DIGITEST II: An Intergrated

Structural and Behavioral

Language

Franz J. Rammig
Universitdt Dortmund
West Germany

1. Abstract

This paper presents the experiment of an intergra-
ted structural and behavioral language. The langu-
age is based on three “ancestors': DIGITEST to des-
cribe the structure, PL/1 to describe the behavior
and Petri nets to describe complex control struc-
tures. Instead of directly using PL/1 as "ancestor"
we decided to use XPL, for it is relatively easy
to modify the XPL-compiler. Similary we decided

to use the "Control Graph" as described by Rose
/8/ and used by project LOGOS of the CWRU instead
of pure Petrl nets. The language is so defined
that a program can be placed arbitrarily anywhere
between the two extremes "pure DIGITEST-program"
(pure structural description) and “pure PL/1-pro-
gram" {pure behavioral description).

After a very short introduction to the language-
philosophy, the following three aspects will be
discussed:"Data-types and data-structures","Petri
net implementation” and "Constructs for the be-
havioral description'". A descripticn of the
structural-language-aspect of DIGITEST II is

given in /7/.

2. Philosophy of the language

Complaints by potential users {industry) about
existing CHDL's as well as our own ideas motivated
the decision to design an additional CHDL. Breuer
and Hayes /2/ also give two important reasons for
this decision:

First, there are deficiencies in the description
of the structure by exisitng CHDL's.

The reason for this is that existing CHDL's are
aimed at accurate behavioral rather than struc-
tural description (the structure perhaps just

to be derived from the behavioral description).
This not only limits the range of description
unnecessarily but also makes it impossible for
the user to force a definite structure upon

some parts of a described hardware.

To avoid these deficiencies, DIGITEST II con-
sists of language-constructs for structural

as well as for behavicral description. A user

can place his description arbitrarily anywhere
between pure behavicral description and stpruc-
tural description. The language-constructs for
the structural description are identical to

those of DIGITEST (any valid DIGITEST~program

is a valid DIGITEST II program !), while the
language-constructs for the behavioral language
from a PL/1 (XPL) - dialect.

Second there are deficiencies in the description
of asynchronism and parallelism by existing CHDL's.

To my knowlage ali CHDL's allow the description

38

of parallel processes, some with the restriction
on clocked systems. In some cases this is done by
intermixing the control-part and the data-part,
making it very difficult to check algorithmicly
for attributes like "deadlock-free',"safe',"con-
flict-free" and "deterministic". For the same rea-
son the division between data-part and control-
part may be ambiguous.

To avoid these deficiencies in DIGITEST IT a modi-
fied Petri net model based on the model as descri-
bed by Rose /8/ is implemented. The implemented mo-
del uses statement-labels as places. From this
results a certain similarity with known CHDL's.
Obviously, at the level of structural description
of hardware only pure parallelism exist. On the
other hand, at this level we are faced with the
problen of describing the absolute time-behavior
of digital circuits. For this purpose DIGITEST has
a lot of language-constructs which are all valid
in DIGITEST II as well. DIGITEST II therefore
allows a much more precise description of the
time-behavior such as propagation delay and inter-
tial delay than other CHDL's.

In addition to the two reasons given by Breuer and
Hayes for the necessity of a new CHDL, I want to
mention two additional reasons: '
Third, existing CHDL's operate on overly simplified
data structures.

(The term "register" is out of place in a behavioral
language in any case.) Therefore in DIGITEST II
some of the PL/1-data-structures, in particular
"structures” in the PL/1 gsense are implemented.
Besides the data-type "bit-string" there are vari-
ous representations of numerical data to give a
concrete sense to arithmetic operators which may
be used by a programmer.

Forthly, existing CHDL's have been defined indepen-
dent of other languages or widely differing from
their "ancestors'.

However, as nobody likes to learn an additional
ianguage, this is an important impediment to a
more common use of CHDL's. As a consequence of
this, the DIGITEST Il-constructs for the behavio-
ral description are oriented to PL/1 as nearly as
possible. We had various reasons for choosing PL/1:

- PL/1 offers sufficient constructs to describe
complex data-structures.

- PL/1 offers sufficient constructs for bit-string-
manipulation.

- PL/1 offers comstructs for the description of
asynchronism and concurrency.

- PL/1 is a block-oriented language in the ALGOL-
sense.

Besides restrictions, the main modifications of the

language are:

- The basic peint of view is that all statements

are processed in parallel.

~ Every procedure is a co-routine if not otherwise
specified.

- All kinds of sequential processing are expressed
with the help of "On-conditions" on labels. (The
PL/1 "wait"-"event"-concept is not used in DIGI-
TEST II!)

Below some aspects of DIGITEST II will be descri-

bed: ’

a) The data-types and the data-strucutres valid
in DIGITEST II and their declaration.

b) The description of control-structures, in
particular asynchronous and concurrent ones.

c) The language-constructs for the behavioral
description.

d) The communication between the structural des-
cription and the behavioral description.

As the language-concepts of DIGITEST II for the

structural description are identical to those of

DIGITEST /7/ they are not described within this

paper.

3) Data-types valid in DIGITEST II and their decla-

ration.
3.1) Introduction
The basic data-type of a CHDL is of course the bit-
string. To give a concrete meaning to arithmetic
operators which may be used by the programmer in
DIGITEST II we also have the data-type "FIXED" and
the data-type "FLOAT", each in various represen-
tations. Besides the data-structure "array", DIGI-
TEST II also has the data-structure "structure' as
known from PL/1. To allow a partial identification
of different variables (overlay) the "DEFINED"-
attribute as known from PL/1 can be used very free-

ly.
3.2) Data-types

There are three basic data-types: FIXED-data, FLOAT-

data and bit-strings. We have four representation-
types of FIXED-data:SIGN VALUE (or SV), UNSIGNED
(or US), TWO'S COMPLEMENT (or TC) and ONE'S_COMPLE-
MENT (or 0C). In addition the length of the data
word in bits (the Variable is also a bit-string of
this length) and the position of the sign or hig-
order bit can be specified. Default is 32 for the
word-length, TWO'S COMPLEMENT as representation
type and the high-order bit to be the left-most bit
of the word. (Default-XPL convention!)

FLOAT-data can be specified in a similar way. Bit-
strings are specified as in PL/1 with the differen-
ce that normally the bits are counted from right to
left. If the length of a bit-string is specified by
a negative integer the bit count is from left to
right. Examples of types are:

FIXED (32,TC,31)

This denotes a 32-bit two's-complement representa-
tion with the high-order bit at the leftmost posi-
tion.

BIT (927)

denotes a bit-string of length 927, the leftmost bit

is bit 926, the rightmost is bit 0.

BIT(-17))
denotes a bit-string of length 17, the leftmost bit
is bit 0, the rightmost is bit 16.

3.3) Declaration
Every undeclared variable that is not used as a la-
bel is interpreted as a bit-string of length l.

(DIGITEST II-default = DIGITEST-convention!) The
DIGITEST 1I declare statement is very similar to
the declare statement as known from PL/1 and XPL.
The formal definition of the syntax (see appendix 0)
has been derived by slightly modifying the syntax
definition of the XPL declare statement. The modi-
fications have been made to add the "structure'-
declaration and the attributes "DEFINED" "STATIC",
and "EXTERNAL" as known from PL/1, and to Implement
the declaration of the data-types as presented abo-
ve. The semantics of the declarations being very
similar to the semantics of declarations in PL/1,
we will say only very few words about it.

a) The scope of variables is defined as it is defi-
ned in ALGOL or PL/1. (Variables declared with-
in a block are local to this block and global to
all blocks within this block.) By the use of
the attributes INTERNAL and EXTERNAL, which have
the same meaning as in PL/1 these scope-conven-
tions can be overwritten. INTERNAL is default.

b) Variables with the attribute STATIC can alter
their value only if an assignment-statement with
this variable standing on the left side is ex-
plicitly processed, while this is not true for
variables with the attribute DYNAMIC. Compared
with conventional CHDL's the meaning of the
attribute STATIC is similar to a register-decla-
ration, while DYNAMIC is related to terminals.
DYNAMIC is default.

c) There is made a distinction between "type declara-
tion" (delaration of unstructured data),"struc-
ture declaration” (declaration of structured
data) and "literal declaration" (as in XPL, si-
milar to PL/l-preprocessor).

d) Every declared variable can be initialized with

the aid of the INITIAL-attribute and an "initial-

1ist" as known from PL/1.

With the aid of the DEFINED-attribute, variables

or parts of variables can be identified with

other variables or parts of other variables
without limitations implied by data-type or
physical location.

Constants are written according to XPL-conven-

tions instead of PL/l-notation. In DIGITEST II

notations for the PL/1 bit-string '111111111111

1111'B are- for example:"1111111111111111" (bit

notation) or

"(y) FFFE" (hexadecimal notation),

"Inverse 'notation is used for multivalued alge-

bra. E.g."(-2)01" means "up" A short example

will illustrate the use of DIGITEST II declara-
tions:

DCL(A,B,C) BIT(-16)"1","(4)FEEE", ("M(1)1(4)0")'"1");

DECLARE NUMER FIXED (u4,UN) DEFINED (B Position(2))

DCL 1 INPUT (5),

2 (START1,START2) BIT(1) INIT("1"),

~

e

2 ADR(3),
3 LEFTADR FIXED(6,TC) DEFINED (A POSI-
TION(4)),
3 RIGHTADR FIXED(6,TC) DEFINED (POSI-
TION (0));

DCL SUBADR BIT(5) DEFINED(INPUT(1).ADR.LEFTADR
(03
DECLARE ACCUMULATOR BIT (32) STATIC EXTERNAL;

Everybody who is familiar with PL/1, and I think
that nearly every computer scientist today is
familiar with PL/1, can understand these dec-
larations without any difficulty. A reader fa-
miliar with XPL will see immediately that the
three variables declared in the first statement

are all initialized with 16 ones. The second decla-
ration and especially the third one illustrates
that an overlay of variables is allowed without
any limitations. This overlaying capability and
the possibility of declaring structured data ave
very valuable for documentation as every variable
can be given a name that is related to its use
instead of its location. It is even more valuable
in supporting a top-down design as the designer
who wants to specify the problems to be process-
ed by the hardware under construction can specify
the data-structure which he needs instead of being
forced to accept a given data-structure.

4. Description of control structures in DIGITEST T

Description of concurrent asynchronous processes
by programming languages is a well-knwon problem.
Therefore there are numerous implemented solutions
as in PL/1, Burroughs Extended ALGOL, SIMULA 87
and various CHDL's. It should be noted that the
potential parallelism of normaly sequential pro-
cesses in common algorithmic languages should be
replaced by potential sequential flow of normally
parallel processes in HDL's. The question whether
4 programmer can actually think in parallel and if
not, whether there should be algorithms which would
generate parallel processes out of a sequential
description, will not be discussed within this
paper. Undoubtedly, the programmer must be able to
Jdescribe arbitary control Structures and an easy
processing of this desciption by algorithm to
prove the "correctness" and to do optimizations
must be possible. A description method for the
control structure of asynchonous concurrent pro-
cesses i3 given by the Petpi net model /1,5,6/. For
problems of relevant size pure Petri nets tend to
be unwieldy. Therefore it has been proposed that
more complex modules be constructed out of Petri
nets. In this case the description of control struc-
tures is based on these more complex modules, For our
bupese the method described by Rose /8,9/ (LOGOS
Control Graph) especially seems to be useful. The
LOGOS Control Graph uses very few modules, at the
same time offering the description of data-depen-
dent decisions ang block-structures. In this
paper only the implementation of the LOGOS Con-
trol Graph in DIGITEST IT and not the LOGOS phile-
sophy will be described. Any kind of Petri net
consi§t§ of a set of places which are capable of
containing tokens, a set of transitions which ip
a€cordance with a certain fi;fﬁét;ﬂig—gfe able to
y;thdraw tokens from some places and to put tokens
tnto So@e places, and a set of directed edges
connecting certain places with certain transitions
versa. A transitiop may be related to
STE Or more activities which are processed if
d;é 0§1y If the transitign fires in accordance

€ ruie.

and vige

ti, labels are used ag places.One
Ine that a larelled st

na atement puts a token
- i lakhe () Ftoy o <

: it ¢§.et_) 3i18r it has been processed. On

rhe o ~ar +h Ccessahill

the Oother hand, the Processability of g statement

c ¢ 3y "In~conditions" on labels,
;v?fyns acement 1s processed if and only if the
HeﬂomeO:;EZ A;*f§§” p?eviogs to this statement has
2cor ¢ 8L TAIS timey in accordance with the
iring rule (="On—condition"), "tokens" are with-
rawn from certain labels yged within the "Op-
condition™ and blaced in the labels of the state-
ment.

can be contrellied he
e .

{2 Fh L

40

We have just briefly summarized the rinciples of
the DIGITEST IT com*rol mechanism. The basic asser-

tion of DIGITEST II +hat all statements are pro-
cessed in parallel is modified to the assertion
that all statements Letween two "On-conditions' are
processed in parallel. Consequently, one can visua-
lize all labels within this program-part as beign
placed in front of the related "On-condition". A
short introduction to the LOGOS operators with theip
equivalent DIGITEST II notation follows:
(8] If there is a token in A and
B and there are no tokens in
¢,D,E, the transition fires
withdrawing the tokens from A,
° B and placing a token in C,D,
E. (The number of places is
arbitrary 1)

Notation in DIGITEST II: C:D:L:0ON (8(4,B)) :<state-
mentlist>

If there is at least one token
in A or in B and there are no
tokens in C,D,E the transition
fires withdrewing the token
from A or B (or from B only if
there is a token in A and B
and placing a token in C,D,E.
(The number of places is arbi-
trary !)

Notation in DIGITEST IT1:C:D:E:ON(| (A,B)):<state-
mentlist>

If there is a token in A and
there are no tokens in B,C,
the transition fires withdra-
wing the token from A and,de-
pending on the value of the
Predicate P, placing a token
into B or C,

8]

Notation in DIGITEST 1I: ON(A):IF(P) THEN B:
<statementlist> ELSE C:
<statenentlist>

ITthere is a token in A or B
and in G and there are no to-
kens in C,D,E,F, the transi-
tion fires. If there is a token
in A,it is withdrawn and a
token is placed in C and D,
while if there is a token in
B, it is withdrawn and a token
is placed in E and F. In every
Ccdse a token is withdrawn

from G. If there are tokens in
A and B, A has priority.

Notation in DIGITEST II: on cASE (A:(C,D),B:(E,F))

If there are tokens in A and
Cor B and C and there are

no tokens in D and E, the
transition fires. If there

are tokens in A and C they are
withdrawn and tokens are pla-
ced in D and T, while if the-
re are tokens in B and C they
are withdrawn and tokens are
placed in E and F.

[l

Notation in DIGITEST II: ON CASE (D:(A,C),E:(B,C):

With the aid of the operators
BLKHD and BLKEND as described
above it is possible to des-
cribe the control of block-
structures. Blocks may have
various entries and their reen-
trance may be controlled by

a feedback-loop. There must

be a proper combination of a
BLKHD operator and its corres-
ponding BLKEND operator as
illustrated in the margin.

/ "Procedure call": If there is

a token in A and there are no
tokens in C and B, the tran-
sition fires, withdrawing the
token from A and placing a
token in B and C.

Notation in DIGITEST II: B:ON(A):CALL C;

(7] "Return from procedure": If
there is a token in A and C
and no token in B, the transi-

(Y tion fires, withdrawing a to-
ken from A and C and placing
a token in B.

(5]
Notation in DIGITEST II: B:ON(<(C),A):<statement-
list>
It should be noted that in DIGITEST II we always ha-
ve co-routines instead of sub-routines. As we have
seen, by a simple expansion of the usability of
labels, it is possible in DIGITEST II to describe
easily control structures of arbitrary complexity.
Furthermore, for a PL/l-programmer this notation
is easy to understand. The usual language-constructs
like DO;...END;,DO CASE...END;,DO WHILE...END;,
DO I=...END; are well suited to this method.(No-
te that GO TO A; is equivalent to Ayl
In addition there is a "DO SEQUENTIAL"
to allow short-hand notation.

5) DIGITEST II language constructs for the beha-
vioral description

With the exception of the assignment statement Fhe

language constructs for the behavioral description

have been discussed above. The assignment state@ent

is nearly the same as the assignment statement_ln

XPL (and in PL/1), with the following differncies

(relative to XPL):

a) Concatenation is allowed on the left side of an
assignment.)

b) SUBSTR is allowed on the left side of an assign-
ment (as in PL/1).

@) The logic operatorsy&(NAND),1|{NOR)

(EXOR) and

41

1 (EXNOR) have been added.

d) Logic operators may be used not only as dyadic
operators, but also as monadic operators in
the sense of reduction,

From the above it follows, that the following exam-

ple is a valid DIGITEST II-assignment statement:

AllB,CIISUBSTR(F(I,J,K),2®I MOD (J+K),K)=((A8(B-11C))

78D)1 | (DRF);

Every operator is processed on bit-strings of the

length of the largest operand or goal. Alignment

is always to the right. Logic operators are pro-

cessed bit by bit, arithmetic ones over the whole

data word (bit-string). Constants are writtten in

the XPL - notation.

6) The communication between structural and beha-
vioral description in DIGITEST II

DIGITEST-Description-Statements (DDS) may be inter-
mixed with DIGITEST 11 statements for the behavio-
ral description in any way desired. Communication
takes place through the usage of identical names

of variables. Since DIGITEST works only on one-bit
data, bit strings are interpreted by a DDS as bit-
arrays. One must remember that a DDS has to be
looked at as being processed constantly with no
interference by any control structure. On the other
hand, a DDS can influene the control structure:

If a DDS is labelled, with a delay as described in
this delay description, it places a token in its
label after the "On-condition” related to the pro-
gram-part containing the DDS has become true.

It is up to the programmer to decide where between
pure behavioral description and pure structural
description he wants to place his program. In par-
ticular, this method enables us to influence arbit-
rarily the translation to hardware within an inter-
active hardware-generating-system.

The soft transition from pure behavioral descrip-
tion to pure structural description is illustrated
in appendix 1. In this example we have a sequential
decimal adder for 16 digits. It is described three
times: First, by a pure behavicral description,
second by a mixed behavioral and structural des-
cription and finally bya pure structural one.

Referencies

/1/ Agerwala, Tilik:
Comments on Capabilities, Limitations and
"Correctness” of Petri nets

Proc. of the lSt Annual Symposium on Computer
Architecture 1973 Gainesville/Florida

/2/ Chu, Yaohan et al:
Why do we need Computer Hardware Description
Languages
IEEE Computer 12/1974%

/3/ Crocket, E. David et al:
Computer aided system design
FJCC 1970 pp 287

/4/ McKeemann, W.M. et al:

A Compiler Generator Prentice - Hall 1970

/5/ Patil, Suhas S.:
Macro - modular Circuit Design
MIT, MAC Computation Strucutres Group Memo

Nr. 40/1369

/6/ Petri, C.A.:
Concepts of Net Theory
Proc. of Symp.& Summer School about Mathem.
found.of Camp.Science. Hig Tatras 1973

/7/ Rammig Franz J.:
DIGITEST: A Structural Language Based on Alge-
braic Modelsof the Logic Topology and the Time
Behavior of Digital g%rcuits
Proceedings of the 2 Annual Workshop on CHDL's
Darmstadt 1974

/8/ Rose, Charles William:

Ph.D. Thesis CWRU 1970

/9/ Rose, Charles William:
LOGOS and the software engineer

FJCC 1972

Appendix 0): DIGITEST II GRAMMAR
<PROGRAM>: : =<PROCEDURE DEFINITION><STATEMENT LIST>
<PROCEDURE ENDING> EOF
<STATEMENT LIST>:: = <STATEMENT>
[<STATEMENT LIST><STATEMENT>

<STATEMENT> :::= <BASIC STATEMENT>
I<IF STATEMENT>
|<DDS>
<BASIC STATEMENT>::= <ASSIGNMENT>,
I<GROUP>;

I<RETURN STATEMENT>;
|<CALL STATEMENT>;
[<GO TO STATEMENT>,
N
I<LABEL DEFINITION><BASIC STATE-
MENT>
| <PROCEDURE DEFINITION>
<IF CLAUSE><STATEMENT>
I<IF CLAUSE>XTRUE PARTS<STATEMENTS
[<LABEL DEFINITION><IF STATEMENTS
<IF CLAUSE >::= IF <EXPRESSION> THEN
<TRUE PART> ::= <BASIC STATEMENT> ELSE
<GROUF >::= <GROUP HEAD><ENDINGS
<GROUP HEAD>::= <DO>;
|<DO><STEP DEFINITIONS ;
[<PO>HWHILE CLAUSE>;
| <DO><CASE SELECTOR>,
I<GROUP HEAD><STATEMENTS

<IF STATEMENT> :: =

<VARIABLE><REPLACE><EXPRESS-
TON><ITERATION CONTROL>

TO <EXPRESSION

TO <EXPRESSION> BY <EXPRES3IOND>
<EXPRESSION>

INITION> iz <PuLL PROCEDURE HEAD>
<STATEMENT LIST><PROCEDURE
ENDING>
1= <PROCEDURE HEADS>
f<PROCEDURE HEAD><FEEDBACK

<FULL PROCEDURE HEADS

o CONTROL>
<PROCEDURE HEADD ::2 <PROCEDURE NAMES
| <PROCEDURE NAME><TYPE>,
| <PROCEDURE NAME><PARAMETER
LIST>;
I <PROCEDURE NAME><PARAMETER
o LIST>XTYPE> .
<PROCEDURE NAME> : .= <PROCEDURE ON CONDITIO&)
PROCEDURE

<PROCEDURE ON CONDITION>: :=<CASE START><IDENTIFIERS:

<IDENTIFIER SPECIFICATION>):

42

<CASE START>::= ON CASE (
| <CASE HEAD>,
<PARAMETER LIST> ::= <PARAMETER HEAD><IDENTIFIER>)
<PARAMETER HEAD> ::= (
|<PARAMETER HEAD><IDENTIFIER>,
<PROCEDURE ENDING> ::= <PROCEDURE ON CONDITION>
<P-END TATL>
<P-END TAIL>::= <ENDING>
| <ENDING><FEEDBACK CONTROL>
<FEEDBACK CONTROL>::=, ON (<IDENTIFIER>)
<LABEL DEFINITION>::= <IDENTIFIER>:
| <ON CONDITION>
| <LABEL DEFINITION><IDENTIFIER>:
| <LABEL DEFINITION><ON CONDI
TION>
<ON CONDITION>::= <N(><IDENTIFIER SPECIFICATION>):
I<P-RETURN ON CONDITION>
<P-RETURN ON CONDITION>::= ON («<IDENTIFIER>,
<IDENTIFIER>)
<Ntz ON ([N 8]t
<RETURN STATEMENT>::= RETURN
| RETURN <EXPRESSION>
<CALL STATEMENT> ::= CALL <VARTABLE>
<GO TO STATEMENT> ::= <GO TOM<IDENTIFIER>
<GO TO> ::= GO TO | GOTO
<DECLARATION STATEMENT> ::= DECLARE <DECLARATION
ELEMENT>
| DCL <DECLARATION ELEMENT>
I <DECLARATION STATEMENT><DECLARATION
ELEMENT>
<DECLARATION ELEMENT> ::= <FULL TYPE DECLARATION>
I<IDENTIFIER> LITERALLY <STRING>
| <LEVLDEC>
<FULL TYPE DECLARATION>::= <TYPE DECLARATION>
I<TYPE DECLARATION><MODIFICATION>
<TYPE DECLARATION>::= <IDENTIFIER SPECIFICATION>
<TYPE>
I<IDENTIFIER SPECIFICATIONS<TYPE>
<STORAGE CLASS>
I<IDENTIFIER SPECIFICATION><STORAGE
CLASS><TYPE>
[<IDENTIFIER SPECIFICATION><STORACE
CLASS>
|<IDENTIFIER SPECIFICATION>
|<BOUND HEAD><NUMBER> } <TYPE>
|<BOUND HEAD><NUMBER>) <TYPE>
<STORAGE CLASS>
I<BOUND HEAD><NUMBER>) <STORAGE
CLASS><TYPE>
{<BOUND HEAD><NUMBER><) <STORAGE
CLASS>
{<BOUND HEAD><NUMBER>)
:= <NUMBER><FULL TYPE DECLARATION>
[<LEVLDEC> ,<NUMBER><FULL TYPE DECLARA
‘ TION>

<LEVLDEC> :

<TYPE> ::= FIXED

| <FIXED HEAD><FI-REPRESENTATION>)
| FLOAT

| <FLOAT HEADM<FL-REPRESENTATION>)
! LABEL

[<BIT HEAD><NUMBER>)

<BIT HEAD><NUMBER>)
<FIXED HEAD> ::= FIXED (

<FLOAT HEAD> ::= FLOAT (
<FI-REPRESENTATION> ::= <NUMBER>
I <REPRESENTATION TYPE>

| <NUMBER><REPRESENTATION TYPE>

| NUMBER><REPRESENTATION TYPE><NUMBER>
<REPRESENTATION TYPE> ::= gy

| SIGN VALUE | UN | UNSIGNED | TC |

TWO_COMPLEMENT | OC | ONE COMPLEMENT

= <MANT FI-REPRESENTATION>
<EXP FI-REPRESENTATION >
<MANT I'I-REPRESENTATION> ::= MANT <FI-REPRESENTA
TION>
:= EXP <FI-REPRESENTATION>

<FL-REPRESENTATION> ::

< EXP FI-REPRESENTATION> :
<BIT HEAD> ::= BIT (
<BOUND HEAD> ::= <IDENTIFIER SPECIFICATION> (

| <BOUND HEAD><NUMBER> ,
<IDENTIFIER SPECIFICATION> :;= <IDENTIFIER>

| <IDENTIFIER LIST><IDENTIFIER>)
<IDENTIFIER LIST> ::= (

| <IDENTIFIER LIST><IDENTIFIER> ,
<MODIFICATION> ::= <INITIAL LIST>

| <DEFINED LIST>
<INITIAL LIST> ::= <INITIAL HEAD><ITERATED CONSTANT>)
<INTTIAL HEAD> ::= INITIAL (

| <INITIAL HEAD><ITERATED CONSTANT>
<ITERATED CONSTANT> ::= <CONSTANT>

(KCONSTANT>) <CONSTANT>

(KCONSTANT) (KCONSTANT>)<CONSTANT>

<DEFINED LIST> ::= <DEFINED HEAD><DEFINED ASSIGN-

MENT>)
<DEFINED HEAD> :: = DEFINED (
| <DEFINED HEAD><DEFINED ASSIGNMENT>,
<DEFINED ASSIGNMENT> ::= <VARIABLE>
| <VARIABLE> POSITION (<NUMBER>)
<STORAGE CLASS> ::= <SCOPE>
| <DURATION>
| <SCOPE><DURATION>
| <DURATION><SCOPE>
<SCOPE> ::= INTERNAL | EXTERNAL
<DURATION> ::= STATIC | DYNAMIC
<ASSIGNMENT> ::= <FREE VARIABLE><REPLACE><EXPRESSION>
| <LEFT PART><ASSIGNMENT>
<REPLACE> ::= :=
<LEFT PART> ::= <FREE VARIABLE>,
| <FREE VARIABLE> ||
<FREE VARIABLE> ::= <VARIABLE>
| <SUBSTRHEAD>)

<SUBSTRHEAD> ::= SUBSTR (<VARIABLE>
SUBSTR (<VARIABLE>,<EXPRESSION>
SUBSTR (<VARIABLE>,<EXPRESSION>,<EXPRESSION>
$EXPRESSTON> ::= <LOGICAL FACTOR>
| <EXPRESSIONY <OR EQUIVALENT><LOGICAL FACTOR>
<OR EQUIVALENT> ::= 1 [+l | |+
<LOGICAL FACTOR> ::= <LOGICAL SECCNDARY>
<LOGICAL FACTOR><AND EQUIVALENT><LOGICAL
SECONDARY>
& 143
;= <LOGICAL PRIMARY>
|1 <LOGICAL PRIMARY>
<LOGICAL PRIMARY> ::= <STRING EYPRESSION>
| <STRING EXPRESSION><RELATION><STRING EX-
: PRESSION>
I Stq=l1<t1>1<s=
> =
<STRING EXPRESSION> ::= <ARITHMETIC EXPRESSION>
| <STRING EXPRESSION> <ARITHMETIC EXPRESSION>
<ARITHMETIC EXPRESSION> ::= <TERM>
| <ARITHMETIC EXPRESSION> + <TERM>
| <ARITHMETIC EXPRESSION> - <TERM>
| + <TERM>
| - <TERM>
<LOGIC OPERATOR> ::

<AND EQUIVALENT> ::=
<LOGICAL SECONDARY>

<RELATION> ::= = | <

= <OR EQUIVALENT>
| <AND EQUIVALENT>

<TERM> ::= <PRIMARY>

| <TERM>4<PRIMARY>

| <TERM>/<PRIMARY>

| <TERM> MOD <PRIMARY>
<PRIMARY> ::= <CONSTANT>

43

| <VARIABLE>
| <PRIMARY HEAD><EXPRESSION>)
<PRIMARY HEAD> ::= (
| <LOGICAL OPERATOR> (
::= <IDENTIFIER>
| <SUBSCRIPT HEAD><EXPRESSION>)
| <VARIABLE>.<IDENTIFIER>
| <VARIABLE>.<SUBSCRIPT HEAD><EXPRESSION>)
<SUBSCRIPT HEAD> ::= <IDENTIFIER> (
| <SUBSCRIPT HEAD><EXPRESSION>,
112 <STRING
| <NUMBER>

<VARIABLE>

<CONSTANT>

Appendix 1: DIGITEST II description of a decimal
adder.

a) Pure behavioral description

¥ DECADD:CIRCUIT (START) RETURNS (MADE);

DCL {(REGA,REGB) (16) FIXED (4,UN) STATIC EXTER-
NAL;
DCL (REGAS,REGBS)(4)BIT(16)DEFINED (REGA ,REGB) ;
DCL COUNT FIXED, START LABEL;
DCL LOOPED LABEL INIT (1);
ON (START):A:COUNT=15;UEBIN="0",
CALLED:ON(A): CALL PRES;
ON CASE (PRES:IN,IN) PROCEDURE, CNT (LOOPED) ;
DCL I FIXED;
DCL (VORLERG, ERG) BIT(4), EUBERTRAG BIT(1)
STATIC,
ON (IN): LOOP:DO WHILE (COUNT >=0),
VORL:VORLERG = REGA(O)+REGB(0)+UEBIN;
ON (VORL): VOREND:IF VORLERG >$ THEN ERG=VORLERG
+ 63
ELSE ERG=VORLERG;
ON (VOREND): ERGN:IF ERG >15 THEN UEBERTRAG="1"}
ELSE UEBERTRAG="0",
ON (ERGN):STORED:REGAS = ERG |[SUBSTR (REGAS,1,
15);
REGBS=SUBSTR (REGBS,0,1)]|SUBSTR (REGBS,1,15);
COUNT = COUNT -1;
UEBIN = UEBERTPRAG;
END;
ON CASE (PRES:(IN,LOOP))
END PRES, CNT (LOOPED);
MADE: ON (+PRES, CALLED):;
CIRCUITEND DECADD;

®

.
|

ALLED

44

b)Mixed structural and behavioral description.

DECADD:CIRCUIT (START) RETURNS (MADE);
DCL (REGA,REGB) (16) FIXED (4,UN), COUNT FIXED,
START LABEL;

"DCL (REGAS,REGBS) (4) BIT (i6) DEFINED (REGA,

REGB);
DCL LOOPED LABEL INIT (1);
ON (START):A: COUNT = 15; UEBIN ="Q";
ON CASE (PRES:IN,IN)}:PROCEDURE,CNT (LOOPED);
DCL (VORLERG,ERG) BIT (4);
ON (IN):LOOP:SEQUENTIAL DO WHILE (COUNT >=0);
¥ VORLERG,UEB1 = ADD4 (REGA(Q),REGB(0),UEBIN);
CORRECT = VORLERG >9;
¥ ERGN: ERG, UEBERTRAG = ADD4 (VORLERG,"0",
CORRECT ,CORRECT ,"0",
UEB1),DELAY (=ERG:UP 2u4-28, DOWN 22-26/-» ULBERTRAG
llsr);
REGAS = ERG ||SUBSTR (REGAS,1,15);
REGBS = SUBSTR (REGBS,0,1) {|SURSTR (REGBS,1,15);
COUNT=COUNT ~1;
UEBIN = UEBERTRAG;
END
ON CASE (PRES:(IN,LOOP)):END, CNT (LOGPED) ;
CALLED ; ON (A) : CALL PRES;
MADE: ON (+ PRES,CALLED):;
& CIRCUITEND DECADD;

d) Pure structural description.

* DECADD;CIRCUIT (START) RETURNS (MADE) ;
PRES:CIRCUIT (REGAA1,REGAA2 ,REGAA3 ,RECAAY ,
REGBA1,REGBA2 ,REGBA3 ,REGBAL, START)
RETURNS (ERGN,SHR,MADE) ;
DCL (ERGN,VORLERG) BIT (u);
¥ CARRY:UEBIN,NQ = DFF (UEBERTRAG, SHR, LOAD,VCC),
DELAY (SHR —'UEBIN';18-20/LOAD ~'UEBIN':20-24),
Mw (lo), FAN(IN; 1/0UT: lo);
¥ BUSY: Q,NQ = CARRY. DFF (VCC,GND,LOAD,BORROW) 3
¥ CNT:CNT3,CNT2,CNT1,CNTo, BORROW,CARRY = HEXCNT
(vee,vee,vee, vee,vee ,LoAp, vee,
CNTDN) ,DELAY (- 12-18);

LOAD = NOT (START),
¥ LOOP1 = AND (CNTDN,LOAD);
¥ LOOP2 = NOT (LOOP1),DELAY (- 100",
% CNTDN = NAND (LOOP2,BUSY.NQ) ;
¥ SHR = NOT (CNTDN);,
% VORLERG,UEBL = ADDY (REGAA1,REGAA?2 ,REGAA3 ,REGAAL,
REGBAL,REGBA2 ,REGBA3 ,REGBAY, UEBIN);
¥ CORRECT = NOT (CORR1);
¥ CORR = EXQR (CORR2,UEB1);
CORR2 = EXOR (CORR3,CORRY) ;
* CORR3 = NOT (SUBSTR (VORLERG,3,1);
CORR4 = EXOR (SUBSTR(VORLERG,2,1) ,SUBSTR(VORLERG,
1,1);
¥ ERGN:ERG,UEBERTRAG = ADDY (VORLERG, 0" ,CORRECT,
. CORRECT, "O",
UEB1) ,DELAY(~ ERG:UP 24-28, DOWN 22-26/ UEBER-
TRAG: '15');

¥ CIRCUITEND PRES;

REGAAL,REGAA2 ,REGAA3 ,REGAAY=DECREG (SHR, REGAEL,
REGAE2,REGAE3 , REGAE
¥ REGBAI1,REGBA2 ,REGBA3 ,REGBAY-DECREG (SHR, REGBAL,
REGBA2 ,REGBA3 ,REGBA
s REGALL,REGAE2,REGAE3 ,REGAEY ,SHR ,MADE = PRES
(REGAAl,REGAAQ,REGAA3,REGAA4,REGBA1,REGBAQ,
REGBA3,REGBA4 ,START)
CIRCUITEND DECADD;

H

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7

