SPEEDING UP RANDOM ACCESS MACHINES BY FEW PROCESSORS

(Preliminary Version)

Friedhelm Meyer auf der Heide

FB 20-Informatik, Johann Wolfgang Goethe Universitat Frankfurt

6000 Frankfurt a.M.

Fed. Rep. of Germany V)

Abstract: Sequential and parallel random access machines (RAMs, PRAMs) with
arithmetic operations + and - are considered. PRAMs may also multiply with
constants. These machines work on integer inputs. It is shown that, in contrast
to bit aorientated models as Turing machines or log-cost RAMs, one can in many
cases speed up RAMs by PRAMs with few processors. More specifically, a RAM

without indirect addressing can be uniformly sped up by a PRAM with q proces”

sors by a factor Eﬁﬂ)—z
q

- A similar result holds for nonuniform speed ups of

RAMs with indirect addressing. Furthermore, certain networks of RAMs (such as

k-dimensional grids) with g processors can be sped up significantly with only

9'** processors. Nonuniformly, the above speed up can even be achieved for

arbitrary bounded degree networks (including powerful networks such as per-

mutation networks or Cube-Connected Cycles), if only few input variables are

allowed. 1t is previously shown by the author, that the speed ups for RAMs are

almost best possible.

Y This research was done at the IBM Research Laboratory. San Jose, CA, USA.

143

Introduction

Parallel random access machines (PRAMs) are a widely accepted model of paral-
lel computation. Many algorithms are known in this model which show that
sometimes surprisingly strong speed ups of certain sequential algorithms are
possible. On the other hand many problems look inherently sequential, i.e. there
seerns to be no significant speed up possible, at least when only few processors
are allowed. It is known [PR] that with many, namely 2 processors, one can

speed up t steps of a Turing machine by a factor %ﬁ%ﬁ, but no speed ups are

known with poly(t) processors.

In this paper we show that such speed ups are possible for RAMs with operations
+ and -, uniform cost measure, and inputs given integer by integer, not bit by
bit. We show that such RAMs without indirect addressing (storage addresses are

functions in the number, but not in the values of the inputs) can be sped up by

2
PRAMs with q processars by a factor ﬂ_"ﬁ_‘;ﬁﬂl_, if the PRAMs can multiply with

constants. Here uniform means that , if the RAM computes f:N*+N" in time T(n)
2
(n = g(input variables)), then the PRAM needs time T(n)ﬁgﬁ%%ql—. We also can

speed up RAMs with indirect addressing in a similar way. but only to the
expense of nonuniformity, i.e. we need a new PRAM for each new number n of
input variables. This is one of the examples where fast algorithms can be desig-
ned to the expense of nonuniformity, Other, more surprising examples are the
fast nonuniform algorithms for the knapsack or traveling salesman problem
(M1], [M2], or the fast nonuniform simulations of probabilistic by deterministic
computations [BG], [A]. [M3].

We furthermore show that even certain networks of RAMs can be sped up. If g

RAMs are for example connected to a k-dimensional grid, a PRAM with ¢*¢ pro-

2 .
(oglogg)® oy e gL Nonuni-

ces: i i
sors can uniformly speed it up by a factor (108 e

144

formly, we even can speed up arbitrary bounded degree networks, including
powerful networks as permutation networks or Cube-Connected Cycles, as long

as the number of input variables is very small relative to the number of proces-

SOors.

The paper is organized as follows. In section I we define our computation models
in more detail and state our results. In section II we show how to speed up
straight line versions of RAMs. It turns out that, because only operations + and -
are allowed, we can achieve dramatic speed ups with few processors. This result

is used in the next two sections in order to show the simulations of RAMs and

networks.

1. Definitions and Results

A random access machine (RAM) consists of a program and an infinite set of
registers labelled by 1,2,..., each able to store one integer. Initially the first n
registers contain the input consisting of n integers, finally the first m registers
contain the output, m integers. In one step, a RAM1 can execute a direct sto-
rage access (i.e. the address of the accessed register only depends on the
number, but not on the values of the input variables, and its computation only
uses constant addresses independent on n), write a constant into register 1, add
or subtract two contents of registers, or execute an lf-question (if (content of
register 1} > O then ... else...). A RAM2 can, in addition to the above, execute

indirect storage accesses, i.e. use any computed value as an address.

A PRAM1 (PRAM2) with q processors P1....,Pq consists of q RAM1s (RAM2s), the
processors, and an infinite shared memory consisting of registers labelled with
1,2..., each able to store one integer. In addition to its RAM1 (RAM2) capabilities
each processor can access directly (and also indirectly) the shared memory-.

Each processor can also multiply a content of a register with a constant, where

145

a number is constant, if it appears in the program, or, inductively, is the sumor
product of two constants. The PRAMs are assumed to be synchronized. We allow
to concurrently read in the same register of the the shared memory, but no
concurrent write is allowed. (This means that for our simulations we do not

need the very strong concurrent write versions of PRAMs, compare [FMRW].)

Straight line RAM1s or RAM2s are those RAMl1s or RAM2s which do not use If-
questions.

A network M of q RAM1s or RAM2s consists of q processors (RAM1s or RAM2s)
which are partially connected according to a {communication) graph. In one
step each processor can, in addition to its sequential capabilities, read an infor-
mation from some register of a neighboring processor. M has no shared memory.
If s:N+N is such that each Pi can reach at most s(t) different processors along
paths of length at most t in the communication graph, then s is the spreading
Junction of M.

A machine as described above is uniform (and T(n) time bounded), if it compu-
tes a function f:N*»N° (in time T(n), where n denotes the respective number of
input variables). A family of such machines is nonuniform {and T(n) time boun-
ded), if it contains a machine for each n which computes Il (in time T(n)). Well
known examples of nonuniform computation models are Boolean and algebraic

circuits and all types of computation trees or branching programs.
In this paper we show the following results.

Theorem 1 : A uniform PRAM1 with q processors can simulate a T(n) time boun-

2
ded RAM1 in time o(r(n)i‘-"-ﬁ%%ﬂ—).

Theorem 2 : A family of nonuniform PRAM1s with q processors can simulate a

(loglogg i).

T(n) time bounded RAM2 in time O(T(n)+n)"— o

146

Theorem 3 : A uniform PRAM1 with g!** processors can simulate a T(n) time
bounded network of q RAMls with spreading function O(t¥) in time

loglogg)2 N
O(T(n)s—(-lso-g—g,-—). where 6= <7

Theorem 4 : Let the number n of input variables the following machines deal

with be a constant. A nonuniform PRAM1 with g1** processors can simulate T
2 .

steps of a bounded degree network of q RAM1s in time O(Tsl—gs——gl— ,‘l%?q_))- (n is con-

sidered constant in this O-notation.)

Remark 1 : A k-dimensional grid has spreading function 0(¢¥). Thus theorem 3

applies to it.

Remark 2 : In {M4] the author has shown that the simulations from the theorems

1 and 2 are almost best possible (up to a factor loglogg).

1I. Speeding up straight line RAMs
In this section we show that straight line RAM1s can be sped up significantly.

Lernma 1 : A PRAM1 with 3 processors can simulate t steps of a straight line

RAM1 M in 0((logt)?) steps.

Proof: Assume for a moment that we have computed all at most t addresses used
in M. We sort them and compute their ranks, such that equal numbers have the
same rank. This can be done in time 0(logt) with t processors [AKS]. For our pur-
pose even the O((logt)?) sorting algorithm from [B] is good enough. We now
replace each address by its rank. This obviously does not change the computa-

tion and has the advantage that we only access the registers 1,....t.

Let &eNt*! be the vector of the contents of the t registers before step i, & ,=!

Then for each operation of M there is a (t+1)x(t+1) matrix A such that &,,=4%:

147

where i is the time when the operation is executed. For example, if the opera-
tion is "store the sum of registers i and j into register i”, then A=E+E;, where E
is the unity matrix and £;; has a one at position ij and zeros everywhere else. As
the first component of &; is 1, we also can create a constant c in register j by the

matrix E+cE,—E;;, etc. Thus we can compute in constant time the t matrices

A, A, (each with the help of t2 processors) such that &, =44, 4,5y But in

this way we certainly can compute &,,, i.e. simulate M with ¢3 processors, in

time 0((logt)?), because with t2 processors we can execute a matrix multiplica-
tion in time O(logt), and because of the associativity of this operation we get the
whole product in logt stages each consisting of at most t parallel matrix multi-

plications. (Here we need that the processors may multiply with constants.)

It remains to show how to compute the addresses mentioned in the beginning of

the proof. This can be done by the same algorithm, if we consider n to be the

input variable. For this program the addresses are by the definition of direct

addressing only constants which appear explicitly in the program and need not

be computed. Thus we get all addresses in time 0((logt)?), which completes the

simulation. q.e.d.

M. Simulating RAMs by PRAMs

We first prove theorem 1.

Let t be chosen such that 2ft4sq. Assume we have simulated some number of

steps. We now show how to simulate the next t steps. A computation of length t

is a sequence of instructions M executes if the results of the If-questions are

fixed. There are at most 2¢ such computations, €y ...Ca- For each of them we

reserve t4 processors. Let C=¢; be fixed. C is a RAM1. For each t'st we now use t3

processors to simulate the prefix of length t’ of C. This can be done in time

148

0((logt)?) by lemma 1. Now we check whether C is the computation actually
executed by M. This can be done in constant time because we know all prefixes
and therefore all values determining the If-questions. The above we do for all ¢;
in parallel. Now the bunch of processors which has identified the right compu-
tation updates the registers maintaining the storage of M. This can be done in

constant time because at most t changes are necessary and we have enough

processors.

Thereby we have simulated t steps of M in 0{(logt)?) steps. As we may choose

t~logg theorem 1 follows. q.e.d.

Now we prove theorem 2.

We unroll the T(n)-time bounded RAMZ for a fixed number n of input variables to
a computation tree as described in [M2]. In such a tree, a node representing an
arithmetic operation or a direct storage access has one child, a node
representing an If-question has two children, one for each possible outcome of
the question, a node representing an indirect storage access has s+1 children
..... v,, where s denotes the number of previously accessed registers. The i-th
child stands for the case that the i-th of the previously accessed registers is
accessed now, i=1,...s. The O-th child stands for the case that the register

accessed now was never accessed before. {(For a detailed description of this

computation tree see [M2].)

As shown in {M2] each path of this tree can be looked upon as a straight line

RAM1, if we ignore the nodes associated with If-questions.

In order to apply the idea from the last simulation we try to simulate all compu-
tations of length t from some time on, for a given parameter t. But as in this
case the degree of the tree can be roughly T(n), we would need T(n)!t* proces’
sors in order to simulate all possible computations of length t as in the previous

simulation. Therefore there is no (non-constant) speed up possible, if the

149

number of processors is polynomial in T(n).

Thus we need an additional idea to obtain a speed up as demanded in theorem
2. We first remove all those branches from the computation tree which are not
followed by any input. If during this procedure, a node representing an indirect
storage access looses all but one of its children, this storage access was
redundant, i.e. for all inputs passing through this node the time when the
accessed register was previously accessed is the same, or for all these inputs the
accessed register was never accessed before. In this case we can clearly replace
the indirect by a direct storage access. Note that these modifications can only

be done to the expense of nonuniformity!

Now let t be chosen such that p=2ttt, Suppose we have simulated some number
of steps of the RAM2 M. We now want to simulate the next t steps. We have seen
above that we do not have enough processors to simulate all computations of
length t in parallel. Therefore we only simulate those computations which follow
the 0-th branch at each (nonredundant) indirect addressing, i.e. which assume
that the accessed register was never accessed before. As there are at most 2¢
such computations, we can simulate all of them and all their prefixes in 0{(logt)?)
steps, as described in the previous computation.

Now we check whether one of these computations is correct, i.e. whether on one
of them all the If questions are answered correctly and whether the choices of
the 0-th branches at indirect addressings were correct. If we find such a compu-
tation we have simulated t steps in O((logt)?) steps and are done.

Otherwise we locate the computation and the time when the first mistake (at an
indirect addressing) occured. This can be done in constant time, because we

have all the prefixes of the computations and enough processors.

Now we restart the simulation from this time on. First we simulate the indirect

addressing correctly (with one processor in constant time). Then we start a new

150

phase of sirmulating t steps. By this algorithm we clearly simulate M.
Each phase of trying to simulate t steps needs 0(log(t)?) steps. The number of
phases we now have to simulate is not only —71‘21 , but ﬂtﬂl+m, where m denotes

the number of mistakes, i.e. the number of unsuccessful attempts to simulate t
steps. The following lemma shows that we do not make too many such mistakes

and thereby implies theorem 2 .

Lemma 2 : During the simulation, at most n mistakes occur (n=number of input

variables).

Proof : Let B be the set of inputs following the computation of M we consider up
to {not including) the indirect read, where we made a mistake. Let L be the
affine subspace with smallest dimension containing B. For an input e let 1)
be the address used in M at this indirect storage access. Suppose that the same
cell was previously accessed at time t with address g(£). Let now A contain all
those inputs 4, for which 7(§)=g(#) holds. One easily checks that f and g are
linear functions (see [M4]). As the indirect read is nonredundant we know that
fip=glp. On the other hand, sl =g!, by construction. Thus AcL:=Ln{geR™ .
7 (@&)=g(£)}. Thus each mistake reduces the dimension of the set of inputs follo-
wing the computation we consider. After at most n mistakes this set has dimen-
sion 0, i.e. it consists of at most one point. But in this case there are no further

nonredundant indirect storage accesses possible. Therefore our simulation

makes no further mistakes. q.e.d.

IV. Simulating networks by RAMs

We first prove theorem 3. Let M be a network of RAM1s Pi,....Pq with spreading

function s. Let p (>q) be the number of processors of the simulating PRAMI.

Choose t such that (t s(t)y2t '(‘)s%, We again simulate t steps of M. For each Pi

151

we reserve (t s(t))*2 *{t) processors. We now use an idea from [M5] to simulate t
steps of M by only considering relatively small parts of M. Let Mi be the subnet-
work of M consisting of all those processors which are connected via a path of
length at most t to Pi. Mi has at most s(t) processors. In [M5] it is shown that
after t computation steps of M and Mi, the configurations of Pi in M and Mi are
the same. Thus it is sufficient to simulate M1,...,Mq for t steps. As each Mi only
has s(t) processors, we can simulate it by a RAM1 in ¢t s(t) steps. By theorem 1
we can simulate this RAM1 by a PRAM1 with (¢ s(¢))*2¢t*®) processors in time
O(log(t 5(t))?) steps. Because of our choice of t we have enough processors to
execute these simulations for all Mi in parallel. Thus we have simulated t steps

of M in O(log (t s(¢))?) steps. If s(t)=0(t*) for some k, we can choose t~(elogg) with

5=ﬁ and obtain a PRAM with g!*¢ processors which simulates T(n) steps of M in

time o(r(n){{080820%) | ¢ 4.
(logg)?

Now, in order to sketch the proof of theorem 4, we try to apply the same ideas to
simulate arbitrary networks of RAMis with q processors and degree bound c,
say. Such a network has spreading function ct. Let t be fixed. We specify it later.
We define the Mi's as in the last proof. But now their number of processors can
be exponential in t, namely up to c!. We now interpret Mi as a PRAM1 with c?
Processors which makes t steps. Combining ideas from [DL] and [M4] shows that
this PRAM can nonuniformly be simulated in d=0(2"t2) steps by a RAM1. Now we
apply again theorem 1 to speed up this RAM1. With d42¢ processors we can

simulate Mi in 0((n +logt)2) steps. Thus ga42% processors can simulate t steps of M

In O((n+logt)?) steps. Now choose t~\/(£lzgfl)=n(\/logq) because n is a

constant. Then d=g*. Therefore we can simulate nN(viogg) steps of M in

O({loglogq)?) steps using g !** processors. g.e.d.

152

References

[A] L. Adleman, Two theorems on random polynomial time, 19th IEEE-FOCS,
1978, 75-83.

{AKS] M. Ajtai, J. Komlos, E. Szemeredi, An 0(nlogn) sorting network , 15th ACM-
STOC, 1983, 1-9.

[B] K. Batcher, Sorting networks and their applications, AFIPS spring joint com-
puting conference 32, 1968, 307-314.

[BG] C. H. Bennett, J. Gill, Relative to a random oracle, PA#NPA#co—NPA with pro-
bability 1, SIAM J. on Comp. 10, 1981, 96-113.

(DL] D. Dobkin, R. Lipton, Multidimensional search problems, SIAM J. on Comp.
5, 1976, 181-186.

[FMRW] F. Fich, F. Meyer auf der Heide, P. Ragde, A. Wigderson, One , two, three
... infinity: lower bounds for parallel computation, 17th ACM-STOC, 1985, 48-58.

[M1] F. Meyer auf der Heide, A polynomial linear search algorithm for the n-
dimensional knapsack problem, J. ACM 31(3), 1984, 668-676.

MR .Fast algorithms for n-dimensional restrictions of hard problems,
17th ACM-STOC, 1985, 412-420.

[M3)e . Simulating probabilistic by deterministic algebraic computation
trees, to appear in TCS.

(Ma)_ . __ » Lower bounds for solving linear Diophantine equations on several
parallel computational models, to appear in Information and Control.

(M8] o , Efficient simulations among several models of parallel computers,
to appear in SIAM J. on Comp.

{PR] W. Paul, R. Reischuk, On alternation 11, Acta Informatica 14, 1980, 391-403.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11

