Theoretical Computer Science 41 (1985) 325-330 325
North-Holland

NOTE

SIMULATING PROBABILISTIC BY DETERMINISTIC
ALGEBRAIC COMPUTATION TREES

Friedhelm MEYER AUF DER HEIDE
IBM Research Laboratory, San Jose, CA 95193, US A.

Communicated by M.S. Paterson
Received April 1985
Revised July 1985

Abstract. A probabilistic algebraic computation tree { probabilistic ACT) which recognizes L= R"
in expected time T, and which gives the wrong answer with probability <¢ <3, can be simulated
by a deterministic ACT in O(T*n) steps. The same result holds for linear search algorithms
(LSAs). The resuit for ACTs establishes a weaker version of results previously shown by the author
for LSAs, namely that LSAs can only be slightly sped up by their nondeterministic versions. This
paper shows that ACTs can only be slightly sped up by their probabilistic versions. The result for
LSAs solves a problem posed by Snir (1983). He found an example where probabilistic LSAs are

faster than deterministic ones and asked how large this gap can be.

Introduction

Linear search algorithms (LSAs) and algebraic computation trees (ACTs) are
abstractions of random access machines with operations {+, -} and {+, —, *,/},
respectively. Both LSAs and ACTs have turned out to be well suited for proving
lower time bounds for many interesting problems. (For LSAs, see [3, 8, 12}, and
for ACTs, see [2]). On the other hand, many lower bounds for LSAs also hold for
random access machines (see [5, 7]), i.e., for a realistic computational modeI... .

Recently, some effort has been made to understand the power of probabilistic
versions of LSAs (PLSAs). Manber and Tompa {6] and Snir [13] proved lower
bounds for the complexity of PLSAs with one- or two-side'd error.

In this paper we show that PLSAs and PACTs (probabilistic ACTS‘) can onl)j be
slightly faster than their deterministic versions. Any PACT or PLSA Wh.lCh recogn.lz_es
a language L < R" in expected time T, and gives the wronzg answer with probability
<g <} can be simulated by an LSA or ACT in time O(T"n). '

The result for LSAs solves a generalization of an open problem posed by Snir
[13]. He established an example of a language L < R" which needs @(n) step; on
LSAs but can for some y <1 be solved in only O(n”) steps by a PI'JSA, even | .no
error is allowed. Snir also mentioned that there are languages for which PLSAs with
one-sided error are faster than they are for the complements of these languages.

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. {North-Holland)

326 F. Meyer auf der Heide

This motivated him to ask how big such gaps can be. Our result shows that the
complexities of languages and their complements are polynomially related.

The result for ACTs is important in the spirit of the papers [8,9]. LSAs and ACTs
are nonuniform computation models. In the above papers it is shown that this
property, namely to only handle inputs consisting of a fixed number of variables,
i.e, to deal with n-dimensional restrictions of problems, makes LSAs powerful
enough to compute n-dimensional restrictions of some NP-complete problems such
as the knapsack problem or the traveling salesman problem in polynomial time.
Thus, the question arises whether the nonuniformity also makes ACTs very strong.
Our result shows that they are at least strong enough to recognize in polynomial time
n-dimensional restrictions of many languages L < N*, which can be recognized in
random polynomial time, namely all those which can be recognized by a probabilistic
RAM with operations +, —, * in (uniform) time polynomial in n.

The proof of our result is based on a technique to simulate probabilistic computa-
tions with two-sided error by deterministic computations, if only finitely many inputs
are allowed. Such a technique is first used by Bennett and Gill [1] and later by Reif
[11]. In order to obtain simulations for our computation models (in which the input
set, R", is infinite), we have to consider the structure of functions computed in
ACTs and LSAs. Here, as in [2], we again make use of Milnor’s bound [10] for the
number of connected components into which R" can be subdivided by the set of
roots of a polynomial with given degree.

1. A general simulation

Let A be a set, and let F be a family of functions f:A-> R A probabilistic
computation tree (PCT) D with queries defined by F is a binary computation tree
which takes inputs from A. An inner node v of D is either a probabilistic node or
a query node. At a probabilistic node, a coin is flipped to determine which branch
to follow. At a query node a query f(x) o 0 is asked to determine which branch to
follow. Here, f€ F, x€ Aisthe input,and o € {<, >, =}. Each leaf is either accepting
or rejecting. The complexity of D is the maximum over all xe A of the expected
running time of D on input x. D recognizes L < A with threshold !+¢, 0<e <},
if, for each x¢ A, Prob(D treats x correctly) = 1+ ¢, where “D treats x correctly”
means D accepts x if xe L and rejects it otherwise. D is deterministic, i.e., a CT,
if it contains no probabilistic nodes. A computation of D is a sequence of functions
from F used for queries on some path of D. In the sequel, let D be a PCT with
queries defined by F and with complexity T which recognizes L = A with threshold
%+ £,

We say that a CT strongly simulates D if it recognizes L and if its computations
are concatenations of computations of D,

First we notice, as already shown in [6], that it suffices to consider the depth of
D rather than its complexity.

Simulating probabilistic by deterministic algebraic computation trees 327

Lemma 1.1 (Manber and Tompa [6]). The PCT derived from D by replacing the
internal nodes of D at depth (2/¢) T by accepting leaves and removing all deeper nodes
recognizes L with threshold }+1e.

' From now on we assume w.l.o.g. that D has depth T. Next we show how to
simulate D by a CT if A is finite. Similar forms of the following lemma are already

implicitly used in [1, 11].

Lemma 1.2. If A is finite, then D can be strongly simulated by a CT with depth
O(T log(|A|)).

Proof. For some positive integer s let D, be the PCT of depth sT which started
with input x, runs D on x for s independent trials, and accepts x if x is accepted
by D in at least 35 runs. We need the following claim.

Claim 1.3. D, recognizes L with threshold a =1—(1 —4e%)"2,

Proof. Let x€ A. D, treats x correctly, if x is treated correctly in at least s of the
s independent runs of D executed by D, Thus, Prob(D, treats x incorrectly)
<Y, —¢e)'(1+e) " < (1-4¢)"? by Chernoff's bound, see [4]. [

Proof of Lemma 1.2 (continued). Now, let €=(e,, ..., e.r) be a sequence of out-

comes of coin flips, and let D, be the CT arising from D, by removing on each
path at each ith probabilistic node v the branch which is not chosen, if the outcome
of the coin flip at v is e. The computation of D, can be looked upon as follows.
Started with input x, D, first randomly chooses an ¢, and then runs D, with input
x. Thus, “Prob(D, treats x correctly) = a” means that in @2°7 of the 2°" D.’s, x is
treated correctly. Thus, there is an € such that D*:= D; treats at least alA| inputs
correctly. Therefore, if a|A|>|A| -1, D* recognizes L. Inserting the expression for
a from Claim 1.3 in this inequality, we have that D* recognizes L if (1 —4¢%)"? <
1/]A]. As 0 < & <1, log(1 —4&?) exists and is negative. Therefore, the above inequality

yields that D* recognizes L if

_ 2log(A) _
s/————_log(l_482)—O(log(|A|)). O

this construction makes the deterministic computation nonuni-

Here we note that
se of the need to choose a

form (even if the probabilistic one were uniform), becau

suitable &

Lemma 1.2 shows an efficient simulation of probabilistic by deterministic computa-
tions if the input set is finite. But for the computational models we are .interested
in the case that the input set is infinite, namely R". On the other hand, in Lemma
1.2 we have not used any properties of the set F of functions. We shall now take

into account the ‘structure’ of F in order to get results similar to Lemma 1.2 when

the input set is infinite.

328 F. Meyer auf der Heide

Let F={f,,...,fn}, and let G=(0y,...,0,)e{<,>,=}" Then, I;:={x€ A,
filx)o; 0fori=1,...,mh

Theorem 1.4. Let k=|{ce{<,>, =}", [,#@}|. Then D can be strongly simulated by
a CT with depth O(T log(k)).

Proof. For e{<,>, =}" with I, #0let x; € I ;. By Lemma 1.2 we know that there
is a CT D' with depth O(T.log (k)) which strongly simulates D if we only allow
inputs from {x, I ; # 8}. The proof of the following claim will also prove the theorem.

Claim 1.5. D’ recognizes L (for all inputs from A).

Proof. Let x € A. As the nonempty I;'s partition A, there is a unique & with xe I,
By the definition of I;, no query defined by a function from F can distinguish
between x and x ;. Thus, both in D and D, the same computation paths are followed
by x and x;. Therefore, D accepts x if and only if it accepts x,, i.e., x€ L if and
only if x,€ L. By the same argument we get that D' accepts x if and only if it
accepts x,. Thus, D" accepts L.

2. The main result

In this section we prove our results for algebraic computation trees and linear
search algorithms. A probabilistic algebraic computation tree (PACT) D is a tree with
degree 0, 1, or 2. To each node v with degree 1 a function f,: R" > R is attached.
f, is either a projection on one of the input variables x,, ..., x,, or a constant, or
f.=f$f. for some nodes v', v" on the path to v, and for $&{+, —, %, /}. A node
v with degree 2 is either a probabilistic node or 4 query node. Probabilistic nodes
work as in PCTs. At a query node v, a query f,{X) o 0 is asked to determine which
branch to follow, where v’ is a node on the path to v and o€ {<, >, =}. The leaves
are accepting or rejecting. The recognized language, the complexity, and the thresh-
old of D, as well as the deterministic version (ACT) are defined as for PCTs. Note
that, in contrast to the ACTs introduced by Ben-Or[2], we do not allow the extraction
of roots as arithmetic operation.

A probabilistic or deterministic linear search algorithm (PLSA or LSA) is a PACT
or ACT, in which only the arithmetic operations +, —, and multiplication with real
constants are allowed, and in which only queries and coin flips count for the
complexity. (We shall see in the proof of the Main Theorem that we need a bound
on the degrees of the computed rational functions. Therefore arithmetic operations
have to count for the complexity, if multiplication or division are allowed. But with
addition and subtraction only linear functions can be computed. Hence, in this case,
we even have a degree bound (namely 1), if we do not count arithmetic operations,
as in LSA’s.)

We are now ready to state the main result of this paper.

Simulating probabilistic by deterministic algebraic computation trees 329

Main Theorem 2.1. Let D be a PACT or PLSA with complexity T recognizing L< R"
with threshold 5+ ¢. Then there is an ACT or LSA recognizing L in O(T’n) steps.

Proof. We only prove the result for ACTs. A simplified version of this proof already

yields the result for LSAs.

Let D be an ACT as in the Main Theorem 2.1. By Lemma 1.1 we may assume
w.lo.g. that D has depth T. Let F={f,, ..., f.} be the set of functions computed
at the nodes of D. Then m=< 27 because D is a binary tree. Furthermore, because
of the arithmetic operations allowed in D, each f; is a rational function, f,=r,/q,

where r, and g, are polynomials of degree at most 27
For Ge{<,>,=}" let I, be defined as in the previous section. We need the

foliowing claim.

Claim 2.2. Let k=|{Ge{<,>,=}", I,#0}|. Then there is an ACT recognizing L in
O(T log(k)) steps.

Proof. By Theorem 1.4, D can be strongly simulated by a CT D’ of t.iepth
O(T log(k)). The definition of ‘strongly simulating’ guarantees that D’ is an
ACT. O

Proof of Theorem 2.1 (continued). Now it remains to bound k. For this purpose we
first note that for o € {<, >, =} and for € R" such that f,(x) is defined, ﬁ(_i) a':)
holds if and only if p; o 0, where p;:=rg. Thus, for ¢e{<,>,=}", [;,={X€R",
f(XYo,0fori=1,... , mi={fcR", pi(%) 5,0 for i=1, ..., m}. We need the fol-

lowing lemma.

Lemma 2.3. k=|{dec{<,>,=}"I,#0}|<(2d+2)(2d +1)""", where d is the degree
of H:m=1 P

Before we prove Lemma 2.3 we conclude the Main Theorem 2.1 (f,f?f,] it. As Fhe
P/’s have degree at most 27! and as m<27, d<2°""". Thus k=2""""". Inserting

this in Claim 2.2 yields the Main Theorem for ACTs. [l
Proof of Lemma 2.3. This proof is based on the following theorem due to Milnor[10].

Theorem 2.4 (Milnor [10]). Let p:R" >R be a poly_nlomial with degree d'. Then
c(p):={xe R" p(X)#0} has at most (d'+2)(d"'+ 1)""! connected components.

Now, in order to prove Lemma 2.3, let A= R”" contain exactly one e.lement_of
each nc’)nempty I,. Then, |A]=k Let §>0 be chosen such that & <mm{lp,~(4}')[,
i=1,...,m xeA, p(%)#0}. Let p=TII_, (pi+8)(p:—5). We need the following

claim.

330 F. Meyer auf der Heide
Claim 2.5. Each connected component of ¢(p) contains at most one element from A,

Proof. Let X, 7€ A. Then, as ¥ and j belong to different I;’s, there is some p; such
that p;(x) >0, p,(5)<0 or p(x)=0, p,(7) <O0. In the first case, by the definition of
8, we get that p;(¥)— 8 >0 and p,(7) — § <0. As p, — 8 is continuous, each continuous
path from X to 7 contains a root of p; — 8, and therefore of p. Thus, £ and y belong
to different connected components of ¢(p). The second case is handled analogously
with the help of p;+48. [

Proof of Lemma 2.3 (continued). Since d’<2d (recall that d is the degree of p),
by Milnor’s theorem, c() has at most (2d +2)(2d +1)" ' connected components.
As, by Claim 2.5, k =| A} < (number of connected components of ¢(p)), Lemma 2.3
follows. [

References

[1] C.H. Bennett and J. Gill, Relative to a random oracle, P* # NP* # co-NP* with probability 1,
SIAM J. Comput. 10 {1981) 96-113.
[2] M. Ben Or, Lower bounds for algebraic computation trees, 15th ACM STOC (1983) 80-86.
(31 D. Dobkin and R.J. Lipton, A lower bound of 4n” on linear search algorithms for the knapsack
problem, J. Comput. System. Sci. 16 (1978) 413-416.
[4] W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1957).
[5] P. Klein and F. Meyer auf der Heide, A lower time bound for the knapsack problem on random
access machines, Acta Inform. 19 (1983) 385-395.
{6] U. Manber and M. Tompa, Probabilistic, nondeterministic, and alternating decision trees, 14th
ACM STOC (1982) 234-244.
[7] F. Meyer auf der Heide, Lower bounds for solving Diophantine equations on random access
machines, J. ACM 32(4) (1985) 929-937.
[8] F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional knapsack
problem, J. ACM 31 (3) (1984) 668-676.
[9] F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard problems, 17th
ACM STOC (1985) 413-420.
(10] J. Milnor, Singular Points of Complex Hypersurfaces (Princeton Univ. Press, 1968).
(11} LH. Reif, On synchronous parallel computations with independent probabilistic choice, SIAM J.
Comput. 13 (1) {1984) 46-56.
{12] E. Reingold, On the optimality of some set algorithms, J. ACM 19 (1972) 649-659.
{13) M. Snir, Lower bounds for probabilistic linear decision trees, Res. Rept. 83-6, Dept. of Computer
Science, Hebrew Univ. of Jerusalem, Israel, 1983.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6

