PD-Vol. 43, Computer Applications and Design Abstraction
ASME 1992

USING TRANSACTION IMPORT STATEMENTS
FOR INTEGRITY CONTROL OPTIMIZATION

Stefan Bottcher*
Daimler Benz AG
Forschung und Technik Uim
Ulm, Germany

Abstract

Integrity control is important in order to preserve cor-
rectness of the database, but it tends to be a major
bottle-neck of database transaction processing. We pre-
sent an optimization technique which reduces the num-
ber of integrity checks which a transaction has Lo per-
form. The presented optimization can be combined with
optimizations suggested by other researchers. The key
idea of our optimization is to prove that a given Lransac-
tion can not violate a given integrity constraint. These
proofs require to rewrite the integrity constraint and
to compute those parts of a relation which are relevant
for a possible violation of the integrity constraint. The
paper focusses on the rewrite rules underlying the opti-
mization.

Furthermore, we describe how the optimization can be
integrated into the database system and how the data-
base programming language can support compile time
optimization. We use the database programming lan-
guage DBPL and the DBPL database system which
have been developed at the University of Frankfurt as an
example. If a transaction procedure of a database app-
lication program describes in an IMPORT statement on
which part of a relation the transaction procedure in-
tends to write, then the presented optimization at com-
pile time filters out a variety of integrily constraints
which can not be violated by the transaction executed
at run time. However, if subreclations accessed by a
transaction can only be determined at run time, then
the presented optimization is still useful to filter out in-
tegrity constraints which need not be checked, because
they can not be violated.

*This work has been partially done at the University of Frank-
furt and has been supported by the Deutsche Forschungsgemein-
schaft under Grant-No SCHM350/3-1. A previous version of this
paper has been written at IBM Deutschland Gmbl, Scientific
Center, Institute for Knowledge Based Systems, P.O.[3ox 80 08
80, D-7000 Stuttgart 80, West Germany.

91

1 Introduction

During the last decade optimization of integrity
checking has been discussed mainly in two directions.
On the one hand, the optimization of integrity checks
at run time has been investigated on the basis of indivi-
dual or nultiple write operations, e.g. [SV87], (BDM8S],
(KSS87], [SK88], [P090], [Nic82] and [BB82]. On the
other hand, it has been suggested to modify the trans-
action code at compile time, i.e. to integrate additional
queries for integrity checking, in order to guarantee that
all integrity constraints are preserved by the transaction
(c.f. e.g. [SS86] and [SK86)).

This paper proposes a third way of integrity control
which is similar to ideas described in [Mot89]. Never-
theless, the proposal of this paper goes far beyond the
approach of [Mot89] which does no optimization of in-
tegrity checks and allows to state only integrity cons-
traints which can be expressed in a small subclass of
tuple relational calculus. However, we present an op-
timization reducing the number of integrity checks and
our optimization can be applied to arbitrary integrity
constraints given as boolean tuple relational calculus
queries.

We assume that the transaction programmer specifies in
an IMPORT declaration for each transaction procedure
which part of which database relation this transaction
procedure wants to modify at most, as suggested by
[SM90] and [MRS84]. ! The basic idea of our approach
is Lo use this import information for a proof that cer-
tain transaction procedures of an application program
can never violate certain integrity constraints and that
therefore the executed transactions need not check these
integrity constraints.

Standard integrity control optimization techniques (e.g.
[BDMSS], [SV87], [BB82]) reduce the number of inte-

'We use Lhe term (ransaction procedure for the piece of code
of the application program which describes the algorithm for the
transaction exccution, whereas we use the term transaction for the
aclual execution sequence of the Lransaction procedure.

grity checks and reduce the query complexity of inte-
grity checks. The number of integrity checks which have
to be performed by a transaction is reduced e.g. by the
following rules:

o A certain integrity check needs not be done by a
transaction if no write operation of the transaction
changes a relation which occurs in the integrity con-
straint.

¢ An insert operation on a relation can not violate
an integrity constraint, if the relation occurs only
positive 2 in that integrity constraint.

¢ A delete operation on a relation can not violate
an integrity constraint, if the relation occurs only
negative in that integrity constraint.

Compared to these approaches our approach is more se-
lective, i.e. it further reduces the number of integrity
constraints which have to be checked, because it finds
out that additionally certain integrity checks need not
be done by a transaction although the transaction exe-
cutes write operations which modify relations which oc-
cur in the integrity constraint. Therefore, our approach
can be combined with these integrity checking techni-
ques in such a way that our approach is used as a [ilter,
in order reduce the number of integrity checks, whereas
the other approaches can be used for optimizing the
remaining integrity checks.

Compared to the second group of approaches which
compile the integrity constraints into transaction que-
ries and augment the transaction code by these que-
ries, our approach lets the transaction code unchanged
and still allows to distinguish between integrity cons-
traints and other transaction queries. Besides other ad-
vantages, this distinction between integrity checks and
other queries has the advantage that the scheduler of the
database system can allow for more parallelism between
the transactions (c.f. [B56t90b]).

2 A motivating example

This section presents an example consisting of an inte-
grity constraint and a transaction procedure in order
to demonstrate how integrity checking can be optimi-
zed. The example integrity constraint is the following
(all examples are written in the database programming
language DBPL [SEMS88], [SM90]):

2A relation is said to occur only positive (negative) in an inte-
grity constraint, if it occurs only existential (universal) quantified
in the prenex normal form of the integrity constraint.

92

IC1 “Employees who are older than 40 years earn at
least 3000”:

ALL e IN emp (e.age > 40 => e.sal > 3000)
The integrity check can also be written as:

IC1’ “There is no employee who is older than 40 years
and earns less than 3000”:

NOT SOME e IN emp
(e.age > 40 AND e.sal < 3000)

The following diagramm shows the schema of the rela-
tion emp and the subrelation

P1 { EACH e IN emp
(e.age > 40 AND e.sal < 3000) }

of the relation emp which denotes the subset of those
employees who are older than 40 years and earn less
than 3000. Note that IC1' holds as long as the subrela-
tion P1 is empty.

sal<3000

sal>3000

age < 40

e o ecesw-d

age > 40

.........

P1

We say that the subrelation P1 is relevant for the inte-
grity constraint 1C1’) because only insert operations into
the subrelation P1 of emp may violate the integrity con-
straint 1C1', however write operations on the rest of the
relation emp can not violate IC1’. Therefore, IC1' needs
not be checked for write operations operating only on
the rest of the relation emp. Since IC1’ is equivalent to
IC1, P1 is also the relevant subrelation of emp for I1C1.

The example procedure, called
New_Salaries_for_young_employees, computes new sala-
ries for young employees, i.e. for those employees which
are at most 30 years old. The transactions executed
for this transaction procedure perform write operations
on only a subrelation of the relation emp. In DBPL,
this aceess restriction is written down in the IMPORT
statement of the transaction procedure of a database
application program:

transaction

TRANSACTION New_Salaries_for_young_employees ;

IMPORT WRITE young_employees 1S
{ EACHe IN emp (e.age < 30) }

BEGIN
FOR EACH ye IN young_employees DO
ye.sal := compute_sal(ye) ;

END ;

The following diagram shows the subrelation
young_employees, i.e. that part of the relation emp,
which is accessed by an execution of the transaction
procedure New_Salaries_for_young_employees.

5al<3000 sal>3000

age < 30 young_employees

LR TR Iy

age > 40 ,:

P1

Additionally, the diagram shows that the subrelation
young_employees which is accessed by the transaction
does not overlap with the subrelation P1 of emp that
is relevant for the integrity constraint 1CI'. This
can also be seen from the formulas for P1 and for
young_employees: the intersection of the subrelation
young_employees and the subrelation P1 which is rele-
vant for 1C1’ is empty, i.e.

{ EACH ¢ IN emp (e.age < 30) }
N { EACH e IN emp (e.age > 40 AND e.sal < 3000) }

= { EACH e IN emp (e.age < 30 AND e.age > 40
AND e.sal < 3000) }
= {}.

because the subformula
e.age < 30 AND e.age > 40

is insatisfiable (independent of the contents of the data-
base). Since the subrelations P1 and young_employees
do not overlap, write operations on the subrelation
young_employees can not change the contents of P1. This
is the reason why the integrity constraint can nol be
violated by the transaction.

Note that the test whether or not the subrelations over-
lap can be done completely on intensional formulas, i.e.
independent of the contents of the database. Therclore,

83

this overlapping test can be done much faster than an
integrity check which queries the database (c.f. section
4.3). Furthermore, this overlapping test can be done at
compile time, if the subrelations accessed by the tran-
sactions are known at compile time, i.e. if the IMPORT
statement of the transaction procedure does not contain
any parameters (c.[. [SEM88] for a detailed description
of transaction IMPORT statemnets).

Of course, if a transaction imports a subrelation of the
relation emp that overlaps the subrelation P1 which is
relevant for IC1', then this transaction has to check the
integrity constraint IC1’ or an optimized formula equi-
valent to this constraint. Ilow this integrity check can
be further optimized is already described in the papers
cited above, e.g. in [SV87].

In summary, a transaction can only violate the integrity
constraint IC1", if it inserts an element into the subrela-
tion which is relevant for IC1’. The IMPORT informa-
tion which the transaction programmer has to specify in
the head of each DBPL transaction procedure provides
an additional filter which indicates that certain integrity
constraints need not be checked by the transactions of
this transaction procedure. This approach may substan-
tially reduce the number of integrity constraints to be
checked and thereby reduces the transaction run time.

3 Subrelations relevant for inte-

grity constraints

In this section we generalize the optimization shown
for the given example. For this purpose, we show how
to compute relevant subrelations for arbitrary integrity
constraints given in tuple relational caiculus. Note how-
ever that the presented results are not restricted to rela-
tional databases but can be applied for object-oriented
databases based on attribute inheritance too, because
both integrity constraints and imported subrelations
can be propagated to descendent classes as described in
[B6190a). Furthermore, we show how to compute from
the import statements of arbitrary transactions whe-
ther or not the transactions can violate a given integrity
constraint. The general case is more complicated than
the previous example, because integrity constraints may
contain an arbitrary number of existential and univer-
sal quantified relations, hence for each of these relations
the appropriate subrelations have to be computed.

We explain both steps of the general case using a second
example. We consider the integrity constraint

IC2 “Every department employs at least one em-
ployee”:

ALL d IN dept SOME e IN emp (e.dnr = d.nr)

and a transaction procedure T2 accessing departments
which employ at least one young employee

TRANSACTION
Modify_Departments_with_young_employees ;

IMPORT WRITE departments_with_young_employees IS
{ EACH d IN dept (SOME e IN emp
(e.age < 30 AND ednr =dunr)) };

BEGIN

END ;

3.1 The normal form of an integrity con-
straint

The basic idea of our approach is to transform each in-
tegrity constraint into an equivalent normal form and
to determine the relevant subrelations for the integrity
constraint from its normal form. The goal of the norma-
lization can be regarded as rewriting the given inlegrity
constraint for each relation variable vi which occurs in
the constraint and is bound to a database rclation Ri
The rewriting shall proceed until it can be directly scen
from the normal form which part of the database rela-
tion Ri has to be read in order to instanciate the relation
variable vi such that the formula in normal form can be
evaluated.

The normalization algorithm consists of the following
steps (the steps are applied to Lhe formula of the inte-
grity constraint from left to right whereever possible):

1. Eliminate universal quantificrs

As we have seen from the example ICT is equiva-
lent to ICY’. The general rewrite rule for integrity
constraints containing universal quantifiers is:

ALLVIN R (F(v,..))
— NOT SOME v IN R (NOT F(v....))

where R stands for an arbitrary relation valued ex-
pression. This means R may be a database relation
or can be any other relation valued expression.

2. Eliminate projections

SOME t IN { < projectionlist > R } (F(t....))
— SOMEtIN {R} (F(t...))

We assume that attribute names are unique.

3. Eliminate unions

SOME vIN {R1LU ... URn } (F(v,...))

SOME v IN {R1}(F(v,..)) OR
OR

SOME v IN { R } (F(v....))

4. Eliminate joins and carthesian products

SOMEvIN{ EACHv1INR1

E:’\CH vn IN Rn
(F1(v1,...,vn)) } F2(v,...)

—

SOME v1 IN R1 ... SOME vn IN Rn
(F1(v1,...,vn) AND F2(v1,...vn,...})

Within this transformation, the variable v has to
be replaced in every occurence of v.atiribute in the
subformula F2 by that variable vi for which attri-
bute is an attribute of Ri. This variable vi is unique,
il the attribute names are unique, as we assumed.

A sct of similar transformation steps has been suggested
by [KIu83] in order to compute the relevant subrelations
for queries expressed in a subset of the relational alge-
bra which includes intersection but does not include set
difference.

In our example, the normalization algorithm uses re-
write rule 1 in order to transform.the integrity con-
straint 1C2 into

I1C2' “There is no department which does not employ
an employee”:

NOT SOME d IN dept (
NOT SOME e IN emp (ednr =dunr)).

The normal form N of an arbitrary iutegrity constraint
does neither contain any universal quantifiers nor pro-
jections nor unions nor joins nor carthesian products
(ie. it does not contain any of the symbols ALL,
<projectionlist>, U or EACH); the normal form N is only
constructed from atomic comparisons using the boolean
operators AND, OR and NOT and quantifications of the
form SOME vk IN Rk where vk is a relation variable
bound to a database relation Rk.

3.2 Determining relevant subrelations

In the following formulas, we use the notation [NOT] in
order to indicate that at this place in the formula there
may be or may not be a boolean operator NOT.

After normalization, we determine for each relalion va-
riable vi which occurs in an arbitrary formula N given
in normal form and which is bound to a database re-
lation Ri: Which subrelation of Ri is relevant for the
instanciation of vi in this formula, i.e. from which sub-
relation of Ri have the instanciations of vi to be taken in
order to evaluate the formula N? Note that this step is
done separately for each relation variable occurring in
the normal form N of the given integrity constraint.

Depending on the relation variable vi which is bound by
a quantification [NOT] SOME vi IN Ri to the database
relation Ri, we rewrite the formula N in order to get
an equivalent formula Ni : We move the boolean ope-
rators AND and OR as far as possible to the right end’
of the formula and move the negated or non-negated
quantifications

[NOT] SOME vk IN Rk

as far as possible to the ’left’. The rewrite rules applied
here are the same as the rules for transforming a formula
into an equivalent prenex normal form. By applying
these rules, we get a formula of the kind

Ni [NOT] SOME v1 IN R1 ... [NOT} SOME vi IN R
[NOT] SOME vi+1 IN Ri+1 ... [NOT] SOME vn IN
Rn [NOT] (M(v1,...,vn))

Sometimes it is possible to move the quantification
[NOT] SOME vi IN Ri which binds vi to Ri [urther to
the left of the formula without changing the truth value
of the formula. More general: If it is possible Lo rewrite
the formula N into several equivalent formulas Ni with
different prefixes, then, for the following, we choose a
formula Ni in which the quantification

[NOT} SOME vi IN Ri

occurs at the leftmost point in the prefix

[NOT] SOME v1 IN R1 ... [NOT] SOME vn IN Rn [NOT]
of the prenex normal form.

Note that Ni is equivalent to N and therefore also equi-
valent to the formula of the given integrity constraint.

In order to keep the following simple, we use the term
(F(v1,...vi)) as a short notation for the rest which
occurs after Ri in the formula Ni, i.e., F(v1,..vi)is a
short notation for

95

[NOT] SOME vi+1 IN Ri+1 ... [NOT] SOME vn IN Rn
[NOT] (M(vi,...vn))

What follows determines for the special quantification
[NOT] SOME vi IN Ri in the formula Ni which subrela-
tion of Ri has to be read in order to instanciate vi such
that the equivalent formula Ni can be evaluated. Note
that only this subrelation of Ri is relevant for the inte-
grity check, i.e. it is not necessary to read the complete
relation Ri. In other words, it is sufficient to read that
subrelation of Ri which may satisfy the subformula

.. SOME vi IN Ri (F(v1,...v;_1vi)),

whatever the values of vl,...,v;_; may be. Whenever
the evaluation of this formula comes to the point where
the variable vi has to be instanciated, then the variables
vl,...,vi_y have already been instanciated. Therefore, it
is sufficient to read the following subrelation of Ri:

PRi { EACH vi IN Ri (SOME vl IN R1 ...

SOME v;_; IN Riy (F(v1,...,vi}) }.

This means that only the subrelation PRi of the relation
Riis relevant for the given integrity constraint: only this
subrelation has to be protected from write operations.

In order to compute all relevant subrelations for a given
integrity constraint, this step is done for every relation
variable vi occurring in the equivalent normalized in-
tegrity constraint N. If the formula N contains different
relation variables v;j,...,v;, which are bound to the same
database relation Ri, then the relevant subrelation of Ri
is the union of the subrelations which are sufficient to
instanciate the relation variables v;1,...,vjy

Let us return to our example of the integrity constraint
IC2" and compute that subrelation of the relation dept
which is relevant for 1C2'. The subrelation of the relation
dept whicl is relevant for 1C2’ is o

P2 { EACH d IN dept (NOT SOME e IN emp
(edar=dnr))}.

A similar computation yiclds the subrelation of the re-
lation emp which is relevant for IC2'. This subrelation
is

{ EACH e IN emp (SOME d IN dept (e.dnr = d.nr)) }

3.3 The overlap test

Now, we can compute whether or not the transactions
of transaction procedure T2 can violate the integrity

constraint 1C2'. Transactions of T2 can access all de-
partments which employ a young employee

{ EACH d IN dept SOME e IN emp
(e.age < 30 AND e.dnr = d.nr) } .

The approach is to check whether or not the subrelation
P2 of the relation dept which is relevant for IC2' and the
subrelation accessed by transactions of T2 overlap, i.e.
whether or not the intersection of both subrelations is
empty in every database state. Therefore, the input to
this overlap test is:

{ EACH d IN dept (NOT SOME e IN emp
(ednr=dunr))}
N { EACH d IN dept (SOME e IN emp
(e.age < 30 AND e.dnr = d.nr)) }

= {}?

The theorem prover of the DBPL system which is des-
cribed in section 4.3 finds out very efficiently that the

intersection of both subrelations is empty in every data--

base state, because the first subrelation (the one which
is relevant for 1C2’) describes those departments which
employ noemployee, whereas the second subrelation de-
scribes a subset of those departments which employee at
least one employee.

Therefore, it has been proved that no transaction of
transaction procedure T2 needs to check integrity con-
straint 1C2. Note that this optimization is not found
by other integrity check optimization approaches (e.g.
[BDMS88], [SV87]). These approaches would suggest Lo
check 1C2 or an optimized version of it, because a trans-
action T2 modifies a part of the relation dept which
occurs in 1C2.

4 Practical system integration

This section shows how to integrate the presented op-
timization into a database system and uses Lhe DBI’L
database system which was developed at the University
of Frank{urt as an example. We outline the system in-
tegration of compile time optimization as well as the
system integration of run time optimization.

Both ways of integrating the optlimization into the data-
base system have the following in common. During the
compilation of the database schema, the integrity sub-
system compiles the integrity constraints and computes
for each integrity constraint IC and for cach relation
Ric occurring in the integrity constraint IC, which sub-
relation of the relation R;c is relevant (i.e. has to be
protected) for preserving the integrity constraint 1C.

4.1 System integration of the compile time
optimization

During the compilation of a transaction procedure, the
DBPL compiler analyses the IMPORT statements used
in the transaction procedure. The compiler checks for
each subrelation imported in a transaction procedure
and for each subrelation which is relevant for an inte-
grity constraint whether or not they overlap (c.f. section
4.3). If the subrelations overlap, then the transaction
may or may not violate the integrity constraint, and
therefore the transaction has to check the integrity con-
straint. Ilowever, if the subrelations imported by the
transaction procedure do not overlap with the subrela-
tions relevant for the integrity constraint, then it is writ-
ten into the code that the transaction needs not check
the integrity constraint, e.g. by excluding the integrity
constraint from the list of constraints which have to be
checked by this transaction. This optimization beco-
mes eflective at run time, because the transaction has
to perform fewer integrity checks.

The run time support needed for this compile time op-
timization is to control that the transaction does not
violate the import declarations of its transaction proce-
dure. llowever, this control is done once per transaction
and serves many purposes including not only integrity
control, but also correct query evaluation and concur-
rency control. If a transaction procedure is programmed
wrong such that the transaction violates its import re-
strictions, i.e. the corresponding transaction accesses
a part of a relation which the transaction procedure
did not import, then the transaction is aborted by the
DBPL database management system. In other words,
each transaction which commits must follow the import
declarations given in its transaction procedure. There-
fore, it is correct to use the import declarations of a
transaction procedure in order to prove that a transac-
tion can not violate an integrity constraint.

However, if an import statement of a transaction proce-
dure conlains parameters which can only be evaluated
al run tine, then, of course, the overlap test has to be
delayed until run time and the compiler produces the
appropriate code. This overlap test at run time is still
more efficient than integrity checking for set oriented
wrile operations (c.f. section 4.3).

4.2 System integration of runtime optimiza-
tion

‘The suggested optimization can be used at runtime, ad-
ditionally or alternatively Lo the compile time optimi-
zation. The run lime optimization does neither need

the explicit declaration of an import statement in the
transaction procedures nor a run time check whether or
not a transaction obeyes the import statements of its
transaction procedure. Instead Lhe subrelations acces-
sed by the write operations of a transaction can be deri-
ved from the code of the transaction procedure in order
to apply the optimization at run time. For set-oriented
write operations, the written subrelation can be directly
determined from the granularity of the operation. This
can be done completely within the database system at
run time. However, for a sequence of tuple oriented
write operations embedded in a FOR EACH loop as gi-
ven in the first example of seclion 2, it is necessary that
the compiler provides additional information to the da-
tabase system about the subrelation which is accessed
by the write operations. In the given example, the com-
piler has to provide the information that the FOR EACH
loop ranges only over the young_employees, i.c. over the
subrelation

{ EACH e IN emp (e.age < 30)}

of the database relation emp. Note however, that this
is exactly the subrelation imported by the transaction.

4.3 The theorem prover

The DBPL database system uses a theorem prover in
order to check whether or not two subrelations overlap.
Because the theorem proving algorithm is alrcady des-
cribed in [BJS86], we summarize in the following only
some basic properties of the DBPL system theorem pro-
ver.

The theorem prover is incomplete but efficient 3, i.e. it
terminates in a time O(n®) wilh one of two answers:

1. The subrelations do not overlap.

2. The subrelations may or may not overlap.

In the first case, it is proved that the given transaction
procedure can not violate the given integrity constraint.
In the second case, this has not been proved, i.e. either
the subrelations overlap or the theorem prover could not
find out in the given time whether or not the subrela-
tions overlap. In this case, the inlegrity constraint is
checked by the transaction in order to be correct.

Note that the theorem prover is constructed in such a
way that it can check in nearly all cases occurring in

30n a MicroVax II, the theorem prover needs a few millisecconds
in order to check which integrity constraints can be violated by a
transaction and which can not.

97

practice whether or not two subrelations overlap. The-
refore, it is much better to use this eflicient, incomplete
theorem prover instead of a complete theorem prover
which may run much longer in the worst case in order
to prove that an integrity constraint can not be violated
be a transaction.

5 Summary and Conclusions

We have presented an oplimization technique which re-
duces the number of integrity checks which are needed
at run time. The optimization is based on the following
ideas. First, the integrity subsystem of the database
schema compiler computes those subrelations which are
relevant for an integrity constraint using a normaliza-
tion technique based on rewriting. Second, the data-
base system uses the information which part of a da-
tabase relation a given transaction procedure wants to
access at inost. We suggest that this should be specified
in IMPORT statements of a transaction procedure. A
transaction can violate an integrity constraint, only if a
subrelation which is relevant for the integrity constraint
overlaps with a subrelation imported by the correspon-
ding transaction procedure. This overlap test can be
done by a fast theorem prover which may be incom-
plete. The overlap test can be done at compile time,
if the import statement of the transaction procedure is
completely instanciated, i.e. the import statement of
the transaction procedure does not contain any para-
meters which are evaluated at run time. Dut even if
the import statement of the transaction procedure con-
Lains parameters which are evaluated at run time, this
approach may be usefully applied at run time, since the
proof for the overlap test is typically much faster than
an integrity check.

Furthermore, if the optimization shalPonly be used at
run time for costly set-oriented write operations, then
the subrelations accessed by the set-oriented write ope-
rations of a transaction can be determined at run time
and need not be stated explicitly in an import statement
of a Lransaclion procedure.

We have outlined the rewrite rules which compute for
arbitrary integrily constraints written in the tuple rela-
tional calculus of DBPL which subrelations are relevant.
llowever, the optimization is not limited to relational
database systems and can be easily applied to object-
oriented database systems which are based on attribute
inheritance. Finally, the presented optimization is com-
patible with other optimization techniques reducing the
query complexity of integrity checks, i.e. both kinds of
oplimization can be naturally integrated into a single

database system. For these reasous, the proposed fil-
tering method reducing the number of needed integrity
checks seems to be an important optimization for data-
base integrity constraints.

Acknowledgement

I would like to thank J.W. Schmidt and the DBPL group
who developed the programming language DBPL and
the DBPL database system the concepts of which have
contributed much to the ideas presented in this paper.

References

[BBS2

[BDMS88]

[BJS86]

[B5t90a)

[Bot90b]

[K1u83)

(KSS87]

[Mot89]

P.A. Bernstein and B. Blaustein. Fast me-
thods for testing quantified relational catculus
assertions. In ACM SIGMOD International
Conference, 1982.

F. Bry, H. Decker, and R. Manthey. A uni-
form approach to constraint salisfaction and
constraint satisfiability in deductive databa-
ses. In Proceedings of the Ist International
Conference on Extending Dalabese Techno-
logy, pages 488-505, Venice, Italy, 1988.

S. Bottcher, M. Jarke, and J.W. Schmidi.
Adaptive predicate managers in database sy-
stems. In Proc. of the 12th Inlernational Con-
ference on VLDD, Kyoto, 1986.

S. Bottcher. Attribute inheritance implemen-
ted on top of a relational database system. In
Proc. 6th International Conference on Dala
Engineering, Los Angeles, California, USA,
1990. IEEE.

S. Bottcher. Improving the concurrency of
integrity checks and write operations. In
Proc. 3rd Internalional Conference on Du-
tabase Theory, ICDT-90, Paris, Decc. 1990.
Springer-Verlag.

A. Klug. Locking expressions for increased
database concurrency. Journal of the A CM,
30(1):36-54, 1983.

R. Kowalski, . Sadri, and I’. Soper. lutegrity
checking in deductive databases. in Procce-
dings of the 13* International Conference on
Very Large Data Dases, Brighton, Greal Bri-
tain, 1987.

A. Motro. Using integrily constraints Lo pro-
vide intensional answers to relational querics.

98

[MRS84]

[Nic82]

(POY0)

[SEMS8S]

[SK86]

[SK88)

[SM90]

(SS86]

[5V87]

In Peter M.G. Apers and Gio Wiederhold,
editors, Proceedings of the Fifteenth Interna-
tional Conference on Very Large Data Bases,
Amsterdam, August 1989,

M. Mall, M. Reimer, and J.W. Schmidt. Data
selection, sharing and access control in a re-
lational scenario. In M.L. Brodie, J.L. My-
opoulos, and J.W. Schmidt, editors, On Con-
ceplual Modelling. Springer-Verlag, 1984,

J.M. Nicolas. Logic for improving integrity
checking in relational databases. Acta Infor-
matica, 18:227-253, 1982.

J.A. Pastor and A. Olive. Integrity cons-
traints checking in deductive databases. In
Proceedings of the 2*¢ International Work-
shop on Foundations of Models and Langua-
ges for Data and Objects, Aigen, Austria,
1990.

J.W. Schmidt, H. Eckhardt, and F. Matthes.
DBPL Report. DBPL-Memo 111-88, Fachbe-
reich Informatik, Johann Wolfgang Goethe-
Universitit, Frankf{urt, West Germany, 1988.

A. Shepherd and L. Kerschberg. Constraint
management in expert database systems. In
Procecedings of the 1st International Confe-
rence on Lxpert Database Systems. Benjamin
Cummings, 1986.

I'. Sadri and R. Kowalski. A theorem proving
approach to database integrity. In Foundati-
ons of deductive databases and logic program-
ming. Morgan Kaufmann, Los Altos, 1988.

J.W. Schmidt and F. Matthes. DBPL Lan-
guage and System Manual. In. document,
Fachbereich Informatik, "Johann Wolfgang
Goethe-Universitiat, Frankfurt, West Ger-
many, 1990.

T Sheard and D. Stemple. Automatic verifi-
cation of database transaction safety. Coins
Technical Report 86-30, University of Am-
herst, 1986.

I5. Simon and P. Valduriez. Design and analy-
sis of a relational integrity subsystem. Tech-
nical Report 015-87, MCC, 1987.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8

