Fast Algorithms for N-Dimensional Restrictions
of Hard Problems

FRIEDHELM MEYER AUF DER HEIDE

Johann Wolfgang Goethe Universitar Frankfurt, Frankfurt am Main, West Germany

Abstract. Let M be a parallel RAM with D processors and arithmetic operations addition and subtraction
recognizing L C N in T steps. (Inputs for M are given integer by integer, not bit by bit.) Then L can
be recognized by a (sequential!) linear search algorithm (LSA) in O(n*(log(n) + T + log(p))) steps. Thus
many n-dimensional restrictions of NP-complete problems (binary programming, traveling sale.sma.n
problem, etc.) and even that of the uniquely optimum traveling salesman problem, W.thh 1s
Af-complete, can be solved in polynomial time by an LSA. This result generalizes the construction of a
polynomial LSA for the n-dimensional restriction of the knapsack problem previously shown by the
author, and destroys the hope of proving nonpolynomial lower bounds on LSAs for any problem that
can be recognized by a PRAM as above with 2P processors in poly(n) time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—geometrical problems and computations

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Linear search algorithms, parallel random-access machines

1. Introduction

Linear search algorithms (LSAs) have turned out to be a realistic and Comfoml'b]e
computation model for proving lower time bounds for a large variety of interesting
problems. Such an algorithm is an abstraction of a random-access machine (RAM).
These RAMs have the capability of executing direct or indirect storage access,
conditional branchings, addition, or subtraction in one step (see [1] or, tailored to
our use, [5], [7], or [12]). They recognize languages . C N” or L € N* and read
the input integer by integer, not bit by bit.

When dealing with LSAs, one usually allows inputs consisting of » real numbers,
only counts conditional branchings as computation steps, and assumes that they
all are of the form “If f(X)>0, then ... else ... ,” where & € R” is the input and
f:R" — R is an affine function, that is, f(X)=ax - bforsomeac R", bER. A
conditional branching as above is said to be defined by /. We present LSAs by
rooted binary trees whose root and inner nodes are labeled with predicates of the
form “f(%) > 0” for some /f as above. The leaves are labeled with “accept” Of
“reject.” A computation started with some input X € R” consists of traversing the

This research was done at the IBM Research Laboratory, San Jose, California.
Author’s present address: Fa

chbereich Informatik, Universitit Dortmund, Postfach 50 05 00, D-4600
Dortmund 50, West Germany.

» OT to republish, requires a fee and/or specific permission.
© 1988 ACM 0004-541 1/88/0700-0740 $01 .50

Journal of the Association for Computing Machinery, Vol. 35, No. 3, July 1988, pp. 740-747.

Fast Algorithms for N-Dimensional Restrictions of Hard Problems 741

tree from the root to a leaf, always choosing the left or right branch of a node
according to whether its predicate is fuifilled or not. The LSA accepts the language
of all inputs arriving at an accepting leaf.

The reason why LSAs are comfortable for proving lower bounds is their nice
geometrical structure. As each conditional branching defined by some affine
function f: R" — R subdivides the input set in the two halfspaces {x € R"| f(X) >
(respectively, <) 0} of the hyperplane {x € R"| f(X) = 0}, the inputs arriving at
some node of an LSA form a (convex) polytope. Lower bounds for LSAs can be
found, for example, in [3], [7], or [11].

Furthermore, many lower bounds for LSAs can be carried over to RAMs
(see [5], [12], and, for a general lower bound for RAMs, [7, theorem 3]), that is, to
an important, realistic computation model.

In [6] it is shown by the author that LSAs are surprisingly strong. They can
solve the NP-complete (compare [4]) knapsack problem (input: X € R%, query:
3a € {0, 1}" such that @x = 1) in polynomial time. The reason for this strength of
LSAs is that they only deal with inputs consisting of a fixed number # of variables,
that is, they only handle n-dimensional restrictions of given problems. Thus,
although a program solving, say, the knapsack problem must have constant size
(independent of the number of input variables), the size of an LSA for its n-
dimensional restriction may depend on #. In fact, the size of the LSA shown in [6]
is exponential in #. Its main importance is to pinpoint the limits of proving large
lower bounds on LSAs.

In this paper we take a closer look at these limits. For this purpose, we¢ consider
parallel RAMs (PRAMs). Such a PRAM consists of p RAMs as described above,
its processors, and an additional common memory consisting of infinitely many
registers, which can be accessed directly or indirectly by the processors. We note
here that this model can not be compared with the usual PRAM model used in
complexity theory. The main difference lies in the fact that we assume that tpe
input is given integer by integer, not bit by bit, and that we measure the complgxlty
as a function of the number of input variables, not of their binary length. A minor
difference is that we allow the processors to be awakened in one step. This makes
it possible for more than 2 processors to execute a computation of length 7.

The main result of this paper is the following:

If L C N" can be recognized by a PRAM with p processors in T steps, then a
(sequential') LSA can recognize L in time polynomial in n, T, and log(D).

Now one can show the existence of polynomial LSAs for given problems by
simply designing polynomial parallel algorithms for them using 27" processors.
This method yields, for example, polynomial LSAs for NP-corpplete problems sgch
as the traveling salesman problem, binary programming, and integer programming
with bounded solution size. Furthermore, we obtain a polynomial LSA for the
problem of deciding whether an instance of the traveling salesman pro}t:lem has a
unique optimal solution. This problem is shown to be complete in A%, the class
of all problems that can be solved in polynomial time using oracles from NP

(see [10]). | |
The paper is organized as follows. In Section 2, we define PRAMS in more detail,
ection 3, we outline the proof, state

state our theorem, and show applications. InS . 4 and 5
the two basic lemmas, and conclude the theorem from them. secuons an
contain the proofs of the two lemmas mentioned above. In Section 6, some open
problems are discussed.

742 FRIEDHELM MEYER AUF DER HEIDE

2. Definitions and Results

A PRAM M consists of a finite number p of processors P, . .., P, and a common
memory. The common memory consists of infinitely many registers o, m, ...,
each capable of storing one integer. Each processor P; is a usual RAM with the
capabilities of accessing directly or indirectly a common register or one of its
infinitely many private registers m;o, M., . . ., adding or subtracting the contents
of two registers, and executing a conditional branching in one step. We assume
that the PRAM is synchronized and that all processors are awakened at the
beginning in one step. In the following we describe in more detail a computation
step of a PRAM. Let #m;, #m,; denote the current contents of the respective
registers.
In one step, each processor P; executes three phases:

(1) Conditional Branching. P;branches according to “#m;¢ > 0.
(2) Write. P, writes k or #m;, into the private or common register with address j

or #m; ;. Here k and j are again constants from {0, . .., p}.
(3) Read/Arithmetic. P, reads a constant k, or #m;, or #m; ;, or #Map,, O #Miam,,
into m,. Here j and & are again constants from {0, . . ., p}. P; can also execute

an addition or subtraction after the read. In this case, the value to be read is
added to or subtracted from the old content of m,,.

At the beginning of a computation the input (x;, ..., x,) € N" is stored in
my, ..., m,. All other registers contain 0. A PRAM M computes a function
of £ N” — N in T steps if M started with an input (x;, ..., x,) has computed

S{xi, ..., x,) after T steps in m, o. M recognizes L C N”in T steps if it computes
the characteristic function of L in T steps.

We prove the following theorem in this paper.

THEOREM. Let L C N" be recognized by a PRAM with p processors in T steps.

Then L can also be recognized by an LSA in 6n*(log(n) + T + log(p)) + O(n’)
steps.

We now give some applications of this theorem. All algorithms for PRAMs
mentioned below are trivial, and are not explained in this paper.
First we consider some NP-complete problems (compare [4]).

Integer Programming with Solutions <k (n variables, m inequalities). (Input:
m linear inequalities with variables x,, ..., x,. Query: 3(x,, ..., X») €
{0, k}" which fulfills all the inequalities.)

(Note that, for k = 1, we have defined the Binary Programming problem.)

This problem can be solved by a PRAM with (k + 1) processors in O(nm) steps
and thus by an LSA (for inputs from R"*"™) in O((nm)*(nm + nlog(k + 1))) steps.
(Note that this remains polynomial in # and m as long as k is at most 2°°%"™.)

We note here that in [7] an Q(n’log(k + 1)) lower bound for m = 1 on LSAs and
RAMs is shown generalizing the bounds from [3] and [Siform=1,k=1

Traveling Salesman Problem (n towns) (Input: Distances between all pairs of

towns, _and a number k. Query: Is there a roundtrip visiting each town exactly
once with total length at most k?)

This problem can be solved by a PRAM with »! i
‘ \ ! processors in O(nlog(n)) steps
and thus by an LSA (for inputs from R”) in O(n®log(n)) steps.

Fast Algorithms for N-Dimensional Restrictions of Hard Problems 743
We now consider the following generalization of the traveling salesman problem:

Uniquely Optimum Traveling Salesman Problem (n towns). (Input: n X n-
matrix of distances between all pairs of towns. Query: Is there a unique shortest
round trip visiting each town exactly once?)

This problem is shown in [10] to be AZ-complete. Also this problem can obviously
be solved by a PRAM with n! processors in O(nlog(n)) steps and thus by an LSA
in O(n°log(n)) steps.

3. Proof of the Theorem

The proof of the theorem is not done by simulating a PRAM step by step by an
LSA. Instead we do the following: We first show that languages recognized by
a PRAM with p processors in T steps have a certain structure; we call them
g-languages where g denotes a parameter dependent on ¢ and p. Then we show
that g-languages can be recognized fast by LSAs.

In order to define g-languages, let F = {fi, ..., fn} beaset of affine functions f;:
R" — R. Then the following languages are called F-languages:

() {xeR"|f(x):0,i=1,....,m, «» g {=, <, >}, are F-languages.
(2) Unions and intersections of F-languages arc F-languages.

In order to interpret F-languages geometrically and for later use, we NOW give
some geometrical definitions. Let fR"— Rbean affine function. The hyperplgne
{X € R"| f(¥) = 0} and its halfspaces are said to be defined by /. The intersection
of a finite number of halfspaces and hyperplanes is a (convex) polytope. Let F be
the set of affine functions described above, and let Hy, ..., Hnbe the hyperplanes
defined by f;, ..., f,.. Let Hf, Hi denote the left and the right halfspace of H..
For each disjoint partition 4 U B U C of {1, ..., m} (4, B, or C may be
empty), Nies H; N Nies HF N Niec Hi 18 called a face of F, or a face of the
language UL, H,.

With these definitions it is easily seen t
faces of F.

Now let F, denote the set of all affine functions f:
{~4, ..., g}. An Flanguage is called a g-language.

The proof of the theorem is based on the following two lemmas.

LemMA 1. Let M be a PRAM with p processors recognizing L C N
Then there is a p2'-language L' with L = L'NN"

hat each F-language is a union of some

R" — R with coefTicients from

in T steps.

LemMA 2. Each g-language can be recognized by an LSA in 6n*(log(n) + log(q)

+ O(n’) steps.

The proof of the theorem is now done
Lemma 1 into Lemma 2. Therefore it remai

by inserting the bound for ¢ from
ns to prove these two lemmas.

4. Proof of Lemma 1 i

.Let M, L, T, p be as in the lemma. A computation pattern qf _M started W1_th songe
mput X consists of the description of the results of the cond}tlopal branchmgS,ft‘;
information whether ¥ € L or not, and the communication pattern of /

started with %. The communication pattern specifies for each t € {1, .- T};
i € {1, ..., p}, which processor wrote at which time what P, reads in step £, O

which input variable or which constant from {1, ... p| P, reads in step ¢ if M 1S
started with input X.

744 FRIEDHELM MEYER AUF DER HEIDE

Let Cy, ..., C, be all possible computation patterns, and let U,, . . ., U, denote
the sets of inputs with the respective computation pattern.

Coam 1. Each U;isa p2-language.

Before we prove this claim, we derive Lemma 1 from it.

Since the U;’s form a disjoint partition of N”, and since by definition either
UCLorUnL-=a, L is the union of all U/s with U, C L. By claim 1, all Us
are p2'-languages; therefore L is one, too. Q.E.D.

PROOF OF CLAIM 1. Let C = C be one of the computation patterns, U = U,.
Forr € {1, ..., T}, let U’ denote the set of inputs following the computation
pattern C for ¢ steps.

In a computation pattern the sequence of instructions is fixed because the
outcomes of the conditional branches are fixed. Therefore, for inputs from U’,
whether a processor reads or writes in some step in the private or common memory
is fixed, as well as whether it uses a constant or an indirect address. Whether a
constant, an input variable, or a previously written value is read is also fixed, as
well as whether an addition or subtraction is executed.

Now let f;,(x) denote the content of m; o before step ¢, and let 7i.(X), w; (%) denote
the addresses used for reading and writing in step ¢ by P, if M is started with x.

We now note the following; Jio =0 and for ¢ > 0, Jiel g1 is either a constant
from {0, ..., p}, or some X, or of the form f,- | y+1 or (£, + Jie) | v for some
J. t" fixed by C. Since Tie, Wi, were also previously computed as some f,- for
some j, t’ fixed by C, a straightforward induction shows:

(*) Foreach i, t, f,| 1, Tl v, Wig | et € F oy,

_ (For a function g: N* — N and a set V ¢ N", gl € F, means that there
1sg" € F,withg|, =g’ |+.)

Now we can clarify the structure of the sets U",
(**) Each U'isa p2'-language.

PrROOF. By induction on ¢,

U® = N"is a p-language.

Let 1> 0. U’ is the maximal set fulfilling the following properties:

@ U'curt

(b) Foreach i€ {1.... p|, U'Cc)= (X € N"|£.(%) > (<) 0}, where >, < is
chosen according to C. (C fixes the outcomes of conditional branchings.)

(c) For each i e |1, .., LU cw = (X € N"|r(x) — w,,-(X) = 0}, whe{e
JE{L ..., plandt’ €1,... (- 1} are fixed by C. (C fixes the communi-
cation pattern.)

By (*), each ¥ is a P27 -language. Also, by (*), ri/| v and Wi | et € Fopt.

Therefore (r,-.,.— Wl o1 € Fpand W, is a p2-language. Thus U' = U*~' n N,

VN, Wisa P2 -language. Q.E.D.

The lemma now can be concluded as follows. Since U = U7 N {x € N"| fir(X)
= 1 (or 0)}, (fi (%) is the output), and since by (*), firler € Fp2™!, U'is a
p2'-language. Q.E.D.
5. Proof of Lemma 2
This proof is based on [6, theorem 2.

Fast Algorithms for N-Dimensional Restrictions of Hard Problems 745

THEOREM [6). Let H,, ..., H,, be hyperplanes in R", H;={x € R"|f(x) =0}
Jorsome f,€ F,, and L = U, H.. Then [=1, 11" N L can be recognized by an LSA
in 3n*(log(n) + log(g)) + O(n>) steps.

In order to prove Lemma 2, we first show

CLAIM 2. The above theorem also holds, if L instead of [—1, 1]" N L has to be
recognized.

PROOF. _For an affine function f: R" — R with f(X) = ax — b for some a € R",
be R, letf Rn+1 d R be deﬁned by f(j‘, xn+1) = d-x-‘ -~bxn+l- NOW letﬁa LA sfms

Hy, ..., H, be as in the abovg theoregl from ~[6], H,, e H,, be the linear
hyperplanes in R"*' defined by fi, ..., fm, and L= U/, H.. It suffices to prove

the theorem for I, because an LSA recognizing L recognizes L if we substitute |
for x,.,. L consists of linear hyperplanes; that is, all A,’s contain 0.

Now let PY(P7) = {x € R™'|x;> (<) 0 and x| = max| x|, ..., [X}
and L* = [n PF. Then by Lemma I from [6], L7 can be recognized as fast as
Lin{xer” Ix; =1} = Ly N[~1, 1], where L is the union of the hyperplanes
in R” (= R"*'|,_,,) defined by % = fily==1. Since f; belongs to F,, /3 does, too,
Thus L7, and therefore if, too, can be recognized in 3n*(log(n) + log(q)) + .O(nJ)
steps because of the theorem from {6]. Therefore, the following LSA recognizes L

as fast as desired in claim 2:

—Decide in which P the input X lies. Suppose X € P;.
—Use the above LSA for recognizing L N P¥.

The first part of this algorithm needs 2(n + 1) steps, and the second part needs
3n*(log(n) + log(g)) + O(n®) steps, as shown above. Q.E.D.

Claim 2 already proves Lemma 2 for special g-languages, namely, those that
consist of hyperplanes defined by functions from F,. We shall now construct LSAs
for arbitrary g-languages from the above LSAs for g¢-languages consisting of
hyperplanes. For this purpose let H,, ..., H,, be arbitrary hypqplanes in R” and
L=UL H,. we say that an LSA partitions R" according to L if for eaf:h leaf v of
the LSA the set of inputs arriving at v is a subset of a face of L (cf. Section 3).

CLAIM 3. [fL can be recognized by an LSA in T steps, then R" can be partitioned
according to L in 2T steps.

Claims 2 and 3 imply Lemma 2 as follows. Let L be a g-language and L, the
language consisting of all hyperplanes defined by functions from F,. Then, b}y
Claim 2, L, can be recognized by an LSA in T = 3n4(log(n)_ + log(q)) + O(n°)
steps. Thus, by Claim 3, R" can be partitioned according to L, in 27 steps by some
LSA. By the definition of a g-language, L is the union of faces of L,. Therefore we
obtain an LSA of depth 27 for L by attaching “accept” to all leaves v of D for
which the set of inputs arriving at v is a subset of a face of L, belonging to L, and
attaching “reject” to the other leaves of D. Thus it remains to prove Claim 3.

PROOF OF Cramm 3. A 3-way LSA D is a 3-ary tree whose nodes are labeled
with affine functions f R” — R. An input X € R" arriving at such a node chooses
the left (middle, right) branch, if f(¥) > (=, <) 0. The !eaves are labeled with
“accept” or “reject.” The set of inputs arriving at a node v is called ¢(v). D accepts

the union of alj sets c(v) for accepting leaves v of D.

SuBcLAIM. Let D be a 3-way LSA accepting L in T steps. Then there: is. Z
3-way LSA D’ with depth T and the following property: For each leaf v of D" wit

746 FRIEDHELM MEYER AUF DER HEIDE

c(v) C L, there is a leaf v’ of D’ for which c(v’')y N L is empty, such that c(v) is a
Jace of (the polytope) c(v").

PROOF. Let D be as above. We may assume without loss of generality that v is
a leaf whenever c(v) C L. Then an accepting leaf is always reached via the middle
branch of its father. The following algorithm constructs D’ from D.

(1) Mark all fathers of accepting leaves.

(2) As long as there is a marked node v whose right son v” is no leaf, replace its middle son
by a copy of the subtree with root v”.

(3) Remove all labels (accept or reject) from the leaves,

This algorithm stops because it changes neither the maximum degree nor the
depth of the tree but adds at least one node to it in each step of (2).

Now let v be a leaf of D’ with ¢(v) C L. Traverse the path from the root to v
until the first time it chooses the middle branch of a marked node. At this point
choose the right branch instead, and go on in the copy of the path to v in the
subtree of this branch in the same way. Let this path lead to the leaf v’. Then c¢(v)
and ¢(v’) differ exactly by the fact that restrictions from marked nodes of the form
J(%) = 0 defining c(v) are replaced by /(%) < 0 in the definition of ¢(v’). But this
Just means that ¢(v) is a face of c(v’). Furthermore c(v’) N L is empty because
inputs from L choose a path in D’ on which at least at one marked node

the middle branch is chosen. By construction this is not the case in the path
tov’. Q.E.D.

To prove Claim 3, we now show that the above 3-way LSA D’ partitions R"
according to L. Since D’ can obviously be simulated by an LSA in 27T steps, this
implies Claim 3.

Let v be a leaf of D’. If c(v) N L is empty, then ¢(v) belongs to a connected
component of R” — L, which is by definition a face of L. If ¢(v) C L, then by the
subclaim c¢(v) is a face of ¢(v’) for some leaf v’ for which c(v’) N L is empty. As
each face of a polytope contained in one of the polytopes R” — L consists of is a
subset of a face of L, Claim 3 follows. Q.E.D.

6. Conclusion

We have shown in this paper that the n-dimensional restriction of many languages
can be recognized surprisingly fast. This result motivates the following questions.

(1) The set F, consists of m, = O(q") functions, that is, L,, the union of all the
hyperplanes defined by functions from F,, consists of m, hyperplanes. Qur result
shows that L, can be recognized in poly(log(m,)) steps. In order to understand the
power of LSAs, it is interesting to find out whether LSAs can recognize every union
of m hyperplanes in R” in poly(log(m), n) steps, or whether there exist “hard”
versions of such languages.

(2) By Ben Or’s result from [2], most known lower bounds for LSAs also hold
for algebraic computation trees (ACTs) in which multiplication and division are
allowed. Also, ACTs only deal with n-dimensional restrictions of problems. For
ACTs it is shown by the author in [9] that at least their deterministic and
probabilistic versions are polynomially related. Is this also true for the relation
between their (deterministic) sequential and parallel versions (as shown for LSAs
in this paper)?

(3) The reason why LSAs are so fast is because the length of LSAs may depenfi
on 7, the number of input variables, whereas the length of “usual” programs is
bounded independently of the input. This means that for a “bounded program

Fast Algorithms for N-Dimensional Restrictions of Hard Problems 747

length” version of LSAs both the tree and the set of functions attached to its nodes
have a lot of structure. It would be of greatest interest to explore this structure and
derive lower bound arguments from it.

REFERENCES

1. Ao, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

2. Ben Or, M. Lower bounds for algebraic computation trees. In Proceedings of the 15th ACM
Symposium on Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New York, 1983, pp.
80-86.

3. DoBkIN, D. aND LipTON, R. J. A lower bound of 3#? on linear search programs for the knapsack
problem. J. Comput. Syst. Sci. 16 (1978), 413-416.

4. GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

5. KLEIN, P., AND MEYER AUF DER HEIDE, F. A lower time bound for the knapsack problem on
random access machines. Acta. Inf. 19 (1983), 385-395.

6. MEYER AUF DER HEIDE, F. A polynomial linear scarch algorithm for the n-dimensional knapsack
problem. J. ACM 31, 3 (July 1984), 668-676.

7. MEYER AUF DER HEIDE, F. Lower bounds for solving linear Diophantine equations on random
access machines. J. ACM 32, 4 (Oct. 1985), 929-937.

8. MEYER AUF DER HEIDE, F. Lower time bounds for testing the solvability of Diophantine equations
on several parallel computational models. Inf. Control 67 (1985), 195-211. .

9. MEYER AUF DER HEIDE, F. Simulating probabilistic by deterministic algebraic computation trees.
Theoret. Comput. Sci. 41 (1985), 325-330.

10. ParapiMiTrIOU, C. H. On the complexity o
392-400.

11. REINGOLD, E. On the optimality of some set algorithms. J. ACM 19,4 (Oct. 1972), 649-659.

12. SIMON, J., AND PauL, W. J. Decision trees and random access machines. In Monographic 30,
L’Enseignement Mathematique, Logic et Algorithmic. Univ. Geneve, Switzerland, 1982, pp. 331~
340.

f unique solutions. J. ACM 31, 2 (Apr. 1984),

RECEIVED MARCH 1985; REVISED OCTOBER 1986, AUGUST 1987; ACCEPTED AUGUST 1987

Journal of the Association for Computing Machinery, Vol. 35, No. 3, July 1988.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8

