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Convexity properties of GraSmannians
J. Hilgert”

In this note we study the images of various moment maps ®,: Gp(C") —
u*, where G,(C") is the GraBmann-manifold of p-planes in C" and u* the
(real) dual of the Lie algebra u of a compact group U acting on G»(C") in a
Hamiltonian way.

More precisely, if we let g¢ = gl(n, C) act on €" via the identity
representation then the p-fold wedge product of this representation is a highest
weight module V = AP € of G = Gl(n, €) with highest weight vector

vo=¢eA... ¢

and highest weight
P

Ao ( diag(ay, - .. ,a,,)) = Z aj,
j=1
where {e;,...,e,} is the canonical basis for C" and the set t¢ of diagonal

matrices in gl(n, C) is used as Cartan subalgebra. The ordering of th§ root
system A(gg,tc) is chosen such that the corresponding Borel algebra consists of
the upper triangular matrices in gl(n, C). The stabilizer of the line [vo] € IP(V)
generated by v, is the maximal parabolic subgroup

P¢ = { (‘3 g) € Gl(n, C): A € Gl(p, €), D € Gl(g, )}

and the action of Gl(n, C) induces an embedding
G,(C") = G¢ /Pc = Ge - [vo] = P(V).

The choice of a Hermitean metric on V gives a Fubini-Study metric
on IP(V) which in turn induces a Kahler metric on G,(C"). We choose the
metric in such a way that U(n) C Gl(n, C) acts unitarily on V. Then U(n)
also preserves the Kahler metric on G»(C"). This in particular means t?lat the
action of U(n) preserves the symplectic structure of Gp(C"), which is given by
the imaginary part of the Kahler metric. Let g:u(n) — X(Gp(€")) be the
derived action which associates with a Lie algebra element X' the vector field on
Gp(C") whose flow is given by exptX . Moreover we consider the map

$:C2(G4(€™)) — X(G4(C")),

* supported by a DFG Heisenberg grant



14 HILGERT

which maps a function to the corresponding Hamiltonian vector field. Choose a
linear map

r:8 — C2(Gy(CM))
such that ¥ o x = ¢ and define
®:G,(C") — u(n)"
Vla (®(z), X) = (x(X))(z) Xe u(n).

Then ¢ is called a moment map if it is U(n)-equivariant. Note at this point
that the construction of the moment map just given of course works for any
group action G x M — M preserving the symplectic structure and not only: for
U(n) x Gp(C") — Gp(C). Using the fact that moment maps are characterized
by Yok = ¢ and the equivariance it is not hard to show that the moment map for

the action of U(n) on Gp(C") is just the restriction to Gp(C") of the moment
map for the action of U(n) on IP(V') which is given by

o) ) = (X0 [v)
(@), X) = i

or, when we introduce homogeneous coordinates with respect to an orthonormal
basis, by

®((20:...: 2y)) = s iIZk'z(zjsk)j,k=o,...,~,
k=0

where dimV = N 4 1. Moreover, when we restrict the action to a subgroup U
of U(n), then the correspo

J(n) nding moment map &, is & followed by the canonical
projection u(n)* — u* where y = L(U) C u(n).

Thes moment maps and their images are closely related to subsemigroups
of G = Gl(n,R) which have been studied in the context of control theory and

.harmonic analysis. The common feature of the examples to be described below
is the following:

Let Gp(R"™) be the real Gramannian of p-planes in R™ which may be

»(€") and H be a closed subgroup of
. be a compact form of y 1.e., the complexifications h¢
and u¢ with f = L(H) agree. Note that Gl(n,R) acts transitively on G,(IR").
We assume that §

: : has at least two open orbits in G,(IR"). Then our examples
will satisfy the following conditions

(1) ®u(G/P) is convex, where P —
(i1) ®(HP/P)is open in the linear s
(iii) Pultip/p is a diffeomorphism

The semigroups alluded to earlier are

P¢ NGl(n, ).
panof $,(G/P) and dense in ®.(G/P).

onto its image.
given by
S={9€GgHP/PC HP/P}.

et W; note in passing t.hat the complex conjugation interchanges the Kahler
etnic with its complex conjugate, so it is antisymplectic, i.e., it interchanges the
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symplectic form with its negative. Moreover the moment map ¥ anti-commutes
with complex conjugation, i.e., it satisfies

®(z) = —P(x).
In particular, the image of G/P is contained in ig*.

Example 1. We let H be the subgroup of diagonal matrices and p = 1, then
G,(C") = IP(C"). In this case the open H -orbits on Gp(IR") = IP(IR") are
given by the sets

{(zo:...:20-1) E P(R"):¢;2; >0 j=0,...,n-1},

where the ¢; are fixed and equal to 1 or —1. Altogether we have 2" open H-
orbits and the statements (i) and (ii) are special cases of Duistermaat’s extension
of the Atiyah-Guillemin-Sternberg convexity theorem which deals with fixed
point sets of antisymplectic involutions. It is of course not necessary to appeal
to this theorem here, since here u = il and the moment map is given by

i
q)((Zo Ceaet Zn—l)) = m(|20|2,.. . ,IZn_llz)
k=0 1~

so that it is elementary to check that ®,(IP(R")) = ®.(PP(C")) is an n-
dimensional simplex satisfying (i) and (ii).

The semigroup S in this case consists of all elements in Gl(n,R) with
non-negative entries (cf. [9] for more information).

Example 2. Let H = O(p,q), where n = p +¢. We write elements of G and
g = gl(n,R) as block matrices of the form

A B
Cc D
with A of size pxp and D of size gxg. The usual Cartan involutions ¢ ~ (g

and X ~ —X 7T are both denoted by 6. Let T be given by
g J8(g)], X r— JOX)J

T)—l

on G and g respectively, where

_ (Y 0
- (% 3)

Then H = G™ = O(p,q) and G/H is a pseudo-Riemannian s'ymmetric space.
Let g =h+ q =&+ p be the eigenspace decompositions of @ with respect to 7

and @ for the eigenvalues 1 and —1. Then

qnp = {(A 0):A,D symmetric },

0 D
hbNnt = {(3 g) : A, D skew — symmetric },

hNp ={(1;)T g)}
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and

a= {(g g) . A, D diagonal }

is maximal abelian in pNq,p and q.

Note that u:= (hN¢€) +i(hNp) is a compact form of § and the image
of G/P under the corresponding moment map &, has to be contained in the
dual of uNig = i(h Np). The key idea to prove the convexity of this image is
to find a suitable maximal abelian subspace of i(f N p), study the image of the
moment map for the corresponding torus and then use equivariance properties

to describe ®,(G/P). _
Consider the elements

0 B
%= (a1 §):

where all entries of B; are zero except for the entry at the i-th row and the ¢-th
column which is 1. Then
min(p,g)

b:= Y RX;
=1

is maximal abelian in hNp. But § = (8NH)+(pNbh) is the Cartan decomposition
associated with 6|y so there belongs a Weyl group to the data (b, b). This Weyl
group which we denote by Wy is isomorphic to the symmetric group on min(p, q)
elements, extended by the multiplications with —1 in each coordinate with the
obvious action by permutation of the entries.

If p < g we write the elements of @ as block matrices with nine entries,
where the diagonal entries are of size p x p,pXp and (g —p) x (¢ — p) (the case
P > q can be treated analogously and we will not mention that case explicitly).

Then conjugation by
L0
—= 0
p 1p
v2 0 0 1,
P

is an automorphism of 8¢ which maps

ac onto a Cartan algebra t’c containing
b via

A 0 0 1 B+A B-A o
0 B 0]~ 3 B-A B+4 0 |.
0 0 C 0 0 2C

’ There 'is another Weyl group, denoted by W?!, associated to the pair
(gc.te). This Weyl group is of course isomorphic to the Weyl group for

the pair (g¢,t¢) which is simply the permutation group on n letters. Each

element of W} can be obtained from an element of W by restriction to b. Let
! =un)Nnt}, and

p:u(n)* — {b*

then the crucial property of our Weyl groups is

(#) P(conv(W* - 4)) = conv(Ws - p(u))
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for all p € #(th)*.
Let T* and T} be the tori in U(n) with Lie algebras t! and :b. Note

the following inclusions:
£ — b

! l

u(n) — u

We collect the corresponding moment maps in a commutative diagramm

()

Joote N
un)* & Gy 2 b
Nl S/
u’

As in the case of Example 1
#Ge/Pc) = #4(G/P)

is a simplex and hence ®;(G/P), being a projection of $!(G/P) is algo a convex
polytop. In fact, we may again apply Duistermaat’s results and this time 2],
Proposition 4.2, implies

®4(G/P) = &s(B - [vo]),

where B is the analytic subgroup of G with Lie algebra b. Moreove.tr the gex:eral
theory says that ®*(G/P) is the convex hull of the Weyl group orbit |1/AXD) . for
any extremal weight A? of the module V with respect to t’c . But such a weight

is given by
A B 0 P q
M. B A4 0)e Y (i-a)+) e
0 0 C i=1 k=1

where A = diag(a,,...,a,), B = diag(b,...,bp) and C' = diag(cy,....,cq). Ap-
plying the projection p and (*) we find
(+x) &5(G/P) = conv(Ws - p(A})).

But the projection p(A') = o corresponds to the element
0 B
b
(s ©)
with By = 2""_“,'(’ ) B;. Thus the image of ®y is the cube which one obtains
from ( BOT %0) upon the action of the Weyl group Wy .
o »
Now we are ready to use equivariance: Let Ky = O(p) x O(q) be the

maximal compact subgroup of H contained in U(n) and consider the Cartan

decomposition )
H =KyBRy.
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Note that Ky C P so that the U-equivariance of & implies
@(H - [vo]) = ®(Kn B - [vo]) = Ad*(K1)®(B - [vo]).
Analogously, we have
Su(H - [v0]) = Ad"(Kn)84(B - [vo]) = Ad* (K 11)&4(B - -[uo]).

We set
D := Ad"(Ku)&(G/P) = .(H [o,]) C i(h N p)".

Let y € D. Then
(1) conv( Ad*(Kg)u) C D.

In fact, let p' € conv(Ad*(K H)u). Then p' corresponds to an element of
*(hNp)* so that there exists an element k € Ky such that Ad*(k)u' € ib*. Let
[v] € G/P be such that u = @([v]) then

p(conv(Ad*(Ky)p) = conv(p(®(Ky - [v]))) C conv(®y(Kp - [v]))
C conv(®(G/P)) = 8(G/P)C D

and hence
Ad'(k)p’ = p(Ad'(k)p') € D.
Thus we have

p' € Ad*(Ky)D =D

which proves (1). Now let u € ®5(G/P) Ci(hNp)*, and k € Ky be such that
Ad*(k)u € :b*. But then

Ad*(k)u € ib* N @4(G/P) C &4(G/P) C D
and hence u € Ad*(k)D C D. Thus we have
®4(G/P) = &y(H - [vg]) = D.
Using (1), (*) and (++) we calculate
D = Ad"(Ky)®s(G/P)
= Ad"(Ky )conv(Wy - po) C conv(Ad*(Ky) - uo) € D,
since the action of W, is induced b

and we have shown (i) and the dens
say more:

Y Nk, (b). Thus, in particular D is convex
ity part of (i1) for this example. We can even

WGP = {{(jeigryr %2 )19 Ol € 0Ge), B € Bu(G/P))
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which is linearly isomorphic to the set of linear contractive mappings from €? to
C? with the usual norm. This can be seen by mapping the image of the linear
operator gBh isometrically to €? and then considering the polar decomposition.
In order to show (iii) we study ®u|g.[y,) in more detail. Consider the
elements
vii=er A AeiiNepriNeiri AL Aep

then
(exptX;) - v; = (cosht)v; + (sinht)vg.

The map
min(p,q)

(t15- s tmin(pg)) P H expti X - [vo]

1=1
is a diffeomorphism lR"ﬁn(p 9 4 B -[ve]. If we use it as coordinate chart for B-[vg]
and further identify ib* with IR™™9 via the dual basis of {X1,. .., Xmin(p.0) }»
then ®y|p.[y, is given by

tl ta
(t1,...,ts) — (tanh —, ..., tanh =),
2 2
where s = min(p,q). In order to prove (iii) it now suffices to consider the
mappings

o1 = ((k,b) — khP): Ky x B — HP/P

and
o2 = (k) > Ad*(K)f): Kt % ib" — i(H N )"

In fact,
2(k,py 0 B(b - [wo])) = 5 0 pa(k, b [vo])
and the claim follows since the fibers of ¢, and of 2 are both given by the Weyl
group Wp.
The semigroup S in this case is given by H exp cmaxH (cf. [6], §5.7)
with
Cmax = {diag(a1,...,aa): (V1 <P < k) aj > ax}.

Example 3. We conclude this report with an example w.hich indicates thfxt
the simultaneous occurence of the properties (i)-(iii) and semigroups as shown in
Examples 1 and 2 is not purely accidental. Let H = Gl(n,IR), and G = Gl(n, €)
embedded as the diagonal in G¢ = Gl(n, €) x Gl(n, C), where € .mdlcates thz.xt .
on this copy of € we have the opposite complex structure. As maximal parabolic
in g we choose

o7

P= {(3 D) €sl(n,Cya€ Cve C'}.

" [ formof H is
Then G/P = IP(C"), G¢/P¢c =IP(C )yx P(C ),a'ndaco.mpact.. 10f
U(n). The moment map &:G¢/Pe — w(n)" associated with this action 18
Z;Zk w;wi

H
<bl,(Zu teeet z,.._l),(wo taees w:l—l)) = -2-(2::; |2b|2 + Z:;; |wk|2

)Lk=oqu-l
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and, when restricted to G/P,

@;,((zo Dot z,,-l)) = T_:——(Re z;Zx).
k=0 12k
Whereas the image is a disk for n = 2 it is non-convex for n = 3. This can
be seen from a somewhat tedious comutation using affine coordinates on the
projective plane. Note that for n > 3 no proper subsemigroup S of Gl(n, C) is
known which has non-empty interior and satisfies Gl(n,R)C S.
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