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Zusammenfassung

Der Argumentbereich Boolescher Funktionen wird auf das n-fache Kreuzprodukt des Ar-
gumentbereichs erweitert (n endlich). Damit wird es moglich, ein " Stdrparametersystem” zur
Darstellung dreier zeitbedingter Effekte physikalisch realisierter Boolescher Funktionen einzu-
flihren : (i) variable vom Werteverlauf der Argumente wie auch des Ergebnisses abhangige Ver-
zbgerung; (ii) variable Tragheit (Absorptionsfihigkeit); und (iii) Transitionsempfindlichkeit
(Flankenempfindlichkeit).

Eine derart erhaltene erweiterte Boolesche Funktion wird “"Quasi Reale Boolesche Funk-
tion” (QRBF) genannt werden. Es wird ein Automatenmodell fiir Quasi Reale Boolesche Funk-
tionen angegeben werden.

Keywords
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level.

Verzeichnis benutzter Symbole und Abkiirzungen

{.} Mengenklammern

€. 3 Elementsymbole

C Inklusion von Mengen

AV logisches und. logisches oder

AV Allquantor, Existenzquantor

IN Menge der natiirlichen Zahlen

Z Menge der ganzen Zahlen

[a.b] abgeschlossenes Intervall von a bis b
(a.b) offenes Intervall von a bis b

F(A) Michtigkeit der Menge 4

AB Menge aller Abbildung der Menge B in die Menge A
pr; t-te Projektion

<a; >z abzihlbare Folge mit Indizes aus Z

or Signalmenge mit Parametermenge T
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o1 realer digitaler Rechenraum mit Parametermenge T

KT kanonisch diskret zeitparametrisierter digitaler Rechenraum mit Para-
metermenge 7"

X Element aus (o7)"

v Element aus (o)™

a grundlegende Bedingung fiir die Tragheitskorrektur

Einleitung

Wihrend in der Entwurfspraxis zeitliche Effekte der benutzten digitalen Bau-
teile insbesondere bei asynchronen Realisierungen beriicksichtigt werden, wird im thec
retischen Ansatz versucht, Realisationsverfahren zu entwickeln, die es erlauben, auf di¢
Kenntnis der quantitativen Werte dieser Effekte verzichten zu kdnnen. Neben dem
technischen Trick der Taktung sind hier verschiedene Codierungsverfahren asynchron
zu realisierender Automaten (Tracey [16], Hlavicka [6], Asmuss [1], Unger [17]) und
insbesondere die *“Speed Independent Theory” wie sie bei Muller und Bartky [10],
Noguchi [11], Miller [9] und von Wachter [18] beschrieben wird, zu nennen.

Als Beschreibungsmittel werden mehrwertige Logiken (Breuer [3], Daniels [5])
und auch modifizierte Petri-Netze (Mies [8])verwandt.

Zum Zwecke der Simulation werden in der Literatur verschiedene Modelle zeit-
lichen Verhaltens genannt {(Chappel und Yau [4], Szygenda [13-15]).

Hier soll nun der Versuch unternommen werden, fiir die theoretische Behand-
lung zeitabhéingiger Effekte eine algebraische Formulierung zu finden. Dabei gilt es,
wie bei jeder Modellbildung, zwischen Aufwand und Nutzen abzuwigen. Es soll hier
ein Modell erstellt werden, das hinreichend genau ist, um Aussagen iiber Trigheit,

Verzogerung und Flankenempfindlichkeit von digitalen Bauelementen machen zu
konnen. Anderenseits sol]

gegangen werden.

Definition der Quasi Realen Booleschen Funktionen

Definition [ - Eipe Abbildung f: {0, 1}* - {p, 1P heisst n-nach-m-stellige
Boolesche Funktion.

Definition 2 : Sej T eine Menge; or:
O0r3a = <a; > 1 heisst Signal : <,

(1) va, €40.1}

=T

(2) entweder 7 =

I C R. T abzihlbar unendlich (dann heisst dag Sj

Ist o4 diskret Zeitparametrisiert, so schreibt man T =
voraus. dass sowohl die Ord

Insbesondere solt gelten: (i >

= [0, I]Theisst Signalmenge;

R (dann heisst das Signal stetig Zeitparametrisiert) oder
gnal diskret zeitparametrisiert).

{t; i € Z} und setzt
nung wie auch die Metrik von R auf

J=> ) firalle i, jez.

T iibertragen wird.
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Bei dieser Definition geht man davon aus, dass ein physikalisches Signal, das
als Argument eines realen Schaltelements benutzt wird oder von dem Schaltelement
berechnet wird (z. B. eine elektrische Spannung) wenn man es zu beliebigen Zeit-
punkten betrachtet innerhalb eines Intervalls beliebige, d.h. im allgemeinen # (IR)-
viele verschiedene, Werte annehmen kann. Bei aller philosophischer Problematik
einer solchen Betrachtungsweise geht man nun davon aus, dass durch n-Tupel solcher
zeitvarianter Signale parallele Zeitschnitte gelegt werden. 0 und 1 sind hier willkir-
lich gewdhlte Intervallgrenzen. Da jede Technologie gewisse Teilintervalle als logische
1 bzw. als logische 0 interpretiert, kann man sich ohne weiteres die 1 als Bild aller
als Togisch 1 interpretierter Werte, die O als Bild aller als logisch O interpretierter
Werte und das offene Intervall (0, 1) als bijektives Bild aller weiteren Werte vorstel-
len (Siehe Abb. 1-3).

Bild 1. Beispiel eines stetig zeitparametrisierten Signals.

>

Bild 2. Das Signal aus Bild 1 unter der Annahme, dass Schwellwerte existieren, mit deren Hilfe
Wertebereiche den logischen Werten “1”" und “*0’" zugeordnet werden.

—= R W U
[
o
[o]

Bild 3. Beispiel eines diskret zeitparametrisierten Signals.

Digit. Process. 2(1976} 1
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Definition 3 : Sei (a7)" das n-fache Kreuzprodukt von o7: f: (07)" — (o)™
heisst n-nach-m-stellige Schaltfunktion.

Eine n-nach-m-stellige Schaltfunktion bildet also ein 7-Tupel von Signalen in
ein m-Tupel von Signalen ab. Man beachte. dass nicht ausgeschlossen wird, dass Argu-
mente wahrend Zeitintervallen fiur Ereignisse wihrend Zeitintervalien von Bedeutung
sind. Diese Eigenschaft wird auch bendtigt, insbesondere zur Beschreibung variabler
situationsbedingter Verzdgerung und der Absorption zu kurz anliegender Signale
(Trigheit). Im Folgenden werden die Schaltfunktionen allerdings noch erheblich ein-
geschrinkt werden. Insbesondere wird ausgeschlossen werden, dass auf die Berechnung
eines Zeitpunktes 7, Argumentwerte zu Zeitpunkten ¢ > 7, einen Einfluss haben.

Definition 4 : Sei & = {f: (o7)" (o)™ |n, m € N} die Menge aller Schalt-
funktionen. 6, : = < o7; D > heisst realer digitaler Rechenraum.

8. stellt ein Modell dar, das sich den iiblichen Methoden der Schaltwerkanalyse
vollig verschliesst. Insbesondere ist man gezwungen, in # (IR)-wertiger Logik zu
rechnen.

Es gibt verschiedene Ansitze, den Wertebereich von Schaltfunktionen auf eine

endliche Menge der Michtigkeit grosser als zwei zu beschranken. Es ist insbesondere
das achtwertige Modell von Daniels [S] zu nennen.

Zeitpunkten zugrunde gelegt werden.
Wenn man von 8 auf ein Mod

- Weiterhin schliesst
svon O auf 1 bzw. von 1 auf 0 aus, die mehr Zeit
unkten liegende bendtigen. Und schliesstich verliert
ertanderungen, die weder den Wert 0 noch den Wert
usgegangen, dass all diese Einschréinkungen akzeptabel

man Wertdnderungen eines Signal
als die zwischen zweij Rasterzeitp
man jegliche Information Uber W,

Lerreichen. Es wird hier davon a
sind.

Definition 5 : Sej 07 ein realer digitaler Rechenraum und 7 C T, T’ abzihlbar

unendlich und | r;,, - o= y- ti-y | (Aquidistanz), fiir llei€Z. kp: = <op:
P > wird definiert durch(l) oy ; = p(07) mit /\p(a,l.) = ap, mit
=T
Tk = max {r, ||s, i = min { [tg=1:]] a; € {0, 1}1}); (2) @’ ist definiert durch
Ny

AR Fiptay) = P(a)): k1 heisst kanonisch diskret zeitparametrisierter digi-
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Bild 4. Beispiel eines stetig zeitparametrisierten Signals, das durch eine naheliegende Abbildung
aus einem diskret zeitparametrisiertem Signal erhalten wurde.

Bild 5. Beispiel eines kanonisch diskret zeitparametrisierten Signals.

Schreibweise
Sei f: (o) = (o)™, fO0 = ¥ = (1, ¥2.2 Vm)- S Pr(Y1), -
Pr(v,,)) wird geschrieben : ¥(r) bzw. f(¢, X)-

Definition 6 - Eine kanonisch diskret zeitparametrisierte Schaltfunktion
h:(or)* - (07-)™ heisst ideale Boolesche Funktion : <
\ A A () : = h(t,x) = h'(x(t)). Eine kanonisch dis-
B0, 13 = {0, 1} (o) teT
kret zeitparametrisierte Schaltfunktion heisst real sonst. H;'z sei die Menge aller n-
nach-m-stelligen idealen Booleschen Funktionen, / die Menge aller idealen Booleschen
Funktionen.

Definition 7 : (o7/)" € x heisst vollstindiges Signaltupel : <

V. x = x().
x{0, 1} rer X

Eine ideale Boolesche Funktion wird _
Ublichen Sinne) /' definiert. Die Frage ist nun, ob die Definition 6 eindeutig ist, d.h.
einerseits, ob es fiir eine Funktion / € H,':, auch nur eine definierende Funktion .

W e{fif:{o,1}" - {0, 1}™} gibt und andererseits, ob mit einer solchen Funktion
h'" auch die Funktion 4 eindeutig bestimmt ist.

mit Hilfe einer Booleschen Funktion (im

Digit. Process. 2 (1976) 1



32 F.J. Rarnmig

Diese Frage wird durch die beiden folgenden Lemmata beantwortet
Lemma 1 © Seien hy, iz ideale Boolesche Funktionen. Danngilt: hy = hy
= hy= h;.

Beweis - Es wird gezeigt: () = M2 o) = = h) = (o))" x ist voll-
stindiges Signaltupel.

Sei iy (X) = ha QO NRY #F ha
(1) hy # hy = V hi(X) # hy (X)
xe {0,1}"

() ) =hXx<= A nhtx= ha (8, %)

teT’

= A A Ry (x(0) = hy (xX(1)

ter x(re {0, 1}

(Hv)y = V A X # (@),
xe{o, 3" te1

(op)" D X nicht volistandiges Signaltupel

-V A X # X
xe . 1} reT

Zu vorgegebenem Ay sei by definiert durch:

hi(X) = hy(X) far X€ X() [ t€T"}
hi(XY # hy{X) sonst.

Damit gilt: sy # haahy () = ha (X)-

Q.E.D.
Lemma 2 hy # hy = hy # hs.
Beweis © hy = hy = AN hi(X) = hy(X
o) 0 = B0
ve{velo " Vo x = xnt M0 = ke ()
=T
= A AN hi(t,x) = h
(ap 1 (=T 16 (-0 QED

. n .
A Sei H,, die Menge der n-nach-n-stelligen idealen Booleschen Funktionen, Ny,
die Menge der Booleschen Funktionen a : {0, 137 - {0, 1}"™. Bei vorgegebenem

Sigr{a\“tup‘el x;(oTr)" indiziert H), auf N::l eine Klasseneinteilung. Ist (a7} 2 X

\Qllsta.r.ldxg.es ngr\a-ltupeL so werden die Klassen von N,'; einelementig. Es existiert

eine bijektive Abbildung def, : H, - N, .Statt N, bzw. N = {N, |n,m€& N}
” < m ) ’

wird im folgenden auch def, (H:’n) bzw. def; (H) geschrieben. "

g Process 2.087an



Quasi Reale Boolesche Funktionen 33

Man sieht damit unmittelbar ein, dass die idealen Booleschen Funktionen genau
den iiblichen Booleschen Funktionen entsprechen. Aus der Sicht eines Rechenraum-
modells sind es die Funktionen, bei denen zur Berechnung eines Ergebnisses zum Zeit-
punkt 7, nur die Argumentwerte zum selben Zeitpunkt 7, und keine weiteren, frither
oder spiter liegende, von Bedeutung sind.

Es soll nun eine Funktionenklasse definiert werden, die durch die Vereinigung
der idealen Booleschen Funktionen und einer Teilmenge der realen Booleschen Funk-
tionen gebildet wird. Diese Teilmenge ist michtig genug, um die Phinomene Flanken-
empflindlichkeit. Trigheit und Verzogerung beschreiben zu konnen.

Definition 8 : Die Menge FE : = {pos, neg, no} heisst Flankenempfindlichkeits-
menge.

Definition 9 : Sei H,, die Menge der n-nach-m-stelligen idealen Booleschen
Funktionen. Dann ist des Operator FS: def, (H,,) x FE" ~ HG,, wie folgt definiert :
Fs(flrfll .~f12> sflrl) = gl
mit g': {0,1}" x {0, 1}" - {0, 1}™

wobei
4
g (alfo_l"”’a"tu_l""’alto’”"anto)
—_ 1 ’ !
—f(altoy---yanto)
mit
a, = a4 fur fI; = no
0
.= SAd; = 1Aa; 0
0 A al, =1 fiir Tl = posndy, _ Ter
<i<n 1, [ = neg/\al}o - ()/\alto_l -
\a;, = 0 sonst
0

8:(0pY" > (07)" heisst n-nach-m-stellige flankenkorrigierte Boolesche Funktion
D=

A A U(te): = glte, ) = & [XUo-1)s X(ta)]-

&' EHG), xe@m t,eT

G; sei die Menge aller n-nach-m-stelliger flankenkorrigierter Boolescher Funktionen,
G die Menge aller flankenkorrigierter Boolescher Funktionen.

Dieser Definition liegt folgende Betrachtungsweise zugrunde : alle Argument.-
komponenten, fiir die eine Reaktion auf eine Flanke implementiert wird, werc‘ie’r} in
Argumentkomponenten transformiert, die in positiver Logik auf Belegungen 0
oder *1” reagieren.

Sei beispielsweise a; eine Argumentkompon
die Argumentkomponente a/ transformiert. Dieses a
“17 belegt, wenn a; mit einer positiven Flanke belegt wird. o _

Es kann in dem zugrundegelegten Modell keine Anstiegszeit linger als ein Ras‘ter-
intervall sein. Flanken kénnen daher einfach durch den Vergleich der Werte an zwel

ente mit fI; = pos, dann wird g; in
! wird genau dann mit einem Wert
i

Digit. Process. 2 (1976) 1
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—

St
(a)
- __~t
(b)
- ot
{b’)
f >t
{c}
Im Gegensatz dazu die selbe Funktion aber mit FE2 = (no,no)
1 1\
>

Bild 6. Flankenkorrektur.

¢ =flab)y=1:=g=1pb= ¢
dh.f =a Ab',FE* = (no, pos),
a}c = ap,. b}o = lmbto = lAbto_, =0

aufeinanderfolgenden Rasterzeitpunkten erkannt werden. Bild 6 illustriert die oben
beschriebene Transformation einer Argumentkomponente.

Entsprechend Lemma 1 und Lemma 2 gelten :

~

'@t Process 2.1
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Quasi Reale Boolesche Funktionen 35

Lemma 3 : Seien g,, g, flankenkorrigierte Boolesche Funktionen. Dann gilt :
(81 =& = g1 = &1).

Lemma 4 - Seien g,, g, flankenkorrigierte Boolesche Funktionen. Dann gilt :
€ #8 = g% g)

Es existiert wieder eine bijektive Abbildung
def,: G - HG"
m m

def(g) = g'.
Statt HG, bzw. HG schreibt man def, (G, ) bzw. def2(G).

Wir wollen Gr'; nun so erweitern, dass auch die Trigheit digitaler Bauelemente
beschrieben werden kann.

Definition 10 : TR : = (tr°, tr') heisst Trigheitsangabe : <>

A

A tr' € Ng.
tr® (tr') wird interpretiert als die minimale Anzahl an Zeiteinheiten wihrend derer ein
Signal “0” (**1”") konstant bleiben muss, um als Argumentwert erkannt zu werden.

Auf der Grundlage der Trigheitsangabe soll nun die Moglichkeit geschaffen wer-
den, die Absorption zu kurz anliegender Signale darzustellen. Dabei soll es moglich
sein, fiir jede Argumentkomponente eine eigene Trigheitsangabe anzugeben.

[st ein Wert als zu kurz anliegend erkannt worden, so soll er einfach komple-
mentiert werden.

Liegt zum Zeitpunkt #, ein Wert vor, so muss im allgemeinen in die Vergangen-
heit und die Zukunft geschaut werden, um festzustellen, seit welchem Zeitpunkt Z,
und bis zu welchem Zeitpunkt 7, dieser Wert anliegt. Liegen /g und ¢, weniger weit
voneinander entfernt als in der Tragheitsangabe fur diesen Wert angegeben, sO muss
¢in “Verschlucken” (Komplementieren) vorgenommen werden.

Man beachte, dass nach dem so angebenen Verfahren die Information tber das
Werteverhalten der Argumentkomponenten wihrend einer im allgemeinen Fall so-
wohl unendlichen Vergangenheit wie auch unendlichen Zukunft benotigt wird. I?ICSES
unendliche Zeitintervall lisst sich aber offensichtlich auf ein Zeitintervall beschrfm-
ken, das nur so viele Zeiteinheiten je in die Vergangenheit und in die Zukunft reicht,
wie die aktuelle Trigheitsangabe angibt.

Wir erhalten damit die grundlegende Bedingung
almt, t4) wahr : <

(o) fiir die Tragheitskorrektur :

Es gibt in den beiden durch die aktuelle Trigheitsangabe definierten Zeit-inter-
vallen (eines in die Zukunft, eines in die Vergangenheit) jeweils einer.I Zeltpunkt
zu dem der Wert der betrachteten Argumentkomponente vom derzeltfgen Wert
verschieden ist, und diese beiden Zeitpunkte liegen weniger weit voneinander
entfernt als in der aktuellen Trigheitsangabe gefordert.

Das Problem des in die Zukunft schauens wird bei der Einfihrung der Verzogerung

Digit. Process. 2 (1976) 1



36 F.J. Rammig

gelost werden. Tragheit und Verzogerung hingen ursichlich zusammen, werden aus
Griinden der Ubersichtlichkeit hier aber getrennt definjert. .

Da tragheitskorrigierte Boolesche Funktionen auf der Basis der ﬂfmke.n.korrl—
gierten Booleschen Funktionen definiert werden sollen, muss auch der jeweilige Wert
zum Zeitpunkt 7o, trigheitskorrigiert werden und zwar genau dann, wenn zu diesem
Zeitpunkt die Bedingung o wahr ist. ‘

Um die Schreibweise zu vereinfachen, definiert man m¢ als Maximum aller in
Verbindung mit der betrachteten Funktion vorliegenden Triigheitsangaben.

Dann erhalt man folgende formale Definition fiir die Bedingung o :

Definition 11 © a(mt, ty) - =

V atk * a,o A V ate * ato A (ato =
fosmt > 1 > 1, Ly >t > my
= Inte—p (<t v = 0nlt,— g | <.

Damit lassen sich nun tragheitskorrigierte Boolesche Funktionen recht einfach for-
mal definieren :

Definition 12 : Sei G :! die Menge der flankenkorrigierten n-nach-m-stelligen

Booleschen Funktionen. Der Operator Ts : def, (G))x TR ~ HT;, ist wie folgt
definiert :

TS (8" quf ). (ud, )] = &

mit A {O TP S {01 (mt: = max {tr?, try, ..., o, k)

K'ay, .. ... =

Toome - Lo-mt-1 .anto+mt
= g'(a; c...al a4y, .....al
&1 ltuf\ nt0~1 yalro ’a"to

mit A A a4, #a_ < a(mt, 1).

i€l000 - Y 0<icnyg ¥ i
Kitor)" = (o)™ heisst n-nach-m-stellige tragheitskorrigierte Boolesche Funk-
tion © <=

Vo N N W) = k(e x)

K2HTR xs(opy! e

= kr[XUO—mt—l) ] X([0+mt)]'

T sei die Menge aller n-nach-
T die Menge aller tragheitskor:
Entsprechend Lemma 1

m-stelligen trégheitskorrigierten Booleschen Funktionef
tigierten Booleschen Funktionen.
und Lemma 2 gilt wieder :

Lemma 5 - Seien Ky,
17

ko tragheitskorrigierte Boolesche Funktionen. Dann gilt :
kl:kz =>k;:k2.

31 Process 2419760
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Lemma 6 - Seien k,, k, trigheitskorrigierte Boolesche Funktionen. Dann gilt:
ky # = ki # kj.

Wir haben wieder eine bijektive Abbildung:

defs : Tr"n - HT:I

defy (k) = k',
und konnen statt HT), bzw. HT defy (T7) bzw. def; (T') schreiben.

Bei der Betrachtung der Trigheit von Schaltfunktionen stellt die Behandlung
schnell oszillierender Signale, bei denen kein Signalwert geniigend lange anliegt, ein
Problem dar. Es sind in Abhingigkeit von der Technologie, die beschrieben werden
soll, verschiedene Modelle denkbar. Das eben definierte Modell ist ohne eine bestim-
mte Technologie zu betrachten entwickelt worden. Vom mathematischen Standpunkt
aus zeichnet es sich dadurch aus, dass nur sehr begrenzte Information tber das zukiinf-
tige und vergangene Zeitverhalten in die Definition eingeht.

Vom praktischen Standpunkt aus betrachtet liefert das Modell fiir kurze Oszilla-
tionsfolgen ein naheliegendes, fiir lingere Folgen ein zumindest einsichtiges Verhalten
das sich als eine Art Ableitungsverhalten charakterisieren lasst :

Folgen n Transitionen in zu kurzem Abstand aufeinander, so werden die erste
und die letzte Transition ignoriert und alle weiteren in Gegenrichtung ausgefthrt.
Firn = 0,1,2,3,4, 5,6, 7 ist das Verhalten in der Abbildung 7 skizziert.

Als letztes Phiinomen physikalisch realisierter Boolescher Funktionen soll nun
die Verzogerung betrachtet werden. Da hier ein Modell mit bindrem Werteverhalten
betrachtet wird, kann nur eine Durchlaufverzogerung (propagation delay) beschrie-
ben werden, nicht aber eine Schaltverzogerung (transient delay). Es diirfte aber in
vielen Fillen moglich sein, eine Schaltverzogerung hinreichend genau als Durchlauf-
verzogerung zu beschreiben.

Fin sehr einfaches Modell fiir die Verzogerung stellt das Totzeitmodell dar. wie
es von McGhee [7] und Beister [2] beschrieben wird. Bei diesem Modell geht man
davon aus, dass jeder Wert einer jeden Argumentkomponente erst um eine feste An-
zahl von Zeiteinheiten d verzogert wird, bis er tatsichlich als Argumentwert der zu
beschreibenden Funktion interpretiert wird. Als Argumentwert zur Berechnung des
Funktionswertes zum Zeitpunkt 7o dient also nicht der zum Zeitpunkt ¢, anliegende
Wert, sondern der, der zum Zeitpunkt o_y anlag.

Fordert man nun. dass dieser Verzogerungsbetrag d mindestens so gross ist, wie
die maximale fiir die zu beschreibende Funktion genannte Trigheit mt und stellt man
sich vor, dass die Tragheitskorrektur erst unmittelbar vor der Interpretation der Argu-
mente vorgenommen wird, so ist das Problem, dass zur Trigheitskorrektur zukunftige
Argumentwerte benotigt werden, gelost. Denn bendtigt man m¢ zukilnftige Werte fur
einen Wert, der zum Zeitpunkt fo-4 anlag und ist mt < d. so gelangt man hochstens
zum Zeitpunkt #,., also nicht in die Zukunft.

Dieses Modell soll nun verfeinert werden. Zunachst soll es moglich sein, fiir ver-
schiedene Argumentkomponenten auch verschiedene Verzogerungen anzugeben. Ana-
log méchte man auch fiir unterschiedliche Bildkomponenten unterschiedliche Verzo-
gerungen beschreiben konnen. Und schliesslich soll es moglich sein, fir Werte “1” und

Digit. Process. 2 (197611
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anl.

anl.
Sign.

Sign.

kor.

kor. {
Sign. 104 Sign.

1. anl.
1.
an _______]_L Sign.
Sign. *0-
kor, kor.
Sign, Sign.
1. ant,
anl. { si
[ ign.
Sign. 0. 9
n=34
kor. { v kor.
Sign. 0. Sign.
anl. anl.
Sign. Sign.
kor. kor.
Sign. Sign.

Bild 7. Beispiel fur Tragheitskorrekturen.

"0 unterschiedliche Verzogerungen anzugeben. (Bei dem Totzeitmodell werden nicht
Transitionen sondern Werte verzogert. Man macht sich aber leicht klar, dass dies bzgl-
des Beschreibungsergebnisses dquivalent ist.)

Man geht nun davon aus, dass fiir jedes Paar (Argumentkompornente, Bildkom-
ponente) vier Verzogerungsangaben vorliegen, fiir jede der moglichen Wertekombina-
tionen eine. Dieses Quadrupel wird elementare Verzdgerungsangabe genannt.

Die minimale fiir die zu beschreibende Funktion genannte solche Angabe wird
mit ud bezeichnet. Aus Griinden einer einfacheren Schreibweise fordern wir, dass
bereits dieses ud mindestens so gross ist wie die grosste genannte Trigheit mt.

Es werden zum Zeitpunkt t4 also Argumentwerte firr die zugrundegelegte ideale
Boolesche Funktion betrachtet, die vor ud Zeiteinheiten anlagen und Trigheits- und
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Flanken-Korrektur unterzogen sind. Aus diesen Argumenten berechnet die ideale
Boolesche Funktion verzogerungsfrei die Werte der Bildkomponenten. Firr jede Bild-
komponente kann nun ihre individuelle Verzégerung bestimmt werden. In diese Be-
rechnung gehen die Werte aller Argumentkomponenten und der gerade betrachteten
Bildkomponente ein. Im Konfliktfall wird das Maximum gebildet.

Um das soeben gesagte zusammenzufassen :

Um den Wert einer Bildkomponente zum Zeitpunkt #o Zu bestimmen, muss man
erst den Wert der Bildkomponente aufgrund der flanken- und trigheitskorrigierten
Argumentkomponenten zum Zeitpunkt fo_,q feststellen. Damit lasst sich der Wert
ad der aktuellen Verzogerung feststellen. Der zu berechnende Wert ist dann der, wie
er aus den flanken- und trigheitskorrigierten Argumenten zum Zeitpunkt fo_q be-
rechnet wird.

Auf der Grundlage dieser Uberlegungen soll nun die Verzogerung formal defi-
niert werden.

Definition 13 : Das Quadrupel Ed = (doo, do1 . d10,d11) heisst elementare
Verzogerungsangabe : <.

(1 A A di; €Ny
0<i<1 0<j<1

() max {(dj- mn {duh} < min  {dg}
0<ij<1 0< k1< 0<ij<1

ED sei die Menge aller elementaren Verzogerungsangaben. .
Dabei gibt bei einer Komponente dj; eines solchen Quadrupels i den Wert der
Argumentkomponente, j den Wert der Bildkomponente an.

Schreibweise
Sei Ed = (dggy,dgy,d 1o, du ) eine elementare Verzogerungsangabe. led heisst

minimale Elementarverzogerung : <
led: = min {dy}.
0<ij<1
hed heisst maximale Flementarverzogerung : <=

hed: = max  {d;}.
0<i,j<1

Definition 14 : Sei H":l die Menge der trégheitskorrigierﬁ:n n-nac};—rr.z-stel.ligen
Booleschen Funktionen. Der Operator VZ: defs(H,,) x ED"™ =~ HK, ist wie folgt

definiert :
VZ(k',ED,,,...,EDppy) = I’
I': {0, 1)mymemi? g 13" (md: = max { max {hedys}}).
’ 1<r<n 1 <s<m
I'(a, a ..., ap, )ist komponentenweise definiert
t"’md-mt-l’-“’ Mty md-mt-1 ’ t
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durch :
p1(@)
l'@: =
Pm (@)
wobei filr alle | <i <m gilt:
pi+ {fo, 1y > {0, 1}

i(a yeeesdl yseesd D=
pl( lto»md-mt—x nto—md—mt-x nto)
1 [k'(a veesd eeesd .
p l[ ( lto—ad—mt—x nto—adﬂ nto—ad+mt)]
Dabei wirdad bestimmt durch ad: =  max {(d,s)q,} mit s ist der Wert der i-ten

1<g<n
Bildkomponente der Trigheitskorrigierten Booleschen Funktion zum Zeitpunkt fo-ud
und r ist der Wert der g-ten trigheits- und flankenkorrigierten Argumentkomponente

von k' zum Zeitpunkt to_yg. [ (67)" = (o)™ heisst n-nach-m-stellige Quasi
Reale Boolesche Funktion : <=

\ AN ) = e, X)

. n n B
I'€HK) (s7)" t,€T

= I'[x(to-ma-mt-1) »---» X(ta)]-

K:I sei die Menge aller n-nach-m-stelligen Quasi Realen Booleschen Funktionen,
K die Menge der Quasi Realen Booleschen Funktionen.

Auch hier erhalt man unmittelbar die beiden folgenden Lemmata:

Lemma 7 : Seien [, I, Quasi Reale Boolesche Funktionen. Dann gilt :
11212 =>1;: I&

Lemma 8 : Seien ,, l, Quasi Reale Boolesche Funktionen. Dann gilt :
LWFEL =1 #1;.

Man erhailt eine bijektive Abbildung def, : K” - HK" ,defy (k) = k'
kann statt HK) bzw. HK schreiben def, (K] ) bzw. def, (K)

Aufgrund der bijektiven Abbildung def4 lassen sich Elgenschaften einer Funk-
tion f(K" ) unmittelbar aus den Eigenschaften der Funktion f' : = def, (f) erhalten.

Wir betrachten daher nun Funktionen f: {{0, 1}"}k - {0, 17" wobei k durch
die zugrundegelegten Angaben iber Tragheit und Verzdgerung bestimmt ist. (kK =
maximale Traghelt + maximale Verzbgerung + 2.) Schreibt man f(z,, az,) fiur

fay,

oomdomzy A ) so lasst sich f in natiirlicher Weise als Wortfunktion auf-
fassen, die ein Emgabewort agag

und

- €X*, X = {0, 1}", iiberfithrt in ein Ausgabe-
wort £t ag) f(tiss @y, ) f(tiaz 0, ) ... €Y*,Y = {0, 1™ wobei der Einfachhe
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halber vorausgesetzt wird, dass es fir jedes #; ein Wort gy --- a4y gibt, d.h. dass
keine undefinierten Vorgingerwerte existieren.

Ohne diese Annahme muss man von einer Familie von Wortfunktionen fi, ..., f;
sprechen. Diese Familie ist dadurch gekennzeichnet, dass gilt :

VoA N A fl(tgaatg) = h ([g,atg)

ty XeX* fiedfi, S tg>ty

Es handelt sich dabei um Einschwingvorginge beim “Einschalten” derer man sich
meist nicht bewusst ist.

Da alle Mitglieder dieser Funktionenfamilie fast {iberall, d.h. {iberall ausserhalb
der Einschwingzeit, identisch sind, ist es in den meisten Fillen vertretbar, sich auf
einen Vertreter dieser Familie zu beschrinken.

Satz
Fir jede Quasi Reale Boolesche Funktion f€ K" gibt es einen endlichen Auto-
maten Ay mit hochstens 2% Zustinden, so dass gilt : f aufgefasst als Familie
von Wortfunktionen f; : X* = Y™ ist gleich der Familie von Automatentrans-
formationen T;(4y). (k = maximale Trigheit + maximale Verzogerung + 2.)

Beweis : (Durch Angabe des Automaten Ay);
=(X,Y,6: XxS~>S,A:85~>Y)

mit X = {0,1}" und Y = {0, 1}"".

Die maximale fiir f angegebene Tragheit sei mz, die maximale fiir f/ angegebene
Verzogerung sei md. Aus der Definition 14 geht hervor, dass dann neben der aktuel-
len Eingabe X, auch die Werte Xt,_»s Xty mt- ma-, Mit in die Berechnung der
Ausgabe emgehen

Damit ergibt sich die Zustandemenge

_ nymt+md+2 (Um einen Moore-Automaten zu erhalten, wird auch
= {0.11"} die aktuelle Eingabe X; mit abgespeichert)

St = Slro’ ey s"ro‘slto_‘ N AR s"fo-md-mr-x'

0 o-1

Dann gilt :

6(Xy,,8) = 8¢

0 +1

= X S8
xlto’“" "to’slto""’s"tc'slfo—x’ PNt md’
und
A ) =1'¢:) = Y,
tO tO tO

wobei f” die in Definition 14 definierte Funktion aus HK . ist _ .
Man beachte, dass jeder Zustand aus S als Anfangszustand zugelassen ist. Damit
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erhilt man eine Familie von Automatentransformationen, die nach spatestens md +

mt + 2 Takten alle identisch sind.
Es ist offensichtlich, dass der so konstruierte Automat f realisiert. £D
Q.ED

Mit Hilfe eines derart konstruierten Automaten kann man sich nun die Wirkungs
weise einer Quasi Realen Booleschen Funktion leicht veranschaulichen. Dazu stellt I.mﬂ
sich die Information iiber die Argumentwerte in Schieberegistern gespeichert vor. Ein
Element a € {{0, 1}”}k wird dabei in n Schieberegistern der Linge k gespeichert. Jede
Zelle der Schieberegister hilt fir die Linge eines Rasterzeitintervalls einen konstanten
Wert. Am Ende eines jeden Intervalls wird nach rechts um eine Zelle weitergeschoben
und links nachgeladen. Das linke Ende der Schieberegister entspricht jeweils dem Zeit-
punkt f4_1, fo-2,-.., entsprechen.

Im Falle einer flankenkorrigierten Booleschen Funktion mit n Argumenten be-
notigt man demnach n Schieberegister der Linge 2:

Liegt eine trigheitskorrigierte Boolesche Funktion vor, so mussen die Schieberegister

nach rechts wie auch nach links, d.h. in die Vergangenheit wie in die Zukunft, um
mt Zellen verlingert werden (m¢ = maximale Trigheit) :

{tmm,‘ \tou { to k to_,\ to_z[ \fo—ma

«— Zukunft

Geht man nun zu Quasi Realen Booleschen Funktionen iiber, betrachtet man als auch
noch die Verzagerung, so verschiebt sich die Zelle ¢, wieder an den linken Rand des

Schieberegisters. Der alten Zelle 1, entspricht nun die Zelle to_yy (ud = minimale
Verzogerung, ud mt) .

(toems) (ty)

T

o LT T T T Jtomemit

Der Automat 4 = (X, Y, S, 3, ) ist nun, grob gesehen :
X ={0,1}"
Y = {0, 1},

S ist der Inhalt der Schieberegister; § ist die Funktion, die die Schieberegister um
eine Zelle nach rechts schiebt und finks nachladt. \ arbeitet wie folgt : Zunichst wer-
den die trdgheitskorrigierten Argumentkomponenten zum Zeitpunkt f,_,q und die
daraus resultierenden Bildkomponenten der flanken- und trigheits-korrigierten Boo-
leschen Funkition bestimmt. Damit ldsst sich die aktuell giiltige Verzogerung ad; fir
jede Bildkomponente i bestimmen. Durch Anwendung der flanken- und tragheits-

k(?rrigienen Booleschen Funktion zum Zeitpunkt to_gy. wird der Wert der i-ten
Bildkomponente fur alle 0 <i <m berechnet. !
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Der so beschricbene Automat arbeitet nattrlich sghr ineffektlvt. Ir;srlzié;sri)nj;re
muss sehr oft eine trigheitskorrigierte Boolesche Funktion berechneA:V umen,t o
einmal die Ausgabe zu bestimmen. Da jeder Wert,.der aufgrupd V(in ; grund Ny
einem Zeitpunkt £ _,q berechnet wird, bereits mlndesteqs einma Eutl)e%1 oo
gumenten zu einen Zeitpunkt #4r_,; berechnet wur.de, wird Qas soe ewelligen e
Automatenmodell nun so geandert, dass die Ergebniswerte, die zu der;1 Jlteten  hiohe
punkten #4_,4 berechnet werden, in den Bildkomponenten nachgescha

i espeichert werden. . }

rengteIr)lilefe gchieberegister haben jeweils die Linge der Differenz. zw1s.c.hen ieursfz; .
das Gatter angegebenen Minimalverz()gerung ud und d.er fur. den Jewelllgell; 8
i angegebenen Maximalverz()gerung md;. Die Zellen seien mlt (0—ud — bl;gstjmmt
0 ud—-2),....0- md;); bezeichnet. Der Test zum Zeltpunk't to-ud o
nun nur noch, ob als j-te Ergebniskomponente der Inhalt der Speicherzelle ( e
oder der einer weiter links von ihr stehenden Speicherzelle genommen wefden m ot

Selbstverstindlich kénnen die Schieberegister an den Eingingen gleichzeitig

. : i ons-
eine Linge von ud + mr + 1 verkiirzt werden. (Die Bild 8 veranschaulicht diese K
truktion.)
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Abstract

The domain of Boolean functions is expanded to the nth Cartesian product of the domain
(n finite). Through this procedure it is possible to introduce a “parameter system” for the descri_p—
tion of time-dependent phenomena of physically realized Boolean functions. These phenomena in-
clude dynamic variable delay, which is dependent on the current values at the imputs as we}l_ag at
the outputs, value-dependent inertial delay (high-frequency absorption) and transition sensitivity.
Such an expanded Boolean function is called a “Quasi Real Boolean Function” (QRBF). An auto-
mata model for Quasi Real Boolean Functions is given.

Résumé

Le domaine des fonctions booléennes est étendu au produit cartésien d’ordre n du domaine
(n fini). Grace 4 ce procédé, on introduit un “‘systéme paramétrique” permettant de décrire les
phénoménes temporaires dans la réalisation physique des fonctions booléennes. Ces phenomencs
comprennent les retards dynamiques variables, qui dépendent des valeurs des entrees et de_s sorties,
les retards inertiels dépendant de ces valeurs (absorption des hautes fréquences), et la sensnlblhte
aux flancs de transition. Une telle fonction booléenne étendue est appelée “‘fonction booléenne
quasi réelle” (QRBF). On donne un modéle des fonctions booléennes quasi réelles sous la forme

d’un automate.
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