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Abstract. We survey shared memory simulations on distributed memory
machines (DMMs), that use universal hashing to distribute the shared mem-
ory cells over the memory modules of the DMM. We measure their quality
in terms of delay, time-processor efficiency, memory contention (how many
requests have to be satisfied by one memory module per simulated step) and
simplicity. Further we take into consideration different access conflict rules
to the modules of the DMM, in particular the e-Collision rule motivated by
the idea of communicating between processors and modules using an optical
crossbar.

It turns out that simulations with very small delay require more than one
hash function. Further, simple simulations on DMMs with the c-Collision
rule are only known if more than one hash function is allowed.

1 Introduction

Parallel machines that communicate via a shared memory, so called parallel random
access machines (PRAMs) represent the most powerful paralle] computation model
considered in the theory of parallel computation. Further, it is relatively comfort-
able to program, because the programmer does not have to specify interprocessor
communication, or to allocate storage in a distributed memory; rather she can even
use common data structures, stored in the shared memory.

On the other hand, PRAMs are very unrealistic from the technological point of
view; large machines with shared memory can only be built at the cost of very slow
shared memory access. A more realistic model is the distributed memory machine
(DMM), where the memory is partitioned in modules, one per processor. In this
case a parallel memory access is restricted in so far that only one access to each
module can be performed per parallel step. Thus memory contention occurs if a
PRAM algorithm is run on a DMM; parallel accesses to cells stored in one module
are sequentialized.

Therefore many authors have investigated methods to simulate PRAMs on DMMs.
Often it is assumed that processors and modules are connected by a bounded degree
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network, and packet routing is used to access the modules. (See e. g. ([11], [14], [14],
[9], for a survey on packet routing see [15], [16]).

In this survey we focus on DMMs with a complete interconnection between pro-
cessors and modules.

The most promising approaches are based on hashing: One or more hash func-
tions, randomly drawn from a suitable universal class, are used to distribute the
shared memory cells (we shall say “keys” for short) among the modules.

If one hash function h is used, the delay of the simulation, i. e. the time needed
to simulate one PRAM step is governed by

— The evaluation time of h.

— The memory contention, i. e. the maximum number of memory accesses of a
PRAM step that are mapped to the same module under h.

— The quality of the access schedule. If we want to benefit from the effect of parallel
slackness, i. e. if we simulate a large PRAM on a smaller DMM, or if we have
restricted access conflict resolution rules at the modules (e. g. as motivated by a
realization of the communication among processors and modules via an “optimal
crossbar”, see below), we need a protocol that specifies how (e. g. when, by
whom, in which order) the requests are sent to the modules. The time needed
for the access is clearly bounded from below by the memory contention; the
aim is to come close to this bound. Further, it is desirable that such schedules
are stmple, 1. e. do not make complicated computations to decide which request
to try to satisfy next, and do not distribute the requests among the processors
before sending them to the modules.

In Chapter 5 we shall get to know several simulations that use two or three hash
functions, i. e. that store each shared memory cell in two or three modules. It turns
out that it is not necessary to access all copies of a requested cell in order to ob-
tain a simulation. In this case, memory contention is constant with high probability,
if an “ideal” access schedule can be found which specifies, for each keys to be ac-
cessed, which copies to access. Thus, in this case the access schedule is of particular
importance.

The rest of the paper is organized as follows: In Chapter 2 we define the compu-
tational models and discuss several criteria for measuring the quality of simulations.
In Chapter 3 we briefly sketch results on universal hashing.

In Chapter 4 we survey the simulations using one hash function, in Chapter 5
those using two or three hash functions.

In this paper we restrict ourselves to describing simulations, we do not give any
hint towards the (in most case complicated) proof techniques used for proving the
delay bounds.

2 Computation models
and criteria for the quality of simulations

A parallel random access machine (PRAM) consists of processors P,,..., Py, and a
shared memory with cells ' = {1,..., p}, each capable of storing one integer. The
processors work synchronously and have random access to the shared memory cells.
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We distinguish PRAM models according to their capabilities of handling concur-
rent accesses to the same shared memory ceil. We distinguish between the following
rules:

— ezclusive read (ER): concurrent reading to the same shared memory cell forbid-
den

— concurrent read (CR): concurrent reading allowed

~ ezclusive write (EW): concurrent writing forbidden

— concurrent write (CW): concurrent writing allowed.

In case of concurrent write we have to specify the semantics of a concurrent write
access to a shared memory cell. There are many rules of resolving such write conflicts
considered in literature.

Write conflict resolution rules: The result of the attempt of processors
Pi,-- o, B i1 < ... < i,,8 > 1, to write concurrently zy,...,z, to cell j is, for
example, as follows.

Tolerant: cell j remains unchanged
Arbitrary: cell j contains any of zy,...,z,, all of these choices have to lead to a
correct result of the algorithm
Priority: cell j contains z,

Minimum: cell j contains min{z;,...,z,}.

In [13], it is shown that all the above rules are almost identical, if concurrent read
is allowed: an n log®(n)-processor CRCW-PRAM with the strongest rules, Minimum,
can be simulated in a randomized fashion on a n-processor CRCW-PRAM with the
weakest rule, Tolerant, such that the delay is O(log®(n)) with probability 1 — 2~
for some € > 0.

In this paper we therefore only distinguish between exclusive-read exclusive-write
PRAMs (EREW-PRAMs) and concurrent-read concurrent-write PRAMs (CRCW-
PRAMs). It is convenient to assume the arbitrary rule in our considerations.

A distributed memory machine (DMM) consists of n processors Qs . ..,Q, and
n memory modules M;,..., M,,. Each module has a communication window where
it can read from or write into. For the processors, these windows act like shared
memory cells.

Again we distinguish DMM model with respect to how concurrent accesses at
the communication windows are handled. It is easily checked that the result from
[13] also implies that the computation powers of these CRCW-models are almost
identical. In this paper we assume the arbitrary rule if we refer to CRCW-DMMs.

In case of DMMs we take into consideration a further rule for handling read/write
collisions, which is motivated by the idea of using an optical crossbar to communicate
between processors and (communication windows of) modules, compare [12], [17],
[23]. Here a processor that wants to access module M directs a beam of light to
it. If M only gets one message (i.e. only one beam is directed to its window), it
acknowledges it, or, in case of read, sends back the requested data. If more than one
processor sends a message to M, all of them get back a collision message.

We generalize this concept by assuming that a module can handle not only just
one, but a constant number ¢ of concurrent accesses. If at most ¢ requests arrive,
all of them are satisfied, otherwise, all issuing processors get a collision message. We
refer to this model as a ¢-Collision-DMM.
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In this paper we consider step by step simulations of PRAMs by DMMs. In all
these simulations we use 1, 2, or 3 hash functions h : U — {1,...,n} that specify in
which module(s) each shared memory cell is maintained. We consider the following
criteria for the quality of our simulations.

~ delay: We want to simulate a PRAM fast on a DMM, i.e. we want that the
delay, the (perhaps amortized) time needed to simulate one PRAM step, is small.

~ time-processor-efficiency: If an m-processor PRAM is simulated on an n-
processor DMM the smallest possible delay is 2. We want to come close to
this delay. If we achieve delay O(T) we talk about a time-processor-optimal
simulation.

— memory contention: Assume that the PRAM processors access large blocks
of data in a read or write request. In this case it is important to find access
schedules that guarantee that each memory module only has to process few
request, i.e. to keep memory contention as small as possible. This may even be
of advantage if a (fast) precomputation for finding the schedule is necessary.

— access conflict rules: We aim to simulate a strong PRAM, i.e. a CRCW-
PRAM on a weak DMM, i.e. a EREW-DMM or 1-Collision-DMM, or find sim-
ulations which come close to this ideal.

— simplicity: We want to have very simple simulations, in particular very sim-
ple access schedules. In particular, we prefer schedule in which processors that
issue an access request, do not send it to another processor, but pass it to the
module(s) itself.

3 Universal Hashing

Let U = {1,...,p} be the shared memory cells of the PRAM. In all simulations they
are distributed among the modules of the DMM using one or more hash functions
h:{1,...,p} = {1,...n}, randomly drawn from a universal class of hash functions.

The analyses of the simulations require high performance universal classes, a
randomly chosen function of which has properties very much like a random function.
On the other hand they have to be generated fast using little space, and have to be
evaluated in constant time, at least if time-processor optimality is desired. Suitable
classes are introduced in [10] and in [3], [4]. In [19] a combination of the above classes
is introduced. This is necessary for all simulations presented in this paper which use
more then one hash function.

We do not go into details about hashing in this survey, and refer the reader to
the above papers and to {2], [8] and [18] for information about polynomials as hash
functions. To simplify understanding of the simulations below one should assume
that the hash functions used are random functions.

4 Simulations using one hash function

Let U = {1,...,p} be the set of registers {or cells) of the shared memory of a
PRAM, and let M,,..., M, be the memory modules of a DMM. Let H,, , C {h :
U — {1,...,n}} be a high performance universal class of hash functions. In this
chapter we assume that, for a randomly chosen h € Hy p, cell z is stored in Mj.,.
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4.1 Simulations of n-processor PRAM on n-processor DMMs using
one hash function

Consider a PRAM with processors Pi,...,P,, to be simulated by a DMM with
processors Q,...,Q,. Let X = {z1,...,2.} C U. In a given PRAM step, P
wants to access cell z;. Q; simulates P;, i.e. has to simulate P;’'s access to cell
zi, for i = 1,...,n. It can be shown that the maximum bucket size of X un-

der a randomly chosen h € Hypp is 9(5%) with high probability, i.e. that
Prob(max;<i<n{|h~1(i) N X|} = 6(10—:’%%)) is very large. In other words: with
high probability each module is only accessed by at most lel%%%)’ different re-

quests. As %%8%7 is also a lower bound, ©(log(n)/log log(n)) delay and memory
contention is the best we can hope for.

n-processor CRCW-PRAM — n-processor CRCW-DMM. In this case the
access schedule is very simple. (Recall that we assume an Arbitrary-rule at the
modules.) In each round, each Q: that was not yet successful tries to access My(z -
Each M; answers one request. Q; is successful if it gets an answer from Myz,y, or
if a Q; with z; = z; gets the answer.

Thus delay and contention equal the maximum bucket size O lfl%(gl%j)! and the
schedule is very simple.

n-processor CRCW-PRAM — n-processor EREW-DMM. In this case we
use the O(log(n))-time sorting algorithm from [20] for sorting n numbers with an n-
processor EREW-PRAM. As this algorithm uses space O(n), it can be implemented
on a n-processor EREW-DMM with constant delay.

The access schedule first sorts (h(z1),z1),..., (h(zn), £,) according to the lexico-
graphic order. Now it is obvious how to scheduyle the requests such that no collisions
happen.

This needs time O(log(n)) with high probability, i.e. the delay is by a factor

O(loglog(n)) away from the maximum bucket size. The contention is still O( Eﬁ%),
with high probability. The schedule is very complicated, requests are not passed to

the modules by the issuing processors because of the sorting; answers have to be
redistributed.

4.2 Optimal simulations allowing parallel slackness, using one hash
function

Consider a PRAM with m = n . ¢ processors F;j,i = 1,...,n,5 = 1,..., and a
DMM with n processors Qi,...,Qn. Let X = {ziji=1,...,n,j = 1,...,t}. P;
wants to access cell z; ;, P; ,,..., P+ are simulated in Q;. It can be shown that the
maximum bucket size max; ¢; < {|h~1(i) N X|} is best possible, i.e. O(t), with high
probability, only for ¢t = f2(log(n)). Thus, with one hash function, time-processor
optimal simulations must have delay £2(log(n)).
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n't‘.processor CRCW-PRAM — n-processor EREW-DMM. The follow-
ing algorithm is presented in [6]. It assumes that p is polynomial in n. In this case
it is possible to base the simulation on fast integer sorting, using a similar idea as
in Section 4.1.2.

Based on the randomized EREW-PRAM algorithm for integer sorting from [21],
in [22] a randomized algorithm is presented for sorting n!t® keys from {1,...,n*]
on a n-processor EREW-DMM in time O(n*k) = O(n®) if k is constant. Using
this algorithm a similar schedule as in 2.1.2 leads to an access schedule, which im-
plies a randomized simulation of a n!+¢-processor-CRCW-PRAM on an n-processor
EREW-DMM.

The simulation is time-processor optimal, but the delay is very high. Further the
access schedule is very complicated, again requests are not passed to the modules
by the issuing processors, a redistribution of answers becomes necessary.

n log n-processor CRCW-PRAM — n-processor CRCW-DMM. The fol-
lowing algorithm is presented in [3]. We assume that we (virtually) have n further
processors Wj,..., W,, the working processors, available in the DMM. The W; do
the following in each round: they randomly choose a Q; to ask it for a new request .
Each ¢J; delivers a constant number of keys to asking working processors. A working
processor tries to deliver its key @ to Mj(;). Each M} ;) returns a constant number
of answers, which are transmitted from the working processor to the Q; that issued
the request.

This schedule can be shown to run in expected time O(log(n)), i.e. achieves
optimal expected delay, if an EREW-PRAM is simulated.

The same optimal expected delay can also be achieved for simulations of CRCW-
PRAMs on CRCW-DMMs using a complicated algorithm that searches for concur-
rent accesses during the competition of duplicates of a key z to access My(s).

This simulation reaches expected optimal delay O(log(n)), i.e. is best possible
in this respect, if only one hash function is used. On the other hand the schedule is
still complicated; even if EREW-PRAMs are simulated, keys have to be distributed
among the processors.

n log n-processor EREW-PRAM -+ n-processor CRCW-DMM. The anal-
ysis of the following simple simulation is shown in [25].

The access schedule is very simple: The processors satisfy their requests in the
given order. In each round, each processor tries to pass its currently processed request
to the module. Each module answers one (arbitrary) of the incoming requests per
round. :

This schedule needs optimal delay O(log(n)) with high probability, if an nlogn-
processor EREW-PRAM is simulated on a CRCW-DMM. The importance of this
schedule lies in its simplicity.

nlog n-processor EREW-PRAM — n-processor 1-Collision-DMM. This
simulation is shown in [17] based on an access schedule from [23]. This schedule
works not only if the destinations of keys z, Mj(;), are random, but already if no
module gets more than clog(n) messages, for arbitrary constant ¢ > 0.
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In a first phase, in each round, each Q; randomly chooses one of its not yet sat-
isfied requests. With a certain probability, it passes it to the corresponding module.
The attempt is successful if the module gets no other request at the same time.

A schedule based on the above idea is designed in [23]. The expected number of
not yet satisfied request after O(log(n)) rounds is shown to be O(n).

It is easy to finish up the remaining accesses in time O(log(n)) using a parallel
prefix algorithm to distribute the remaining keys evenly among the processors and
to define the schedule.

This simulationis optimal, has asymtotically best possible expected delay O(log(n)}),
and works already on 1-optimal DMMs. The access schedule is still very complicated,
in particular, in the second phase accesses are not processed by the issuing proces-
sors, and a redistribution of answers to read requests become necessary.

5 Simulations using two or three hash functions

In this section we consider simulations using two or three hash functions hi,hs or
ho, hi, h2, randomly, independently drawn from some high performance universal
class H,p C {h: h:{l,...,p} — {1,...,n}}. Each key z € U will be stored
in M;,l(,,),M;.,(,), and, in case of three hash functions, in My, (z). We refer to the
representants of z in the M}, (,)’s as its copies.

In some simulations we further assume that few, i.e. O(n) keys may be interme-
diately stored at further positions. This will be done by using a perfect hash table
of size O(r). In [1] and (7] it is shown how to implement such a table on a CRCW-
PRAM using space O(n) in time not exceeding O(log*(n)) with high probability.
Because of the space bound it also can be implemented on 8 CRCW-DMM within
the same time bound, as long as only O(n) keys have to be stored in it.

5.1 Fast simulations of n-processor PRAMs on n-processor DMMs

Consider a PRAM, DMM and a set X as described in the beginning of Section
4.1. Already if two hash functions are used, there is an access schedule that needs
constant time, if only one arbitrary copy of each z € X has to be accessed. To see
this consider the bipartite graph with node set X U {1,...,n}, where each z € X is
connected to h;(x) and hy(z). If h,, hy are random and independent, then this graph
is random. It is well known that the nodes in X can be covered by a constant number
of matchings, with high probability. Thus a schedule that processes one matching
after the other needs constant time, even on an EREW-DMM. In particular, the

memory contention of such a schedule is constant. The problem is to find such a
schedule efficiently.

n processor CRCW-PRAM — n-processor CRCW-DMM. This simulation
is presented in [19]. It uses two hash functions and has delay O(loglog(n)) with high
probability. We present a variant which only has constant memory contention.

We distinguish between write- and read steps. For writing, we maintain two
perfect hash tables SM;, SM, of size O(n), each. In order to update the copies
of zy,...,z2, w. 1. ¢ hi,{z1,...,z,} is added to SM, using the perfect hashing
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strategy mentioned above. Then, for each key z in SM,; an attempt is made to
update its copy in My, (z). Only constantly many of the updates directed to M; are
performed, and the corresponding keys are removed from SM;. The time for such a
step is governed by O(log®(n)), the time to set up a perfect hash table, as long as
this table has size at most ¢ - n for a suitable constant ¢ > 0. It can be shown that
this size bound is satisfied with high probability. The same procedure is executed
w. I. t. hg, using the hash table SM;.

This write algorithm has delay O(log*(n)) with high probability.

The read algorithm is very simple. Note that the up-to-date value of z is stored in
SM; and SMa, if z is in one of these hash tables. Otherwise the copies of z in My, (5)
and M}, ;) are up-to-date. Thus, in the read algorithm, each Q; inspects SM; and
SM, to find the contents of cell z;. This takes constant time by definition of perfect
hashing. Each unsuccessful processor tries to access alternately the two copies of its
key, until it gets an answer (no matter from which copy, both are up-to-date.) In
each round, each module answers all requests, as long it only gets some constant ¢
many. If it gets more it answers none of them.

Each of the above rounds takes constant time. It can be shown that O(loglog(n))
rounds suffice to answer all requests, with high probability.

Thus we have got a simulation with delay not exceeding O(log log(n)) with high
probability. The memory contention is only constant, and reading is very simple.
On the other hand, writing is complicated because it uses perfect hash tables; again
processors that process a request, i.e. pass the corresponding key to a module, are
not those that issue the request, and redistribution of answers becomes necessary.

n-processor EREW-PRAM — n-processor c-Collision-DMM. This simu-
lation is presented in [25].

The basic idea is borrowed from the deterministic simulation from [24]. We use
three hash functions. In the write algorithm, arbitrary two of the three copies of
each cell z; are updated.

Thus, both for reading and writing, we need a schedule that accesses two arbitrary
of the three copies of each z;. This schedule is very simple.

Each round consists of three phases 0, 1, 2. In phase j, each Q; tries to access the
j’th copy of z;. It skips an access to copy J, if it was earlier successful in accessing
this copy. Q; quits as soon as it gets two answers. Each module answers all request
it gets in one phase, if it gets at most c requests. Otherwise it answers no request
(this is the c-Collision rule).

It can be shown that this schedule finishes within O(loglog(n)) rounds with high
probability. Further it guarantees constant memory contention, is very simple, and
runs on the weak c-Collision-DMM. The time bound O(loglog(n)) already holds
with reasonable probability for ¢ = 2. '

5.2 Optimal simulations allowing parallel slackness, using three hash
functions

We use the notations introduced in the beginning of Section 4.2. Whereas, if only

one hash function is used, the contention can be reduced to O(F) only if m =
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{2(nlog(n)), this reduction is possible for all m > n in case of two or more hash
functions, as described in the beginning of Section 4.1. Again the problem is to find
such schedule.

nloglog(n)log*(n)-processor EREW-PRAM — n-processor CRCW-DMM-
This simulation is shown in [19]. We do not go into details here. The simulation is
based on the idea shown in Section 5.1.1. A simpler variant, also shown in [19]
has delay not exceeding O(log log(n)log*(n)) with high probability, simulates even
CRCW-PRAMs, but is by a factor log®(n) away from time-processor optimality.
These simulations are very complicated, e. g. they still use perfect hashing.

n log(n)-processor EREW-PRAM — n-processor ¢-Collision-DMM. This
simulation is presented in [25].

It represents the simplest time-processor optimal simulation on a ¢-Collision-
DMM.

The schedule is as in Section 5.1.2 with the extension that each processor starts
processing its next key in the situation where it quits in Section 5.1.2. It now quits
when all its accesses are satisfied.

This schedule has optimal delay O(log(n)), with high probability. Further, it is

very simple, and runs on the weak c-Collision-DMM. ¢ = 2 is sufficient to make the
delay bound reasonably reliable.

6 Conclusion

Simulations of PRAMs on DMMs that use more than one hash function have the
disadvantage that they vaste storage (a factor 2 or 3) within the modules. (It is not
required that the number of modules is enlarged!).

Nevertheless the simulations described in this paper show that the use of two or

three hash functions has advantages that make them worth being considered more
carefully, both theoretically and experimentally.

— The memory contention can be made constant.

-~ Simulations on ¢-Collision-DMMs (motivated by a communication technology
using optical crossbars) become very simple, i.e. feasible for efficient implemen-
tation.

— Simulation with very small delay can be designed.
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