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Some Lie Theory of Semigroups based on Examples

J. Hilgert

The purpose of this note is to explain some of the basic concepts and
problems in the Lie theory of semigroups. We will start from a class of examples,
certain contraction semigroups, that allows us to avoid the technical complications
in the definitions of a general setup as given in [HL83] and [FTHL87]. For these
semigroups we define and calculate the tangent objects which play the role of the
Lie algebra. Finally we describe how in some cases it is possible to recover a
semigroup from itstangent object.

1. Contraction semigroups
Let V be a set and G a group acting on V. Further let (4, <) be a partially
ordered set and f:V — A an arbitrary map. Consider the set

1) Sp={g€G: f(g) < f(v) Ye € V}.

Note that the transitivity of < implies that S; is a subsemigroup of G.
We give a few examples in order to show the broad range of this construc-
tion.

1.1. Example. Let (V,(|)) be a Hilbertspace, and G a group of linear
transformations on V. Further let 4 = IR with the usual order and f(v) = (v |v).
Then §; is the semigroup of contractions in G.

1.2. Example. (Invariant sets) Let M be any subset of V and x:V — IR the
characteristic function of M. f f = 1—x then Sy = {g € G:g-M C M}.
(a) Positive maps: Let V be a C*-algebra, G a group of linear transformations
on V and V+ = {v € V:spec(v) C IR*} be the set of positive elements in
V. Then Sy is the semigroup of all order preserving elements of G.
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(b) Nonnegative matrices: Let V = IR™ and G = Gl(n,IR) with the natural
action. If M = (R*)" then Sy = {g € Gl(n,R):9-M C M} ={g¢c
Gl(n,R): g;; > 0}.

{c) Admissible translations: Let G be a locally compact group and My(G) the
set of bounded Radon measures on G. The group G acts on My(G) by
left translations (convolution with point measures). For a given p € My(G)
let M = {v € My(G):v < pu} where v < p means that v is absolutely
continuous with respect to g. Then S5 = {g € Gig-p < p} since g~1/.<'g-u
for all v € M. In other words Sy is the semigroup of all admissible
translations for u.

. ),
Let us note that we can describe one and the same semigroup by very different f's.

1.3. Example. Let V = R?, G = GI(2,IR) with the natural action, fi: V-
IR the characteristic function of the unit ball and f:V — IR given by falr,8) =
~(r? + s?), then the two semigroups Sy, and Sy, agree.

It is clear that we could change the whole setup in order to describe sub-
semigroups of associative algebras in which case we would not have to ask fctr the
invertibility of the operators in question, but after all the author is primarily inter-
ested in subsemigroups of Lie groups.

There are two subgroups naturally associated to any subsemigroup of a
group G, namely the largest group H{(S) contained in § and the subgroup G(S)
of G generated by S. For the contraction semigroups as defined above it is easy to

describe H(S) in terms of f, whereas such a description is not available for G(5).
We have

@ H(S/) = {g € G: f(gv) = f(v) W € V).

In the Lie theory of semigroups one associates, similar to the case of Lie
groups, with a subsemigroup S of a Lie group G a subset of the Lie algebra L(G)
either via a geometric “tangent - construction” or by considering one-paramett_tf
semigroups. Unfortunately, it is necessary to assume that G(S) carries an fma-lytlc
structure, that is, has a Lie group topology which possibly is finer than the induced
topology, and to consider one-parameter semigroups in the closure § of § in G(5).
This difficulty vanishes if we restrict our attention to semigroups which are closef\
in G from the beginning. In order to assure that a contraction semigroup S¢ 1s
closed we assume that V is a topological space and that the map iV o Als
semicontinuous, by which we mean that for any v, € A the set (fo, |) = {ve
V: f(v) < f(v,)} is closed in V. In fact we have:

1.4. Remark. Let g+ g.v be continuous for any v € V and f:V — A be
semicontinuous then Sy is closed in G.

Proof.  Note first that for any v, € V and any s € §; we have sv, € {ve
V: f(v) < f(v,)} which is a closed subset of V. The continuity of the action now
shows that g-v, € {v € V: f(v) < f(v,)} for any g in the closure Sy of Sy. Since
v, was chosen arbitrarily this just shows that 5, = S;. .
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2. Tangent wedges

We associate with any closed subsemigroup S of a Lie group G a tangent
object at the identity via

(3) L(S)={z € L(G):exptz € § Vt € R*}.

Using the Trotter product formula expt(z + y) = lim{exp & exp &)™ (cf.
[He78,Chap.]1,§2,Lemma 4.4]) we see that L(S) is a wedge, that is, a closed convex
set which is also closed under multiplication by positive scalars. Moreover W =

L(S) satisfies
(LIE) MEW =W VzeWn-—W,

since exp(e*d*ty) = exp z exp ty exp —z (cf. [He78,Chap.IL§5]). We call any wedge
W satisfying (LIE) a Lie wedge.

For the special case of closed linear contraction semigroups on finite di-
mensional vector spaces it is possible to give an explicit .description of L(S) in
terms of f and the action of L(G) on V associated with the action of G on V
via z.v = £|,o((exptz)-v). But first we need to introduce the set of subtangent
vectors L,(M) of a subset M of a Banach space V in a point v € M. We set

(4) Lo(M) = {w € V:w = limr,(vn — v);vn € M;limr, = oo}.

2.1. Theorem. We assume that V is finite dimensional and f:V — A is
semicontinuous. Then

(5) L(Ss) ={z € L(G):zv e L,(fo ) Vv € vV}

Proof. We first prove the theorem for the special case that A = {0,1} and 1 f
is the characteristic function of a closed subset M of V. In this case the upper
semicontinuity of f is a consequence of the closedness of M. Example 1.2 shows
that §; = {g € G:p(g)(M) C M}. Moreover we have (f, 1) = Miforal VEM
and (f, |) =V forall v € V\ M. Consequently we have Lo(fo 1) = L.(M) for all
v € M and Lo(f, |) =V forall v € V\ M. Thus in this case it suffices to show
L(Ss) = {z € L(G): z-v € L,(M) ¥v € M}. But this is an immed.xa.tc consequence
of the following lemma on the invariance of sets under flows applied to the vector
fields X(v) = z-v.

2.2. Lemma. (Bony-Brezis, cf. [HHL87]) Let V be a finite dimc?uianalhvector
space and M a closed subset of V. If X:U — V isa locally prah:tz contintous
vector field for some open U in V containing M, then the following statements are
equivalent: . '
(A) Every integral curve v:[0,T] = U of () = X(7(t)) with 7(0) e M is
contained in M.

(B) For all v € M we have X(v) € L.(M). .
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Now we reduce the general case to the special case we just conside'rcd- To
do this we note first that we have f(gv) < f(v) for all v € V if and only if for all
v € V the set (f, |) is invariant under g. In fact, if f(gv) < f(v) forall ve V
and w € (f, |) then flgw) < flw) < f(v). Conversely, since v € (f, |) for any
v € V the invariance of (f, 1) shows that f(gw) < f(v) for all v € V. Thus
the semigroup S; is equal to the intersection of all semigroups § #,0 of the form
{g€ Gig'(fu l) C (f» 1)} where v is a fixed but arbitrary element of V. Recall
that by hypothesis the sets (fv 1) are closed, so that St is equal to the cIos‘ecli
semigroup §,_, where y, is the charactistic function of (f, ). Thus our specla«:
case tells us how to calculate L(S1-x.). Note that the definition of the ta:ngem
object L(S) for a closed semigroup S immediately shows that the tangent object of
an intersection of closed semigroups is the intersection of the corresponding tangent
objects. This shows that

(6) L(5f) = () L(S1-x.)-

eV

But L(Si-x,) = {2 € L(G):zw € Lu(fy 1) Yo € (fu [)}. It is clear that the
right hand side of (6) is contained in {z € L(G):zv € Lo(f, |) Yv € V}. Butif
= € L(G) is contained in this set we also have z.w € Lu(fu !) € Lu(fo 1) for all
W € (f, |) since for these w one has (fw {) ©(fo 1)- This proves the theorem. ®m

We record the special case from the proof of Theorem 2.1 as a separate
corollary.

2.3. Corollary.  Let M be closed subset of V and S = {g € G:g-M C M}
then

(7) L(5) ={z € L(G):z-v € L.(M) Vv € M}.
|}

It should be noted that it is by no means clear from (5) that L(Sy) is a
wedge, let alone a Lie wedge.

2.4. Example. Let V=1R? G= GI(V') with the natural action and f = 1—x
where x is the charactistic function of M = (1,0) + (R*-(1,0) UTR*(0,1)) . Then
L,(M) is equal to (R*.(1,0) U IR+-(0,1)) for v = (1,0), equal to IR-(I,O)‘ for
veE ((1,0)+1R+v(1,0)) \{(1,0)} and IR«(0,1) otherwise. Thusif = € L(G) is given

by the matrix
_fa b
=\ec a)’

then z € L(S;) if and only if the following equations hold:
(a) (a,c) e R*-(1,0)u R*(0,1),
(b) (sa,s¢) € R-(1,0) for all s >1,
(c}) (a+rbe+rd) e R-(0,1) forall » > 0.

We conclude that a = b= ¢ = 0 and d € IR arbitrary which means that
L(Sy) is even a vector space.
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2.5. Example. (Nonnegative matrices) Let S be the semigroup of all invertible
n x n-matrices with nonnegative entries (cf. Example 1.2). Note that for v =
(v1y,v5) € (IRT)" the set of subtangent vectors Ly ((R*)") is equal to R"* x
..xIR°* where o; stands for + if v; = 0 and for 1 if v; # 0. Testing (7) against the
standard basis for IR™ we find that L(Sy) = {z = (zi;) € gl(n):zi; 2 0 for i # 7}

If f:V - R in Theorem 2.1 is differentiable and v is a regular point of f,
then L,(f, |) is just a halfspace bounded by the kernel of df{v) and z-v € Lo(f §)
reads df(v)(z-v) < 0. If v is singular these two expressions are no longer equivalent
since Ly(f, |) may still be nontrivial, but it turns out that it suffices to consider
only regular points:

2.6. Proposition. Let A be Banach space and f:V — A continuously differ-
entiable, then we have

{8) L(Sy) = {z € L(G): df (v)(zv) Yo € V}.

Proof. Forany z € L{(G) and v € V we consider the function 7z+:R — A
defined by 7,,(t) = f((exptz)-w). This function is differentiable , and since
f(¥) = 7. ,(0), it suffices to show that ;. is decreasing (not necessarily strictly) on
[0,00] for all » € V if and only if df(v)(z-v) < 0 for all v € V. To this end we note
that v, (t) = df ((exp tz)v) (z-((exp tz)-v)). Since we deal with arbitrary v € V
we see that v, (1) <O forall veEV and all £ € IR if and only if df(v)(z-v) <0
for all » € V', which proves our claim. »

2.7. Example. (Quadratic forms) Let V be a finite dimensional real vector
space, B:V x V — IR a symmetric bilinear map and ¢V — IR defined by
g(v) = B(v,v) the associated quadratic form, then we have

(9) L(S,) = {z ¢ L(G): B(v,2v) S0 Vv € LIg S

2.8. Example. Let V =R? and G = Gl(n) with the id: .iity representation.
Moreover let B:V x V — IR be an arbitrary bilinear map ar.. g{v) = B(v,v). The
semigroup S, is defined by the equation B(g(v),g(v}) < B(v,v) which is of the
form

(%) ar? +ﬂ1’3+732 <0

for r and s in R where a,8 and v depend on g. If we set t = Z the equation
reads at? + Bt+ - forall t € IR. Since (*) implies that o and v are nonpositive it
suffices to check that the polynomial is nonpositive at its critical value. This yields
the equation

(*+) tay < B

Note that the equation (9) for L(S;) is also of the form (+), so (*#) can also be
use to calculate L(S,). We give two examples where g € GI(V) and z € gi{V),
respectively, are represented as a 2 x 2-matrix

(%)



(a) B((rys),(r',s")) =7r' + 5.
Then ¢{g-(r,s)) < g(r,s) reads (ar + bs)? + (er + ds)? < r? + ¢% and a
simple calculation shows that a = a® + ¢ —1, 8 = 2ab+ 2cd and v = b* + dz.— 1.
Therefore (++) yields 4(a®+¢c?—1)(b?+d*>—1) < 4(eb+cd)? which can be rewritten
as (detg)? < a® + b2 + ¢ + d% — 1. Thus g € S, if and only if

(detg)? <a® + 02+ +d> 1,
e+t -1<0,
b2 +d?-1<0.

In order to determine the tangent cone L(§,) we note that it consists of all z which
satisfy (ar + bs)r + s(cr + ds) < 0, that is we have a = a, B = b+cand v =4d.
Thus = € L(S,) if and only if

a<0,
d<0,
(a+d)? <(b+ec)? +(a—d).

(b) B{(r,s),{r',s')) =rr' —ss’.

In this case ¢(g-(r,s)) < g¢(r,s) reads (ar + bs)? — (cr + ds)® < s
and again a simple calculation shows that o = a® — ¢ — 1, § = 2¢b — 2¢d a.nd
4 =8 —d® — 1. Now (xx) yields 4(a? — ¢? — 1)(b? — &* — 1) < 4(ab — cd)’ Whl.Ch
can be rewritten as —(detg)? <a?+b2— % — d? — 1. Thus g € S, if and only if

—(detg)? <a?+ b -2 —d* -1,
a?-cf-1<0,

B¥_d-_1<0.

This time the tangent cone L(S,) consists of all z which satisfy (ar-+bs)r -
s(cr +ds) <0, that is, we have a =@, B = b— ¢ and v = —d. Thus z € L(S,) if
and only if

az0,
-d <0,

(a—d)? <(b—c) +(a+d).

3. Infinitesimally generated semigroups

According to the general philosophy of Lie theory — treating analytic prob-
lems by translating them into algebraic ones and translating the algebraic solution
back to the analytic situation — one of the basic problems in the Lie theory of semi-
groups is the question, which wedges can occur as tangent objects of semigroups.
On the local level this question is completely answered by a generalisation of Lie’s
Fundamental Theorem {cf. [HH86]): A wedge in a Lie algebra is the tangent object



of a local semigroup if and only if it is a Lie wedge. On the global level, even though
characterisations of tangent wedges of semigroups exist, a satisfactory solution (in
terms of verifiable conditions) is still missing. We do not address this problem in
this article since we start from given (global) semigroups. But for the general pro-
gram mentioned above there still remains the problem to which extent the given
semigroup is determined by its tangent wedge. In contrast to the Lie theory of
groups there may be many semigroups with the same tangent wedge. It is therefore
important to know if a (closed) semigroup § is infinitesimally generated. By this
we mean that S is the smallest closed semigroup containing expL(S). We note
here that the concept of infinitesimally generated semigroups is quite a bit more
delicate if the assumption of closedness is dropped.

We will treat here the example of contractions with respect to a quadratic
form on a finite dimensional real vector space. Thus we let V' be a real vector space,
¢V — R a quadratic form and S = §, = {g € GI(V):¢(g-v) < ¢(v) Vv € V}.
Moreover we let B:V x V — IR be the symmetric bilinear form associated to ¢
and note that for positive definite B, using the polar decomposition of matrices,
it is fairly elementary to show that the smallest closed subsemigroup of GI(V)
containing exp L(S) is exp(L(S)Npp)H(S) where pp is the space of all matrices
which are symmetric with respect to B (cf. [La86]). In fact the same is true
for arbitrary nondegenerate B, but the existence of a polar decomposition in
the indefinite case is quite a bit more complicated to show (cf. [BK79]). We
present an argument here which goes back to Ol’shanskii(cf. [O181]) and is in
some sense typical in the study of semigroups generated by a given wedge. The
idea is to show that the map ®: (L(S) n pB) x H(S) — exp(L(S) n PB)H(S)
defined by &(z,h) = (expz)h is a homeomorphism, then transport the curve
t > (expzexptz') for z',z € (L(S)N pp) back to (L(S) N ps) x H(S) via
® and to show, using Lemma 2.2, that it cannot leave that set.

In order to show that & is indeed a homeomorphism, we have to make
a detour in the complexification Vo of V. First we recall that we may define a
hermitean form Bg: Ve x Vo — € via Be(v +1iw,v" + iw') = B(v,v') + B(w,w") +
iB(w,v') — iB(v,w'). The associated quadratic form gc:Ve — IR defined by
gc(v +iw) = Be(v + iw,v + iw) is given by go(v +iw) = g(v) + g(w). This shows
that § C S where S¢ = {g € Gl(Ve):q(gvc) < go(ve) Yvo € Vc}. Now note
that B is nongenerate if B is, so that we have adjoint operations s g}(V) — gl(V)
and *7:gl(Vp) — gl(Ve) defined by B(z-v,w) = B(v,z'®-w) for all v,w € V and
Beo(z-ve,we) = Be(ve,z*®we) for all ve,we € Ve respectively. The adjoint
operations are convenient for the description of H(S) and H(Sc) and their Lie
algebras:

3.1. Remark.
(a) H(S)={geGlV):g*® =g}
(a') H(Sc)={g9€ Gl(Vg):9*% = -1},
(b) L(E(S)) = {= € gl(V):=** = ~2}.
(b') L(H(Sc)) ={z e gl(Vo):z*'® = —z}.
Proof. (a) and (a') follow from polarisation of B and Bc. Formulae (b) and
(b’) now follow by differentiation. m

We note in passing that, given a B -orthogonal basis {e1,...,en} for V such



that g(e;) =1 for j = 1,...,p and g(e;) = —1 for j = p+1,..,n, We can express
the adjoint operations in terms of the usual transpose ! and complex conjugate
transpose *. In fact, if z € gl(V) is given as a blockmatrix

= (4 3).

then z*'® is given as the blockmatrix

ot :( At __Ct)
-B* D'}’

Similarly for z € gl(Vo) we have

z*B — A* —-C* ]
-B* D
The adjoint operations are even more useful for our purposes, since they

allow us to show that there is a vector space complement of T, (H(S)) which at the
same time is an L{H(S))-module.

3.2. Remark. We set kg = {z € gl(V):z"* = —2} and pp = {z €
g(V):z*® = z}. Similarly let kg, = {z € gl(Vp):2*® = —z} and pp. = {z €
g(Ve):z*® =z}. Then
(a) oB:gl(V) — gl(V) defined by og(z) = —z' is a Lie algebra automor-
phism.
(2') oB.:gl{Vo) — gl(Vo) defined by op(z) = ~z*# is a Lie algebra automor-
phism.
(b) gl(V)=kp @ pp (vector space direct sum).
(b") gl(Ve) = kg, ®ps, (vector space direct sum).
(c) [ks,kp] C ks ,[ks,p5] C PB (P8, PB] C ki
(c’) [chkacl g ch 1[chschl Cc PBc ’[ch»ch] C ch N
(d) ich = PBc-
(e) kp =kp. Ng(V) and pp = pa. Ngi{V).
Proof. (a),(a') and (d) are straightforward calculations. Items (b), (b'), (c) and
(c') follow immediately if one notes that the decompaositions in (b) and (b') are

eigenspace decompositions. Finally (e) is a consequence of the fact that *® is the
restriction of *# to gl(V). .

With the decomposition from Remark 3.2 it is possible to essentially feduce
the study of the semigroup generated by expL(S) to the study of the semigroup
generated by exp W, where W, = L(S)N pp.

3.3. Remark. Let S,.;, be the smallest closed subsemigroup of GI(V) thch
contains expL({S) and S, the smallest closed subsemigroup of GI{V) containing
exp W, then

(2) AW,h~1 C W, for all h € H(S).
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(b) Smin = S, H(S),, where H(S), is the connected component of H(S).
Proof.  We have B(hzh™l-w,w) = B(v,(h7!)*5z!2h*2.w) = B(v,hzh™w)
for any z € W,, which shows that hzh™! € pp. Moreover B(h:ch_l-v,v) =
B{zh™'.w,h71.v) < 0 for all v € V shows that hzh~! € X(S). This proves (a),
and (b) follows since any product (expz)h(expz')h’ may be written in the form
(expz)(hexpz'}h~1hh' = (exp z)(exp hzh1)RA'. -

) In order to prove the anounced result we now only have to show that S,
is contained in (exp W,)H(S),. But we still have to record some results from our
complexification procedure in the form it will be used later.

3.4, Lemma. Let Wg = L(Sc)NpB,, then we have

(a) L(S¢) =kp, +Wo.

(b) €Wy = We for all z € kp, .

(c) iWe C kg,

(d) e*=iWeo =iWe for all z € kp, -

(e) iWe —iWo =kp, .
Proof. (a) is clear with Remarks 3.1 and 3.2. Formula (b) is a consequence of
Remark 3.2 in view of e*¢%y = (expz)y(expz) ™! (cf. Remark 3.3). The inclusion
(c) follows from Remark 3.2 and (d) just reflects the fact that e ® is a complex
!inear map. Finally, in order to prove (e) we note that iW, —iW, has to be an ideal
in kg, because of (d). Therefore (W, —iWy)c has to be an ideal of gl(Ve). But
one easily calculates that = € gl(V') given by ze; =0 for j=1,..,p—-1,p+2,..,7,
ze, = aep and zepy; = —depy; with ¢,d > 0 is contained in W, C We (cf.
.Example 2.8b). Thus Wy is neither contained in €1 nor in [gl(Ve),g(Ve)], hence
in no nontrivial ideal of gl(V¢). This proves (e). L]

The point of Lernma 3.4e is that, using the general theory of invariant cones
{cf. [HHL87)), it shows that any adiz with iz in the interior int iWe of iWe in
kg, is semisimple with purely imaginary spectrum. In particular any adiz with
z € W, C W¢ has a real spectrum.

We are now ready to prove that & is a homeomorphism.

3.5, Lemma. Let ¥:pp x H(S) — GV be defined by ¥(z,h) = (expz)h.
Then & = Ulw, xH(s) 3 homeomorphism onto its image. Moreover ¥ is differ-
entiable and regular for all (z,h) € W, x H(S).

Proof. We note first that ¥ is a differentiable map, and regular in any point
(z,h) such that exp is regular in z (cf. [HeT78, Chap.Il, Exercise Al]). Since
the spectrum of adz is real for all z € W,, it follows from [{He78, Chap. 11,81,
Thm.1.7] that there is a neighborhood U of W, in PB such that ¥ is regular for
all (2,k) € U x H(S). Therefore it only remains to show that & is injective.

Claim l:expz = expz' for z,2' €W, implies z = z'.

In fact, it follows that z and z' commute (cf. [HHL87, Lemma V.6.7])
since exp is regular in z. Therefore we have exp(z —z') = 1. But we have that
adz and adz’' can be put simultaneously into Jordan canonical form with real

cigenvalues, which means that also ad(z ~ z') has a real Jordan canonical form,
so that e(=—=') = Ad(exp(z — z')) = 1 cannot hold unless adz = adz', that is
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ad(z — z') = 0. But then z — z' = r1 for some r € IR which implies z = z' since
exp(z —z')=1. ‘

Claim 2: (expz)h = (expz')h' for z,2' € W, and k, k' € H(S) implies
z=2z and h=h'.

To show Claim 2 we may assume that ' = 1. We set p = expz and
calculate ph = (ph)!® = A'#p'® = h~'p so that exph™12zh = hl(exp2z)h =
hlp*h = p? = exp2z. But we know that h~lzh € W, so that Claim 1 shov.vs
2k~ zh = 2z, hence hp = ph which in turn implies A = 1. Now we conclude again
from Claim 1 that ¢ = 2'. e

Now we want to transport the curve ¢ - expz exptz! for z,2' € W, back
to pg x H(S) via & and use Lemma 2.2 to show that the resulting curve cannot
leave W, x H(S). Thus we fix z and z' in W, and define v:IR — GI(V) by
¥(t) = expzexpiz’. Since © € W, and & is regular for all (z,h) € Wy H(S)
we find an £ > 0 and a differentiable curve 7,:[0,¢] — pp x H(S) such that
70(0) = (2,1) and @ o 7,(t) = 7(t) for all ¢ € [0,¢]. In order to show that the
semigroup, and hence also the closed semigroup, generated by exp W, is contained
in (exp W,)H(S), it is enough to show that

(10) 70([0,]) € W, x H(S)

since z and z' were arbitrary elements of W,. In view of Lemma 2.2 it suffices
to show that #'(0) € Luye)(W;) = Lz(W,) where 5(t) for t € [0,] is the P5-
component of 7,(t). Thus we have to calculate the derivatives of the various
functions involved.

At this point we have to use some concepts from differential geometry-
The curve v lives on the differentiable manifold GI(V) = G. Therefore the
derivative 7'(t) is an element of the tangent space Tiy;yG. Recall that the tangent
space TG can be, and will be, identified with the Lie algebra L(G) = gl(V).
Moreover it is possible to identify the various tangent spaces via the left translations
g — 99" = A(¢'). For g € G we have T,G = d),(1)(ThG) = dg(1)(8UV))-
Since dexp(0):gl{(V) — T1G = gl(V) is the identity we find

0) = Dy (1))

using the chain rule. We recall from (cf. [He78,Ch.11,§1,Thm.1.7]} that the differ-
ential for the exponential function is given by
1— el
dexp(z) = dAexp2(1) 0 —di
where the quotient stands for the respective powerseries . If we use the formula for

the differential of the product in a Lie group (cf. [He78,Ch.II,Exercise 1(iii)]) we
obtain

__e—uiz

d8(z,1)(y, 2) = dAexp o(1)(2) + dhexpa(1) 0 = ()

for y € pg and z € L{H(S)) = kg. Now the chain rule yields dexpo(1)(z') =
dexpa(1)(2) + dAexp (1) 0 3:-:7—;41(1,' (0)) and hence

(1) 2 = s+ 22 o)),
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where z(z') is an element of kg which is uniquely determined by z'. Recall that
d®(z,1) is invertible, so the map 1":;:‘

the powerseries IT:d,—";a—; . Thus it suffices to show that

® is, too. But then the inverse is given by

d
(12) T (US)) € L2 (L(5)-
In order to prove (12) we have to recall two facts from the general theory of Lie
wedges (cf. [HHLS87)). Firstly we remark that for any Lie wedge W the condition
(LIE) is equivalent to

(LIE") [, Te(W)] C To(W) VyeWN-W, z€ W,

where T,(W) = L(W) N — L.(W) is the {angent space of W at z. Moreover we
note that for any wedge W in a finite dimensional vector space L and any z € W
we have

(13) L(W) = (z-nwW*)",

where for any set M C L we set Mt = {w € I:(wly) = 0 Vy € M} and
M* = {w € L:{wly) > 0 Vy € M} if (1L x L — IR denotes the pairing
of L with its dual space L. Now we calculate Lz(L(S)) = (z* N L($)*)" =
(‘CJ‘ﬂWp'ﬂ(kB)')* = (z:-LﬂWp‘ﬂ(kB)l)* since L(S) = kg+W,, and k, is a vector
space. For w € (z1NW,*n(kp)") we claim that adz(w) = 0, where adz is the dual
operator of ad z. In fact we know {(adz(w)ly) = (w|—[y,z]} = 0 forall y € kp, since
~[y,2] € Tx = L.(L(5))N— L. (L(S)) = (z*NksnW*)* for y € kp. On the other
hand we have —[y,z] € kp for all y € pp so that (;\d:t(ciﬂy) = (w|—[y,2]) = 0
adz adz

for these y as well. Finally we get (w7225 (y)) = (;’T_ﬁ(‘””y) = (wly) 20
for all y € L(S). Thus we have proved the following

3.6. Theorem. LetV be a finite dimensional real vector space and B: VxV —
IR a symmetric bilinear form. Set pp = {z € g(V): B(z-v,w) = B(v,z-w) Yv,w €
V}, W, = {z € pg:B(zv,v) <0 Vv eV} and H = {g € G{V): B(g-v,g-v) =
B(v,v) Vv € V}, then
(a) ®:W, x H — GI(V) defined by (z,h) — (expz)h is a homeomorphism
onto a closed subset of GI(V').
(b) (exp W,)H is a closed subsemigroup of GlV).
We finally note that the results of [BK79] show that the semigroup given
in Theorem 3.6 is actually equal to the semigroup of all contractions with respect
to B.
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