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Abstract:  This survey paper presents a complexity theoretical
approach to genuinely time bounded computations. Such computa-
tions are executed by random access machines with given set S C
{+,—,*,DIV,...} of arithmetic operations. The uniform cost mea-
sure is assumed, and the input is given integer by integer, not bit by
bit. “Genuinely” (also called “strongly” in the literature) means that
we measure the time complexity T(n) as the worst case runtime over
all inputs consisting of n integers (not of n bits}. Computability and
complexity now heavily depend on the operation set S. In this pa-
per genuine complexity classes for given operation sets S are defined,
following ideas due to Karpinski and the author from [KaM 88]. Fur-
thermore, results on genuine computability, lower bound methods,
as well as examples for complexity gaps and separated complexity
classes are surveyed.

1. Introduction

The classical theory of computability and complexity considers uniform computa-
tion models like Turing machines, random access machines (RAMs) and their nonde-
terministic, alternating, parallel... versions, as well as nonuniform models like Boolean
circuits, decision trees, or branching programs. Such computation models compute
functions f : A* — A* for some finite alphabet A, e.g. A = {0,1}, and the runtime of
an algorithm is measured by a function T : IN — IN, where T(n) denotes its worst case
runtime taken over all inputs of length n.

On the other hand the efficiency of algorithms considered in the theory (and prac-
tice) of the design and analysis of efficient algorithms is usually measured in a different
way. Here one has in mind a RAM with given set S C {+,-,*, DIV,...} of arithmetic
operations, i.e. an §-RAM. The functions that are computed are typically defined on the
integers, i.e. f: Z* — Z*, and the complexity is measured by a function T': IN — IN
where T'(n) is the worst case runtime taken over all inputs consisting of n integers. One
assumes the uniform cost measure, i.e. an elementary step {storage access, branching,
arithmetic operation from S) takes one unit of time. Examples are sorting (e.g. “Heap-
sort needs O(nlog(n)) steps”), searching, network flow, linear programming, knapsack,
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travelling salesman, problems from computational geometry, etc. Following notions due
to Megiddo from [Meg 83}, algorithms that are T(n)-time bounded in this sense are
called genuinely T(n)-time bounded (or strongly T(n)-time bounded).

In this paper we want to describe the foundations of a complexity theory of gen-
uinely time bounded computations. For this purpose we shall define our computation
models and corresponding complexity classes. Computability and complexity now criti-
cally depends on the set S of arithmetic operations allowed. We shall define “genuinely
computable” via the existence of a T(n)-time bounded RAM for some T : IN — IN,
1.e. it is not sufficient that the algorithm halts for each input, but there must even be
a finite upper bound T'(n) on the runtimes for inputs of length n.

With this strong notion of genuine computability it is immediate that we have to
take the operation set S into account. Thus we consider genuine S-computability.

All known bounds for genuine computations are proved for a nonuniform com-
putation model, namely for computation trees as defined e.g. by Ben-Or in [BO 83].
Therefore we shall also define nonuniform complezity classes.

The paper is organized as follows:
The complexity classes are introduced in Chapter 2. In Chapter 3 we list some compu-
tational problems in order to compare genuine and classical complexity measures. In
Chapter 4 we try to characterize the S-computable languages. Chapter 5 presents gen-
eral lower bound methods like the component counting lower bound due to Dobkin/Lip-
ton from [DL 75] and to Ben-Or from [BO 83]. Chapter 6 shows examples of gen-
uine complexity gaps for nonuniform complexity classes. For example, the results from
[MadH 84], [MadH 85] imply that, for operations {+,—}, the nonuniform classes P
and PARALLEL (with 27°'%(") processors) are identical. In Chapter 7 we shall present
separation results due to Karpinski and the author from [KaM 88]. E.g., the above
nonuniform gap does not exist if the operations {4, —,*} are allowed. Furthermore,
we separate the uniform classes P and NP for operations {+,—, DIC.}, where DIV,
denotes integer division by a value that only depends on the number of input variables
but not on their values. Finally, in Chapter 8, we conclude with a list of open problems.

This paper is intended to give an introduction to and a survey of the current state of
the complexity theory of genuinely time bounded computations. The sketches of proofs
are not meant to be selfcontained. Instead they should be looked upon as guided tours
through the proof. Afterwards the reader is invited to go back to the most exciting
places (i.e. papers) to study them in more detail.

Related Work

There are some related approaches to develope a complexity theory which is not
based on bit-manipulations.

. Schénhage and Simon have investigated complexity classes of RAMs where the
input consists of bits, but where arithmetic operations can be executed at unit cost. It
is shown that PSPACE (in the classical sense) is contained in their complexity class
P for the operation set {+,—,*,2%, DIV} . (Compare [Schd 79],[Sim 79].)
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Blum, Shub, and Smale have recently presented a complexity theoretical approach
to computations with real inputs. (Compare [BSS 88]).

2. Computation Models and Complexity Classes

Our basic computation model is the random access machine (RAM) with fixed
arithmetic operation set S C {+,—,*, DIV,...}. We call it S-RAM. An S-RAM M has
an unbounded number of registers R(0), R(1), ..., each of which can store an integer.
The computation is directed by a finite program that consists of instructions of the fol-
lowing types: direct and indirect storage accesses, conditional branchings (IF R(0) > 0
THEN ... ELSE ...), and arithmetic operations from S. Each of them can be executed
at unit cost. For simplicity, the only constants allowed in the program are 0 and 1.

An S-RAM M computes a partial function fa : Z* — Z* as follows. Initially,
started with input (z1,...,%n) € Z* n,ri1,...,2s are stored in R(1),...,R(n+1),all
other registers contain 0. Finally, if M stops, (Y1,--Ym) = f(z1...2n) is stored in
R(1),...,R(m). M recognizes L C Z* if M computes the characteristic function of L.
M is (genuinely) T(n)-time bounded if M executes at most T(n) steps started with any
input from Z" (uniform cost criterion).

Analogously we can define probabilistic, nondeterministic, alternating S-RAMs. Fur-
thermore we can define a parallel S-RAM as a PRAM consisting of an unbounded
shared memory and an unbounded number of processors which are S-RAMs with the
additional capability of direct and indirect access to the shared memory. The input and
output now appear in the shared memory. The local memory of the i-th processor P
contains ¢. Furthermore, we assume that Py can “wake up” a number p(n) of processors
(the active processors for the computation) in unit time (or in time O(log(p(n))), that
would not change our results).

A parallel S-RAM is (genuinely) T(n)-time bounded and p(n)-processor bounded, if it
executes at most T(n) steps using at most p(n) active processors, if started with any

input from Z".

With these notions we can define S-complezity classes:
S-P:={L C Z*: there is a polynomially time bounded S-RAM M recognizing L}.
Analogously, we define S-RP (probabilistic S-RAM, probability of error < a < 3), §-
NP, S-ALTERNATION. (We could define genuine analogues to the whole polynomial
time hierarchy.)
Furthermore, S-PARALLEL :={L C Z": thereis a parallel T'(n)-time bounded, 2p(n).
processor bounded §-RAM recognizing L, where T and p are polynomials}.
The class of S-computable languages is S-REC := {L C Z*: there is a T(n)-time
bounded §-RAM recognizing L, for some total function T : IN — IN}.

A nonuniform S-RAM is an S-RAM M that, started with z1,...,Zn, is allowed
to execute an arbitrarily complex precomputation only dependent on n before starting



a computation also dependent on the input variables z,...,z,. This precomputation
vields a program of an S-RAM M,. If, for each n, M, needs at most T(n) steps for
any input from ZZ", then M is T(n)-time bounded. M computes f : Z* — Z* if M,,
computes f|zn.

Analogously we get nonuniform versions of probabilistic, nondeterministic, alternating,
and parallel §-RAMs.

The corresponding nonuniform complezity classes are denoted by the prefix NU as NU-
S-P, etc.

All known lower bounds even hold for nonuniform S-RAMs, in other words, there is
no method known to deduce lower bounds by exploiting uniformity. The nonuniform
models normally used for lower bounds are the S-computation trees, S-CTs, which are
abstractions of nonuniform $-RAMs where storage access is not taken into account.

An S-CT for n inputs is a rooted binary tree. Nodes v with outdegree 1 are
labelled with a function p, : Z™ — Z, py = p1opy, with 0 € S, py, p either previously
computed on the path to v, or a constant from {0, 1, n}, or an input variable z;. Nodes v
with outdegree 2, the branching nodes, are labelled with predicates “p(zy,...,z,) > 0"
where p is computed on the path to v. Leaves are labelled with “accept” or “reject”.
Aninput (z1,...,2,) € Z™ follows the path from the root to a leaf, choosing the left or
right branch of a branching node according to whether (zy,...,z,) fulfils the predicate
at the node or not. (ry,...,7,) is accepted if it reaches an accepting leaf.

It is easily seen that a language L C Z" (n fixed) is S-computable iff it can be
recognized by an S-CT. Even more, the following can be shown.

Lemma 1;

a) Each S-CT of depth t can be simulated by an S-RAM in time O(2).
b) Each S-RAM recognizing some L C Z" in t steps can be simulated by an S-CT of
depth 0(tlog(t)). O

The additional factor log(t) in b) appears because we have to simulate indirect
storage accesses. This can be organized as a binary search in the set of the up to t

values currently stored by the RAM. The search keys are the addresses of the registers
in use. For details see [MadH 85].

If an S-RAM or 5-CT can recognize L C Z", then we call L nonuniformly S-

computable. Clearly,if L C Z* is genuinely S-computable, then LNZZ™ is nonuniformly
S-computable for each n ¢ IV.

Finally, we can introduce some further arithmetic operations. DIV, denotes the
mteger division with the following restriction: a DIV, b is only allowed to be executed if
b depends only on n, the number of input variables, but not on their values. Thus b can

be looked upon as a number that is computed by an §-RAM with input n. Analogously,
we can define o, for any other binary operation.



3. Genuinely Time Bounded Algorithms for Problems in P

We shall list three problems in P (in the Turing sense), together with some facts
concerning their genuine complexity.

1) Network Flow (compare e.g. [PaSt 82])

The original algorithm due to Ford and Fulkerson is not genuinely time bounded, but the
value of the maximum flow is a factor in the runtime, even if we assume the uniform cost
criterion. In the sequel, many genuine algorithms for S = {+, -~} have been developed.

2) Linear Programming (compare e.g. [PaSt 82])

This problem was shown to be in P by Khachiyan [Kha 79]. (See also [Karm 84].) The
runtimes (assuming the uniform cost criterion) of these algorithms contain the binary
input length as a factor.

The best known genuine algorithm (S = {+, —, *}) is the Simplex Algorithm, which is
known to have superpolynomial runtime. It is a challenging open problem to design (or
disprove the existence of) a genuinely polynomial algorithm for Linear Programming.
Steps in this direction can be found in [Meg 83] and [Tar 86].

3) Linear Diophantine Equations (compare e.g. [PaSt 82])

Given a € Z",b € Z, decide whether there is an & € Z" with aa = b. (This problem
is in P, but it becomes N P-complete, if @ € IN" is demanded, see [SpSt 76].) We shall
see in the next chapter that this problem is not {+, —, *}-computable, i.e. it is not in
{+,—,*}-REC. If we consider computation trees with real inputs, then the problem is
not even computable if S contains all analytic functions and DIV, i.e. it is not genuinely
computable for any reasonable set of operations (see [BaJuM 88}).

4. Genuine Computability

(i) Nonuniform S-Computability

As observed in Chapter 1, it suffices to consider 5-CTs in order to characterize the

nonuniformly S-computable languages in Z™.

For this purpose, we first have to determine which functions can be computed with
operations from S if we do not consider branchings.

An $-CT that does not contain branchings is called a straight line program over § (-
SLP). (Note: Usually §-SLPs are allowed to process real-valued inputs, and arbitrary
constants are allowed, not only those from {0,1,n} (compare [BoMu 75])).

Let F(S,n) (F(S,n,t)) denote the set of all functions computable by a finite §-SLP
(of length t) for n variables.



An (S, n)-system ((S,n,t)-system) is a Boolean combination of a finite number of (at
most 2°) inequalities “p(z1,...,z,) > 07, where p € F(S,n) (p € F(S,n,t)).

Examples:
- §={+,~}: F(S,n)(F(S,n,t)) is (contained in) the set of all linear functions with
integer coefficients (from {—n2',... n2t}).
- 8 ={4,—,%} : F(5,n)(F(S,n,t)) is (contained in) the set of all polynomials with
(degree at most 2* and) integer coefficients (from {—n2' ... n? })-
Now consider an S-CT D with depth +¢.
All functions computed at any node of D are by definition from F(S,n,t). The set
c(v) of inputs arriving at a node v is defined by the inequalities at the branching nodes
on the path to v. Thus ¢(v) is the solution set of an (S,n,t)-system. As the accepted
language is the union over the sets ¢(v), v accepting leaf, we obtain:

Theorem 1: o) L C Z" can be recognized by an S-CT iff L is the solution set of an
(5,n)-system.

b)If L CZ" can be recognized by an S-CT of depth t, then L is the solution set of an
(S,n,t)-system. O

Thus, for S = {+,-} (§ = {+,—,%}), L € Z" is S-computable, iff L is the
solution set of a Boolean combination of linear (polynomial) inequalities with integer
coefficients.

Corollary 1:  The problem “Linear Diophantine equations” (i.e. recognize L :=
{(a,b), a€ Z™" b e Z, there is a € Z" with aa — b} 1is not {4, —, *}-computable.

Proof (sketch): In a {+, -, *}-system with solution set L, the linear term T = a& — b
would have to appear as a factor in at least one of the polynomials defining the system,

for each @ € Z". As each polynomial only has finitely many such linear factors, we
would need infinitely many polynomials, O

The classes F({+,~},n) and F({+,—,*},n) are well understood because of their

algebraic structure. Exploring properties of these linear or polynomial functions is a
classical discipline in algebra.

This changes completely if we also allow the DIV-operation. Until now character-

izations of S-computability are not known for S={+,—-,DIV}or S = {+,—,* DIV}
for languages in Z™ withn > 1.

(ii) Nonuniform S-Computability for Languages in Z

For languages L C Z, S-computability is easily characterized for § = {+, —} and
S = {+, —, ¥}, using the observations from (i)

Let LC Z. The following three statements are equivalent:
- LCZ is {+,-}-computable.
- L is {+, -, *}-computable.



- One of the sets LT and IN\ L™ is finite, and one of the sets L™ and Z\ (L~ UIN)
is finite, where LY = LNIN, L~ = L\ IN,

This characterization is no longer true for S = {+,—, DIV} or S = {+,—,,
DIV}. For example, for fixed d,a € Z, the arithmetic progression {a + Ad, A € Z}
can be recognized easily by the test d- ((z — a)DIV d) = z — a. This test can even be
executed with § = {4, —, DIV}, because the multiplication with the constant d can be
simulated by additions.

Note that, for d > 1, the above arithmetic progression is not {+, —, *}-computable.
Clearly, all finite languages are {+, —, DIV }-computable.

It turns out that these two types of languages, arithmetic progressions and finite
languages, suffice to characterize the {+, —, *, DIV }-computable languages in Z:
We call L an AP-language (AP stands for arithmetic progression) if there are finite sets
A1,A, B C Z, and dy,d,y € IN, such that
L=BU{a+M:ac A, e N} U{a—-Ady:a€ Ay, A € IN}.
In other words, L is the finite union of arithmetic progressions and a finite set. The
following characterization has been obtained by Just et al. (recall the definition of DIV,
from Chapter 2):

Theorem 2 [JMW 88]:  Let L C Z. The following three statements are equivalent.
- Lis{+,- DIV} computable.
- L is {+,—,*,DIV}-computable.
- L s an AP-language. U

For L C Z™, n > 1, no such characterizations are known as yet.

(ii1) Uniform Computability

It turns out that, unless S = {+,—}, we can only prove characterizations of §-
REC if we further restrict our notion of S-computability: We need that the S-RAMs
recognizing a language L have a computable time bound (in the Turing sense). Thus we
define:
S-RECp:={L C Z™: there is a T(n)-time bounded §-RAM for L such that T(n) is
(Turing- )computable}.

Theorem 3:  Let {+,—} C S. Then L €5-RECT 1ff there 1s a sequence By, By, ...,
where B, is an (S, n)-system with solution set LNZZ", such that n — By 1s computable.

Proof (sketch): “«

An $-RAM can compute any computable function f : ZZ — Z (in the Turing sense),
because {+,-} C S.

Thus, in order to recognize L, the S-RAM first computes By, and then evaluates B,
with input zq,..., z,.

“:”

Let M be an §-RAM recognizing L. Then, for fixed input length n, M can “unroll” its
program to an §-CT. There are some extra considerations necessary when dealing with
indirect storage access, for details compare e.g. [MadH 85].

In order to find out the depth to which the S-CT has to be constructed, M computes



T(n}. From this §-CT of depth T(n), M can compute the corresponding (S, n)-systeréll
B,.

In certain cases the assumption that T(n) is computable can be avoided. This could
be done as follows: For each node v of the 5-CT, M checks whether there are inputs
arriving at that node, i.e. whether the (S, n)-system corresponding to this node has a
solution in Z™. Unfortunately, this test is not possible if {+, — %} C S, because of
Matijasevic’s result from [Mat 70] about the undecidability of the solvability of polyno-
mial Diophantine equations. On the other hand, for § = {+, —} such a test is possible.
(The Presburger Arithmetic is decidable, cf. [Opp 73]. In fact we only have to solve
the integer programming problem.) This observation yields:

Theorem 4: {4+, -}.REC = {+,-}-REC.

It is not known whether S-REC=S-RECy holds for other sets §.

3. General Lower Bound Methods

In this chapter we give an overview of the basic lower bound methods known for §-
CTs and S-RAMs. All these methods even work for nonuniform computations, because
no proof methods are known that take uniformity into account.
The most famous lower bound method is the so-called component counting lower bound,
proved for {+, — x.}-CTs (*. means multiplication where at least one operand is con-
stant) by Dobkin/Lipton in [DL 75], and for {+, —, %, /, v/ }-CTs by Ben-Or in [BO 83].
In both cases it is assumed that inputs are real-valued and that arbitrary constants are
allowed. We shall refer to such computation trees as real-valued S-CTs.

Theorem 5 [DL 75],[BO 83]:  Let L C IR" consist of ¢ connected components.

Then each real-valued {+, —, *c}-CT (real-valued {+, —, *,/,\/"}-CT) recognizing L has
depth at least log (g) (0.38log(g) ~ 0.61n).

Proof (idea): Consider a node v of a real-valued 5-CT D of depth ¢, for inputs from
IR". Let F(S,n,t) denote the set of functions f : IR — IR that can be computed by
real-valued straight line programs over S of depth ¢.
For example

- F{{+,—,*.},n,1) is the set of all linear functions f : IR — IR, if ¢ > 2n.

- F({+,~,#},n,1}) is contained in the set of all polynomials f : R® — IR with
degree at most 21,



For {+,—,*.}, the arguments from the last chapter show that for each node v the
set ¢c(v) of inputs arriving at v forms a convex polytope, in particular c(v) is connected.
As D has at most 27 leaves, the accepted language can have at most ¢ connected com-
ponents. This yields the lower bound for {+, —, *.}-CTs.

For the other case let us only consider S = {+, —, *} for simplicity. Then c(v) is the
solution set of a system of at most ¢ polynomial inequalities, each with degree at most
2L,

In order to bound the number of connected components of this system, Steele and Yao
have applied results due to Milnor [Mil 64] from algebraic topology. A consequence of
these results is the following:

Lemma 2 [Mil 64]:  For each polynomial p : IR® — IR of degree d, the set {T €
IR™ : p(Z) # 0} has at most (d+2)(d+1)""! connected components. O

In [StYa 82], Yao and Steele applied this result to the case where only polynomials
of degree at most d are allowed to be computed in the computation tree. A direct
application to our computation model only yields a Q(log(q)/n) lower bound.

This approach does not take into consideration that the polynomials appearing in D are
not arbitrary polynomials with degree at most 2*, but that they have a lot of additional
structure, because they are even computed in t steps. In [BO 83] Ben-Or used this
additional structure in a very nice way, also based on Milnor’s result. He could show
that each set c(v) consists of at most 3" connected components. This immediately

vields the lower bound. O

Thus proving lower bounds is reduced to proving lower bounds on the number of
connected components of a language or its complement.

Examples:

- Let L(n,k) :={(a,b): a € IR",b € IR, there is & € {0,...,k}" with aa = b}.
For L(n,k) we get the lower bound Q(n?log(k + 1)) for the above CT's as shown
in[DL 75] for k¥ = 1 and in [MadH 85] for arbitrary k. In particular, for k = 1, we
obtain the Q(n?) lower bound from [DL 75] for the knapsack problem.

- Let ED(n) := {(z1,...,2,) € IR" : z; # z; for all : # j}. For ED(n) we get the
lower bound Q(log(n!)) = Q(nlog(n)) from [Rein 72].

A list of further applications can be found in {BO 83].

In order to obtain lower bounds for S-RAMs from the above lower bounds for
real-valued S-CTs we have to handle two problems:
(i) Prove the lower bounds for (integer-valued) S-CTs.
(i1) Handle indirect storage access.

If we restrict ourselves to languages L = |Jio; Hi, where H; = {Z € IR" : a% = 0}
for some @ € Z™, then problem (i) can easily be handled. Thus Lemma 1 yields:
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Theorem 6:  Let L = )L, H; have q connected components. Then each {+, —,%}-
RAM recognizing LN Z™ has complezity Qlog(g)/ loglog(q)). O

Thus we e.g. only get an @(n?/log(n)) lower bound for the knapsack problem.
In [MadH 85| the above result is improved for S = {+,—,*c}.

Theorem 7 [MadH 85):  Let L = |, H; have q connected components. Then each
{+,—, *c}-RAM recognizing L N Z" has complezity at least log(q) — nloglog(q). [

This yields for example an (n?) lower bound for the knapsack problem.

On the other hand, for ED(n) we only get the trivial 2(n) lower bound. It can be shown
that this bound is tight. By clever use of indirect storage access, ED := |, .y EDn
can be recognized by a {+, —}-RAM in time O(n).

If we now also take integer division into account, the above results become wrong, be-
cause there are simple languages like the set of even integers that can be recognized in
constant time by a {+,—, DIV,}-CT although it has infinitely many connected com-
ponents. In [JMW 88|, Just et al. have shown a property of languages L C ZZ which

makes them hard to be computed by {+,—, DIV.}-CTs, even if arbitrary constants are
allowed. (DIV, is defined at the end of Chapter 2.)

Theorem 8 [JMW 88]: Let L C Z,|L| = n. If L contains no arithmetic pro-
gression of length k41, then each {+, —, DIV:}-CT (that may use arbitrary constants)
recognizing L has depth Q((log(n)/ loglog(n)) if k < log(n), and Q((log(n)/ log(k)) oth-

erwise.

O

Thus, e.g. recognizing {2%,i =1, ... ,n} needs Q(log(n)/ loglog(n)) steps on {+,—,
DIV, }.CTs, because this language contains no arithmetic progression of length 3.
For {+,—,DIV_.}-RAMs the above lower bounds are worse by a factor of loglog(n)

factor because we have to handle indirect storage access. (compare Lemma 1).

6. Gaps between Genuine Complexity Classes

For nonuniform computations, we show in this chapter that nondeterminism, al-
ternation, and even parallelism does not significantly increase the genuine computation
power of nonuniform $-RAMs, if § = {+-} S={+—,%},or § = {+, —, %} US..
Here S. may contain arbitrary binary operations where both operands only depend
on n. Thus, it is still true that only linear functions can be computed, but there is
no bound on the size of the coefficients. The following theorem can be deduced from
[MadH 84},(MadH 88] for § = {+,~}. The generalization to S = {+, - *x}US is
based on a result due to Meiser from [Mei 88].
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Theorem 9 [MadH 84],[MadH 88],[Mei 88]: Let Sy = {+,~}, S2 = {+,—, *.},
Sy = S3US,. Then, fori=1,2,3, NU-S;-P=NU-S;-PARALLEL.

Proof (idea): Lemma 1 shows that it suffices to consider S-CTs. Let us consider the
operation set S3. First we characterize the languages that can be computed by parallel
S3-RAMs.

An (n,m)-language is the solution set of a Boolean combination of at most m inequalities
“flz) >0, for fe A(n):={f:Z" > Z: f(z)=az —bforsomea € Z", be Z}.
If fi,..., fm are the functions from A(n) used to define L, then the basic language for
L is B(L) := |Ji~., Hi, where H; denotes the set of integer points on the hyperplane
{i € IR" : fi(z) = 0}.

Now, analogously to the characterization of nonuniform S-computability in Chapter 4,
we can prove structural properties of languages recognized by parallel CTs.

Lemma 3: Let L C Z™" be recognized by a parallel S3-CT D with p processors in t
steps. Then L is an (n,(p +2)""t!)-language.

Proof (sketch): By the observations from Chapter 4 it is clear that L is an (n,m)-
language for some m. The bound for m can be shown as follows.

Each branching node v of D a priori has 27 children v', one for each possible combination
of the outcomes of its p predicates.

But as these predicates are linear inequalities, we can easily conclude from Milnor’s
result from [Mil 64] (compare Lemma 2) that at most (p 4 2)" of them fulfil ¢(v") 5 0.
Thus we can consider D as a parallel CT with outdegree at most (p+2)", therefore with
at most (p+ 2)™ nodes. As each node only contains p functions, at most (p+2)**-p <
(p + 2)"**! functions are computed in D. Only these contribute to the system of
inequalities defining L. O

In [MadH 88] it is shown that it suffices to consider the basic language of L.

Lemma 4 [MadH 88]: Let L be an (n,m)-language, B(L) its basic language. For
t = 1,2,3, if an S;-CT can recognize B(L) in t steps, then there is an 5;-CT that
recognizes I, in 2t steps. .

Now, in order to complete the proof of Theorem 9, we still have to show how to
recognize the union of m hyperplanes in IR" in time polynomial in n and log(m) by an
S3-CT. We do not present any ideas of the following very nice theorem.

Theorem 10 [Mei 88]: Let L be the union of m hyperplanes in IR". Then there
is o (real-valued) S3-CT for L of depth O(n®log(m)). (We assume that constants are
free, but evaluating a linear function needs O(n) steps.) 0

In order to prove Theorem 9 for S; and S; we note that the computations of
the constants in the CT from Theorem 10 are easy. For S, even a weaker version of
the above result from Meiser is sufficient. In [MadH 84] it is shown that a union of
hyperplanes can be recognized in time polynomial in n and log(k), where k is an upper
bound on the absolute values of the (integer) coeflicients of the hyperplanes. g
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We finally quote a second gap result. Recall that $-RP denotes the class deﬁnied
via randomized, polynomially time bounded $-RAMs with error probability < o < 5.

Theorem 11 [MadH 85a]: NU-{+, —,*}-P=NU-{+,—,*}-RP.

7. Separating Genuine Complexity Classes

In this chapter we show two separation results. Detailed proofs and further related
results can be found in {KaM 88].
The first result demonstrates that the nonuniform complexity classes NU-S-P and NU-

S-PARALLEL, which collapse for § = {+, =} (compare Theorem 9), are different for
S ={+,~,*}.

Theorem 12 [KaM 88]: NU-{+, —,*}-P # NUA{+,—,*}-PARALLEL.

The next result even separates uniform classes S-P and S-NP, but a somewhat
artificial operation set S is considered.

Theorem 13 [KaM 88]: {+, =, DIV,}-P£ {+, —, DIV }-NP.

Proof of Theorem 12 (1dea): We shall define a sequence pj, pa, ... of polynomials, where
Pn i IR* — IR has degree 2" and coefficients from {~1,0,1}, and n + p,, is computable
(in the Turing sense). The language that separates NU-{+, —, x}-P and NU-{+, —, *}-
PARALLEL then will be

Li={(a1,...,20)e Z" n e IN, pn(z1,22) > 0}. First we show:
Lemma 5 [KaM 88]:  Each language L as above is in NU-{+, —,*%}-PARALLEL.

Proof (sketch): Givenn, the preprocessing first computes the 0(2*™) many coefficients
of pn. (This can be done because n r— Pn is computable.) From this it computes a
program for a parallel {+,—, +}-RAM which uses 0(2*") processors. The i-th processor
computes the i-th summand of p,(z,, Z2), these summands are added up in parallel,

and the result is finally compared to 0. Clearly this parallel SSRAM is nonuniformly
O(n)-time bounded. O
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Now we have to define the polynomials p;, po, . ... They have to be hard to evaluate,
and even the test “pn(z) > 0” has to be hard. Such problems are studied in the field of
algebralc complexity theory, where SLPs are considered, and constants and values for
variables may be from IR or other fields {compare [BoMu 75] and [Stra 84]).

Our problem looks harder for several reasons:
(1) We only allow integer inputs.
(i1) We have to deal with branchings.
(iii) We have to consider the test “p(z) > 0" instead of the evaluation of p(z).

On the other hand, we can apply easy counting arguments for proving the existence
of polynomials with high complexity, because we only allow constants from {0,1,n}.
(i) and (ii) are not hard to handle. A solution for problem (ii) has been pointed out in
a more general context by Strassen in [Stra 73]. For (iii) we have to be a little more
careful. For example, if p is a polynomial with one input variable and degree d, then
“p(z) > 0” can nonuniformly be tested very easily: Precompute the (at most d) roots
of p, and, given z, perform binary search among the roots. Thus p does not have to be
evaluated at all in order to test “p(z) > 0”. This changes if p has two variables. In this
case, the variety of p, Var(p) := {(zy,22) € IR : p(z1,x;) = 0}, characterizes p up to a
constant factor, if p is irreducible, and Var(p) is infinite.

From these observations one can conclude (for a proof see [KaM 88]):

Lemma 6 [KaM 88]: Let p: IR — IR be irreducible and Var(p) unbounded. Let
M be a {4, —, ¥}-CT recognizing {(z1,22) € Z* : p(21,22) > 0}. Then there is a node
v in M where a polynomial q 18 computed such that ap + 3 15 a factor of ¢, for some
a,BeZ, a#0. O

Remark (i) Note that we even have to demand that Var{p) is unbounded in order
to be able to handle branchings.

(1t) Maybe not p but only ap + 3 appears as a factor of q, because we only consider
integer inputs,

Finally, a counting argument and some algebraic considerations yield (for a proof

see [[{aM 88)):

Lemma 7 [KaM 88]:  For each d there 13 a polynomial p : Z? — Z with degree d
and coefficients from {—1,0,1} with the properties:
(i) p is irreducible (over IR).
(1) Var(p) is unbounded.
(1) Each {+,—,*}-SLP computing a polynomial ¢ : ZZ* — Z such that ¢ has a factor
ap+ 3 for some o, € Z, o # 0, has depth §}(d/log(d)). O
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Now let p,, be that polynomial with degree 2® with the properties from Lemma 7
that has the lexicographically first vector of coefficients. By analyzing all (finitely many)
{+,—,#}-8SLPs of length v2"/n (v is the constant in the Q-notation from Lemma 7)
we can compute p, from n. Lemmas 6 and 7 imply that testing “p(z;,z;) > 0” needs
Q(2"/n) steps on a {+, —,*}-CT.

Thus, by Lemma 1, L := {{z1,...,2,} € Z* :n € IN, pp(21,22) > 0} & NU-{+, —, *}-

P. Theorem 11 now follows with Lemma 5.

Proof of Theorem 13 (idea): We do not give details, but restrict ourselves to defining
a language that separates {+,—, DIV,}-P and {+, —, DIV,}-NP, namely
L:={(z1,...,2n} € Z":n € IN, z; can be divided by all j € IN,1 < j < 2"}

In [KaM 88] it is shown that Z*\L € {+,—, DIV,}-NP, and L ¢ {+,—,DIv.}.P. O

8. Concluding Remarks and Open Problems

In this paper we have tried to lay the foundation of a complexity theory of genuinely
time bounded computations. We have seen that many problems that are still open in
classical complexity theory (lower bounds, separations) can sometimes be solved in our
context because of the algebraic properties of the computations. Qur new approach
offers a lot of interesting problems, some of which are quoted below. I am sure that
most of them are much easier than their analogues in classical complexity theory.

(1) Does the Linear Programming Problem belong to {+, —, *}- P (compare Chapter 3)?

(ii) Are there languages in {4, —, *}-REC with a complexity that grows faster than any
computable function, i.e. {+,—,%}.REC # {+,—, *}-RECr (compare Chapter 4)?

(iii) Prove hierarchy-theorems.

(iv) Is it true that Theorem 11 even holds uniformly, ie. {+,—,%}-P # {+,—,*}-
PARALLEL? 1t can be shown, using the lower bounds for languages L(n, k) from
Chapter 5, that {+,~}-DTIME(T(n)) # {+,—=}-NTIME(T(rn)) and {+,—,*}-
DTIME(T(n)) # {+, —,*}-NTIME(T(n)), if T(n) is S-time constructable. The
notions used above are direct analogues to the classical notions.

(v) Compare different operation sets. Clearly, we have to restrict our attention to
languages that are computable with both operation sets. For example: Is it true
that {+, —,%.}.P = {+, — *}-PN{+, —, *.}-REC holds?
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