guish between x and x;. Thus both in D and D’ x
and x; follow the same computation paths. Therefore,
D accepts x if and only if it accepts x;, i.e. xeL if
and only if x:eL. By the same argument we get that

7

D' accepts x if and only if it accepts x;. Thus D’
accepts L. g.ed.

Now we apply lemma 7 to get a simulation of probabi-
listic by deterministic algebraic computation trees and
linear search algorithms. A probabilistic algebraic
computation tree (PACT) D is a tree with degree 0,
1, or 2. To each node v with degree 1 a function
f,:R" = R is attached. f, is either a projection on one
of the input variables xi,..,x, OI & constant, or
f,= f;$ f, for some nodes v', v'' on the path to v,
and for $e§{+,-.*./}. A node v with degree 2 is either
a probabilistic node or a query node. Probabilistic
nodes work as in PCT’s. At a query node v, @ query
J(x) e’ 0 is asked to determine which branch to
follow, where v’ is a node on the path to v and
ce{<, >, =}. The leaves are accepting or rejecting.
a-PACT’s, the recognized language, and the complex-

ity, as well as the deterministic version (ACT) are
defined as for PCT’s.

We now are ready to state the result of this section.

Theorem 2 ; Let a < -;— and let D be an «-PACT or

a-PLSA with complexity T (where we charge for
coinflips) recognizing L < R". Then there is an ACT
or LSA recognizing L in O(Tzn) steps.

Proof : Let D be as in theorem 2. We again may assume
that has depth T. Let F={f;,..f,,} be the set of
functions computed at the nodes of D. Then m < 27,
because D is a binary tree. Furthermore, because of
the arithmetic operations allowed in D, each f is a

. . r

rational function, f, = ZIL’ where r; and g, are polyno-
]

mials of degree at most 2.

For ¢e{<, >, =}" let I. be defined as in the previous
section.

Claim 5 : Let k=|{cei<, >, =", I # 0}]. Then
there is an ACT recognizing L in O(T log(k)) steps.

Proof : By lemma 7, D can be strongly simulated by
a CT D’ of depth O(T log (k)). The definition of

‘strc:ingly simulating’ guarantees that D’ is an ACT.
qed.



Now it remains to bound k. For this purpose we first
note that for ce{<, >, =} and for ¥eR" such that £(x)
is defined, £,(¥)'c’0 holds if and only if p: = r, « ¢/c'0.
Thus, for ¢e{<,>,=}", L= {XeR",f(x)'c/0 for
i=1,..m} = {xeR",p(x)'c/0 for i=1,..m}.

Lemma 8 k=|{ce{<, >, =}", I # 0}|

<(2d + 1)(2d +2)"", where d is the degree of Hlp,.

Before we prove the lemma we conclude theorem 2
from it. As the p’s have degree at most 27*! and as
m <27, d<2¥* Thus k = 2°7". Inserting this in
claim 5 yields theorem 2 for ACT’s. For LSA’s, a
simplified version of this proof already yields the
result,

Proof of lernma 8 : This proof is based on a theorem
due to Milnor from [Mi] which is previously already
used in [B].

Theorem (Milnor): Let p.R" +~ R be a polynomial with
degree d’. Then c(p):={xXeR", p(X) # 0} has at most
@ +2)(d@ +1)"! connected components.

Now, in order to prove lemma 8, let A’cR” contain
exactly one element of each non-empty I.. Then
[A’l=k. Let &§>0 be chosen such that
8 < min{|p)| ,i=1,..m,%ed’ ,p(¥) £0}. Let

Y=+ 960

Claim 6 : Each connected component of ¢(p’) contains
at most one element from A’

Proof: Let X yed’ Then, asx and y belong to different

I’s, there is p, such that, w.lo.g p(x)>0 and
p(y) < 0. By the definition of 5, we therefore get
that p(x) -8 >0 and p(y) — §< 0. As p— § is con-
tinuous, each continuous path from x to y contains
a root of p,— 8, and therefore of p’. Thus X and y
belong to different connected components of c(p’).
q.ed.

We know that d’<2d (recall that d is the degree of
p). Thus, by Milnor's theorem, c(p’} has at most

(2d + 1)(2d +2)"" connected components. As by
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claim 6, k=|A’| < (number of connected compo-
nents of c(p’)), lemma & follows. q.e.d.
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