Development and Programming of
Deductive Databases with PROTOS-L

Stefan Bdticher
IBM Deutschland GmbH
Scientific Center
Institute for Knowledge Based Systems
P.0.Box 80 08 80
D - 7000 Stutigart 80
West Germany ~

Abstract

. This -paper presents PROTOS-L, a logic. program-
* ming langnage which embeds a module concept, pro-
vides read access to external databases, and com-
bines order-sorted types with polymorphism. The
presentation focusses on the development and pro-
gramming of deductive databases within PROTOS-
L. From this viewpoint, PROTOS-L is similar to
DATALOG embedded in a typed logic programming
language. In order to illustrate the development
of deductive databases, we show how a small frag-
ment of a travel information system can be developed

within PROTOS-L.
1 Introduction

PROTOS-L is a logic programming language ex-
tended by the following features: access to relational
databases, a module concept, a type concept in-
cluding subtypes and polymorphism. Furthermore,
PROTOS-L supports the programming of deductive
databases.

The module concept [Beierle, 1989], {Zeller, 1990]
hides the implementation of the exporied predicates
in the body of a module. The body of a module is
either a program body or a database body depend-
ing on the kind of implementation, i.e. depending on
whether the predicates of 2 module are implemented
by a set of facts and rules in the embedding logic
programming language or the predicales are imple-
mented by a set of views on database relations. Al
the interface of a module it is transparent whether
the body is a program body or a database body.

The PROTOS-L type system which is described
e.g. in [Beierle and Boticher, 1989] supports sub-

“The research reported here has been carried out within the in-
ternational EUREKA project PROTOS (BUS8): Prolog Tools for
Building Expert Systems. Project partners sre BIM, IBM Stuttgart,
Sandoa AG, Schweiserische Bankgesellschaft, niversity of Dort-
mund and University of Qldenburg.

types and polymorphism, i.e. type variables. It is
derived from the type system of TEL [Smolka, 1988].
PROTOS-L iypes are not only used by the compiler
for type checking, but also by the PROTOS Abstract
Machine (PAM) for computations on types in order
to reduce the search space.

The rest of the paper is organized as follows. Sec-
tion 2 describes the module concept of PROTOS-
L. Section 3 presents how PROTOS-L embeds ac-
cess to external databases and supports program-
ming of deductive databases. Section 4 outlines
how the knowledge of multiple relational and dednc-
tive databases is integrated with private knowledge
within PROTOS-L.

2 The PROTOS-L module concept

This section describes how the module concept
of PROTOS-L supports knowledge structuring and
rapid prototyping. The basic idea is to use the mod-
ules as knowledge packages. Furthermore, it de-
scribes how the module concept makes the access to
relational databases and deductive databases trans-
parent to the user of a module.

2.1 Knowledge structuring and knowledge
encapsulation

For the purpose of knowledge structuring and
knowledge encapsulation the programming language
PROTOS-L provides a module concept. The mod-
nle concept of PROTOS-L integrates ideas from the
module concepis of Modula-2 [Wirth, 1983], TEL
[Smolka, 1988] and DBPL [Eckhardt et al., 1085],
[Battcher, 1989]. While the interface of 2 module
specifies only the predicate names and the types of
their argnments, the body of a module specifies their
implementation. The user of a module only sees its
interface, however, the implementor of a module ad-

171

interface flight_info .

direct flights ; ?string x ?int x

to

?string x
from

rel

%

Tint .
price

7string
airline

rel Pstring 7string
% from to
% What are the ticket prices ?

prices :

endinterface.

departure
% Which flights of which airline are scheduled for which time ?

?int
arrival

?string .
airline

Figure 1: Interface of a PROTOS.L module

ditionally writes its body.!

- .Hence, the concept of an interface supporis know-
ledge encapsulation in PROTOS-L, whereas the dis-
tribution of rules into several separate modales sup-
ports knowledge structuring.

For example: Figure 1 shows a part of an interface
of & travel information system. The predicates of the
module compute which flights of which airline are
scheduled for which time and which prices you have
to pay for a flight of which airline. It is hidden how
the predicates are implemented.

Furthermore, the module concept supports separate
compilation and thereby it supports the maintenance
of large program systems. This is done as in Modala-
2: interface and body of a modnle are compiled sep-
arately. Since compilation units import only from
interfaces bul never from bodies, the hody of any
module can be recompiled independently of the rest
of a module system.

2.2 Transparent access to relational and
deductive databases

Like other implementation details, access to an ex-
ternal database shall be transparent for the user of a
module. Therefore, in an interface of a module it is
not visible whether or not the corresponding imple-
mentation of the body accesses an external database.

To be more precise, PROTOS-L offers two kinds of
bodies of a module: program bodies and database bod-
ies. Program bodies support logic programming with
backtracking and database bodies support access to
relational databases and the programming of deduc-
tive databases.

'In the body of a module every predicate exported by the carre-
sponding interface has to be implemented. The inplementation of &
predicate in the body of a modale has to be type compatible with
its definition in the corresponding interface, i.c. the namber and the
types of the arguments of the predicates have to be unique.

172

Program bodies can import predicates from other
modules, but database bodies can not, for the fol-
lowing reason. Program bodies use backtracking
whereas database bodies use set-oriented evaluation
strategies (c.f. section 3.2). PROTOS-L supports
backiracking on top of set-oriented retrieval by al-
lowing program bodies to import predicates from
modules which are implemented by database bodies.
However, set-oriented retrieval on top of backtracking
is undesired. This undesired combination of evalua-
tion strategies is prevented, because database bodies
can not import predicates from program bodies. As
a consequence, PROTOS-L does not allow any im-
ports into database bodies, because at the interface
of a module it is not visible which kind of body im-
plements the module.

Example continued:

The predicates directflights and prices could be im-
plemented either as in Prolog by a set of facts and
rules outlined in a program body or as described in
the third section by external databases. At the in-
terface it is not visible how the predicates are imple-
mented.

2.3 How PROTOS-L supports rapid
prototyping

The module concept can be used to support rapid
prototyping and top-down system implementation as
well as botiom-np system implementation. Bottom-
up system evaluation is even betier supported than
in many convenlional programming languages, be-
cause in PROTOS-L the programmer can interac-
tively query every predicate defined in any module,
provided that the module and all ils submodules are
implemented. The basic idea how to support top-
down system implementation is as follows. In or-
der to check whether an upper module works well,
the programmer can use dummy submodules which

database_body flight_info using flight_DB .

:el direct_flights : 7string x 7string x 7int x
Yo from to

dbrel direct_flights
rel prices : ?string ?string Istring ?int .

% from to airline price
% What are the ticket prices ?

endmodule.

. i departure arrival airline
% Which flights of which airline are scheduled for which time ?

is Flight Rel(FROM , TO , DEPARTURE , ARRIVAL , AIRLINE).

dbrel prices s Price_Rel(FROM , TO , AIRLINE , PRICE).

Tint 7string .

-

list only & few facts for rapid prototyping purposes.
Later, the dummy submodules can be exchanged
by modules which implement the desired predicates
without changing the interfaces of the module.

Example continued:

In the rapid prototyping phase the predicates
direct_flights and prices could be implemented in a
program body, eg. by listing some example facts.
When the prototyping phase is completed snccess-
fully, the program body can be substituled by the
database body described in the example of section
3.1.

3 Relational and deductive
databases

This section describes how database access is embed-
ded in the programming language PROTOS-L, ie.
how relational database access is expressed within
database bodies and how deductive databases are
programmed in PROTOS-L. The basic idea is o give
the PROTOS-L programmer a uniform high-level
database programming language. The mismalch of
other langnage integrations, e.g. the integration of
SQL into C, should be avoided.

3.1 Accessing relational databases

I{f the implementation of a module is a database
body, then there is expecied to be a correspond-
ing database.? Furthermore, for every daiabase
relation declared in the database body there has
to exist a corresponding database relation in the

2n the datebase body the logical name of the database is spec-

ified. The carresponding datzbase is expected to be in a directory
the path of which is connecied to this Jogical name.

173

_Figaxe 2: Databaae body of a PROTOS-L module corresponding to the interface of figure 1

database schema and the argument iypes of the de-
clared relation have to be the same as the types of
the attributes of the underlying daiabase relation
[Bottcher and Beierle, 1988]. This is why the argu-
ment types of a declared relation are restricled to the
attribuie types supported by the underlying database
sysiem, i.e. to inleger and string,

Example continuned:

The interface given in figure 1 can be implemented by
the database hody outlined in figure 2. Thisdatabase
body requires that there are at leasi two relations
in the database flight.DB: Flight_Rel and Price_Rel.
Furthermore, Flight_Rel musi have at least the five
attributes: FROM, TO and AIRLINE of type string,
and DEPARTURE and ARRIVAL of type integer. Sim-
ilarly, Price_Rel must have at least the altributes
PRICE of type integer and FROM, TO and AIRLINE
of type string, This is checked by the PROTOS.
L system at the time when the module flight.info is
opened.

3.2 Programming a deductive database

The database module is also used in order to pro-
gram a dednetive database. A PROTOS-L database
body may contain furction {ree database rules in or-
der toimplement predicates specified in the module’s
interface. A (unclion free database rule consists of »
head and a number of goals each of which does not
contain a function symbol. Rules in database bodies
may contain the following kinds of goals (the syn-
tax of mles for dednclive databases is described in
{Bottcher, 1990]):

database relation goals e.g. o
dirchﬂighl(From,Change,Departure,Arrive,Alrlme)

database_body flight.info using flight_DB .

int x 7string x
steps from

rel flight_connections :

%

to

<=-=- Steps > 1
&
&

&

endmodule,

?string x

flight_connections(1, From , To , Departure , Arrival)
<=~ direct flight(From , To , Departure , Arrival , Airline).

flight_connections(Steps , From , To , Departure , Arrival)
direct.flight{ From , Change , Departure , Arrive_at_Change , Airline)

flight_connections(Steps - 1, From , Change , Depart_from_Change , Arrival)
Arriveat Change + 100 < Depart_from_Change .

Tint x
departure
% Which flight connections are possible for which time ?

Tint .
arrival

Figure 3: A deductive database programmed in n PROTOS-I, database body

virtual relation goals e.g.
flight_connection(St,From,Ch,Depart from_Ch,Arrive)

built-in goals e.g.
Steps > 1,
Arrive_at_Change + 100 < Depart_from_Change

Note that the PROTOS-L programmer may program
recursive and non-recursive predicales in database
bodies. For example, the database body given in fig-
ure 2 may additionally contain a non-recursive pred-
icate flight_connections the implementation of which
is shown in figure 3. The first rule states that a di-
rect flight is a I-step flight connection, whereas the
second rule computes those n-step flight connections
from direct flights and (n—1)-stiep connections that
leave enough time to change the airplane (c.f. figare
3). :

PROTOS-L supports the buili-in goals =, 5 , <,
2, < and > in order to compare arithmetic expres-
sions and additionally the built-in goal like in order
to compare strings. Arithmetic expressions may con-
tain integer constants and variables, brackets and the
operators +, — , *and // .

Since rules in program bodies and view definitions in
database bodies are expressed in the same way, the
PROTOS-L programmer has to learn only one sin-
gle language for deductive databases and application
programs. This avoids the mismatch of other inte-
grations of database query languages into host pro-
gramming languages, e.g. of the integration of SQL
into C.

In contrast to the rules in program bodies whick

174

are evaluated by backtiracking, the rules in database
bodies are evaluated by set-oriented query evaluation
strategies. The implementation of these strategies is
described e.g. in [Meyer, 1989]. Set-oriented query
evaluation sirategies are especially advantageous, if
the accessed data sets are large.

4 An integration of logic
programming and deductive
database programming

This section describes how PROTOS-L integrates
logic programming and deductive database program-
ming. It oullines how the module concept is nsed in
order to choose the evaluation strategy of rules, how
the knowledge of databases is integrated with pri-
vate knowledge and how the knowledge of multiple
databases is integrated into PROTOS-L application
programs.

4.1 The evaluation strategy for rules

Whenever a rule uses facts that are stored in a
database, the programmer has the choice to select
an adequate evaluation strategy for this rule. When-
ever the programmer assumes that there are many
resulis of a rule R needed to solve a goal, he may
prefer set-oriented evalnation of the rule R. In this
case, he codes the rule R in a database body and the
PROTOS-L system evaluates the rule set-oriented.
On the other hand, if he assumes that there are only
a few results of a rule R needed to solve a goal, he may
ptefer an evaluation by backtracking and ase a cut
at that place of a program, where no more answers
to the rule R are needed. In this case, he codes the

rel my_prices : 7string Istring Istiing ?int .
% from to airline price

my_prices(From , To , Airline , Price)

% What are the ticket prices including special offers ?

my._prices(‘New York’ , "Frankfurt’ , "Cheap.Air' , 300).

<~ - prices(From , To , Aitline , Price } .

Figure 4: Integration of private knowledge with the kmowledge of relational and dednetive databases

same rule R in a program body and the PROTOS-L
system evaluates the rule by backtracking.

Example continued:

It is assumed that many calls of flight_connections . _

are needed in order to solve a query (or rule) con-
taining the goal flight_connections(...}, then the pred-
icate flight_connections is preferably implemenied in a
database body as shown in the last example, because
the database body performs a sei-oriented evaluation
of the rule. However, if it is assumed that only a few
solutions of fight_connections are needed in order to
solve a traveller’s query and therefore backtracking
is preferred, then the rule may be implemented in
another program body instead of the database body.
Hence, whether a rule accessing database relations
should be implemented in a dalabase body or in
a program body depends on the desired evaluation
strategy for this rule.

4.2 Integrating private knowledge

Sometimes private knowledge stored -in facts and
rules in a PROTOS-L program body has to be
integrated with knowledge stored in a relational
database. One typical case is that private facts shall
be added to the facts retrieved from a relational
database. A different case which can be solved in the
same way is that a private program contains some ex-
ceptions, i.e. that some data although derived from
the database shall not be included in further infer-
encing.

Example continued:

Assume that the following private knowledge shall be
added to the knowledge which can be retrieved from
the database: “Cheap_Air offers 300 Dollar tickets for
flights from New York to Frankfurt.” This Pprivate
knowledge can easily be integrated with the know-
ledge of the deductive database by implementing a
predicate my_prices in a program body as outlined
in figure 4.

175

4.3 Integrating the knowledge of maltiple
databases

PROTOS-L can integraie the knowledge of many
databases within a single application program. Ac-

" cordiig to the claim thal knowledge structuring is

supported by the module concept, every database
(Like every other knowledge package) is enclosed in
its own module. Hence, every database needs its own
database body. The information of several databases
can be integrated within program bodies which im-
port all the predicates they need from the database
modaules.

Example continued:

In the same way as the knowledge stored in the
deductive database flight_DB is integrated with pri-
vate data (this was shown in the example above),
this knowledge can be integrated with the knowledge
stored in other {deductive or relational) daiabases,

For example, a similar deduciive database train_info
could contain information about train connections.
Then information cortained in both deductive
databases flight_info and train.info can be combined
in a module travel_info which is ouilined in figure
5. The predicate travel compuies flight connections,
train connections and such combined flight and train
connections where the flights are taken first.

5§ Summary and conclusion

PROTOS-L provides 2 module concept which sup-
ports data and knowledge structuring and integra-
tion. The module comcept supports fransparent
database access by hiding the implementation of
predicates from the user of a module. Addition-
ally, the programming of deductive databases is sup-
ported by database bodies. Further, PROTOS-L
supports the integration of multiple databases and
private knowledge.

PROTOS.-L offers set-oriented evaluation strategies
for rules contained in database bodies and backtrack-

module travelinfo .
imports flight_info , train_info .

?int .
arrival

Tint x
departure

drel travel: intx intx ?string x ?string x
% flights trains from to
% Which connections are possible for which time ?

travel(Flights , 0, From , To, Departure , Arrival)
<~ - flight.connection(Flights , From , To , Departure , Arrival R

travel(0, Trains, From , To, Departure , Arrival)
<= - train_connection{ Trains , From , To , Departure , Arrival).

travel{ Flights, Trains , From, To , Departure , Arrival)
<~~ flight_connection(Flights , From , Change , Departure | Arrive.at_Change)
& train_connection{ Trains , Change , To, Depart.from_Change , Arrival)
T % ArriVe_aLCbgpgg + 100 A<‘;D'epa(t_ﬁo'm_Change .

endmodule.

Figure b: A module integrating the knowledge of two deductive databases

[Boticher, 1989} S. Boticher. Prddikative Selekiion
als Grundlege fir Transakionssynchronisation
und Datenintegril@l. PkD thesis, FB Informatik,
Univ. Frankfurt, 1989.

[B&ttcher, 1990] S. Bsttcher. How to use PROTQS-
L as a logic-based database programming lan-
guage. In H.-J. Appelrath, A.B. Cremers, and
O. Herzog, editors, The EUREKA Project PRO-
TOS: From PROTOS to PROTOS II: Logic
Programming Tools for Ezpert System Applica-
tions, Springer-Verlag, 1990. (to appear).

|Béttcher and Beierle, 1989] S. Béticker and C.
Beierle. Data base support for the PROTOS-
L system. Microprocessing and Microcomputing,
27(1-5):25-30, August 1989.

[BEckhardi ef al, 1985] H. Eckhardt, J. Edelmann, J.
Koch, M. Mall, and J. W. Schmidt. Draft Report
on the Database Programming Language DBPL.

ing for reles contained in program bodies. Neverthe-
less, the PROTOS-L programmer has to learn only
one single language because program body rules and
database views are expressed in the same way. This
avoids the mismaich of other integrations of pro-
gramming languages and database languages.

In order to support rapid prototyping, PROTOS-L
allows to submit queries interactively for every pred-
icate in every module body and to exchange module
bodies easily. Finally, the example showed how to
implement fragments of a travel information system
within PROTOS-L.

Acknowledgement

The programming language PROTOS-I was de-
signed together with Christoph Beietle and Gert
Smolka. I would like to thank them for their con-

tributions. DBPL-Memo 091-85, Univ. Frankfurt, 1985.
Ref [Meyer, 1989] G. Meyer. Regelanswertung auf
clerences Datenbanken im Rahmen des PROTOS-L-

Systems. Diplomarbeit Nr. 630, Universitat

[Beierle, 1988] C. Beierle. Types, modules and
Stutigart, December 1989.

databases in the logic programming language

PROTOS-L. In K. H. Blisius, U. Hedtstiick,
and C.-R. Rollinger, editors, Sorts and Types for
Artificial Infelligence, Springer-Verlag, Berlin,
Heidelberg, New York, 1989. (to appear)..

[Beierle and Boticher, 1989] C. Beierle and S. Bati-
cher. PROTOS-L: Towards a knowledge base
programming language. In Proceedings 3. GI-
Kongref Wissensbasierie Systeme, Informatik
Fachberichte, Springer-Verlag, 1989.

176

[Smolka, 1988] G. Smolka. TEL (Version 0.9), Re-
port end User Manual SEKI-Report SR 87-17,
FB Informatik, Univ. Kaiserslantern, 1988.

{Wirth, 1983) N. Wirth. Progremming in Modula-2.
Springer, Berlin, Heidelberg, New York, 1983.

[Zeller, 1990] M. Zeller. Erweiterung cines Compil-
ers fir die Sprache PROTOS-L vm ein Mod-
ulkonzept Diplomarbeit, Universitat Stuttgart,
January 1990.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6

