Leitfidden und Monographien
der Informatik

Unter beratender Mitwirkung von

Prof. Dr. Hans-Jiirgen Appelrath, Oldenburg
Dr. Hans-Werner Hein, St. Augustin

Prof. Dr. Rolf Pfeifer, Ziirich

Dr. Johannes Retti, Wien

Prof. Dr. Michael M. Richter, Kaiserslautern

Herausgegeben von

Prof. Dr. Volker Claus, Oldenburg
Prof. Dr. Giinter Hotz, Saarbriicken
Prof. Dr. Klaus Waldschmidt, Frankfurt

Die Leitfiden und Monographien behandeln Themen aus der Theoreti-
schen, Praktischen und Technischen Informatik entsprechend dem ak_tuel-
len Stand der Wissenschaft. Besonderer Wert wird auf eine systematlsc.he
und fundierte Darstellung des jeweiligen Gebietes gelegt. Die Biicher die-
ser Reihe sind einerseits als Grundlage und Erginzung zu Vorlesungen der
Informatik und andererseits als Standardwerke fiir die selbstéindig_e Einar-
beitung in umfassende Themenbereiche der Informatik konzipiert. Sie
sprechen vorwiegend Studierende und Lehrende in Informatik-Studien-
gingen an Hochschulen an, dienen aber auch in Wirtschaft, Industrie und
Verwaltung titigen Informatikern zur Fortbildung im Zuge der fortschrei-

tenden Wissenschaft.

Systematischer Entwurf
digitaler Systeme

Von der System- bis zur Gatter-Ebene

Von Prof. Dr. rer. nat. Franz J. Rammig
Universitdt-Gesamthochschule Paderborn

Mit zahlreichen Abbildungen und Beispielen

E B. G. Teubner Stuttgart 1989

Prof. Dr. rer. nat. Franz J. Rammig

Von 1969 bis 1973 Studium der Mathematik, Wirtschaftswissenschaften
und Informatik an der Universitdt Bonn mit AbschluB als Diplommathe-
matiker. AnschlieSend Wiss. Angestellter im Fachbereich Informatik der
Universitidt Dortmund und 1977 Promotion bei Prof. Reusch. Seit 1983
Prof. fiir praktische Informatik an der Universitit-GH Paderborn. Von
1985 bis 1987 Mitglied des Vorstandes von Cadlab, einem von der Uni-
versitdt-GH Paderborn und der Nixdorf Computer AG gemeinsam ge-
tragenen Forschungsinstitut.

X9140469

CIP-Titelaufnahme der Deutschen Bibliothek

Rammig, Franz J.:
Systematischer Entwurf digitaler Systeme : von der System- bis
zur Gatter-Ebene / von Franz J. Rammig. - Stuttgart : Teubner,
1989

(Leitfaden und Monographien der Informatik)

ISBN 3-519-02265-6

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung auBeF-
halb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzuldssig
und strafbar. Das gilt besonders fiir Vervielfiltigungen, Ubersetzungen, Mikroverfilmungen und
die Einspeicherung und Verarbeitung in elektronischen Systemen.

© B. G. Teubner Stutigart 1989

Printed in Germany
Gesamtherstellung: Zechnersche Buchdruckerei GmbH, Speyer
Umschlaggestaltung: M. Koch, Reutlingen

Vorwort

Dieses Buch versucht, eine durchgangige Systematik des Hardwareent-
wurfs Uber verschiedene Abstraktionsebenen hinweg darzustellen. Da-
bei wird von einem abstrakten Modell des Entwurfsvorgangs als tiber
mehrere Abstraktionsebenen reichender riickgekoppelter Prozef aus-
gegangen. Auf der Basis dieses Modells werden verschiedene Klas-
sen von Entwurfsaktivititen identifiziert. Es sind dies: Modellierung,
Modifikation/Optimierung, Implementation und Verifikation. Die ver-
schiedenen Abstraktionsebenen (Systemebene, algorithmische Ebene,
Registertransfer-Ebene, Gatterebene, Schalterebene/ Ebene des sym-
bolischen Layouts, elektrische/Layout-Ebene) werden in verschiedenen
Sichten {Verhalten, Struktur, Geometrie, Test) charakterisiert. Dient
das erste Kapitel dazu, eine allgemeine Systematik des Hardwareent-
wurfs zu entwickeln, so werden in den weiteren Kapiteln verschiedene
Entwurfsaktivititen beispielhaft diskutiert.

Das Kapitel 2 ist den verschiedene Methoden der Hardwaremodellie-
rung gewidmet. Nach einem allgemeinen Uberblick wird darin exempla-
risch die Breitband-Hardwarebeschreibungssprache DACAPO detail-
lierter eingefihrt. Dies erlaubt, Giber verschiedene Aspekte des Hard-
wareentwurfs in einheitlicher Terminologie zu sprechen, und zwar nicht
nur iber Hardwarebeschreibungen auf unterschiedlichen Abstraktions-
ebenen. sondern auch {ber verschiedene Algorithmen des Entwurfs-
prozesses.

Im Kapitel 3 {Implementierungsaktivititen) wird mit besonderem Au-
genmerk der ﬁbergang von der algorithmischen auf die Registertrans-
ferebene behandelt. Aber auch verschiedene Methoden des Steuerwerks-
entwurfs und der l"Jbergang auf die Gatterebene finden Beriicksichti-
gung. Ein ausfithrliches Entwurfsbeispiel soll zur Illustration dienen.
Optimierungsverfahren (Kapitel 4) werden hauptsachlich auf der Regi-
stertransferebene, aber auch auf der algorithmischen und Gatterebene
diskutiert. Auch hier wird ein Beispiel exemplarisch durchgefiihrt.
Das Kapitel 5 ist der Verifikation/Evaluation/Validierung gewidmet.
Trotz ihrer in Zukunft sicherlich zentralen Bedeutung wird dabei die
formale Verifikation relativ knapp und nur einfuhrend behandelt. In
diesem Buch sollte eine Konzentration auf heute praktisch und in Breite
einsetzbare Hilfsmittel vorgenommen werden. Dies trifft fir die "Ti-

mingverifikation” sicherlich zu, die aus diesem Grund auch etwas aus-
fithrlicher behandelt wird. Der Simulation als Hilfsaktivitat fiir eine Ve-
rifikation wird breiter Raum eingeriumt. Hier werden verschiedene Si-
mulationskonzepte verglichen, Simulationsszenarios behandelt und auf
das Problem der Mehrebenensimulation eingegangen.

Das wichtige Thema der Testverfahren wird in dem abschlieBenden
Kapitel 6 behandelt. Hier finden nach einer einleitenden Diskussion
der Testproblematik Methoden der Testmustergenerierung, der Fehler-
simulation, des testfreundlichen Entwurfs und der Selbsttestverfahren
Erwahnung.

Alle Kapitel sind bewufit reich mit illustrierenden Beispielen versehen,
wobei nach Moglichkeit auf eine einheitliche Notation geachtet wurde.
Hier erwies sich die Abstiitzung auf die Breitband-Hardwarebeschrei-
bungssprache DACAPO als sehr hilfreich.

Das Buch eignet sich sowohl fiir Informatiker in der Praxis als auch fiir
Studenten der Informatik an Universititen und Technischen Hochschu-
len.

Grofle Teile des Buches sind wahrend meines Forschungsfreisemesters,
das ich bei XEROX PARC, Palo Alto verbracht habe, entstanden. Die
sehr anregende Atmosphire dieses Forschungsinstitutes und die ausge-
zeichneten Arbeitsmoglichkeiten dort haben dieses Buch wesentlich be-
einfluBt. Ich mdchte mich herzlich bei meiner Frau und Herrn Kollegen
Waldschmidt fiir die kritische Durchsicht des Manuskriptes bedanken.
Mein Dank gilt ganz besonders auch Frau S. Alejandro, deren Eifer
dem Buch seine endgiiltige Form verliehen hat.

Paderborn, im Dezember 1988 Franz J. Rammig

Inhaltsverzeichnis

1 Entwurfsprozef

1.1 Makroskopisches Modell des Entwurfsprozesses
1.2 Abstraktionsebenen

1.3 Mikroskopisches Modell des Entwurfsprozesses
1.4 Literatur

2 Modellierungskonzepte und Entwurfssprachen

2.1 Modellierungskonzepte

2.1.1 Objektorientierte Modellierung

2.1.2 Imperative Sicht

2.1.2.1 Zeitbehaftete Interpretierte Petri-Netze

2.1.2.2 Communicating Sequential Processes (CSP)

2.1.3 Reaktive Sicht

2.1.4 Stimulierte Gleichungen

2.1.5 Modellierungskonzepte und Abstraktionsebenen

2.2 Sprachkonzepte

2.2.1 Dedizierte Sprachen

2.2.1.1 Dedizierte Sprachen fiir die Systemebene

2.2.1.2 Dedizierte Sprachen fiir die algorithmische Ebene
2.2.1.3 Dedizierte Sprachen fiir die Registertransferebene
2.2.1.4 Dedizierte Sprachen fiir die Gatterebene

2.2.1.5 Dedizierte Sprachen fiir die Schalterebene/Symbolisches Layout
2.2.1.6 Dedizierte Sprachen fir die Elektrische/Layout-Ebene
2.2.2 Sprachfamilien

2.2.3 Breitbandsprachen

2.3 Die Hardwarebeschreibungssprache DACAPO III
2.3.1 DACAPO III Grundlagen

2.3.2 Beschreibungen in DACAPO III auf der algorithmischen Ebene

11

11
13
32
37

42
42

46
47
50
55
57
60
60
61
61
64
66
66
67
69
71
74
75
75
86

2.3.3 Beschreibungen in DACAPO III auf der Systemebene

2.3.4 Beschreibungen in DACAPO III auf der Registertransferebene
2.3.5 Beschreibungen in DACAPO III auf der Gatter/Schalterebene
2.3.6 ”Behavioral”-Beschreibungen in DACAPO III

2.4 Literatur

3 Implementationsaktivititen

3.1 Systemebene zur algorithmischen Ebene

3.2 Algorithmische Ebene zur Registertransferebene
3.2.1 Monolithische Dekomposition

3.2.1.1 Ein vollsténdiges Beispiel zur monolithischen Dekomposition
3.2.2 Parallele Dekomposition

3.2.3 Hierarchische Steuerwerksdekomposition

3.3 Registertransferebene zur Gatterebene

3.3.1 Steuerwerksentwurf

3.3.1.1 Fest verdrahtete Implementierung von Steuerwerken
3.3.1.1.1 Implementierung in krauser Logik

3.3.1.1.2 Implementation durch Array-Logik

3.3.1.2 Mikroprogrammierte Steuerwerksimplementation
3.3.2 Datenpfadentwurf

3.4 Literatur

4 Optimierungsaktivititen

4.1 Optimierung auf der Systemebene

4.2 Optimierung auf algorithmischer Ebene

4.2.1 Optimierung von Basisblocken

4.2.2 Optimierung von Schleifen

4.3 Optimierung auf der Registertransferebene

4.3.1 Eine Heuristik zur Zustandsminimierung von Steuerwerken
4.3.1.1 Beispiel einer Optimierung auf RT-Ebene

4.4 Optimierung auf der Gatterebene

4.5 Literatur

97

125
133

135

142

142
143
145
161
176
177
180
180
182
185
190
194
199
199

205

205
206
206
208
209
210
220
235
252

5 Evaluierung, Validierung, Verifikation

5.1 Formale Verifikation

5.1.1 Formale Verifikation von Verhaltenseigenschaften

5.1.2 Verifikation des Zeitverhaltens getakteter Systeme

5.2 Simulation

5.2.1 Generierung ausfithrbarer Objektmodelle und deren Ausfithrung
5.2.1.1 Interne Modellierungskonzepte

5.2.1.1.1 Abbildung Algorithmischer Konstrukte von DACAPO III
5.2.1.1.2 Abbildung von DACAPO III-Konstrukten der Systemebene
5.2.1.1.3 Abbildung von DACAPO-Konstrukten auf Registertransferebene
5.2.1.1.4 Abbildung von DACAPO-Konstrukten auf Gatter/Schalterebene
5.2.1.2 Simulationstechniken

5.2.1.2.1 Streamline Code Simulation (SCS)

5.2.1.2.2 Aquitemporale Iteration (EI)

5.2.1.2.3 Critical Event Scheduling (CES)

5.2.2 Simulationsszenarios

5.2.2.1 Modellierung der Umgebung

5.2.2.2 Ergebnisanalyse

5.2.3 Mehrebenensimulation

5.2.3.1 Multisimulatoransatz

5.2.3.1.1 Datenaustausch

5.2.3.1.2 Synchronisation

5.2.3.1.3 Benutzerschnittstelle

5.2.3.2 Breitbandsimulatoren

5.3 Literatur

255

255
259
261

266
268
268
275
277
280
280
281
282
287
293
303
304
306
308
308
309
311
313
314

315

10

6. Testmethoden

6.1 Begriffsbestimmungen

6.2 Strukturorientierte Testverfahren

6.2.1 Fehlermodelle

6.2.2 Testmustererzeugung fiir das Haftfehlermodell
6.2.3 Fehlersimulation

6.2.3.1 Fehlersimulation mit dem SCS-Algorithmus
6.2.3.2 Fehlersimulation mit dem CES-Algorithmus
6.2.3.2.1 Parallele Fehlersimulation

6.2.3.2.2 Deduktive und Concurrent-Fehlersimulation
6.3 Funktionsorientierte Testverfahren

6.4 Testfreundlicher Entwurf

6.4.1 Strukturelle Mainahmen zur ErhShung der Testbarkeit
6.4.2 Selbsttest

6.5 Literatur

Sachregister

320

320
321
321
323

331
333
333
333
335
336
336
340
347

351

1 Entwurfsprozef}

Entwurfsaktivitaten sollten auf der Basis eines wohlverstandenen Modells des Ent-
wurfsprozesses untersucht werden. Zusatzlich erlaubt es ein derartiges Modell, ver-
schiedene Entwurfsmethoden zu klassifizieren und solche Unterstiitzungs werkzeuge
fiir Entwurfsaktivititen zu entwerfen und zu implementieren, die zusammenpassen.
Aus diesen Grund soll zunachst der Entwurfsprozef§ selbst untersucht werden.

1.1 Makroskopisches Modell des Entwurfsprozesses

Eine naheliegende Idee, den Entwurfsprozef zu modellieren, mag ein einfacher " Black
Box”-Ansatz sein: Ein Entwurfsprozef wird als "Black Box” gesehen, in die Entwurfs-
auftrige eingegeben werden. Immer wenn ein solcher Entwurfsauftrag in den Ent-
wurfsproze eingegeben wird, reagiert dieser damit, daB er (hoffentlich) ein Entwurfs-
ergebnis liefert. Somit kann ein Entwurfsproze, gegeben in einer Sprache L., als
Transformationsabbildung interpretiert werden, die eine Objektbeschreibung abbil-
det in eine Objektbeschreibung, gegeben in einer Sprache L,,, . Diese Abbildung
ist in den meisten Fallen durch die Historie des Entwurfsprozesses parametrisiert.
Sinnvollerweise partitioniert man die Eingabesprache L;, in zwei hauptsachliche
Subsprachen. Die erste, genannt L,, 4 dient als Eingabesprache, um die Entwurfsab-
sichten zu spezifizieren. Die zweite, genannt Ly ., wird benutzt, um Restriktionen zu
beschreiben. Derartige Restriktionen konnen spezifisch fir ein spezielles Entwurfs-
objekt sein, oder von globaler Gultigkeit. Diese Partition in zwei hauptsachliche
Subsprachen impliziert unmittelbar eine Einteilung in zwei hauptsachliche Klassen
von Entwurfsaktivitdten:

o Generierende Aktivitaten

e Uberpritfende Aktivitaten (Verifikation, Validierung, Evaluierung).

Die tiberpriifenden Aktivitaten werden durch die Sprache L;, . gesteuert und operie-
ren auf der Ausgabe der generierenden Aktivititen. Diese haben L;,q als primare
Eingabe. Wann immer jedoch die uiberpriifenden Aktivititen eine Nichtiiberein-
stimmung zwischen der Ausgabe der generierenden Aktivititen und den gerade
giltigen Restriktionen feststellen, wird Information dariiber an die generierenden
Aktivitaten zurick gesandt. Dadurch wird eine Modifizierung des aktuellen Ent-
wurfsergebnisses angefordert. Bezeichne L ..« die Sprache, die benutzt wird, um
(vorlaufige) Entwurfsergebnisse an die aberprifenden Aktivititen zu senden und
Leorrect die Sprache, die benutzt wird, um Korrekturen anzufordern. Die generieren-
den und uberpriifenden Aktivitaten zusammen mit den Sprachen (Kommunikations-
kanalen) L peck und Lcoprec: bilden eine Riickkopplungsschleife, die von den beiden
Sprachen Lin4 und L;,. gesteuert wird. Damit ist ein kybernetisches Modell des
Entwurfsprozesses entstanden (Abb. 1).

12

checking F
L in,c—4 F -+L out,c

Lind L correct L check I — L outd

generation

i

Abb. 1: Makroskopisches Modell des Entwurfsprozesses

Ublicherweise wird die Beschreibung des Entwurfsergebnisses ebenfalls in Form ei-
nes Sprachpaares gegeben. Der Grund ist, daB ein entworfenes Objekt nicht nur
gewisse Umgebungsrestriktionen zu respektieren hat, sondern in der Regel auch
zusatzliche impliziert. Wir bezeichnen die beiden Ausgabesprachen mit Loy:q und
Loyt . Wenn man die iiberpriifenden Aktivitaten genauer betrachtet, so kann man
drei hauptsichliche Subaktivititen identifizieren: Zunichst muB das Ergebnis, das
von den generierenden Aktivititen erzeugt wird, auf Einhaltung der Restriktionen,
die durch L, . formuliert werden, gepriift werden. Dies mag im engeren Sinne mit
"Evaluierung” gekennzeichnet werden. Im Falle einer Nichtiibereinstimmung (Nor-
malfall) muB entschieden werden, durch welch eine Strategie dieser Defekt repariert
werden soll. Diese Subaktivitat mag mit ”Entscheidungsfindung” bezeichnet werden.
SchlieBlich muB die so gefundene Entscheidung ausgefuhrt werden. Dies bedeutet,
dafl sie in Information, ausgedriickt in der Sprache Lcorrec:, Uberfihrt werden muB,
sodaB sie von den generierenden Aktivititen interpretiert werden kann. Diese Sub-
aktivitat mag mit " Steuerung” bezeichnet werden. Mit dieser Diskussion wurde ein
verfeinertes Modell des Entwurfsprozesses erhalten, wie es in Abb. 2 angedeutet ist.
Es sollte festgehalten werden, daB die beteiligten Aktivititen interne Zustande ha-
ben konnen. In der Regel hat man es sogar mit lernfahigen Aktivititen zu tun.
Somit sind sie nicht nur von der aktuellen Eingabe, wie sie in den Sprachen Lin4
und L, formuliert wird, abhangig, sondern auch von deren Geschichte. Zusatzlich
kann in den meisten Fillen nicht davon ausgegangen werden, daff die Eingabebe-
schreibungen wahrend des Entwurfsprozesses stabil bleiben. In jedem Fall jedoch
erwartet die Umgebung des Entwurfsprozesses (das Management), da er nach einer
gewissen Zeit einen stabilen Zustand (Equilibrium) erreicht. Bis hier haben wir ein
makroskopisches Modell der Klasse” Entwurfsproze” erhalten. Existierende oder
gewinschte Entwurfsprozesse kdnnen instantiiert werden, wobei die geeigneten At-
tribute zumn Parametrisieren der beteiligten Objekte gewahlt werden missen. Die

13

— v
regulation decision evaluation
L in, : | » Loutc
Lind L correct L check > Loutd
- .
generation

Abb. 2: Verfeinertes Modell des Entwurfsprozesses

erhaltene Struktur spiegelt nicht notwendigerweise die Arbeitsteilung des Entwurfs-
prozesses wieder (d.h. die beteiligten Abteilungen), sondern klassifiziert lediglich
die verschiedenen Aktivitaten, die ausgefiihrt werden miissen. Diese makroskopische
Sichtweise scheint allerdings nur fiir eine sehr grobe Analyse eines Entwurfsprozesses
geeignet zu sein, oder fiir den Fall, dal der zu analysierende ProzeB eine sehr kleine
Subaktivitat eines komplexen Entwurfsprozesses ist. Um grofle Prozesse zu analysie-
ren, missen die beiden allgemeinen Paradigmen fir diesen Zweck zur Beherrschung
von Komplexitat befolgt werden:

¢ Divide et impera (d.h. es wird ein Kompositions- /Dekompositionsmechanis-
mus bendtigt)

e Abstraktion

1.2 Abstraktionsebenen

Verschiedene Abstraktionsebenen haben eine lange Tradition beim Entwurf kom-
plexer Systeme, insbesondere im Fall des Entwurfs digitaler Systeme. Unglicklicher-
weise gibt es keinen allgemein akzeptierten Standard fur Abstraktionsebenen. Das
nachfolgend beschriebene System scheint jedoch eine breite Vielfalt derartiger Sche-
mata zu tberdecken. Es umfaft sechs Ebenen, wobei die Ebene 1 (Elektrische
Ebene/Layout) die niedrigste ist und Ebene 6 (Systemebene) die hochste. Bevor
diese Ebenen diskutiert werden sollen, muB zunachst das Konzept der Sicht(weise)

14

eingefithrt werden. Es gibt vier hauptsachliche Sichten, unter denen ein zu entwer-
fendes System betrachtet werden kann:

1) Die Verhaltenssicht

In dieser Sicht ist man hauptsachlich daran interessiert, wie sich das System iiber
die Zeit hinweg verhilt. D. h. es kann beschrieben werden durch eine Menge
”charakterisierender Variablen” und deren Werteverlaufe tiber die Zeitachse. Diese
”charakterisierenden Variablen” beschreiben sowoh] die Werteverliufe an den Ein-
/ Ausgabeleitungen als auch die internen Zustandsfolgen des betrachteten Ob jekts.

2) Die Struktursicht

In diesem Fall ist man mehr daran interessiert, wie das Objekt aus anderen Objekj
ten zusammengesetzt ist. Die Subobjekte miissen dazu aufgelistet werden, wobei
die Klasse, zu der sie gehoren, und die notwendigen Parameter (falls es sich um
generische Objekte handelt) angegeben werden miissen. Zusatzlich muf) die Verbin-
dungsstruktur spezifiziert werden.

3) Die Geometriesicht

In dieser Sicht werden Objekte und ihre Subobjekte als mit geometrischen Eigen-
schaften behaftet betrachtet. Somit ist ihre relative Position zueinander ebenso von
Interesse wie symbolische oder reale Dimensionen in einem n-dimensionalen Raum.

4) Die Testsicht

Diese Sicht scheint zunachst der Verhaltenssicht zuzuordnen, da man entscheidf.:n
will, ob sich ein gefertigtes System so verhalt wie intendiert. Jedoch ist Testen ein
bichen unterschiedlich, da in den meisten Fallen nur strukturorientiertes Testen
moglich ist. Hier wird die Existenz oder Nichtexistenz angenommener struktureller
Defekte (Fehlermodelle) uberprift.

Falls man sich auf die Sichten 1 - 3 beschrankt, 148t sich dieser Multisichten-AnSt’TtZ
graphisch sehr ibersichtlich mittels Gajsky’s Y-Diagramm (Abb.3) darstellen. Die-
ses Bild 1aBt sich sehr einfach zu einem X-Diagramm erweitern, das die Testsicht
auch iiberdeckt (Abb. 4). Eine alternative Darstellung mit gleicher Aussagekraft
ist durch eine vierseitige Pyramide (Abb. 5) gegeben. Diese Darstellung gibt sehr
schon wieder, daB hohere Abstraktionsebenen in der Regel weniger Information als
niedrigere beinhalten.

Nun sollen die verschiedenen Abstraktionsebenen detaillierter diskutiert werden:

Ebene 8 : Systemebene
Verhalten:

. Modellierungskonzept:

15

Level 4

Structu rB ehavior

v

Geometry

Abb. 3: Gajsky’s Y-Diagramm

Level 4

Abb. 4: X-Diagramm

16

Level 5

Leveli 4

Level 3

Level 2 Testing

Level 1

Behavior

Level O,

Abb. 5: Entwurfs-Pyramide

System von semiautonomen Modulen wie Prozessoren, Kanile, Steuerwerke,
je charakterisiert durch :

- Funktionalitat (d.h. den Instruktionssatz)
- Leistungskriterien

- Kommunikationsprotokolle

Zeitmodell :
Kausalitiit

Beobachtbare Werte :
Beliebige Werte in einem frej definierbaren Wertebereich.

Struktur:

e Statisch :
Auflistung von Komponenten und Angabe der Verbindungsstruktur

® Dynamisch :
Aufrufstruktur

Geometrie:

* Floorplanning im weiteren Sinn

Testkonzepte:

17

¢ Allgemeine globale Teststrategie.

Erlduterungen:

Das Modellierungskonzept auf dieser Ebene fiir das Verhalten ist durch ein System
semiautonomer kooperierender Module wie Prozessoren, Kanile, etc. gegeben. All
diese Komponenten werden als ” Prozessoren” in einem weiteren Sinn betrachtet, d.h.
als Objekte, die in wohldefinierter Weise auf Instruktionen reagieren. Damit sind
aus einer theoretischen Sichtweise Abstrakte Datentypen (ADT) gut geeignet, als
konzeptionelles Modell fiir diese Ebene zu dienen. Wenn man sich aus dem Bereich
der Software nahert, so paBt das Konzept der objektorientierten Programmierung
sehr gut. Drei hauptsachliche Eigenschaften miissen pro beteiligtem Modul (Objekt)
spezifiziert werden:

e Fir jedes Modul muB die grundlegende Funktionalitdt angegeben werden. Dies
bedeutet nichts anderes, als Syntax und Semantik seines Instruktionssatzes zu
definieren.

¢ Die grundlegenden Restriktionen auf dieser Ebene sind solche bezuglich der
Leistung. Sie kénnen global oder pro beteiligtem Modul spezifiziert sein.

e SchlieBlich miissen Syntax und Semantik der globalen Kommunikationsstruk-
tur angegeben werden. Dies geschieht durch Definition von Protokollen fir
jede existierende Kommunikationsverbindung.

Die Struktur auf dieser Ebene ist durch einfaches Auflisten der beteiligten Kom-
ponenten {(Typ und Instantiierung) und durch Angabe der Verbindungsstruktur ge-
geben. Diese Verbindungen kénnen ebenfalls als Komponenten angesehen werden.
Thnen werden in der Verhaltenssicht die Kommunikationsprotokolle zugeordnet. Ne-
ben dieser statischen Struktur kann zusatzlich eine dynamische existieren. Sie gibt
pro Modul an, von welchen anderen Modulen es Dienste anfordert und an welche
es Dienste anbietet. Natirlich ist auch diese Information in Verbindung mit der
Verhaltenssicht zu sehen.

Auf dieser Ebene existiert sehr wenig geometrische Information, falls man den logi-
schen Entwurf betrachtet. Andererseits finden grundlegende mechanische Entschei-
dungen auf dieser Ebene statt. In den meisten Fallen durch externe Restriktionen
gesteuert, wird auf dieser Ebene die dreidimensionale Plazierung der Komponenten
durchgefiihrt.

Betrachtet man das Testen, so muf auf dieser Ebene eine globale Teststrategie fest-
gelegt werden. Modulweise muB die Steuerbarkeit und Beobachtbarkeit betrachtet
und die jeweilige Testmethode festgelegt werden. Besondere Beachtung mufl auf die
Kommunikationskanile, d.h. auf die Protokolle gelegt werden.

Beispiel:

Es wird ein System angenommen, das aus vier Transputer-artigen Prozessoren be-
steht. Jeder dieser Prozessoren hat vier Kommunikationskanile, wobei eine Verbin-
dungsstruktur in Form eines Torus angenommen wird. Abb. 6 zeigt diese Struktur.

18

Abb. 6: Ein Prozessor-Torus

Ein derartiges System kann DACAPO-artig (siehe Abschnitt 2.3) wie folgt beschrie-
ben werden:

definition module pProcessor;
type processor =

export (operation_class_1,
operation_class_2,

operation_class_3) Procedure processor;
Processor.operation_class 1 =

rocedure processor. operation_class_1 3
Processor.operation_class 2 =

procedure processor. operation_class_2;
Processor.operation_class 3 =

procedure processor. operation_class_3;

channel = Procedure channel;

end processor.

module main;

from processor import processor,
Processor.operation_class_1
Processor.operation_class_2 -
Processor.operat ion_class_3 5
channel ;

Y2r processor_array : array [0:1,0:1] of Processor;

link_array : array [0:7]

.{declarion of other (local) objects}

conbegin

. {description of the system’s behavior}

end main.

Typische dedizierte Sprachen fir diese Ebene sind:

- Um die Funktionalitdt zu beschreiben : DACAPO, VHDL, (OCCAM)

- Um die Leistung zu beschreiben : HIT

- Um Protokolle zu beschreiben : SDL, SLIDE, LASSO, (DACAPO)

Ebene 5 : Algorithmische Ebene
Verhalten :

¢ Modellierungskonzept:
Nebenlaufige Algorithmen

o Zeitmodell :
Kausalitat oder diskrete Realzeit

o Beobachtbare Werte :
Bitketten mit Interpretation.

Struktur:

e Keine spezifische Information.
Geometrie :

¢ Keine spezifische Information

Test:

g channel ;

19

e Softwareartiges Testen von Algorithmen (Tests auf niedrigeren Ebenen konnen

moglicherweise davon abgeleitet werden).

20

Erlauterungen :

Die Module auf der Systemebene sind Prozessoren im weiteren Sinn. Sie haben
jeweils einen Instruktionssatz, der zu interpretieren ist. Auf der algorithmischen
Ebene muB nun pro Modul der dazugehdrige Interpretationsalgorithmus fiir den
spezifischen Instruktionssatz definiert werden. Dieser Algorithmus ist iiblicherweise
hochgradig nebenlaufig (z.B. falls Pipelining benutzt wird). Daher erscheinen Mo-
dellierungskonzepte wie Petri-Netze oder CSP fiir diesen Zweck gut geeignet zu sein.
Sie werden an spaterer Stelle detaillierter diskutiert werden. Diese Ebene wird oft
auch Mikroprogrammierungsebene genannt. Tatsichlich kann man sich ein System
als Hierarchie von Interpretern vorstellen, wobei jeder Interpreter ein Mikropro-
gramm ist, das den Instruktionssatz der nachsthéheren Mikroprogrammiersprache
interpretiert. Beziiglich des Zeitmodells interessiert man sich auf dieser Ebene in den
meisten Fallen weiterhin nur far Kausalititen. Allerdings wird in manchen Fallen
ein diskretes Zeitmodell angenommen, wobei man ein bestimmtes Taktschema im
Auge hat. Die beobachtbaren Werte sind ein wenig konkreter als auf der Systeme-
bene. Thre Eigenschaft als Bitketten ist nun in den meisten Fallen sichtbar. Doch ist
dies weiterhin von geringerem Interesse, man konzentriert sich mebr auf die typspezi-
fische Interpretation (z.B. als Integer). Beziglich der Struktur miissen wir zwischen
der Komposition einer Kontrollstruktur aus Komponenten wie ” While-Schleife” oder
"Fork/Join” und der Stuktur des Operationsteils des Algorithmus unterscheiden. Im
letzteren Fall werden auf dieser Ebene bereits recht hardwarenahe Komponenten wie
Register oder ALUs benutzt. Geometrische Information ist auf dieser Ebene nicht
prasent. Es gibt eine Reihe von Testmethoden fir Algorithmen. Sie alle stammen
aus dem Bereich des Softwaretestens. Sie kénnen entweder als Grundlage fur funk-

tionales Testen oder zur Ableitung von Testmustern auf niedrigeren Ebenen benutzt
werden.

Beispiel:

Angenommen wird ein gewShnlicher Prozessor vom von-Neumann-Typ. Er habe ei-
nen Interpretationszyklus, bestehend aus "instruction fetch", "operand fetch”
und "execute". Weiterhin wird angenommen, da8 diese drei Aktivitaten im Pipe-
lining ablaufen, also nebenlaufig. Sie sollen mittels eines Taktes , genannt "main-
clock", synchronisiert werden. Ein derartiges System kann auf algorithmischer
Ebene in DACAPO-artiger Weise wie folgt beschrieben werden :

procedure alg_demo;

procedure instr_fetch (in inreg : bit(32); out outreg : bit(32));
{procedure body, defining how the instruction is fetched based

upon an address obtained from inreg, resulting in an instruction
stored in outreg)

procedure operand_fetch (in inreg : bit(32); out outreg : bit(32));
{prodedure body, defining how the operand is fetched based

21

upon an address obtained from inreg, resulting in an operand
stored in outreg}

procedure execute (in instr, operand : bit(32); out status : bit(32));
{procedure body_defining how the instruction obtained from
instr is executed using the operand obtained from operand,
resulting in a status information stored in status}

conbegin

while not halt do

at up (mainclock) do

_Eoﬁgegin -
instr_fetch(memory._adr_register, instr_reg);
operand_fetch(instr_reg, operand_reg);
execute(instr_reg, operand_reg, status)
end

end

Man beachte, dafl in dem Beispiel mehrere Details weggelassen wurden. So wurde
keine der globalen Variablen wie memory-adr-register deklariert. Weiterhin wur-
den einige Seiteneffekte der Prozeduren angenommen. Man beachte, da8 die Struk-
tur des Algorithmus nicht unmittelbar die Struktur der zu implementierenden Hard-
ware wiedergibt. Jedoch mag eine gewisse Hardwarestruktur impliziert werden, z.B.
wegen der beschriebenen Pipeline-Struktur (conbegin).

Eine typische dedizierte Sprache fiir diese Ebene ist ISPS. DACAPO als Breitband-
sprache Uiberdeckt diese Ebene ebenfalls.

Ebene 4 : Registertransferebene
Verhalten :
e Modellierungskonzept :
Nicht geordnete Menge von Operationen, jede Operation ein "Guarded Com-

mand”

o Zeitmodell :
Diskrete Realzeit (Zahlen von Taktzyklen)

¢ Beobachtbare Werte :
Bitketten (meist ohne Interpretation)

Struktur :

o Aufzahlung von RT-Komponenten plus Verbindungsstruktur

22
Geometrie :

s Floorplanning
Testkonzepte :

e Spezielle Testmethoden fiir RT-Module (RAM, ROM, PLA, ALU, Schiebere-
gister), C-Testbarkeit, Regeliiberpriifer fiir "Design for Testability” auf RT-
Ebene.

Erlauterungen :

Die Registertransferebene kann als das Inverse der algorithmischen Ebene charakte-
risiert werden. Auf der algorithmischen Ebene wird das System in einer imperativen
Weise betrachtet. Das heiBt, daB die Sichtweise die des Steuerwerkes ist. Dieses
entscheidet, wann nach welchen vorhergehenden Aktionen eine bestimmte Aktiop
durchgeftibrt werden darf. Die strikt sequentielle Anordnung in {iblichen imperati-
ven Sprachen wird hier generalisiert, um auch Nebenlaufigkeit zu erlauben. Auf der
Registertransferebene wird eine reaktive Sichtweise eingenommen. Das System wird
nun aus Sicht der gesteuerten Objekte betrachtet. Jedes derartige Objekt beobach-
tet kontinuierlich eine objektspezifische Bedingung. Wann immer diese Bedingung
wahr wird, fihrt das Objekt seine Aktion durch. Dabei modifiziert es iblicherweise
die Bedingungen innerhalb des Bedingungsraums. Dadurch mag es die Ausfithrung
anderer Objekte (einschlielich seiner selbst) ermoglichen.

Auf dieser Ebene ist man iblicherweise an einem spezifischen synchronen Taktungs-
schema interessiert. Daher wird das Zeitschema auf dieser Ebene meist durch das
Zihlen von Taktzyklen gegeben. Bedingungen auf der Basis dieser Taktsignale sind
Bestandteil der Ausfiihrbarkeitsbedingungen der involvierten Module. Es hangt von
dem jeweiligen Implementierungskonzept fiir das Zeitschema ab, ob Taktpegel, ster-
gende, fallende oder beide Flanken, oder gar eine Mischung dieser Techniken benutzt
werden. Die beobachtbaren Werte sind nun Bitketten. In den meisten Fallen wir.d
ithnen nicht mehr eine feste Interpretation (Typ) zugeordnet. Vielmehr werden sie
von verschiedenen Objekten unterschiedlich interpretiert. Auf der Registertransfer-
ebene wird die endgiiltige Hardwarestruktur sichtbar. Das System wird daher als
Verschaltung von Registertransfermodulen beschrieben. Typische derartige Module
sind Register, ALUs, Multiplexer, Kodierer, Dekodierer, Schiebebausteine, etc. So-
mit ist in dieser Sicht die Registertransferebene eine grobe Netzliste. Fir einige
der Komponententypen auf der Registertransferebene existieren spezielle semifunk-
tionale Testmethoden. Sie konnen unabhingig von einer speziellen Implementie-
rungstechnik ausgewahlt und angewandt werden. Daritberhinaus werden auf dieser
Ebene wichtige Entscheidungen in Bezug auf testbare Entwiirfe getroffen. Als Bei-
spiel diene die Entscheidung, ob ein Priifbus eingefithrt werden soll. Daher ist es

sinnvoll, daB Regeliiberpriifer, die auf Testbarkeit priifen, Information auf dieser
Ebene verarbeiten.

Beispiel :

Es sei ein System angenommen, bestehend aus zwei Bussen, zwei Registern, die je
mit beiden Bussen bidirektional verbunden sind, und einer ALU, die von beiden
Bussen gleichzeitig gelesen werden kann und ihr Ergebnis iiber eine dedizierte Ver-
bindung in ein drittes Register schreibt. Dieses dritte Register kann auf beide Busse

schreiben. Abb. 7 zeigt dieses System.

Auf Registertransferebene kann dieses System in DACAPO-artiger Weise wie folgt
beschrieben werden :

bus-a
T
4
(2]
=
e r3
e
bus-b

procedure register_transfer_example:

{declarations}

impdef

at up
up
up

up

o 15 16 1%

bus.b :

up

bus_a := case sender.a of

case sender_b of

do r1 :
do rl :
do r2 :
do r2 :
= bus.c;

Abb. 7: Beispiel eines Datenpfades

24

bus c := cage operation of
add : bus.a + bus_b;
sub : bus_a - bus_b;
and : bus_a and bus_b
end;

Man beachte, daB auch dieses Beispiel rudimentir ist. Es fehlen nicht nur die Dekla-
rationen, sondern auch die Generierung der Steuersignale. Es 148t sich beobachten,
daB zwei Klassen von Objekten beteiligt sind: Solche, die auf das Auftreten spezieller
Ereignisse reagieren, in diesem Fall steigende Flanken von Booleschen Ausdriicken,
und solche, die kontinuierlich aktiv sind, wie die Definition der Werteverlaufe auf
den Bussen. Typische dedizierte Sprachen auf dieser Ebene sind beispielsweise: CDL
(die "klassische” RT-Sprache), DDL, CASSANDRE, RTS, ERES, KARL. DACAPO
und VHDL als Breitbandsprachen iiberdecken diese Ebene ebenfalls.

Ebene 3 : Gatterebene
Verhalten :

* Modellierungskonzept :

System " Boolescher” Gleichungen (in vielen Fallen wird eine mehrwertige Lo-
gik benutzt. Derartige Logiken sind meist nicht Boolesch.)

e Zeitmodell:
Kontinuierliche Realzeit

¢ Beobachtbare Werte :
"Bits” (sie konnen mehrwertig sein),

Struktur :

* Auflistung von Komponenten und Angabe der Verbindungsstruktur (Netzliste)
Geometrie :
® Floorplanning

Testkonzepte :

® Strukturorientiertes Testen, Fehlermodelle wie Haftfehler oder KurzschluBfeh-
ler, Testmustergeneratoren.

25

Erlauterungen :

Beschreibungen auf der Gatterebene konnen als Expansion der Module auf der RT-
Ebene angesehen werden. Allerdings geht die semantische Information iiber die
Unterscheidung zwischen Daten-und Steuersignalen, wie sie auf der RT-Ebene noch
vorhanden ist, vollstindig verloren. Man hat nun lediglich ein Netz mit Gattern
und Flipflops als Knoten und Einbit-Verbindungsleitungen als Kanten. Das Verhal-
ten ergibt sich aus der Transformationsabbildung an den Knoten, die kontinuierlich
ausgefiihrt wird, und durch das Werteverteilungsschema, wie es durch die Verbin-
dungsstruktur gegeben ist. Auf dieser Ebene ist man in vielen Fallen an prazisen
Informationen Giber das Zeitverhalten interessiert. Daher ist das Gbliche Zeitmodell
auf dieser Ebene das der kontinuierlichen Realzeit. Allerdings werden verschiedene
approximative Verzégerungskonzepte benutzt, die von simplen Konzepten wie feste
Nominalverzogerung bis hin zu Modellen reichen, die fast das analoge Verhalten der
beteiligten Module wiederspiegeln. Beobachtbare Werte sind "Bits” in einer mehr-
wertigen Logik, wobei bis zu 32 verschiedene Werte betrachtet werden. Die logische
Struktur ist auf dieser Ebene sehr gut dokumentiert. Dabei miissen die Knoten nicht
auf "Gatter” im engen Sinn beschrankt sein, sondern auf atomare Schaltungen, die
durch einen Booleschen Ausdruck bzw. durch ein Biindel Boolescher Ausdriicke be-
schrieben werden kénnen. Dadurch sind auch hierarchische Beschreibungen moglich.
Testen ist lange Zeit nur auf der Gatterebene betrachtet worden. Daher gibt es auf
dieser Ebene eingefuhrte Fehlermodelle, die ein strukturorientiertes Testen erlauben.
Dabei handelt es sich um eine Testmethode, bei der man nicht funktionelles Fehlver-
halten, sondern nur die Anwesenheit von irgendeinem als moglich erachteten Defekt
ausschlielen will. Die {iblichen Fehlermodelle sind Haftfehler und Kurzschluifehler.
Fiir derartige Fehlermodelle existieren Testmustergeneratoren (ATPG), falls gewisse
Restriktionen beachtet werden.

Beispiel:

Es sei als Verzogerungsmodell eine einfache Durchlaufverzégerung angenommen, die
jedem Gatterausgang zugeordnet wird.

Gegeben sei die in Abb. 8 gezeigte Schaltung. Sie 138t sich auf Gatterebene in
DACAPO-artiger Weise wie folgt beschreiben:

procedure gate.demo;

imgdef
sigl := sig7 and (sig5 or sigl0) delay (up 5 to 7, down 3 %o 6);
sig2 := not sigl delay (3 to 8);

26

sig1 or

sig7 and —Q[_dila_y_ sig2

sig1t

Abb. 8: Beispiel einer Gatterschaltung

In diesem Beispiel wurde angenommen, da8 es fiir steigende und fallende Fla.nken
unterschiedliche Verzogerungszeiten gibt. Weiterhin wurde mit Unsicherheitsinter-
vallen bei der Verzogerungsbeschreibung gerechnet.

Typische dedizierte Sprachen far diese Ebene sind unter den Eingabesprachen von
Gattersimulatoren wie TEGAS, DISIM, LSIM, DSIM, HILO, CADAT zu finden.
Diese Ebene wird allerdings auch von gewissen RT-Sprachen, die eine hinreichend
prazise Beschreibung des Zeitverhaltens erlauben (z.B. ERES), und natiirlich durch
Breitbandsprachen wie DACAPO und VHDL iberdeckt. Dartber hinaus gibt es
Bestrebungen, diesen Rahmen auf komplexere Module auszuweiten. Die grunfﬂe‘
gende Idee ist es, das Ein-/Ausgabeverhalten von Modulen (”Supergatter”) in einer
bestimmten Sprache zu beschreiben und diese "Supergatter” in Beschreibungen auf
der Gatterebene einzufiigen. Dieser Ansatz sollte nicht mit der RT-Ebene verwech-
selt werden. Auf der RT-Ebene existiert ein wohldefinierter konzeptioneller Rahmen,
wahrend hier beliebige Module ohne vordefinierte Semantik verschaltet werden. Ob-
wohl nur die Funktion der ®Supergatter” beschrieben werden mu8, werden fiir diesen
Zweck meist algorithmische Sprachen benutzt. Als Beispiele fur derartige ? Verhi'il-
tenssprachen” ("Behavioral Languages”), wie sie meist genannt werden, mogen die-
nen: HELIX, DABL, QL, CAP/FBDL. ELLA fallt in dieselbe Klasse, folgt jedoch
als konsequent funktionale Sprache einem saubereren Ansatz.

Ebene 2 : Schalterebene / Symbolisches Layout

Verhalten :

¢ Modellierungskonzept :
System mehrwertiger diskreter Gleichungen

s Zeitmodell :
Kontinuierliche Realzeit

s Beobachtbare Werte :
Paare der Art (logischer Wert, Starke)

27

Struktur :

o Auflistung von Transistoren (unterschiedlichen Typs) zusammen mit Angabe
einer Verbindungsstruktur, wobei den Netzen Kapazititen zugeordnet werden

Geometrie :
e Stickdiagramme (d.h. nichtmetrisches Layout)
Testkonzepte :

o Strukturorientiertes Testen mit modifizierten Fehlermodellen, Modifikationen
zur Erhohung der Testbarkeit, Ausnutzung topologischer Information zur Ver-
ringerung der Anzahl moglicher Kurzschlufifehler.

Erlauterungen :

Beschreibungen auf der Schalterebene werden entweder dadurch erhalten, dafl man
solche auf der Gatterebene zu Netzwerken aus Schaltern und Kapazitaten expan-
diert, oder indem man solche Schaltwerke erzeugt, die keine Entsprechung auf der
Gatterebene haben. Als Modellierungskonzept hat man ein System mehrwertiger
diskreter Gleichungen. Eine andere mogliche Betrachtungsweise ist die des endli-
chen Automaten, wobei sich der Zustand aus der momentanen Ladungsverteilung
in den Kapazititen ergibt. Die Komponenten, die auf dieser Ebene benutzt wer-
den, sind simplifizierte Transistoren (idealisierte Schalter,”switches”) und "Knoten”
(Kapazititen). Beobachtbare Werte sind jeweils Paare bestehend aus einem logi-
schen Wert und einer Signalstarke. Beide Werte haben ublicherweise einen endli-
chen Wertebereich. Das Zeitmodell ist wie im Fall der Gatterebene kontinuierliche
Realzeit. Beziglich der Strukturbeschreibung miissen die involvierten Transistoren
aufgelistet und die Verbindungsstruktur angegeben werden. Jedem verbindenden
Netz kann eine Kapazitit zugeordnet werden. Die geometrische Information wird
in Form von Stickdiagrammen gegeben. Uber die reine Strukturinformation hinaus
enthalten sie Information iiber die relative Lage der Komponenten zueinander und
die Dotierungsebene der Verbindungsleitungen. Natirlicherweise versucht man die
strukturellen Testmethoden der Gatterebene auf dieser Ebene auch anzuwenden.
Allerdings misssen hierzu die Fehlermodelle leicht modifiziert werden. Die geometri-
sche Information, die auf dieser Ebene vorhanden ist, kann sinnvoll far Testzwecke
eingesetzt werden. Speziell im Fall von Kurzschlufifehlern kdnnen die mdglichen
Kurzschliisse ignoriert werden, die zwischen entfernten Punkten stattfinden miBten
(eine Information, die auf hoheren Eben nicht vorliegt).

Beispiel :

Abb. 9 zeigt die Struktur eines CMOS NAND-Gatters, Abb. 10 ein Stickdiagramm
dazu.

Diese geometrische Information konnte alternativ auch in einer algorithmischen Lay-
outsprache gegeben werden. Nimmt man einen Prozedurtyp collect (capacity,

28

prech el e2 e3 e4d

el B el e -3-—
GNDI l , l | ,_J I_l vDD

2, ? 2 <,
7 % %0 R, % A, %, @%0 ’"&%

0
andout (7]

Abb. 9: Schematic eines CMOS NAND-Gatters

GND el e2 e3 ed precharge vdd

nwell
mmm metal | wzzz ditiusion
, B
poly , . contact

Abb. 10: Stickdiagramm eines CMOS NAND-Gatters

29

portl, port2,...,portn) zum Beschreiben von Netzen und einen Prozedurtyp
transfer (technology, gate, source, drain) zur Beschreibung von Transisto-
ren an, so kann diese Schaltung in DACAPO-artiger Weise wie folgt beschrieben
werden :

procedure switch. level_example;
impdef

transfer (pmos, prech, vdd, prechout);
transfer (nmos, e4, n4u, edout);
transfer (nmos, e3, n3u, n4);

transfer (nmos, e2, n2u, n3);

transfer (nmos, el, niu, n2);

transfer (nmos, prech, gnd, nl);
collect (strengthl, prechout, e4out, andout);
collect (strength2, n4u, n4);

collect (strength2, n3u, n3);

collect (strength2, n2u, n2);

collect (strength2, niu, ni);

Alle Knoten(Netze) auBer dem ersten werden mit gleicher Kapazitat angenommen.
Vdd und GND werden als vordefinierte Konstanten angenommen.

Die klassische dedizierte Sprache auf dieser Ebene ist die Eingabesprache des Switch-
Level-Simulators MOSSIM. Diese Ebene wird partiell auch von den derzeitigen
Versionen der Breitbandsprachen DACAPO und VHDL uberdeckt. Typische geo-
metrische Sprachen auf dieser Ebene sind die verschiedenen Notationen fir Stick-
diagramm-Editoren. Ein Beispiel fiir eine algorithmische Layoutsprache fiir symbo-
lisches Layout ist HILL.

Ebene 1 : Elektrische Ebene / Layout
Verhalten :

¢ Modellierungskonzept :
System von Differentialgleichungen

o Zeitmodell :
Kontinuierliche Realzeit

30

e Beobachtbare Werte : i
Werte innerhalb eines kontinuierlichen Wertebereichs (Spannungen, Strome,...)

Struktur :

o Auflistung elektrischer Elementarbausteine und Angabe der Verbindungsstruk-
tur

Geometrie :
o Metrisches Layout

Testkonzept :

e Identifikation von Masken- oder Fabrikationsdefekten, funktionaler Vergleich
zwischen intendiertem und beobachtetem Verhalten.

Erlauterungen :

Auf dieser Ebene wird die digitale Interpretation der Schaltung aufgegeben und
das analoge Verhalten betrachtet. Das Modellierungskonzept ist durch ein System
von Differentialgleichungen iiber kontinuierlichen Wertebereichen und in kontin‘uler—
lichen Zeitbereichen gegeben. Die benutzten Elementarbausteine sind Widerstande,
Kapaczitaten, etc.. Das Layout ist mit der elektrischen Beschreibung eng gekOPPelt’
da es wenig Sinn macht, ein metrisches Layout ohne Kenntnis des Herstellungs-
prozesses anzufertigen. Das metrische Layout unterscheidet sich vom symbolischen
dadurch, daf} jedes benutzte Objekt eine wohldefinierte BemaBung hat. Zusatzlich
muB auf dieser Ebene die Maskeninformation fiir jeden Herstellungsschritt bereitge-
stellt werden, wahrend man auf der Ebene des symbolischen Layouts von gewissen
Schritten abstrahieren kann. Fir das Testen ist diese Ebene dann essentiell, wenn
man den physikalischen Grund eines Fehlers identifizieren will. Dies ist besondtzrs
in der Phase der Stabilisierung eines noch instabilen Herstellungsprozesses wichtig.

Beispiel :
Abb. 11 zeigt ein metrisches Layout.

Als Beispiel fiir eine Beschreibung des elektrischen Verhaltens diene folgende Be-
schreibung eines statischen NOR mit 4 Eingingen in DOMOS :

TITLE NORS4
CIRCUIT
$NOR S4-1

$ 1. EINGANG
TL P E2 N12 E1 8 1.5 110 110

31

VDD GND

Abb. 11: Beispiel eines Layouts

T2 N E2 NO N11 8 2.5 110 110

$ 2. EINGANG
T3 P E3 N13 N12 8 1.5 110 110
T4 N E3 NO N11 8 2.5 110 110

$ 3. EINGANG
T5 P E3 N14 N13 8 1.5 110 110
T6 N E3 NO N11 8 2.5 110 110

$ 4. EINGANG
T7 P E3 N11 N14 8 1.5 110 110
T8 N E3 NO Ni1 8 2.5 110 110

$ AUSGANGSBELASTUNG JE 1 GATE GEGEN MASSE UND VDD
C 1 N1t E1 0.017
C2 NO N11 0.010

TIMER O 160

PARAMETERS

N CHANNEL N BODY NO NB 1.8E14 TOX 0.04 VTO 1.0 CGOX 0.85E-3 BO 0.045
N THETA 0.045 LOV 0.0 K1 0.3 CJ 0.46E-4 FL 0.2 F 2.0

P CHANNEL P BODY E1 NB 1.8E16 TOX 0.04 VIO 1.0 CGOX 0.85E-3 BO 0.014
P THETA 0.055 LOV 0.0 K1 0.8 CJ 0.46E-3 FL 0.2 F 2.0

WIDTH 100

32

Typische dedizierte Sprachen auf dieser Ebene:

Es gibt eine Vielzahl von Layouteditoren. Darfiberhinaus gibt es verschiedene algo-
rithmische Layoutsprachen. Hauptsachlich als Datenaustauschformate werden Spra-
chen wie CIF oder EDIF als textuelle Darstellung von Layouts benutzt. Das elek-

trische Verhalten kann in den Eingabesprachen elektrischer Simulatoren wie SPICE
oder BONSAI (DOMOS) beschrieben werden.

1.3 Mikroskopisches Modell des Entwurfsprozesses

In Abschnitt 1.1 wurde ein adiquates makroskopisches Modell des Entwurfsprozesses
entwickelt. Dieses Modell kann auf die sechs verschiedenen Abstraktionsebenen un-
abhingig angewandt werden, was zu sechs vollstindig getrennten Entwurfsprozes-
sen fithren wirde. Diese Prozesse konnen jedoch dadurch verbunden werden, daf
prozeBinterne Aktivitaten durch solche ersetzt werden, die sich iiber mehrere Ebe-
nen erstrecken. Ein erster Kandidat fiir eine derartige Aktivitat ist die generierende.
Innerhalb einer Abstraktionsebene wird eine derartige Aktivitat Modifikation oder
Optimierung genannt. Falls sie sich von einer hoheren Ebene zu einer niedrigeren
erstreckt, wird sie in der Regel Implementierung genannt. Sie ersetzt dann die gene-

rierende Aktivitdt auf der niedrigeren Ebene. Somit hat man ein Modell erhalten,
wie es in Abb. 12 skizziert ist.

leveli

Abb. 12 Implementation im Entwurfsprozef

Nun x1.1ﬁs§en die Ergebnisse der Implementations-Aktivitat genauso behandelt wer-
de:n wie die Ergebnisse der generierenden Aktivitat, die dadurch substituiert werden.
Dies ?ede_utet, daB sie dahingehend fiberpriift werden miissen, ob sie die aktuell auf
d_er niedrigeren Ebene giltigen Restriktionen respektieren, oder nicht. Im Falle
einer Verlethzung wird man zunachst versuchen, das Problem auf der niedrigeren
Ebene zu l5sen, indem man Modifikationen und Optimierungen vornimmt. Ge-

33

lingt dies nicht, bedeutet das, da$ das auf der hoheren Ebene entworfene Objekt
mit den gewihlten Implementationstechniken nicht unter Einhaltung der auf der
niedrigen Ebene giiltigen Restriktionen implementiert werden kann. Somit ist die
einzige Chance, den Entwurf auf der hoheren Ebene oder die Implementationsme-
thode zu dndern. Um eine derartige MaBnahme anzustofien, mu8 die uberpriifende
Aktivitdt auf der niedrigeren Abstraktionsebene durch eine deabstrahierende substi-
tuiert werden. Diese deabstrahierende Steuerungsaktivitat ersetzt die Intraebenen-
Steueraktivitat auf der hoheren Ebene und dient dazu, die Probleme der niedrige-
ren Ebene zu iibermitteln. Es ist zu beobachten, daB hiermit wieder eine Riick-
kopplungsschleife erhalten wurde, jedoch nun iiber mehrere Ebenen hinweg. Das so
erhaltene Modell wird in Abb. 13 skizziert.

In Abb. 14 wird dieses Konzept iiber alle sechs Ebenen ausgedehnt, wobei der
Ubersichtlichkeit wegen von solchen Inter-Ebenen-Aktivitaten abgesehen wurde, die
sich iiber mehr als zwei benachbarte Ebenen erstrecken. Grundsatzlich sind solche
Aktivititen natiirlich nicht ausgeschlossen. Man kann sich sehr wohl eine Imple-
mentierungsaktivitat vorstellen, die unmittelbar von der Systemebene auf die Lay-
outebene abbildet (idealer Silicon Compiler).

level i

Abb. 13: Rickgekoppelter Entwurfsprozef

Man kann sehen, wie der AktivititsfluB abwirts und aufwarts flieBt, bis er auf
der niedrigsten Ebene einen stabilen Zustand antrifft. Daher wird diese Entwurfs-
methode " Yoyo”-Entwurfsstil genannt. In jedem Zustand des Entwurfsprozesses
existieren Dokumentationen der aktuellen Version des Entwurfs auf verschiedenen
Abstraktionsebenen. Diese Dokumente bereit zu stellen, ist die Hauptaufgabe der
beteiligten Hardwarebeschreibungssprachen. Da diese Dokumente jedoch auch vom
Entwerfer verandert werden konnen, dienen Hardwarebeschreibungssprachen auch
als Eingabemittel in den Entwurfsproze8.

34

System
Level

X

Algorithmic
Levegi .

N
4

>
RT 4
Level A —
z <
>
Gate %
Level —
Switch ;
Level -’_‘ —
; <
>
Electrical 2,
Level

Abb. 14: Entwurfsprozef tiber § Abstraktionsebenen

35

Aus dieser Diskussion folgt, daB die Skizze des Entwurfsprozesses durch zwei wei-
tere wesentliche Komponenten komplettiert werden mufi: Eine Aktivitat, die iber
alle Abstraktionsebenen reicht, hat die verschiedenen Entwurfsdokumente auf den
verschiedenen Abstraktionsebenen zu verwalten. Ein Entwurfsobjekt wird in ver-
schiedenen Sichten (zumindest in den Sichten ”Verhalten”, "Struktur”, ”Geome-
trie” und "Testmethodik”) auf verschiedenen Abstraktionsebenen dargestellt. Ty-
pischerweise sind diese Entwurfsdokumente hierarchisch organisiert. Hierarchie ist
in diesem Kontext ein Konzept, das orthogonal zum Konzept der verschiedenen
Abstraktionsebenen steht. Eine Abstraktionsebene ergibt sich durch ein speziel-
les Modellierungskonzept, das fur die jeweilige Ebene spezifisch ist, wahrend eine
Hierarchie das Konzept der Komposition/Dekomposition wiedergibt. So sind ty-
pischerweise Dokumente tber grofie Entwurfsobjekte auf jeder Abstraktionsebene
hierarchisch. Auf der anderen Seite gibt es oft hierarchische Entwurfsdokumente,
die mehrere Ebenen tiberspannen. Die andere Aktivitat, die hinzugefiigt werden
muB, ist mit dem Management der Entwurfsdaten eng gekoppelt. Sie macht all
diese Entwurfsdaten fiir den Entwerfer sichtbar und zugreifbar. Bei dieser Sicht-
weise wird diese Aktivitat gerade ein bidirektionales Filter zwischen dem Benutzer
Mensch und dem Entwurfsdatenverwalter. Dieselbe Aktivitat sollte dariiber hinaus
benutzt werden, alle Information iiber Restriktionen und alle Steuerkommandos zum
richtigen Empfinger zu leiten. So wird eine universelle Benutzerdialogkomponente
daraus, die wiederum iiber alle Abstraktionsebenen reicht. Mit dieser Diskussion
haben wir ein Modell des Entwurfsprozesses erhalten, wie es in Abb. 15 dargestellt
ist.

Entwurfssysteme sind dazu da, Entwurfsprozesse zu unterstiitzen. Ein Entwurfssy-
stem stellt zunachst eine statische Entwurfsumgebung zur Verfiigung. Sie besteht
aus einer Reihe von Komponenten, wobei jede Komponente gewisse Entwurfsakti-
vitidten ausfuhren kann. Hat man solch ein Entwurfssystem, so kann man es fiir einen
speziellen EntwurfsprozeB personalisieren, indem man die Aktivititen und den In-
formationsflufl dieses Prozesses auf die Fahigkeiten der Komponenten der statischen
Entwurfsumgebung abbildet. Somit wird der Entwurfsprozef eine Aktivierungs-
folge ("activation record”) von Komponenten der Entwurfsumgebung zusammen
mit dem geeigneten KommunikationsfluB. Diese Abbildung eines Entwurfsprozes-
ses ("dynamische Architektur”) auf eine Entwurfsumgebung (”statische Architek-
tur”) ist nicht notwendigerweise immer moglich. Es konnen entweder notwendige
Fahigkeiten von Aktivitaten nicht vorhanden sein, oder aber es gibt Kommuni-
kationsrestriktionen, die zu weit reichen. Eine leistungsfahige Entwurfsumgebung,
die verschiedene Entwurfsprozesse unterstiitzen kann, sollte eine einheitliche Benut-
zeroberflachenkomponente, eine universelle Datenverwaltungskomponente und eine
Reihe von dedizierten Komponenten, die spezielle Entwurfsaktivititen ausfithren
kénnen, enthalten. Weiterhin sollte der Informationsflu in uniformer Weise organi-
siert sein, basierend auf standardisierten Schnittstellen und machtigen, einheitlichen
konzeptionellen Datenschemata. Solch eine vereinheitlichte Entwurfsumgebung sieht
typischerweise aus, wie in Abb. 16 dargestellt.

36

Abb. 15 Modell des Entwurfsprozesses

37

Abb. 16: Integrierte Entwurfsumgebung

1.4 Literaturv

Zum Thema Entwurfsmethodik gibt es relativ wenig Literatur. Meist werden spe-
zielle Fragestellungen oder eingeschrinkte Anwendungsgebiete behandelt [02], [04],
(09], [16], [19], [26], [27], [29], [32]. Koomen [12] versucht, den EntwurfsprozeB aus
informationstheoretischer Sicht zu analysieren. Das in diesem Kapitel gewahlte all-
gemeine Modell geht auf Amkreutz zuriick [01]. In [23] wurde dieses Konzept auf ver-
schiedene Abstraktionsebenen erweitert. Das Y-Diagramm geht auf Gajski zuriick
[05]. Der Datenbankaspekt des Entwurfsprozesses wurde intensiver bearbeitet. Die
Publikationen [07], [11], [20], [22], [25], [30] mogen als reprasentative Beispiele die-
nen. Eine besondere Rolle kommt dabei der Datenmodellierung und Schemaarbeit
zu [07], [22]. Datenaustauschformate fallen auch in diese Kategorie. Hier kommt
EDIF [33] eine zunehmende Bedeutung zu. Auch die Versionsverwaltung und andere
Managementfunktionen spielen eine wichtige Rolle [13], [14], [17], [21]. Als Beispiel
fiir eine einheitliche Benutzeroberfliche mag [08] dienen. In [18] werden allgemeine
Fragen des Softwareengineering im CAD-Umfeld behandelt, wahrend in [15] eine
Anforderungsanalyse gewagt wird. Es gibt bereits eine Reihe von lauffahigen CAD-
Umgebungen. In [06] wird eine allgemeine Umgebung vorgestellt, in [10] ein auf
niedrigeren Abstraktionsebnen angesiedeltes vollstandiges System und in [28], [31]
werden Toolboxes dargestellt. Das wachsende Interesse an diesem Gebiet manife-
stiert sich in einschligigen Konferenzen [03], [24], wobei letztere auf das Gebiet des
Computerhardware-Entwurfs konzentriert war.

38

[01] J.H.E. Amkreutz: ' -
Cybernetic Model of the Design Process Computer Aided Design, Vol. 8, No. 3,19

[02]) F. Anceau, R. Reis:

Design Strategy for VLSI

in: B. Randell, P.C. Treleaven (eds.):
VLSI Architecture

Prentice-Hall, 1983

[03] J. Encarnacao (Ed.):

Computer Aided Design: Modeling, Systems Engineering, CAD-Systems
CREST Advanced Course

Springer, 1980

[04] R.A. Friedenson, J.R. Brieland, R.J. Thompson:
Designer’s Workbench: Delivery of CAD Tools
in: Proceedings 19th DAC, 1982

[05] D.D. Gajski:
The Structure of a Silicon Compiler
in: Proceedings of IEEE ICCD, pp 272-276, 1987

[06] G. Gottheil, G. Kachel, T. Kathéfer, H.J. Kaufmann, B. Kleinjo-

hann, E. Kupitz, J. Miller, B. Nelke, F.J. Rammig, B. Steinmiiller, C.
White:

The CADLAB Workstation CWS

in: F.J. Rammig(Ed.): ”Tool Integration and Design Environments”
North Holland 1988

{07} H. Grabowski, M. Eigner:
A Data Model for a Design Database

in: Proceedings IFIP WG 5.2 Working Conference on File Structures and Databases
for CAD

North Holland, 1982

{08] K. Hammer, J. Hardin, T. Timmerman, D. Radin, T. Rhyne:
Automating the Generation of interactive Interfaces

in: Proceedings of 23rd ACM/IEEE Design Automation Conference, 1986

39

[09] D. Herrig:

Design Theory for CAD Systems and CAD Objects

in: Proceedings IFIP WG 5.2 Working Conference on File Structures and Databases
for CAD

North Holland, 1982

[10] E. Hdrbst, M. Nett, H. Schwirtzel:
VENUS Entwurf von VLSI-Schaltungen
Springer 1986

[11] R.H. Katz:
A Database Approach for Managing VLSI Design Data
in: Proceediongs 19th DAC, 1982

[12] C.J. Koomen:

Information Laws For System Design

in: Proceedings International Conference on Cybernetics and Society, Tokyo
Vol I1, 1978

[13] F.P. Mallman:
The Management of Engineering Changes in the Primus System
in: Proceedings 17th DAC, 1980

[14] R.M. Marshall, G. Bregnant:

The Overseer: An Approach to Design Management

in: F.J. Rammig (ed.): Tool Integration and Design Environment
North Holland, 1987

[15] C.R. McCaw et al.:
Design Automation and VLSI in the 80's
in: Proceedings 17th DAC, 1980

[16] M. Mills:

A Totally Integrated Systems Approach to Design and Manufacturing at McDonnell
Douglas Corporation

in: Proceedings 18th DAC, 1981

[17] J.A. Moélle, K.R. Dittrich, A.M. Kotz:

Design Management Support by Advanced Databases Facilities
in: F.J. Rammig (ed.): Tool Integration and Design Environment
North Hollan, 1987

40

[18] D. Nash, H. Willman:

Software Engineering Applied to Computer-Aided Design (CAD) Software Develop-
ment

in: Proceedings 18th DAC, 1981

[19] H. Nowacki:
Modeling of Design Decisions for CAD
in: Proceedings CREST Advanced Course on Computer Aided Design:

Modeling, Systems Engineering, CAD Systems
Springer, 1981

[20] A.R. Newton, A.L. Sangiovanni-Vincentelli:
Computer-Aided Design for VLSI Circuits
IEEE Computer, April, 1986

[21] A. Patrucco:

The Monitor, a Design Manager for a Complex CAD System

in: F.J. Rammig(Ed.): ”Tool Integration and Design Environments
North Holland, 1988

[22] R. Piloty, B. Weber:
IREEN - A Datamodel for Tool Inte
in: F.J. Rammig (ed.)
North Holland, 1987

gration in Open Microelectronic CAD-Systems
: Tool Integration and Design Environments

{23] F.J. Rammig;:

A Multilevel Cybernetic Model of the
in: WK. Giloi and B.D. Shriver(Eds.
sign”, North Holland, 1985

Design Process
): "Methodologies for Computer System De-

[24] F.J. Rammig (Ed.):

Tool Integration and Design Environments
North Holland, 1988

[25] K.A. Roberts, T.E. Baker, D.H. Jerome:

A Vertically Organized Computer-Aided Design Database
in: Proceedings 18th DAC, 1981

41

(26] G. Rzevski:

A Methodology and Associated CAD Tools for the Design of Real-Time Control
Systems

in: Proceedings 2nd IFAC Symposium on Computer-Aided Design of Multivariable
Technological Systems, Pergamon Press, 1983

[27] E.G. Schlechtendahl:

CAD Process and System Design

in: Proceedings CREST Advanced Course on Computer Aided Design:
Modeling, Systems Engineering, CAD Systems, Springer, 1981

[28] L. Spaanenburg:

The Interconnection of Open CAD Systems

in: F.J. Rammig(Ed.): ”Tool Integration and Design Environments”
North Holland, 1988

[29] H.A. Tucker:

Infrastructure Approach to Integrated CAD Systems

in: Proceedings CREST Advanced Course on Computer Aided Design:
Modeling, Systems Engineering, CAD Systems, Springer, 1981

[30] P. Van der Wolf, N. Van der Meijs, T.G.R. Van Leuken, I. Widyak,
P. De Wilde:

Data Management for VLSI Design: Conceptional Modeling, Tool Integration and
User Interface

in: F.J. Rammig (ed.): Tool Integration and Design Environments

North Holland, 1987

[31] F.R. Wagner, C.M.D.S. Freitas, L.G. Golendziner:

The MPLO System - An Integrated Environment for Digital Systems Design
in: F.J. Rammig (ed.): Tool Integration and Design Environments

North Holland, 1987

[32] H. Yoshikawa:

General Design Theory and a CAD System

in: Proceedings IFIP WG 5.2-5.3 Working Conference on Man-Machine
Communication in CAD/CAM, North Holland, 1981

[33] —
EDIF - Electronic Design Interchange Format Version 2 0 0.

Electronic Industries Association
Washington D.C., 1987

42

2 Modellierungskonzepte und Entwurfssprachen

p &
‘ﬁ L
)

Level

Electrical
evel

Design Design
Languages Documents

Abb. 17: Entwurfssprachen im Entwurfsproze
2.1 Modellierungskonzepte

In Kapitel 1 wurden verschiedene Modellierungskonzepte, wie sie auf versc}fiede“
nen Abstraktionsebenen geeignet sind, kurz besprochen. Sie sollen nun detaillierter

diskutiert werden, da sie die Grundlage fir den Entwurf von Beschreibungs- und
Entwurfssprachen bilden.

2.1.1 Objektorientierte Modellierung

43

Zunichst ist objektorientierte Modellierung ein struktureller Ansatz. Ein (zu be-
schreibendes) System wird als strukturierte Menge von Objekten angesehen. Diese
Menge von Objekten ergibt sich durch die Instantiierung von Elementen spezifischer
Objekttypen. Diese Typen kdnnen generisch sein mit unterschiedlichen Attributen
fiir verschiedene Instantiierungen. Ein Objekttyp kann Information iiber verschie-
dene Aspekte eines solchen Objekts beinhalten wie Verhalten, Struktur, Geometrie,
Testen. Damit wird die strukturelle Sichtweise des Ansatzes auf die anderen Sichten
ausgedehnt. Verhalten scheint in diesem Zusammenhang die meisten Schwierig-
keiten zu machen. Daher werden wir uns auf diesen Aspekt konzentrieren. Als
Losungsansatz bietet sich das Konzept des Abstrakten Datentyps (ADT) an. Ein
ADT ist gegeben durch eine Signatur S und eine Menge von Gleichungen E. Die
Signatur ist eine Menge von Sorten (Wertebereichsnamen) zusammen mit Opera-
tionen, die darauf definiert sind. Somit gibt die Signatur die Syntax eines Systems
an, wahrend die Gleichungen zur Definition der Semantik dienen.

Beispiel :
Ein ADT zur Definition der Booleschen Algebra mag wie folgt aussehen:

type Boolean is
sorts Boolean
opns T,F : Boolean;{nullary operations, i.e. constants}
not : Boolean — Boolean; {unary operation}

and, or : Boolean, Boolean — Boolean; {binary operations}

eqns or(a,F) = a;
and(a,T) = a;

or(a,b) = or(b,a);
and(a,b) = and(b,a);

and(a,or(b,c)) = or(and(a,b),and(a,c));
or(a,and(b,c)) = and(or(a,b),or(a,c));

and(a,not(a)) = F;
or(a,not(a)) = T;

or(a,or(b,c)) = or(or(a,b),c);
and(a,and(b,c)) = and(and(a,b),c);

or(a,a) = a;
and(a,a) = a;

44

or(not(a),not(b)) = not(and(a,b));
and(not(a),not(b)) = not(orfa,b));

not(not(a)) = a;
endtype.

Dieses Beispiel illustriert auch die Bezeichnung “abstrakt” in ADT. Es wird v?llstan{;
dig vom Aussehen der Menge "Boolean” abstrahiert. Die einzige Forderung 182, da
es mindestens zwei Elemente geben muB, bezeichnet mit T und F. Die Sorte ?90‘
lean” ist natiirlich verschieden von dem Typ "Boolean”. Die Sorte ”Boole.an ist
einfach eine Menge, wihrend der Typ ”Boolean” eine vollstandige Algebra 1S.t7 mit
Operationen definiert auf der gleichnamigen Menge, die alle genannten Glelchul}-
gen respektieren. Die Sorte "Boolean” ist von der AuSlenwelt nicht sichtbar'. Die
Algebra ist definiert auf der Basis der zwei Konstanten T und F, dem monadischen
Operator not und den beiden dyadischen Operatoren and und or. Diese Opex‘"atoreﬂ
haben die darunter angegebenen Gleichungen zu respektieren, namlich Huntfﬂg“’“s
Postulate. Bei Implementierten Abstrakten Datentypen (IADT) wird die S;gn'atul'
durch Deklarationen gegeben, und die Gleichungen werden durch Implementations-
beschreibungen ersetzt, die definieren, wie die Operationen mittels bekannter IADTs
(der sogenannten Tragerstruktur) ausgefihrt werden kénnen.

Somit ist ein TADT typischerweise definiert durch :

- Typidentifikation,

- Liste von Operationen,

- Referenz auf eine Tragerstruktur,

- Liste von Implementierungsbeschreibungen (eine pro Operation).

Dadurch wird anstelle einer reinen Spezifikation, wie im Falle des ADT, eine aus-
fihrbare Beschreibung erhalten. Sie beschreibt eine Hardwarestruktur, die als "Pro-
zessor” charakterisiert werden kann, d.h. ein Objekt, das einen spezifischen Instruk-
tionssatz hat (die Operationen), und in wohldefinierter Weise (wie in den Imple-
mentationsbeschreibungen angegeben) auf Anforderungen, derartige Instruktion.en
auszufiihren, reagiert. Dies scheint eine sehr allgemeine Betrachtungsweise zu sein,
die nicht auf Prozessoren im engeren Sinne eingeschrankt ist. Die DACAPO export

procedure mag als Beispiel fiir dieses Konzept dienen. Dieses Sprachkonstrukt hat
die allgemeine Form :

export <Liste von Operationen> procedure <Bezeichner> ;

<Deklarationen der Tragerstruktur>;

<Funktion oder Prozedur um Uperation.i zu implementieren>;

45

<Funktion oder Prozedur um Operation, zu implementieren>;
end;

Somit kann fiir den ADT zur Definition der Booleschen Algebra folgender IADT zur
Implementierung benutzt werden :

export (true, false, own not, own_and, own.or) procedure boolean;
const one = "1", zero = "Q%;

function true () : bit;
begin
true := one

function false () : bit;
begin

false := zero

end;

function ownnot (in arg : bit) : bit;
begin

own_not := not(arg)

end;

o

function own_and (in arg 1, arg 2 : bit) : bit;
begin

own.and := arg_l and arg.2

end;

function own.or (in arg.l, arg2 : bit) : bit;
begin
ownor := arg.l or arg?2
end;
end;

Es solite bemerkt werden, daB dieses Beispiel nur zur Illustration des Konzeptes
gewahlt wurde. In der Praxis wird sich niemand auf diese Weise seine eigene Boo-
lesche Algebra definieren, da sie nichts weiter als die in DACAPO eingebaute Boo-

46

lesche Algebra zur Verfigung stellt. Tatsachlich ist dieser IADT nur deshalb eine
korrekte Implementierung des obigen ADT, weil die Operatu.)nen not, or, and
von DACAPO auf dem Datentyp bit in Ubereinstimmung mit den Axiomen d'er
Booleschen Algebra definiert sind. Brauchbarere Beispiele fiir IAD’I?s werdel.l im
Abschnitt 2.3 gegeben werden. Der objektorientierte Ansatz hat seine Tradition
im Bereich des Software Engineering mit den Sprachen SIMULA, SMALLTALK,
MAINSAIL und CommonLoops als typische Vertreter. Auf der anderen ‘Selte Ist
diese Art, Module zu betrachten, fiir Hardwareentwerfer sehr natiirlich. Sxe'setzen
Systeme aus Komponenten zusammen, die eine Menge von Operationen an die l.Im-
welt anbieten. Allerdings pa8t die Aktivierungsvorstellung der Softwarewelt n{cht
ohne Modifikationen in den Hardwarebereich. Auf niedrigeren Ebenen ist es ?1cht
adaquat, anzunehmen, daB ein Modul eine Operation auf Anforderung afusfuh.rt,
d.h. als Reaktion auf ein Paket, das ihm gesandt wird. So offeriert beispielsweise
ein Und-Gatter kontinuierlich einen Wert, der abhingig ist von den aktuellen Werten
an seinen Eingangen (u.U. unter Einbeziehung einer gewissen Verzégerl.mg?, Ohffe
da irgendeine Anforderung durch irgendein Paket stattfindet. Weiterhin sind die
Module eines Hardwaresystems nebenlaufig aktiv, wihrend man in klassisch.en ob-
jektorientierten Sprachen ein sequentielles Verhalten annimmt. Daher wird im Be-
reich des Hardwareentwurfs der objektorientierte Ansatz hauptsachlich auf hoheren
Abstraktionsebenen benutzt. Auf diesen Ebenen ist es ein wesentliches Ziel dfs. Ent-
wurfsprozesses, das System in Module zu dekomponieren, wobei vor einem weiteren

Implementationsproze fiir diese Module drei Aspekte pro Modul definiert werden
missen :

¢ Die Funktionalitat des Moduls,

o die Konununikationsprotokolle, wie

sie von dem Modul erkannt und erzeugt
werden,

¢ allgemeine Restriktionen z.B. bzgl. Leistung, Testbarkeit,...

Diese Eigenschaften konnen

mittels des objektorientierten Ansatzes in adaquater
Weise ausgedriickt werden.

2.1.2 Imperative Sicht

Die imperative Sicht hat ihre Tradition in algorithmischen Programmiersprachen
fiir Prozessoren vom v.Neumann-Typ. Von seiner Natur ist es ein Verhaltenskon-

47

Zeitachse wiederzugeben. So wie die objektorientierte Sicht pro Modul spezifiziert,
welches die Operationen sind, die das Modul ausfithren kann, und was die Effekte
dieser Operationen sind, so beschreibt die imperative Sicht, wie diese Effekte durch
Ausfithrung eines interpretierenden Algorithmus erreicht werden. Daher iiberrascht
es nicht, daB im Fall von IADTs die Implementation der Operationen ublicherweise
im imperativen Stil gegeben werden (man beachte das obige DACAPO-Beispiel im
Abschnitt 2.1.1).

Man konnte annehmen, da8 jede imperative Sprache fur diesen Anwendungsfall ge-
eignet sei, vorausgesetzt die notwendigen Datentypen werden angeboten. Tatsachlich
hat es verschiedene Ansatze gegeben, fibliche Programmiersprachen mit nur sehr ge-
ringen Anderungen als algorithmische Hardwarebeschreibungssprachen zu benutzen.
Derartige Versuche sind auf der Basis von PL/I und APL gemacht worden. Al-
lerdings sind iibliche Programmiersprachen entweder strikt sequentiell oder bieten
einen sehr eingeschrinkten Grad an Parallelitat. Daher muB man sich nach leistungs-
fahigeren operationalen Konzepten umsehen. Hier sollen zeitbehaftete Interpretierte
Petri-Netze und ” Communicating Sequential Processes” diskutiert werden.

2.1.2.1 Zeitbehaftete Interpretierte Petri-Netze

Petri-Netze wurden von Carl Adam Petri als eine naheliegende Erweiterung endli-
cher Automaten entwickelt. Sie modellieren ein System als eine Menge von Aktionen
(genannt Transitionen) die durch Bedingungen (genannt Stellen) gesteuert werden.
Jede Transition entscheidet individuell, ob ihre lokale Ausfiihrbarkeitsbedingung
erflllt ist oder nicht. Somit ist die Steuerung iiber das gesamte System verteilt.
Petri-Netze lassen sich sehr einfach formal definieren und sind ebenso einfach zu
verstehen.

Def. 2.1.2.1.1 (Petri-Netz-Graph)

PG = (P,T,E) heifit Petri-Netz-Graph :&
P endliche Menge (von "Stellen”)
T endliche Menge (von ”Transitionen”)
EC(PxT)u(TxP)
PNT =90
Vze (PUT):Jye(PUT):(z,y)€EV(y,z)€EE
o

Def. 2.1.2.1.2 (Petri-Netz)

PN = (PG, m,, R) heifit Petri-Netz :&
PG = (P,T, E) Petri-Netz-Graph
m, € M={m| m:P — INo} (initiale Markierung)
Re{r|r:T— fr}

mit fr={fe|t€e T}AVt €T : (fi: M — M) (Schaltregel von T)
<

In Petri-Netzen werden ”Stellen” dazu benutzt, um Bedingungen zu modellierer}.
Falls eine Stelle p eine Marke enthilt, d.h. m(p) > 0, wird angenommen, dafl die
zugeordete Bedingung wahr ist. Somit modelliert eine Markierung einen .globa;
len Zustand im globalen Bedingungsraum. Aktionen werden durch ”Tra.nsxtxo‘nen

modelliert. Eine Transition kann schalten, wenn bestimmte Bedingunger% an 1.hren
Eingangs- und Ausgangsstellen wahr sind (z.B. alle Eingangsstellen markiert sind).
Durch das Schalten manipuliert eine Transition die Markierung ihrer Eingangs- u'nd
Ausgangsstellen {z. B. sie entfernt eine Marke von jeder Eingangsstelle und legt eine

in jede Ausgangsstelle hinein). Somit modifiziert eine Transition lokal den globalen
Zustand des Bedingungsraums.

Klassische Petri-Netze kennen genau eine Schaltregel:

Def. 2.1.2.1.3 (a-schaltbar, a-Schalten)

Sei PN = ((P,T, E),m,, R) ein Petri-Netz .
Bezeichne t = {p € P | (p,t) € E} die Menge der Eingangsstellen von t,
t ={p€ P|(t,p) € E} die Menge ihrer Ausgangsstellen.
Die Transition ¢ heiBit a-schaltbar unter der Markierung m : <
Vpe t:m(p)> 0.
Ji: M — M heifit a-Schalten der Transition ¢ : &
fim(p) =m(p)~1: @ pe -t
fdm(p)) =m(p)+1: & pe t

fi{m(p)} := m(p) else.
<

In Petri-Netzen mit einem heterogenen Satz von Schaltregeln kann f, von Transition
zu Transition verschieden sein. Ublicherweise gibt es einige wenige Klassen von
Transitionen, wobei jede Klasse ihre eigene Schaltregel hat.

Def. 2.1.2.1.4 (Interpretiertes Petri-Netz)

IPN = (PN, I, D) heift Interpretiertes Petri-Netz :¢>
PN = ((P,T, E), mq, R) Petri-Netz
Te{i|i:T - oU{A}} mit
o ={o0]o:dom(o) C X (D) — codom(o) C X D)}
wobei D eine mehrtypige Menge ist (von "Datenobjekten”) und X(D)

das Cartesische Produkt tiber alle Elemente von D bezeichnet.
o

Interpre.t.ierte Petri-Netze werden dadurch erhalten, daB man Transitionen ¢ Da-
tenmanipulationen i(%) zuordnet. Immer wenn ¢ schaltet, wird die ihr zugeordnete

49
Operation ausgefiihrt. Dies wird Interpretiertes Schalten genannt.

Def. 2.1.2.1.5 (Zeitbehaftetes Interpretiertes Petri-Netz)

TIPN = (IPN,A) heifit Zeitbehaftetes Interpretiertes Petri-Netz : <
IPN = (((P,T, E), mq, R), 1, D) Interpretiertes Petri-Netz
Ae{é|6:T— 7} mit
r={0"] 0" :dom(o') C X (D) — R}

Ein zeitbehaftetes interpretiertes Schalten ist wie folgt definiert:

Angenommen, Transition ¢ wird schaltbar zum Zeitpunkt to. Zu diesem Zeitpunkt
wird die zugehdrige Operation (falls existent, d.h. i(¢) # A) i(t) = o € o initijert.
Dies bedeutet, daB die Werte von dom(o) zu diesem Zeitpunkt ausgewertet werden.
Zum selben Zeitpunkt wird die Verzogerungsfunktion é(¢) = o’ auf der Basis der ak-
tuellen Werte von dom(o’) ausgewertet. Angenommen, der Wert von o’ ist k. Dann
werden zum Zeitpunkt to + k die Werte, die von o berechnet wurden, an codorn(o)
zugewiesen und zum selben Zeitpunkt findet das Schalten der Transition statt.

<

Fir Petri-Netze gibt es eine einpragsame graphische Darstellung. Dabei werden
Stellen als Kreise dargestellt:

O

Transitionen werden entweder durch Balken (amerikanische Notation) oder durch
Rechtecke (Petris Notation) dargestellt:

D oder I

Die Kanten werden in der iblichen Art als gerichtete Pfeile gezeichnet. Die Markie-
rung wird meist durch kleine Punkte in den markierten Stellen dargestellt. Inter-
pretation und Zeitbehaftung wird iiblicherweise durch Attributierung der jeweiligen
Transitionen dargestellt.

Beispiel:

Abb. 18 zeigt ein zeitbehaftetes Interpretiertes Petri-Netz, das zwei nebenlaufige
zyklische Prozesse beschreibt, die auf eine gemeinsame Ressource zugreifen.

Ein nebenliufiger Algorithmus wird Strukturierter Nebenlaufiger Algorithmus ge-
nannt, wenn er eine Unterklasse der zeitbehafteten Interpretierten Petri-Netze ist,
die durch die folgende rekursive Konstruktion gegeben ist:

50

request bus bus available request bus

release bus release bus

Abb. 18: Beispiel eines Petri-Netzes

Def. 2.1.2.1.6 (Strukturierter Nebenlaufiger Algorithmus)

Ein Strukturierter Nebenlaufiger Algorithmus ist definiert durch die in Abbildung
19 angegebene Konstruktion.
o

Strukturierte Nebenlaufige Algorithmen konnen sehr einfach in einer textuellen Form
dargestellt werden, unter Benutzung von Kounstrukten wie seqbegin ... end,
conbegin ... end, if...then ... else, while ... do. DACAPO mag als
ein Beispiel firr solch eine Sprache dienen. Sie wird in Abschnitt 2.3 detaillierter dar-
gestellt.

Zeitbehaftete Interpretierte Petri-Netze sind sehr gut geeignet, die imperative Sicht
darzustellen, selbst dann, wenn ein sehr hoher Grad an Nebenlaufigkeit vorhanden
ist. Ein konzeptionelles Problem ergibt sich allerdings daher, daB man in der impe-

rativen Sicht meist an einen zentralisierten Controller denkt, wahrend Petri-Netze
in ihrer Natur dezentral sind.

2.1.2.2 Communicating Sequential Processes (CSP)

Dieses Konzept wurde von C.A.R Hoare 1978 zuerst publiziert. Es ist ein aufleror-
dentlich einfaches Modell fiir parallele Ablaufe. Ein Gesamtsystem wird hierbei als
Menge von nebenliufig aktiven Prozessen dargestellt, wobei jeder einzelne Proze

51

is a Structured Concurrent Algorithm

are Structured Concurrent Algorithms

is a Structured Concurrent Algorithm

are Structured Concurrent Algorithms

then is a Structured Concurrent Algorithm

4. if . and . are Structured Concurrent Algorithms

then is a Structured Concurrent Algorithm

5. if . is a Structured Concurrent Algorithm

then

6. nothing else is a Structured Concurrent Algorithm

Abb. 19: Strukturierter Nebenlaufiger Algorithmus

52

strikt sequentiell ist. Ein Einzelprozess wird nur mit Hilfe der Konstru.kte Zuwe?-
sung, ”"Guarded Command” und Iteration dargestellt, d.h. .durch.Anemander?ez
bung, Zuweisungen, Fallunterscheidungen und ”While”-Schlclfen: Die Prozesse sin

vollstandig unabhingig. Dies bedeutet, daB sie keinerlei gemeinsame Re'sso'urcen
baben diirfen, auBer Kommunikationskanile. Hier wird CSP in einer modifizierten
Syntax wiedergegeben, die aus einer Mischung verschiedener Notatloner? von"Hoare
entstanden ist. AuBerdem werden ein paar geringfigige Restriktionen eingefithrt.

(i) Ereignisse und Prozesse

Zu spezifizierende Objekte werden fiber Ereignisse beschrieben. Ein derartiges Erelg-
nis wird als einfache atomare Aktion gesehen. Als Beispiel diene die Wertzuweisung
an eine bestimmte Variable. Die Menge der Ereignisse, die bei der Beschreibung
eines Objekts benutzt werden, wird das Alphabet dieser Beschreibung (dieses 0}?'
jekts) genannt. Ein ProzeB ist ein beliebiges Verhaltensmuster eines Objekts, soweit
es mit dem Alphabet des Objekts ausgedriickt werden kann.

(ii) Sequentielle Ausfithrung

Sei a ein Ereignis und P ein ProzeB. Durch seqbegin a ; P segend wird be-
zeichnet, daf zunachst das Ereignis a stattfinden muff und dann der Prozef startet.

Es wird definiert, daB a ein ProzeB ist und daff, wenn P ein Proze8 ist, auch Eq_b_e_gi_ll
a ; P segend ein Prozef ist.

(iii) Rekursion

Sei P ein ProzeB. Mit while true _do P wird bezeichnet, daB P unendlich oft wie-
derholt werden soll. Falls P ein ProzeB ist, dann ist _while true _do P ebenfi%lls
ein Proze. Sei con eine binare Variable. Mit while con = true do P w‘fd
bezeichnet, daf P solange ausgefuhrt wird, wie con den Wert true hat. Falls P emn
ProzeB ist, dann ist auch while con = true _do P ein Prozef.

(iv) Fallunterscheidung

Seien P, ..., P, Prozesse, cnt eine Variable iber dem Wertebereich {ci, .., ca}. Mit

case cnt of ¢ : P50 Py, : P, _caseend wird bezeichnet, da8 nur das
P; ausgefuhrt wird, dessen c; der derzeitige Wert von cnt ist.

Falls Py, ..., P, Prozesse sind, dann ist auch case cnt _of c¢;: Pcy: PajeiCn’
P, _caseend ein ProzeS.

(v) Eingabe/Ausgabe

Sei chan eine spezielle Variable vom Typ channel. Dies bezeichnet einen Kom-
munikationskanal. Sei var eipe beliebige Variable. Mit chan ! var wird eine

53

Output-Operation bezeichnet. Der Wert von var wird iiber den Kanal chan gesen-
det. Diese Operation ist erst abgeschlossen, wenn der Empfanger (ein nebenlaufig
aktiver ProzeB, siehe 2.1.2.2.7) diesen Wert gelesen hat. Mit chan ? var wird
eine Input-Operation bezeichnet. Der Wert von var wird auf den aktuellen Wert
von chan gesetzt. Diese Operation kann nur dann durchgefuhrt werden, wenn der
Kanal nicht leer ist. Ein Kanal ist initial leer, bis ihm ein Wert durch eine Output-
Operation zugewiesen wird. Durch eine Input-Operation wird der Kanal wieder
geleert. Input/Qutput-Operationen werden wie Zuweisungen als Ereignisse angese-
hen. Aus ihrer Definition folgt, daB weder eine Input-Operation noch eine Output-
Operation durchgefiihrt werden kann, wenn nur ein Prozef aktiv ist. Man nennt
diese Art der Kommunikation ”Rendevous”. Zusatzlich gibt es noch eine Boolesche
Funktion test(chan) fiir jeden Kanal chan. Der Wert dieser Funktion ist true,
falls der Kanal chan nicht leer ist, false sonst. Sie darf nur in Kontrollausdriicken
benutzt werden. Man beachte, daB test keine Input-Operation ist.

(vi) Sequentieller Prozef3

Ein sequentieller Prozef wird konstruiert nach (i) bis (vi). Nichts sonst ist ein
sequentieller ProzeB.

(vii) Nebenlaufiger Prozefl

Ein sequentieller Prozef ist auch ein nebenlaufiger Prozef. Sei P ein sequentiel-
ler ProzeB und C ein nebenlaufiger. Mit conbegin P ; C conend wird bezeichnet,
daB P und C nebenliufig ausgefithrt werden. Dies bedeutet, daB P und C zur sel-
ben Zeit initiiert werden und dann vollig unabhangig laufen, solange sie nicht aber
einen gemeinsamen Kanal kommunizieren. Der gesamte ProzeB conbegin P ; C
conend wird terminiert, wenn der letzte der enthaltenen Prozesse P und C termi-
niert wird. Prozesse innerhalb eines nebenlaufigen Prozesses diirfen keine Ressource
auBer Kommunikationskanilen mit anderen Prozessen gemeinsam haben. Falls P ein
sequentieller ProzeB ist und C ein nebenlaufiger, dann ist conbegin P ; C conend
ebenfalls ein nebenlaufiger Proze8. Nichts sonst ist ein nebenlaufiger ProzeB.

Beispiel: ("Dining philosophers”)

Vor langer Zeit, als Philosophen noch eine ausgezeichnete Reputation bei reichen
Leuten hatten, lud ein wohlhabender Schotte finf berihmte Philosophen in sein
Seminar ein, das er speziell fir sie bauen lieB. Dieses Seminar hatte funf kleine
Riume, einen fiir jeden Philosophen und wohl eingerichtet fur das Nachdenken des
Philosophen. Weil aber auch ein Genius hin und wieder essen muB, hatte er auch ein
Speisezimmer in der Mitte des Gebaudes vorgesehen, einfach von den Denk-Klausen
zu erreichen. Im Speisezimmer war ein runder Tisch mit fiinf Stiihlen, finf Tellern
und fiinf Gabeln aus massivem Gold, fiir jeden Philosophen je einmal. In der Mitte
des Tisches stand eine grofie Schissel, die jederzeit mit kostlichen Spaghetti gefallt

54

war. Dies war das Leibgericht von Philosophen dieser Zeit. Wenn ein Ph‘k:(;,ph;j;
schloB zu essen, ging er in das Speisezimmer, setzte sich an seinen ?latz u‘r)lv eg .
zu essen. Hierzu ergriff er seine Gabel, d.h. die Gabel zu seiner Linken. Wegen o
auflerordentlichen Lange der Spaghetti hochster Qualitit war er gezwungen, et ‘
zweite Gabel zu benutzen, d.h. die Gabel zu seiner Rechter.l. Wle uk')hch 111(1i €
Philosophen (nicht nur zu dieser Zeit) war keinerlei Kommumkatlon' z.w1schend iii
Philosophen mdglich, da sie vollstindig unterschiedliche, hochkomplizierte uln i
hochsten Grad kinstliche Sprachen benutzten, die sie nur selbst (manchma) ver
standen. . i

Dieses System kann in CSP mittels 10 Prozessen beschriebe.n werdgn: Je” einer ftilj
jeden Philosophen und je einer fur jede Gabel. Kommunikationskanale m'ussel’l thv :
schen jedem Philosophen und den beiden ihm benachbarten Gabeln eingerichte

werden. Sei catchfork;; der Kanal zwischen fork; und philosopher;.

Der Prozef fiir Philosoph; sieht wie folgt aus:
philosopher; :=
while true
seqbegin
think;
catchfork;; ! true;
catch fork; moq 5: ! true;
eat;
catch fork;; ! false;
catch fork; moq 5 ! false;
seqend;

Der ProzeB fiir fork; sieht wie folgt aus:

fork; =
while true
case (test(catch fork;) test (catehfork;; moq 5))of

{truefalse) : seqbegin
catchf oﬁ;
catchfork.;; 7 x
seqend ;

(false,true) : segbegin
catch fork;; moa s ? x ;
catchfork.-,; mod 5 1 X
seqend ;

(false false) : ;

(true,true) :

endcase;

55

Das Gesamtsystem wird beschrieben durch:

conbegin
philosophery ;

philosopher; ;
philosopher; ;
philosophers ;
philosopher, ;
forkg ;
forky ;
fork, ;
forks ;
forky;

conend;

Ein paar Kommentare:
* Alle Deklarationen wurden weggelassen.

o Natiirlich ist es in diesem Beispiel ohne Bedeutung, was fir Nachrichten iiber
die Kommunikationskanile iibertragen werden. Die Kanile werden nur zu
Synchronisationszwecken benutzt.

¢ Dieses System ist fiir die beteiligten Philosophen sehr gefahrlich. Falls alle
finf Philosophen zur selben Zeit beschliefien, zu essen, kann es geschehen, daB
Jeder "seine” Gabel ergreift, aber die notwendige zweite nicht bekommen kann.
Das System bietet fiir diese Situation , genannt ”Deadlock” keine Lésung,.
Tatsachlich wiirde diese Situation in dem System, wie oben beschrieben, dazu
fihren, daB alle finf Philosophen des Hungers sterben wiirden.

Das Problem der ”dining philosophers” wurde von Dijkstra eingefiihrt. Eine Losung
fir das ”"Deadlock”-Problem wurde von Scholten beschrieben. Er fithrte einfach
einen weiteren ProzeB (ein "intelligentes” Speisezimmer, z.B. einen Platzanweiser)
ein, der sicherstelit, daB nie mehr als vier Philosophen gleichzeitig im Speisezimmer
sind.

2.1.3 Reaktive Sicht

Die imperative Sicht betrachtet ein System aus der Sicht des Steuerwerks. Ein
Steuerwerk ist ein Objekt, das bewirkt, daB andere Objekte Operationen in wohl-
definierter (partieller) Ordnung ausfihren. Die reaktive Sicht invertiert diese Be-
trachtungsweise. Nun wird das Gesamtsystem aus der Sicht der gesteuerten Objekte
betrachtet. Aus dieser Sichtweise ist die (partielle) globale Ordnung der Operatio-
nen ohne Bedeutung. Fiir ein spezielles Objekt ist es lediglich relevant, daB eine
bestimmte Aktion zu jedem Zeitpunkt, zu dem eine bestimmte Bedingung wahr

56

wird, ausgefihrt werden muB. Diese Operation kann eine Modiﬁka..tion des .glol')al.en
Bedingungsraums beinhalten. Die Beschreibungsmachtigkeit ist dleselb'e wie die im
Falle imperativer Beschreibungen. Allerdings wird nun die Information @iber die

globalen operativen Konzepte verborgen. Das nachfolgende Beispiel mag diesen In-
versionsprozeB illustrieren:

a) Imperative Beschreibung (DACAPO-Notation):

while power_ on do
seqbegin
T operation_0 ;
operation_1 ;
operation_2
end ;

b) Aquivalente reaktive Beschreibung (DACAPO-Notation):

var sequence .=

0 ; {auxiliary object, initialized to O}
impdef

{start of reactive description}
at up (sequence = 0 & power_on) do
- ;arbegin
operation_0
sequence := 1
end ;
at up (sequence = 1 & power_on) do
parbegin -
_Tpe—r—ation_i
sequence := 2
end ;

at up (sequence = 2 & power_on) do
parbegin -
operation_ 2
sequence := 0

end ;

Diese reaktive Beschreibung hat drei Haupt-Statements der Form:

at up (sequence = i & power_on) do

parbegin

operation_i ;

sequence := ((i + 1) mod 3
end ;

Sie sind kontinuierlich ”aktiviert”. Tmmer wenn eine Bedingung sequence = i &
pover_on wahr wird, wird die dazugehdrige Aktion

57

parbegin

operation_i ;

sequence := ((i + 1) mod 3
end ;

ausgefithrt.

Somit hat die Reihenfolge der verschiedenen Anweisungen keinen EinfluB auf die
Semantik der Beschreibung. Dies ist fiir die reaktive Sicht essentiell. Die reak-
tive Sicht ist in mancher Hinsicht zur objektorientierten Sicht ahnlich. In beiden
Fillen wird die Menge der Komponenten, aus denen ein System besteht, aufgelistet.
Der Hauptunterschied besteht darin, daB sich die objektorientierte Sicht sowohl
auf die auszufithrenden Aktionen wie auch auf die Nachrichten, die diese Aktionen
auslésen, bezieht. Im Gegensatz dazu ist die reaktive Sicht vollstandig passiv. D.h.
den Ausfithrbarkeitsbedingungen gilt das Hauptaugenmerk. Dafl diese Bedingungen
durch Aktionen ausgelost werden, wird nicht besonders identifiziert.

Die reaktive Sicht ist eine strukturelle Sicht, die Verhalten ebenso mit iiberdeckt.
Geometrische Information kann durch zusitzliche Attribute ebenfalls gegeben wer-
den. Im Bereich des Softwareentwurfs ist die reaktive Sicht als das Konzept der
»Guarded Commands” bekannt. Fiir Hardwarebeschreibungen erscheint der An-
satz recht natiirlich zu sein, falls Implementationsaspekte von besonderem Interesse
sind. Daher wird diese Sicht insbesondere auf der RT-Ebene benutzt. Hier ist die
grundlegende Operation das Speichern von eventuell modifizierter Information in
Zielregistern unter bestimmten Bedingungen. Dies ist tatsachlich eine Inversion der
Mikroprogrammierungssicht, bzw. Mikroprogrammierung aus Sicht der gesteuerten
Objekte.

2.1.4 Stimulierte Gleichungen

Die Bedingungen der reaktiven Sicht konnen auch stindig wahr sein. In diesem Fall
werden die dazugehorigen Operationen kontinuierlich ausgefuhrt. Falls man reak-
tive Beschreibungen auf solche beschrankt, bei denen alle Bedingungen stindig wahr
sind, schrankt man die Beschreibungsmachtigkeit nicht ein. Dies mag mit Hilfe der
folgenden Diskussion illustriert werden:

Sei
atcdot == f(s)

die allgemeine Struktur eines "Guarded Command” mit der Bedeutung, da8 immer
dann, wenn ¢ wahr wird, die dazugehdrige Operation ausgefiithrt wird. Die Opera-
tion fithrt dazu, daB gewisse Zielobjekte, identifiziert durch t, modifiziert werden.
Diese Modifikation wird durch eine bestimmte Funktion, identifiziert durch £, auf
den Werten gewisser Quellobjekte, identifiziert durch s, berechnet. Eine reaktive
Beschreibung wird gegeben durch eine Menge

58
R={atcidot; :== fi(s)) | i = 1 : n}.

Im allgemeinen ist es nicht zwingend, da8 die ¢; gegenseitig disjur.1kt sind. Jedoch }st
es stets moglich, R so umzuschreiben, daB die ¢; tatsachlich disjunkt “{erden. Dies
bedeutet, daB die Beschreibung nach den Bedingungen organisiert wird, d.h.. es
wird pro Bedingung beschrieben, was geschieht, wenn diese Bedingung wa..hr er'd-
Andererseits ist es ebenfalls nicht zwingend, daB die ¢; disjunkt sind. Wledel: 1st
es stets moglich, eine beliebige reaktive Beschreibung so umzuschreiben, daB. die 't.'
tatsichlich disjunkt sind. In diesem Fall wird pro Zielobjekt beschrieben, wie sein
Werteverlauf im Laufe der Zeit definiert ist. Um eine Beschreibung so umzuschrei-

ben, miissen Bedingungen in die Modifikationsfunktion aufgenommen werden. Dies
ist stets moglich, da gilt:

at cdo t := f (g)

ist aquivalent zu

&

true do t := if ¢ then f(s)
else t.

Der Prafix at true do kann in dies
Seite der Zuweisungsanweisung hat
der Zuweisung eine Gleichung,

em Fall entfallen. Der Ausdruck auf der rechten
stets einen definierten Wert. Daher wufde aus
durch die der Wert von t kontinuierlich definiert ist.

Beispiel:
Gegeben die Beschreibung

ﬂad_oR1:=R2&R3;
a_t_bd_oR1:=R2+R3;
at a do R4 := RS,

Diese Beschreibung kann nach Bedingungen sortiert werden. Dann erhalt man:

at a do
parbegin
Rl := R2 2 R3 ;
R4 := RS
end ;
at b do
Rl := R2 + R3,

59

Unter Benutzung von || als Konkatenationssymbol (DACAPO-Notation) ist diese
Beschreibung dquivalent zu :

o Rl || R4 := (R2 & R3) || RS;
o R1i := R2 + R3.

at a
tb

™
616

Andererseits kann diese Beschreibung auch nach Zielobjekten sortiert werden:

Rl := case a || b of
false || false : R1;
false || true : R2 + R3;
true || false : R2 & R3;
true || true : error

Nun ist das Gesamtsystem als ein System von Gleichungen beschrieben. In ei-
nem stabilen Zustand sind alle enthaltenen Gleichungen im Aquilibrium. Durch
Wertinderung an einem beliebigen Objekt eines derartigen Systems kann der Gleich-
gewichtszustand gestort werden, was in der Regel zu einem instabilen Zustand fihrt.
Als Reaktion wird ein derartiges Gleichungssystem versuchen, sich wieder zu stabi-
lisieren. Man beachte, daB es nicht notwendigerweise einen stabilen Zustand geben
muB. In solch einem Fall versucht das System stindig (vergeblich), sich zu stabi-
lisieren. Bis hier wurde stets angenommen, daf die linken und rechten Seiten der
beteiligten Gleichungen unterschiedliche Bedeutungen haben. In diesem Fall bewegt
man sich in einem System unidirektionaler Objekte, wo es einen wohldefinierten FluB
von Storungen durch das System gibt, wie eine Wellenfront. Falls man diese Un-
terscheidung zwischen linker und rechter Seite aufgibt, denkt man an bidirektionale
Objekte. Damit erhilt man erheblich kompliziertere Storungsfliisse durch das Sy-
stem. Beide Betrachtungsweisen sind bei der Beschreibung von Hardware sinnvoll.
Im Bereich des Softwareentwurfs korrespondiert zu den stimulierten Gleichungen
die funktionale Programmierung zusammen mit einem Auswertungsmodell, wie es
durch Datenflufirechner gegeben ist. Zur Hardwarebeschreibung werden stimulierte
Gleichungen auf niedrigeren Abstraktionsebenen benutzt. Da traditionelle Entwer-
fer mit diesem Konzept am besten vertraut sind, gibt es eine Vielzahl von Ansatzen,
damit auch hohere Abstraktionsebenen zu iiberdecken. Dies geschieht dadurch, dafl
komplexere Basisobjekte angeboten werden oder der Benutzer sich seine eigenen
Basisobjekte beliebiger Komplexitat definieren kann.

60

2.1.5 Modellierungskonzepte und Abstraktionsebenen

Es ist gerade das zugrundeliegende Modellierungskonzept, d.as eine bestl'mmte 2:‘
straktionsebene konstituiert, Es gibt aber auch Konzepte, die fiir ver.schled.ene' X
straktionsebenen geeignet sind. Auf der Systemebene erscheint der ob _]ekt(')rlentlir 1e
Ansatz am besten geeignet zu sein. Er iiberdeckt sowohl strukturelle wie .Ver al-
tensaspekte. Geometrische Spezifikationen sind auf dieser Ebene von germgere}rlré
Interesse. Bei Bedarf konnen sie jedoch ebenfalls in diesem Konzept untergebrac
werden. Im Verhaltensbereich konnen auch algorithmische Konzepte von Interesse
sein. Algorithmen kdnnen sowohl zur Beschreibung der auflersten Steuerung wie
auch zur Implementierung der Operationen (Implementierte Abstrakie Date.ntypen)
benutzt werden. Die algorithmische Ebene existiert nur im Verhaltensberelcl'l. ber
Definition ist diese Ebene an die imperative Sicht gebunden. Die Art der algorithmi-
schen Beschreibung ist an die intendierte Benutzung der Entwurfssprache gek.)undem
Falls sie als Beschreibungssprache benutzt werden soll, die prazise die Algorlf.hmeny
die anf den Steuerwerken laufen, beschreiben soll, sind nebenlaufige Algorithmen
und Manipulationsobjekte in der Nahe von Hardwarerealisierungen zu benutzen.
Im Fall von Spezifikationssprachen (beispielsweise als Eingabe in ein Synthesesy-
stem) mogen prozessorientierte oder gar sequentielle Ansatze sinnvoll sein. Auf der
RT-Ebene ist die reaktive Sicht die geeignetste. Sie kann als ein Spezialfall der ob-
jektorientierten Sicht interpretiert werden. Alle Aspekte (Struktur, Verhalten, Geo-
metrie, Test) konnen iiberdeckt werden. Im Gegensatz zur algorithmischen Ebene
ist allerdings die globale Wirkungsweise des Gesamtsystems nicht explizit sicht'bar-
Es gibt den verbreiteten Versuch, die RT-Ebene auch durch sogenannte » Behavioral
Languages” zu iberdecken. Doch gehen in diesem Fall die Strukurierungskonzepte,
die fur die RT-Ebene spezifisch sind, verloren.

Auf der Gatterebene sind nur stimulierte Gleichungen sinnvoll, da auf dieser Ebe‘me
die Unterscheidung zwischen Steuer- und Datensignalen nicht mehr sichtbar ist.
Dasselbe gilt auf der Schalterebene. In beiden Fillen kann der Strukturaspekt ab-
gedeckt werden, falls die involvierten Ausdriicke zu trivialen aufgespalten werden,
d.b. zu solchen, wo pro Ausdruck nur ein Operator existiert (Netzlisten). "Sche-
matics” und Stickdiagramme mégen als Beispiele dienen. Auch auf der elektrischen

Ebene sind stimulierte Gleichungen das geeignete Modellierungskonzept. In diesem
Fall werden Differentialgleichungen benutzt.

2.2 Sprachkonzepte

Sprachkonzepte sind mit Modellierungskonzepten natiirlich eng verwoben. Doch ist
die externe Darstellung {eben das Sprachkonzept) sehr wohl von eigenem Wert. Wie
oben dargestellt, muB eine breite Palette von Modellierungskonzepten beriicksichtigt

werden, falls die gesamte Entwurfsbandbreite fiberdeckt werden soll. Um dies zu
erreichen, gibt es drei Hauptklassen von Ansatzen:

¢ Menge von Sprachen, jede Sprache dediziert fiir eine spezielle Ebene

61

e Sprachfamilien

e Breitbandsprachen

Zusatzlich gibt es noch dedizierte Sprachen, die versuchen, mit ihrem Sprachkonzept
neben der Ebene, der sie zugeordnet sind, benachbarte Ebenen zu uiberdecken.

2.2.1 Dedizierte Sprachen
2.2.1.1 Dedizierte Sprachen fiir die Systemebene

Historisch gesehen war der erste Ansatz einer dedizierten Sprache fiir die System-
ebene PMS. Dies ist eine Sprache, um die Struktur (und nur die Struktur) eines
Computersystems systematisch zu beschreiben. Zu diesem Zweck reprasentiert sie
einen Computer als Graph mit verschiedenen Knotentypen. Die Haupttypen sind:

¢ Prozessor (P)
¢ Memory (M)
o Switch (S)

Dies gab der Sprache auch ihren Namen. Jede Instantiierung eines solchen Knoten-
typs kann attributiert sein. Solche Attribute konnen benutzt werden, um Kapazitat,
Wortlinge, Zugriffszeit von Speichern oder Bandbreite von Zugriffspfaden zu spe-
zifizieren. Komponenten von Typ "Memory” werden benutzt, um jegliche Art von
Subsystemen zur Datenspeicherung zu bezeichnen, wie Hauptspeicher, Hintergrund-

speicher, Registerfelder, etc..
"Switches” werden benutzt, um nichttriviale Verbindungen zu beschreiben, die mehr

als zwei Komponenten verbinden, so dafi ein Multiplexen/Demultiplexen nétig ist.
Triviale Verbindungen werden einfach durch Kanten des Graphen dargestellt. Pro-
zessoren werden als aktive Komponenten mit einem bestimmten Instruktionssatz
angesehen.

Eine Sprache wie PMS beschreibt nur die Struktur eines Computersystems. Die
angebotene Information gibt an:

¢ Welches sind die Komponenten, aus denen das System besteht (= Menge der
Knoten im Graph)

e Was ist die Verbindungsstruktur (= Menge der Kanten im Graph)

Konzeptionell handelt es sich um nichts anderes als ein ”Schematic” mit Kompo-
nenten der Systemebene. Abb. 20 zeigt ein Beispiel.

Andere dedizierte Sprachen auf dieser Ebene konzentrieren sich auf verschiedene
Aspekte der Verhaltensbeschreibung. Hier kann jede Sprache, die Mechanismen zur
Beschreibung Implementierter Abstrakter Datentypen enthalt, geeignet sein, die
Module aus Sicht der angebotenen Dienste zu spezifizieren. Um dies zu leisten, muf
eine derartige Sprache folgende Sprachmittel beinhalten:

62

MD e S Pc r SK — S T.lineprinter[1]
F | T.lineprinter[2]
KiO e, .
. SK S Ms.disc{1]
- Pc L SK]— Ms.disc[2]
. Sbus _J .
[Ms.disc[3]
Kio _§ .
Ms.disc[4]
= Kio— L. SK S Ms.tape(1}]
. Kio..J L. SK]_ _[Ms.tape[2]
Mp = primary memory Kio = 170 controller
Ms = secondary memory Sbus = system bus
Pc = main processor 8K = controller switch

Abb. 20: Beispiel einer PMS-Beschreibung

¢ Einen Mechanismus, um Komponententypen (mit ”Instruktionssatz”) zu ver-
einbaren

einen Mechanismus, solche Komponenten zu instantiieren

® einen Mechanismus, statische Speicherbereiche den instantiierten Komponen-
ten zuzuordnen

® einen Mechanismus, die Implementierung der Operationen anzugeben

SIMULA mit seinem Klassen-Konzept ist ein gutes Beispiel fiir ein derartiges Kon-
zept. Man kann SIMULA als die erste objektorientierte Sprache ansehen. Objekto-
rientierte Sprachen aus jingerer Zeit, insbesondere SMALLTALK, konnen ebenfElI.ls
benutzt werden. Allerdings leiden die meisten derartigen Sprachen daran, daf sie
keine Sprachmittel zur Beschreibung von Parallelitit beinhalten. Selbst das Co-

¢ ihre Funktionalitat

o ihre Kommunikationsprotokolle

e ihre charakterisierende

n Attribute, insbesondere in Bezug auf jhre Leistungs-
daten

63

Daher existieren besonders spezialisierte Sprachen auf dieser Ebene. Die Sprache
HIT mag als Beispiel fiir eine Spezialsprache zur Beschreibung von Leistungsaspek-
ten dienen. In dieser Sprache wird ein System als Netz beschrieben, das aus zwel
Klassen von Objekten besteht:

e Anforderungen,

o Dienste.

Diese Komponenten werden durch eine Verbindungsmatrix verschaltet. Eine Ver-
bindung darin bedeutet, daf die jeweilige Anforderung von dem jeweiligen Dienst
eine Dienstleistung anfordert. Den Anforderungen ist eine Haufigkeitsverteilung zu-
geordnet, die angibt, wie die Anforderungen anfallen. In dhnlicher Weise werden die
Dienste mit Bedienzeitverteilungen attributiert. Dienste konnen ihrerseits wieder
als Systeme gesehen werden, die in analoger Weise dekomponiert werden konnen.
Damit konnen hierarchische Beschreibungen entstehen.

Beispiel:

TYPE io_subsystem COMPONENT;
PROVIDE
SERVICE io_operation (amount : REAL);
END PROVIDE;

TYPE io_operation PROCESS (amount : REAL;

USE
SERVICE disk operation (time : REAL);
cpu_request (time : REAL);

END USE;

BEGIN

cpu_request (negexp(amount * 20));

PROB
WHEN 0.2 : disk_operation(negexp(amount));
ELSE . disk_operation(negexp(amount * 2));

END PROB;

END TYPE io_operation;

TYPE overhead PROCESS;
USE
SERVICE disk_operation (time : REAL) ;
cpu_request (time : REAL);

64
END USE;

BEGIN
Loop

CPu_request (negexp(2.0));
diski-operation(negexp(o.2)) H
END LOOP;
END TYPE overhead;

COMPONENT disk

* server(LET dispatch := ps);
ENCLOSE cpu

: server;

REFER io_operation, overhead TO disk, disk3, cpu

EQUATING
io_operation.disk_operation WITH diski. request;
io_operation.cpu_request WITH Cpu.request;

overhead.cpu request

overhead.di sk_operation
END REFER;

WITH €pu.request;
WITH disk.request;

BEGIN

CREATE 1 OF overhead AT 0.0;
END TYPE io_subsystem;

2.2.1.2 Dedizierte Sprachen fiir dje Algorithmische Ebene

Auf dieser Ebene missen Sprachkonstrukte zur Beschreibung potentiell paralleler
Algorithmen bereitgestellt werden. Algorithmische Hardwarebeschreibungssprachen
folgen iiblicherweise den Konzepten allgemeiner algorithmischer Sprachen, auerdi.ngs
mit Datentypen und Operatoren, die der speziellen Aufgabenstellung angepaft sind,
und mit Sprachmitteln, um Parallelitat auszudriicken. Beziiglich der Datentypen

es relativ einfach, Konzepte von Sprachen wie PASCAL,
u ibernehmen und sie in Richtung Bitketten und Bitket-

* Lokale Ansitze
® erweiterte strukturierte Progra.mmierung
. Prozeﬁkommunikation

Bei den lokalen Ansitzen wird ausgedriickt, wann eine Anweisung bezogen auf ihre
lokale Umgebung ausgefihrt werden solf. In einer Sprache wie PASCAL bedeu-

tet ein Semikolon, dag die Anweisung nach dem Semikolon unmittelbar nach der

65

Terminierung der Anweisung davor ausgefuhrt werden soll. Dies ist ein mdgliches
Beispiel eines solchen Symbols. In ISPS wird das Semikolon durch das Symbol next
ersetzt, wahrend die Semantik zweier durch ein Semikolon getrennter Anweisungen
ist, daf§ diese nebenliufig auszufithren sind. Ein nichtlokaler Transfer der Kontrolle
muBl durch spezielle Anweisungen wie goto oder (wie im Fall von ISPS) resume
ausgedriickt werden. Ein anderer lokaler Ansatz ist die Moglichkeit, Interpretierte
Petri-Netze unmittelbar zu beschreiben. In DACAPO beispielsweise geschieht dies
durch Anweisungen der Form :

on (<list of input places>) do mark (<list of output places>)
Beispiel:
on (request and available) do mark (locked and ackn) bus grant.

In diesem Beispiel miissen request, available, locked, und ackn Variable vom
Typ place sein, wihrend bus_grant eine Prozedur sein muf. Lokale Ansitze sind
sehr allgemein. Doch sind derartige Beschreibungen oft schwierig zu lesen, da sie
dazu tendieren, unfibersichtlich zu werden. Dieser Nachteil lasst sich durch er-
weiterte strukturierte Programmierung iberwinden. Hierzu werden die iiblichen
Sprachkonstrukte zur

Reihung
(begin S;; S; end),
Selektion
(if ... then ... else oder case ... of),
und Tteration
while ... do, repeat ... until ..., oder for ... do ...)

so erweitert, daB auch Parallelitit ausgedriickt werden kann. Im Fall von DA-
CAPO geschieht dies durch die Hinzunahme von conbegin Si; S, end und for
. conto ... do ... Zusitzlich wird ein Prozedurmechanismus angeboten, der
Arbitrierung und gegenseitigen Ausschluff im Fall nebenlaufiger Aktivierung bein-
haltet. Dieser Ansatz fithrt zu sehr gut lesbaren, wohlstrukturierten Dokumenten.
Dariiberhinaus ist er auch hinreichend allgemein.
Im Fall der ProzeBkommunikation wird ein zu beschreibendes Gesamtsystem als
Menge nebenliufig aktiver sequentieller Prozesse mit einem wohldefinierten Kommu-
nikationsmechanismus gesehen. Dieser Mechanismus dient sowohl zur Beschreibung
der Kommunikation als auch der Synchronisation der Prozesse untereinander. Dies
ist besonders strikt im Fall des ” Rendevouz”- Ansatzes, wie er in Abschnitt 2.1.2.2
beschrieben ist, durchgefiihrt. Die ProzeBkommunikation fiihrt zu sehr gut lesbaren
Beschreibungen. Leider gibt dieser Ansatz in den meisten Fallen den tatsachlichen
Kontrollmechanismus nur sehr unprazise wieder.

66

2.2.1.3 Dedizierte Sprachen fiir die Registertransferebene

Diese Abstraktionsebene unterliegt einem sehr einfachen Modellisrungskc.mzept- E?‘:
ber ist es auf dieser Ebene ausreichend, ”Guarded Commands” anzubieten. 1l
derartige Anweisung sieht typischerweise wie folgt aus:

<guard> <action>

In CDL (der ”klassischen” RT-Sprache) sieht eine derartige Anweisung beispiels-
weise wie folgt aus:

/S(2) P/ if (C=5) then (S « 001) else (S « 100) ,
A « countup A .

Diese Anweisung hat die folgende Bedeutung:

Immer wenn Bit Nummer 2 von Register S und das Taktsignal P wahr werden, Wer-
den zwei Unteraktionen ausgefithrt: Das (Zustands-)Register § erhalt einen neuen
Wert, und der Inhalt von Register A wird um 1 hochgezahlt. Der Wert, fien das
Register S erhalt, ist von dem aktuellen Wert der Variablen C abhangig. Dies kann
ein Register oder ein "Terminal”, d.h. eine nicht speichernde Variable sein.)

Eine gesamte CDL-Beschreibung ist nichts weiter als eine Ansammlung derartiger
Anweisungen. Die Reihenfolge, in der diese Anweisungen aufgeschrieben werden,

ist ohne EinfluB auf die Semantik der Beschreibung. Alle dedizierten RT-Sprachen
folgen diesem Prinzip. Sie unterscheiden sich nur in:

¢ Syntaktischen Feinheiten

o Konzepten zur Beschreibung des Zeitverhaltens

o Konzepten zur Beschreibung von Hierarchie

Da die RT-Ebene hauptsachlich in der strukturellen Domane beheimatet ist, erscherr
nen hier auch graphische Varianten sinnvoll. ABL mag als Beispiel dienen. In dieser
Auspragung der RT-Sprache KARL gibt es ein graphisches Symbol fiir jeden Typ
einer textuellen RT-Anweisung, Somit 148t sich eine RT-Beschreibung durch einen
”Schematic”-Editor erzeugen. Abb. 21 zeigt diese Entsprechung.

2.2.1.4 Dedizierte Sprachen fiir die Gatterebene

Auf der Gatterebene miissen Boolesche Gleichungen beschrieben werden. Dies ge
schieht Ablicherweise mit einer Variablen auf der linken Seite der Gleichung. Damit
wird die unidirektionale Natur logischer Gatter ausgedriickt. Sprachen der Gatter-
ebene erlauben entweder relativ komplexe Ausdriicke auf Booleschen Operatoren

67

= register R(3:0)
CLK === = atCLKdoA:=B to
CLK anre = trigger CLK
= ifS=1then..
A S

Abb. 21: KARL textuelle Beschreibung und aquivalente Beschreibung in ABL

und Variablen, oder sie sind pro Anweisung beschrankt auf einen einzigen mona-
dischen oder dyadischen Operator zusammen mit seinen Argumenten. Im letzte-
ren Fall werden reine Netzlisten beschrieben. Einige Sprachen erlauben auch Sig-
nalbiindel, wahrend restriktivere nur mit Ein-Bit-Signalen arbeiten. Natiirlich sind
all diese Varianten nur fiir die Lesbarkeit von Bedeutung. Die Beschreibungsmachtig-
keit wird davon nicht beriihrt. Auf der Gatterebene ist man in den meisten Fallen
an einer prazisen Beschreibung des Zeitverhaltens interessiert. Hier bieten verschie-
dene Sprachen recht unterschiedliche Konzepte, wobei es eine grofe Bandbreite er-
reichbarer Beschreibungsprazision gibt. Die Gatterebene ist das klassische Feld,
"Schematic-Editing” als Entwurfssprache einzusetzen. Diese Technik liefert eine
gute Dokumentation der Struktur, die auch sehr einfach zu verstehen ist. Die Boo-
leschen Funktionen jedoch, die implementiert sind, werden durch all die Struktur-
information verborgen. Alle Arten von Beschreibungen auf der Gatterebene lassen
sich einfach zu hierarchischen Beschreibungen erweitern.

Abb. 22 zeigt eine Gatterebenen-Beschreibung, wie sie von einem ”Schematic-
Editor” erzeugt wird.

2.2.1.5 Dedizierte Sprachen fiir die Schalterebene/Ebene des
Symbolischen Layout

Beziiglich des Verhaltens ist der Hauptunterschied zwischen der Gatterebene und
dieser die potentiell bidirektionale Natur von Komponenten der Schalterebene. Da-
her zieht man es in textuellen Beschreibungen meist vor, Knoten verschiedenen Typs
aufzulisten, anstatt anweisungsartige Gleichungen wie auf der Gatterebene aufzu-
schreiben. Als Beispiel mag eine Sprache dienen, die mit zwei Klassen von Knoten
arbeitet, einer fiir Switches (Transistoren) und einer fiir Nets (Kapazitaten). Eine
derartige Sprache mag Anweisungen der folgenden Art anbieten:

switch (gate, source, drain)
[transistor-type, resistance, switching-time]

68

z
FADLIMLF
1CON
LI
71p
oUTel>
3
QUT<2>
0UTe¢3..0>
DUT<3> 0CON
1
ICOK 1nae3..es) 12
. 137
257
iﬁ%ﬁ INB<3..0> gcer
G

1ap

Abb. 22: Beispiel eines "Schematic” auf Gatterebene

69

net (< list of connected transistor ports >)
[capacitance, decay-time]

In graphischen Notationen gibt es keinen essentiellen Unterschied zur Gatterebene,
falls nur strukturelle Information wiedergegeben werden soll. Soll auch topologi-
sche Information gegeben werden, sind Stickdiagramme adaquat. Dabei gibt es eine
Farbe (oder Fullmuster) pro Ebene des Fabrikationsprozesses. Kontakte werden
durch spezielle Symbole dargestellt, da sie ebenfalls als Ebenen des Fabrikationspro-
zesses angesehen werden. Transistoren werden als Uberschneidung von Linien der
richtigen Farbe beschrieben, beispielsweise durch eine fiir die Ebene ”Polysilizium”
und eine solche fiir die Ebene ”Diffusion”. Die Breite der Linien hat keine seman-
tische Bedeutung. Jedoch wird die relative Lage der Objekte zueinander in einem
Stick-Diagramm als Spezifikation der intendierten Anordnung im endgultigen Lay-
out interpretiert. Das nachfolgende Beispiel zeigt ein dynamisches CMOS NAND-
Gatter als textuelle Beschreibung. Abb. 23 zeigt ein Schematic und Abb. 24 ein
Stick-Diagramm davon.

switch (precharge, vdd, prechargeout) [pmos, 1, 500ps J;
switch (e4, n4u, edout) [nmos, 1, 500ps];
switch (e3, n3u, n4) [amos, 2, 500ps];

switch (e2, n2u, n3) [nmos, 2, 500ps 1;

switch (el, niu, n2) [mmos, 2, 500ps];

switch (precharge, gnd, n1) [nmos, 1, 500ps J;
net (prechargeout, edout, nandout) [5, 3ns J;
net (n4u, n4) [1, 2ns 1;

net (n3u, n3) { 1, 2ns J;

net (n2u, n2) [1, 2ns J1;

net (niu, n1) [1, 2ns J;

——
aof= 1L L1 Lo

ooooooooé’l@-
7’0«9-9009‘770‘60, @o,,
(o)

andout 17

Abb. 23: Schematic eines dynamischen CMOS-Gatters

2.2.1.6 Dedizierte Sprachen fiir die Elektrische/Layout-Ebene

Es gibt keinen wesentlichen Unterschied zwischen dieser Ebene und der Schalter-
ebene, falls man die Sprachkonzepte betrachtet. Nur die benutzten Objekte un-

70

GND el e2 e3 e4 precharge vdd

VOPIIIIINIINIA

nwell
N Mmetal Zzzzza diffusion
== poly . 4"' contact

Abb. 24: Stick-Diagramm eines dynamischen CMOS-Gatters

terscheiden sich. Insbesondere werden die Attribute, die den Objekten zugeor'dnet
werden, auf dieser Ebene erheblich komplizierter. Betrachtet man die geometrische
Information, so miissen die nichtmetrischen Linien in den Stickdiagrammen nun
durch Rechtecke mit wohldefinierter BemaBung ersetzt werden.

Das nachfolgende Beispiel zeigt die textuelle Beschreibung eines CMOS NOR-Gatters

in DOMOS. Abb. 25 zeigt ein Schematic eines CMOS NOR-Gatters und Abb. 26
ein Layout davon.

TITLE NORS4
CIRCUIT

$NORS4-1

$ 1. EINGANG

T1 P E2 N12 E1 8 1.5 110 110
T2 N E2 NO N11 8 2.5 110 110

$ 2. EINGANG
T3 P E3 N13 N12 8 1.5 110 110
T4 N E3 NO N11 8 2.5 110 110

$ 3. EINGANG
TS P E3 N14 N13 8 1.5 110 110
T6 N E3 NO N11 8 2.5 110 110

$ 4. EINGANG

71

T7 P E3 N11 N14 8 1.5 110 110
T8 N E3 NO N11 8 2.5 110 110

$ AUSGANGSBELASTUNG JE 1 GATE GEGEN MASSE UND VDD
C1 N11 E1 0.017
C2 NO Ni1 0.010

TIMER 0 160

PARAMETERS

N CHANNEL N BODY NO NB 1.8E14 TOX 0.04 VIO 1.0 CGOX 0.85E-3 BO 0.045
N THETA 0.045 LOV 0.0 K1 0.3 CJ 0.46E-4 FL 0.2 F 2.0

P CHANNEL P BODY Ei1 NB 1.8E16 TOX 0.04 VIO 1.0 CGOX 0.85E-3 BO 0.014
P THETA 0.055 LOV 0.0 K1 0.8 CJ 0.46E-3 FL 0.2 F 2.0

WIDTH 100

vdd

GND

Abb. 25: Schematic eines CMOS NOR-Gatters

2.2.2 Sprachfamilien

Die obige Diskussion zeigt, daB es nicht zu schwierig ist, fiir jede Abstraktionsebene
eine dedizierte Sprache zu entwerfen. Auf diese Weise erhalt man sehr schlanke Spra-
chen. Als weiterer Vorteil ist zu nennen, daB man dafiir leicht effiziente Software, vor
allem Simulatoren bauen kann. In einem systematischen Entwurfsprozefl ist dieser
Ansatz jedoch nicht praktikabel. Kein Entwerfer wird akzeptieren, daB er die Be-
schreibung seines Entwurfs mehrmals in vollig unterschiedliche Konzepte ube.:tset:zen
muB. Automatische Synthese- und Verifikationswerkzeuge werden zudem in einer
derartigen Umgebung auBerst kompliziert. Ein Ansatz, diese Probleme zu meistern,

72

VDD GND

RES

Abb. 26: Layout eines CMOS NOR-Gatters

ist die Idee der Sprachfamilien. Zunichst werden innethalb einer Sprachfamilie alle

Konstrukte, die auf verschiedenen Ebenen (in verschiedenen Sprachkonzepten) die-
selbe Bedeutung haben, vereinheitlicht. Dies schlieBt ein:

¢ Basisnotation
o grundlegende Datentypen und Konstanten

e Konstruktoren fir Datentypen und Kontrollstrukturen

¢ grundlegende Modularisierungstechniken

Spezifische Eigenschaften spezieller Ebenen (spezielle Konzepte) sollten semantisch
in gemeinsamen Konzepten verankert sein. Weiterhin wird gefordert, dal man sich
im Einklang mit dem syntaktischen ”Geist” der Familie befindet. Im Idealfall gibt
es eine sehr kleine Kernsprache mit grofer Beschreibungsméchtigkeit und einen Me-
chanismus, aus einer Sprache der Familie eine neue abzuleiten. Diese Konstruk-
tion mufl Syntax und Semantik beinhalten. Das konsequenteste Beispiel fur diesen
Ansatz stellt CONLAN dar. CONLAN (CONsensus LANguage) ist keine Hard-
warebeschreibungssprache im engeren Sinn, sondern ein Rahmen zur Definition und
Implementierung von solchen Sprachen. CONLAN wurde von einem internationalen
Kommitee definiert. Das Ergebnis wurde in einem 1983 publizierten Endbericht do-
kumentiert. Jede Beschreibung im CONLAN-Rahmen hat zunichst eine Referenz-
sprache innerhalb der CONLAN-Sprachfamilie zu nennen. Diese REFLAN kann
benutzt werden, um eine neue Sprache abzuleiten oder um ein Stick Hardware zu
beschreiben. Um eine neue Sprache abzuleiten, bietet der CONLAN-Rahmen Kon-
strukte an, die es erlauben, die syntaktische und semantische Verankerung in der

73

REFLAN zu spezifizieren. Die Wurzel der CONLAN-Famile ist PSCL (Primitive Set
CONLAN). Unter Benutzung der CONLAN-Techniken wurde aus PSCL BCL (Base
CONLAN) abgeleitet. Dies ist bereits eine elementare Hardwarebeschreibungsspra-
che. BCL ist hauptsachlich als ”Unterwurzel” fiir alle anderen Hardwarebeschrei-
bungssprachen innerhalb des CONLAN Rahmens intendiert. Abb. 27 illustriert
diesen Ableitungsmechanismus.

CONLAN committee

Language designers

Design engineers

Abb. 27: Ableitungsbaum fiir Sprachen der CONLAN-Sprachfamilie

In PSCL gibt es die Datentypen integer, bool, string, und tuple@ (der Post-
fix "@" bezeichnet Objekte, die nur zum Zweck der Sprachdefinition benutzt werden
konnen). Das Grundobjekt ist ce11@. Es dient als Basis fiir jede Variable oder jedes
Objekt in hoheren (d.h. abgeleiteten) Sprachen. In BCL gibt es Integer-Teilbereiche,
Arrays und Records. In dieser Sprache sind von besonderem Interesse sogenannte
signals, d.h. Objekte, die als Werte Wertefolgen iiber die Zeit haben. Dabei gibt
es ein diskretes Zeitmodell. Wie die meisten Hardwarebeschreibungssprachen un-
terscheidet BCL zwischen terminals (nicht speichernde Variable) und variables
(speichernde Variable). Das Verhalten wird mittels CONLAN operations be-
schrieben. Dies ist eine Form implementierter ADTs. Dabei wird ein Unterschied
zwischen functions, die einen Wert liefern, und activities gemacht. Letztere
sind vergleichbar mit Prozeduren in einer Sprache wie PASCAL. Der Rumpf einer
Operation wird in Form einer Liste von activity- Aktivierungen gegeben. Diese
Aktivierungen konnen bedingt sein und nebenlaufig stattfinden. Strukturinforma-
tion wird in Form von description segments angegeben. Diese dienen zur stati-
schen Segmentierung von Beschreibungen. Ein description segment besteht aus
einem interface part und einem body. Im body werden die inten{en Ob:|.ekt-
typen (andere description segments) deklariert und Objekte.a davon instantiiert,
wobei ein generischer Mechanismus angeboten wird. Das intendierte Verhalten kann

74

mittels assertions spezifiziert werden. Dies sind Invarianten, (liie stets wahr sein
missen. Im Gegensatz zu den meisten anderen Hardwareb&chrexbungsspra,chentm-
terpretiert CONLAN delays als Referenz auf vergangene Werte von Argumenten.
Dies ist vom theoretischen Standpunkt ein sehr sauberer Ansatz. .CONL.AN ist
ein auBergewohnliches Konzept mit einer Reihe exzellenter Ideen. Eine Reihe Vog
Sprachen ist in diesen konzeptionellen Rahmen eingebettet worden, dfnunter au(;l
DACAPO. Das Hauptproblem von CONLAN ist, daff die Entwerfer dieses Spr.aci ;
konzepts fast gar nicht an der algorithmischen Ebene interessiert waren. Somit 1

es recht kompliziert, im CONLAN-Rahmen Algorithmen zu beschreiben oder emne
algorithmische Sprache in diesen Rahmen einzubetten.

Beispiel einer CONLAN Beschreibung:

DESCRIPTION dff
(tsu, th, tp: pint)
(IN 4, ck: signal(bool); OUT
q, nq: bvar(0))

ASSERT tp > th END

BODY

ASSERT IF ckl%th

& ck%(th + 1) THEN
stable(d,tsu + th)
& stableO(cklth, tsu)
% stablei(ck, th) ELSE 1
ENDIF ENDASSERT

IF ck¥%(tp-1) & ~ck¥%tp THEN q := d, ng := “d END
ENDAff

2.2.3 Breitbandsprachen

Offensichtlich ist es ndtig, in RT-Sprachen Konstrukte fiir die Gatterebene einzubet-
ten. Andererseits sollte eine Hardwarebeschreibungssprache fur die algorithmiSCh'e
Ebene, die sich an modernen Programmiersprachen orientiert, geniigend Sprachel-
genschaften haben, um auch die Systemebene zu iiberdecken. Wenn man also diese
beiden Komplexe kombiniert, erhalt man eine Breitbandsprache, die vier Ebeﬂefl
fiberdeckt. Natiirlich muf man hier dem Vereinheitlichungsaspekt der Sprachfami-
lien ebenfalls folgen, um zu verhindern, da ein Sprachdinosaurier entsteht.

Breitbandsprachen befreien den Hardwareentwerfer vom Zwang, wahrend des Ent-
wurfsprozesses von einer Beschreibungsart zur anderen zu springen. Sie scheinen
auch die einzige Losung fir das Problem der "mixed-level”-Beschreibung und -
Simulation digitaler Systeme zu sein. Betrachtet man eine spezielle Ebene, sO
tendieren Beschreibungen in einer Breitbandsprache manchmal dazu, etwas kom-
plizierter als solche in einer dedizierten Sprache zu sein. Zudem tendieren dazu-
gehorige Simulatoren dazu, etwas weniger effizient als spezialisierte zu sein. Aber

75

die Vorteile des Breitbandansatzes wiegen diese Nachteile deutlich auf. Aus den
genannten Griinden sind Breitbandsprachen die aussichtsreichste Losung des Pro-
blems, digitale Hardware umfassend beschreiben zu missen. Die bedeutendsten
Vertreter dieses Konzepts sind DACAPO und VHDL. DACAPO wird im Abschnitt
2.3 detailliert vorgestellt werden.

2.3 Die Hardwarebeschreibungssprache DACAPO II1

DACAPO III ist die jungste Version einer Hardwarebeschreibungssprache, deren
erste Version vom Autor 1975 vorgestellt wurde, damals DIGITEST II genannt.
1979 wurde eine der heutigen Form sehr ahnliche Version definiert und implemen-
tiert. Diese Sprache wurde CAP/DSDL (fiir Concurrent Algorithmic Programming
Language/Digital Systems Description Language) genannt. Mit einer anderen Im-
plementierung erhielt diese Sprache den Namen DACAPO II. Geringfigige Modi-
fikationen und die Hinzunahme eines an MODULA II angelehnten Modulkonzepts
hatten die Sprache DACAPO III zum Ergebnis. DACAPO III ist eine echte Breit-
bandsprache mit machtiger Unterstiitzung der Systemebene, der algorithmischen
Ebene, der Registertransferebene und der Gatterebene. Die Schalterebene wird
weniger stark unterstiitzt. Es ist nicht die Absicht, in diesem Abschnitt ein Sprach-
handbuch fiir DACAPO III zu geben. Stattdessen ist eine informelle Einfihrung in
die grundlegenden Prinzipien der Sprache intendiert. Der Abschnitt ist nach den zu
iberdeckenden Abstraktionsebenen organisiert, wobei am Anfang allerdings einige
gemeinsame Grundlagen diskutiert werden.

2.3.1 DACAPO 1II Grundlagen

DACAPO III ist eine Sprache, die, so weit moglich, wie MODULA 1II (oder PAS-
CAL) aussieht. Daher konnen die Grundnotation, die Konstanten, Bezeichner,
Giiltigkeitsbereiche, Datentypen sehr knapp erlautert werden.

Bezeichner:

Ein Bezeichner in DACAPO III besteht aus einem Buchstaben gefolgt von einer
beliebigen Anzahl von Buchstaben, Ziffern oder Unterstrichen.

Beispiele:

DACAPO_III
A
enable_register_4_to_be_loaded_from-bus_3

Es gibt eine relativ grofe Anzahl an reservierten Wortsymbolen und vordefinier-
ten Bezeichnern, die nicht als vom Benutzer definierte Bezeichner benutzt werden

76

dirfen. Im vorliegenden Dokument werden Wortsymbole durch Unterstreichung ge-
kennzeichnet.

Kommentare:

Jeder Text beginnend mit *{” bis ”}” wird als Kommentar interpretiert.

Beispiel:
{Are you still reading this crazy book?}

Konstanten:

Numerische Konstanten kdnnen in dezimaler oder verallgemeinerter biné.ter Nolt.a*
tion dargestellt werden. Dezimale Konstanten werden geformt durch eine bege‘
bige Folge von dezimalen Ziffern mit einem potentiellen Vorzeichen. Der Wertebe-

reich ist extrem groB, da eine virtuelle DACAPO-Maschine mit einer Wortlange von
(2%*31)-1 bit angenommen wird.

Beispiele:

-876435098734653405986349586345983465987346598734658346689634598
53

Bitkettenkonstanten werden in dffnende und schlieBende > " * eingeschlossen. Fir

jede Bitposition gibt es den erweiterten Wertebereich {0, 1, X, L, H, Y, Z} mit
der folgenden Bedeutung:

0 logisch null , mniederchmig
1 logisch eins , niederohmig
X logisch unbekannt , niederohmig
L logisch null ,» hochohmig

H logisch eins » hochchmig
Y logisch unbekannt , hochohmig

Z

kein logischer Wert , hochohmig

Ein fuhrendes (1) oder (B) bedeutet Binardarstellung, d.h. es folgt ein String, ge-
bildet aus den obigen Symbolen. Dieser Prafix wird als Voreinstellung angenommen.
Ein fihrendes (2) oder (Q) bedeutet Quartaldarstellung; die Menge der erlaubten
Symbole ist hier um {2, 3} erweitert. Symbole der Menge {X, L, H, Y, Z} wer-
den als Paare dieser Symbole interpretiert.

Ein fibrendes (3) oder (0) bedeutet Oktaldarstellung. Die Menge der erlaubten
Symbole ist hier durch {2, 3, 4, 5, 6, 7} erweitert. Symbole der Menge {X,
L, H, Y, Z} werden als Tripel dieser Symbole interpretiert. Ein fuhrendes (4)
oder (X) bedeutet Hexadezimaldarstellung. Die Menge der erlaubten Symbole ist

hier um {2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} erweitert. Symbole der

77

Menge {X, L, H, Y, Z} werden als Quadrupel dieser Symbole interpretiert.
Es sind beliebige Mischformen erlaubt, und Leerzeichen sowie Zeilenvorschiibe kdnnen
beliebig eingefiigt werden.

Beispiele: (Alle Beispiele bezeichnen denselben String)

"(1)1100011100001111"

" 1100011100001111"

"1100 0111 0000 1111"

"(4) C70F"

"1100 (4) 7 (3) 0 (2) 1 (1) 111"

Bitketten werden auch als Integer interpretiert und umgekehrt. Zeichenkettenkon-
stanten werden in ’ * ’ eingeschlossen. Jedes darin enthaltene Zeichen wird a}s
Bitkette der Lange 8 nach EBCDIC- oder ASCII- Code (je nach Voreinstellung, die
auch geandert werden kann,) interpretiert.

Beispiele:

’DACAPO III’

’310°

EBCDIC-Code angenommen, ist die zweite Zeichenkette aquivalent zu
"(4) F3F1FO"

Fiir Verzdgerungsbeschreibungen werden optional dimensionierte Konstante ange-
boten. Diese Dimensionierungen sind:

HR = Stunden

MIN = Minuten

SEC = Sekunden

MS = Millisekunden

Us = Microsekunden

NS = Nanosekunden

PS = Picosekunden
Beispiel:

50 US “(4)FF" NS

Bitketten, die eine Repetition eines einzigen Binarsymbols sind, konnep durch e(linfs
von{ ALL.O, ALL.1, ALLX, ALL_L, ALL_H, ALLY, ‘%LL_Z 1 beschrieben wer den.
Derartige Konstanten haben wie dezimale keine vord(?,ﬁmerte Laﬂnge, sonde(rin w;rden
vom Compiler auf die notwendige Lange gebracht. Eine fes‘te Lange kann urtc en
Prifix (n) gefordert werden, wobei n eine beliebige numerische Konstante ist.

Beispiel:
("(9)F") ALLL

78
ist Aquivalent zu “LLLL LLLL LLLL LLLL"

Uberall wo eine Konstante erlaubt ist, kann sie durch einen beliebigen Ausdruck auf

konstanten Werten ersetzt werden (d.h. durch einen Ausdruck, der zur Compilezeit
ausgewertet werden kann).

Konstantendefinition:

Konstanten kénnen mittels PASCAL-Notation an Bezeichner gebunden werden.

Beispiele:
const wordlength = 32 ;

busdefault = bit (4) ALL.Z ;
bytelength = wordlength/4 ;

Datentypen :

Der grundlegende Datentyp von DACAPO III ist die Bitkette beliebiger Lange. Ef
wird mit bit(n) bezeichnet, wobei n die Lange in bit angibt. Jedes "Bit" ist
siebenwertig wie oben angegeben. Um dies explizit auszudriicken, kann man auch
bit_7(n) schreiben. Statt bit(1) oder bit_7(1) kann man auch einfach bit oder
bit 7 schreiben. Will man die ”Bits” auf den Wertebereich {0, 1, X} einschranken,
so mufl man bit_3 anstelle von bit oder bit.7 schreiben.

Der Typ integer bezeichnet eine Bitkette der Lange 32, wobei jedes "Bit” auf (%en
Wertebereich {0, 1} eingeschrankt ist. Ahnlich bezeichnet der Typ timevar ein€
derartige Bitkette der Lange 64. In jedem Fall werden die Bits von rechts nach
links, beginnend mit 0, gezahlt. Wahrend bei Bitketten die tatsachliche Kodierung

angegeben wird, wird dies bei Aufzihlungstypen offengelassen. Deren Wertebereich
wird durch Aufzihlung der moglichen (symbolischen) Werte gegeben.

Beispiele :
bit
bit 3(3948567093459846987654)

(andcode, orcode, nandcode, notcode, norcode, exorcode, addcode,
minuscode)

Strukturierte Typen werden durch PASCAL-artige Konstrukte fiir Arrays und Re-
cords gebildet. Es sind Arrays von Records und Arrays von Arrays erlaubt, nicht
aber Records, die als Komponenten Arrays haben. Der Grund liegt darin, daf ein

Record auch als die Bitkette angesehen wird, die durch Konkatenation all seiner
Komponenten entsteht.

Beispiele :

79

array [0 : 7] of bit
array [1023 : 0, 0 : 7] of bit

dies ist aquivalent zu array [1023 : 0] of array [0 : 7] of bit

array [0 : 255] of record

opc : bit(3);
adr : bit(13)
end

Typdefinitionen:
Wie in PASCAL konnen Typen an Bezeichner gebunden werden.

Beispiele:

type register_file = array [0 : 15] of §_i_1_:_3(vordlength) ;
address_field = record
base_register : bit_3(4) ;

displacement : bit_3(24) ;
index_register : bit_3(4) ;
end ;

instruction_register = record
opc: bit_3(3) ;
adr_1, adr_2 : address_field
end ;

In DACAPO ist das Typkonzept um die Moglichkeit, Abstrakte Datentypen zu de-
finieren, erweitert. Dies wird an spaterer Stelle erliutert werden.

Objektdeklaration :

Objekte eines bestimmten (vom Benutzer angegebenen oder vordefinierten) Typs
werden durch Deklaration kreiert. Bis auf die Erweiterung, die es erlaubt, ADTs zu
instantiieren, geschieht dies wie in PASCAL. Datenobjekte konnen einen initialen
Wert bekommen, indem man ihnen bei der Deklaration eine Konstante (einen kon-
stanten Ausdruck) zuweist. Der voreingestellte Initialwert ist "ALL_Z". DACAPO
unterscheidet zwischen zwei Hauptklassen von Datenob jekten:

¢ Objekte mit Speicherfahigkeit (Register, Speicherzellen, Flipflops) und

e Objekte ohne Speicherfahigkeit (Verbindungsleitungen, Ausgange von kombi-
natorischer Logik).

80

Speichernde Objekte werden durch das Attribut explicit (das entfallen kann) ge-

kennzeichnet, wahrend nicht speichernde Objekte das Attribut implicit haben
miissen.

Beispiele:

var a : bit(4) := “XHLZ" ;

s

b : implicit bit(8) := 0 ;

¥

{automatische Langenanpassung der Dezimatkonstante}
¢ : explicit record ci, c2 : bit(2) end := "1100" ;

{Record interpretiert als Bitkette}

d : array [0 : 3] of Ei}(?) := 00", "11v, "0o1", "1i0"

Ausdriucke:

Ausdriicke sind denen in PASCAL sehr dhnlich. Referenzen zu den aktuellen Werten
einfacher Datenobjekte werden durch Nennung des Objekts gemacht. Ein aktueller
Wert einer Arraykomponente wird durch Nennung des Arrays zusammen mit fier
entsprechenden Indexliste referenziert. Ganze Arrays konnen ebenfalls referenziert
werden, indem man einfach die Indexliste nicht auffiihrt. Allerdings darf bei mehr-
dimensionalen Arrays nur entweder der rechteste Index oder die gesamte Indexliste
entfallen. Der aktuelle Wert einer Recordkomponente wird durch Angabe des ge-
samten Pfades zu dieser Komponente mit Punkt als Trennsymbol referenziert. Da

gesamte Records als Bitketten angesehen werden, kénnen sie in Gesamtheit auch
referenziert werden.

Beispiele:
Es seien die folgenden Deklarationen angenommen:

type register_file = array (0 : 15] of bit_3(wordlength) ;
address_field = record

base_register : bit _3(4) ;
displacement : bit_3(24) ;
index_register : bit._3(4)
end ;
instruction_register = record
opc: bit_3(3) ;

adr_1, adr_2 : address_field
end ;

3

Id
i
0 o e

: bit(4) := “XHLZ" ;
¢ register_file ;
: imstruction_register ;

81

Mit diesen Deklarationen

- wird mit a der aktuelle Wert des Datenobjekts a referenziert,

wird mit register_file [14/2] der Wert der siebten Komponente des Arrays
register _file referenziert,

wird mit register file der aktuelle Wert des gesamten Arrays referenziert,

- wird durch instruction.register.adr_1.displacement der aktuelle Wert
der genannten (Blatt-) Recordkomponente referenziert

- wird durch instruction register.adr_2 der aktuelle Wert des gesamten
Subrecords referenziert.

Falls Operanden durch Operatoren verkniipft werden, mufl das Konzept des "strong
typing” von DACAPO beachtet werden. Nur Operanden derselben Lange und der-
selben Struktur sind kompatibel. Allerdings sind Records zu jeder Bitkette mit glei-
cher Lange und gleichem bitweisen Wertebereich kompatibel. Damit ist ein Record
zu jedem anderen Record in dieser Klasse kompatibel, auch wenn er unterschiedlich
strukturiert ist.

Beispiele :

Ein Objekt vom Typ

record a,b :bit(2) end

ist kompatibel zu einem Objekt vom Typ

record a : bit(3); b : bit end.

Ein Objekt vom Typ bit(10)

ist weder kompatibel zu einem Objekt vom Typ

bit(5) (unterschiedliche Linge) noch zu einem Objekt vom Typ
bit_3(10) (unterschiedlicher bitweiser Wertebereich).

Es gibt eine groBe Anzahl von Operatoren in DACAPO fiir Arithmetik, Logik, Ver-
gleiche, Stringmanipulation und Fallunterscheidung.

Arithmetische Operatoren:

82

Operation Operator | Alias
Vorzeichen +
Vorzeichen -
Multiplikation *
{eingeschrinkt auf max 32 bit}
Division /
{eingeschrinkt auf maz 32 bit}

Modulo mod
{eingeschrinkt auf max 32 bit}
Addition +
Subtraktion -
Addition (Vorzeichenlos) 1+
Subtraktion (Vorzeichenlos) -1

Die beiden Vorzeichenoperatoren sind monadisch, wahrend alle anderen Operatoren
dyadisch sind. Ein tiblicher Additions- oder Subtraktionsoperator interpretiert die
Bitmuster seiner Operanden als Zweierkomplementdarstellung vorzeichenbehafteter
ganzer Zahlen, wihrend die vorzeichenlosen Alternativen diese als vorzeichenlose
nichtnegative ganze Zahlen interpretieren. Aufer Multiplikation, Division und Mo-
dulobildung sind alle Operatoren auf Operanden beliebiger Lange definiert.

Logische Operatoren:

Operation Operator | Alias
not / not
monadisches and 1€5) (and)
monadisches or ¢ (o)
monadisches nand (/%) (nand)
monadisches nor un {nor)
monadisches exor (@) (exor)
monadisches equivalence /e (eqv)
and -4 id—
or | or.
nand /% nand
nor /1 noxr
exor [] exor
equivalence /e eqv

Die Operatoren and, or, nand, por, exor,und equivalence sind dyadische Ope-
ratoren. Sie akzeptieren beliebige Bitketten gleicher Lange und operieren darauf

bitweise. Es wird angenommen, daB sie Gatter mit Ausgangstreibern modellie-
ren. Daher liefern sie stets einen Wert im Bereich {0, 1, X} und interpretieren
Werte L, H, Y, Z als 0, 1, X, X. Der monadische Operator pot wirkt analog.
Die monadischen and-, or-, pand-, mor-, exor- und equivalence-Operatoren

83

sind Reduktionsoperatoren. Sei (#) ein derartiger Operator und a = anan_;_agp das

Argument.

Dann ist (#)a definiert als

- a falls n =0
- aj#ag falls n = 1

- (#) (anan_y...(a1#ap)) sonst

Vergleichsoperatoren:

Operation Operator | Alias
gleich =
ungleich <>
grofer >
grofergleich >=
kleiner <
kleinergleich <=
grofer (vorzeichenlos) 1>
groBergleich (vorzeichenlos) i>=1
kleiner (vorzeichenlos) (|
kleinergleich (vorzeichenlos) | I<= |

Alle Vergleichsoperatoren wirken auf zwei Bitketten beliebiger, aber gleicher Lange
als Argumente. Das Ergebnis ist eine Bitkette der Lange 1 mit Wert "1”, falls der
Ausdruck wahr ist, und "0” sonst. Die vorzeichenlosen Operatoren interpretieren
die Argumentbitketten als vorzeichenlose ganze Zahl, wahrend die anderen von einer

Zweierkomplementdarstellung ausgehen.

Stringoperatoren:

Operation Operator | Alias
Konkatenation I

Substring (ein Bit) .(n)
Substring (mehrere Bit) (nim)

Die Konkatenation nimmt zwei Argumente und klebt sie zusammen, z.B.

"110"1}1"001" = "110001". Der Einbit-Substring-Operator isoliert das bezeichnete
Bit, wihrend der Mehrbit-Substring-Operator die bezeichnete Unterbitkette isolierf;.
Dabei bedeutet das Symbol m die rechte Grenze und n die linke. Das rechteste Bit
einer Bitkette ist stets das Bit 0. Alle Stringoperatoren kdnnen auf alle Typfen von
Argumenten angewandt werden, da in DACAPO jeder Datentyp a.uch als Bitkette
interpretiert wird. Man beachte die Ahnlichkeit zwischen d(?l‘ Notation von Reco.tds
und Substrings. So wie jeder Record auch als Bitkett.e, die .durch Konkatenatxf)n
seiner Komponenten entsteht, interpretiert wird, wird jede Bltkette auch als be{xe-
big strukturierbarer Record angesehen. Da in diesem Fall die Komponenten keine

84

Bezeichner haben, miissen sie durch Angabe der Position angesprochen werden.

Beispiele:
Angenommen sei die folgende Deklaration:

var a record

al : bit(5) ;
a2 : bit(10)
end ;

Mit dieser Deklaration gilt:

aund a2 || a1 bezeichnen denselben String,
a.(4:0) und a.al bezeichnen denselben String,
a.(8:4) ist ebenfalls ein giltiger Substring.

Fallunterscheidung:

Falls E; und E, giiltige Ausdriicke sind und cond ein D
ist, dann ist if cond then E, else E, ein gultiger Aus
ten Ausdrucks ist entweder der von E, oder der von
aktuellen Wert von cond. Man beachte, daf der el ge-

atenobjekt vom Typ bit(1)
druck. Der Wert des gesam-
E; in Abhangigkeit von dem
Teil natiirlich nicht fehlen darf.

Falls Ey, Ey, ..., E, glltige Ausdriicke sind, cond ein Da
eine Teilmenge des Wertebereichs von cond, dann ist
case cond of vy: Eg; v, : Ey;.
ein giiltiger Ausdruck.

Der Wert des gesamten Ausdrucks ist der von E;, falls der aktuelle Wert von cond
v; ist.

tenobjekt und {vg, vy, ..., Va-1}

Unyt Ep_y ; else E, end

Funktionsaufruf:

function-identifier(list of formal Parameters).

Beispiel ;

85

shlarit (alu_out, factor)

Shlarit (fir arithmetischer Linksshift) ist eine in DACAPO eingebaute Funktion.
In diesemn Fall ist ihr Wert der des Arguments alu_out arithmetisch um factor
Stellen nach links geschoben.

Komplexe Ausdriicke:

Es kénnen Ausdriicke beliebiger Komplexitat geformt werden. Dabei gibt es eine
wohldefinierte Operatorprazedenz, die durch Klammerung fberschrieben werden
kann. Man beachte, daB die strenge Typpriifung auch auf alle Teilausdriicke an-
gewandt wird.

Assertions

Simulation eines Systems bedeutet den Versuch, es zu verifizieren. Dies bedeutet,
daB man versucht, herauszufinden, ob das beschriebene Verhalten mit dem intendier-
ten {ibereinstimmt. Dies bedeutet aber auch, daB der Entwerfer die Bedingungen,
die erfillt sein miissen, kennt. Ublicherweise muf er nun das Simulationsergebx.lis
analysieren, d.h. auf Erfiillung dieser Bedingungen Aberprifen. Falls' er jed”och im
voraus in der Lage ist, die Bedingungen zu formulieren, kann er dlese.muhsax.ne
Tatigkeit dem Simulator iiberlassen. In DACAPO hat er die Option, seine Bedu}-
gungen als Assertions zu formulieren. Derartige Assertions sind Invarfanten, .d:e
stets gelten miissen. Im Falle einer Verletzung reagiert der Simulator in einer Weise,
die der Benutzer spezifizieren kann, z.B. durch Ausgabe einer Fehlermelduflg. .
Alle Assertions einer Prozedur oder einer Funktion miissen in einem Assertions-Teil
gruppiert werden. Dieser Teil wird mit dem Wortsymbol assertions eingeleitet.
Jede assertion ist von der Form:

condition — action

Dabei ist condition ein beliebiger Ausdruck vom Typ bit(1), und action ist. ei.ne
beliebige Anweisung. Die assertion wird kontinuierlich ausgewertet, WObCl. sich
der Simulator hierfiir einer speziellen Technik bedient, die minimale CPU-Zeit er-

fordert. Immer wenn condition wahr wird, wird action ausgefithrt. Typische

Aktionen sind:
- Modifikation des Zustandes mittels Zuweisungsanweisung,
- Fehlermeldung mittels der eingebauten Funktion error,

- Simulationsstop mittels der eingebauten Funktion stop.

86

Beispiele :
assertions flag 1= MY
readacc and writeacc — accerror = ; g s
control_state = "11" — stop (state.check, ’ control_state 11 H
time - changetime (read request) > 50 — ’

error (’slov memory request frequency’);

Die erste assertion iiberprift, ob die zwei Signale z:eadacc und wrlteacctzzlér ?)eile
ben Zeit gesetzt sind. Immer wenn dies geschieht, wird accerrorf"lag Igese A ;Nenn
zweite assertion Uberpriift, ob control._state den Wert "11" erhz:lt. mmf e
dies geschieht, wird die Simulation gestoppt und die Fehlermeldung contr:e-CheCk
= 11" gesendet. Dies findet allerdings nur statt, falls der Schalter sta —durch
gesetzt ist. Dies kann entweder in dem zu analysierenden Modell oder ex'tern e
Stimuli geschehen. Die letzte assertion benutzt die eingebaute-n Funkt;oneilemten
und changetinme, die die aktuelle Simulationszeit bzw. den Zeltpunlftd els) A
Signalwechsels der entsprechenden Variable liefern. In unserem F.all wird uberp est’
ob mehr als 50 Zeiteinheiten zwischen zwei Wertwechseln der Variable readrequ
stattfinden. Ist dies der Fall, so wird eine Fehlermeldung produziert.

2.3.2 Beschreibungen in DACAPQ III auf der algorithmischen Ebene

Algorithmen spielen auch auf der Systemebene eine wichtige Rolle, doch' s(;:}?:sre
punkimasig sind sie auf der algorithmischen Ebene angesiedelt. Daher wir ld'e
Ebene zuerst diskutiert. Aus einem zhnlichen Grund werden alle Sprachrmttel(,i 11t
die Modularisierung unterstiitzen, im Abschnitt fiber die Systemebe.ne behande §
obwohl diese Techniken fiir andere Ebenen ebenfalls von Bedeutung sind. Der .algO

rithmische Teil einer DACAPO-Beschreibung besteht aus einer Verbundanweisung
{Compound statement, CS). Ein derartiges CS besteht aus einem CS-Kopf, eme;
Liste von Anweisungen und einem CS-Ende, das einfach von dem Wortsymbol en:

gebildet wird. Folgende Typen von Anweisungen konnen in einem CS auftreten:

- Verbundanweisung,

- Zuweisungs-Anweisung,
- if-Anweisung,

- case-Anweisung,

- while-Anweisung,

- repeat-Anweisung,

- for-Anweisung,

- at/when-Anweisung,

- Prozedur-Aufruf

- Leer-Anweisung.

87

2.3.2.1 Verbundanweisung

Es gibt vier verschiedene Typen von Verbundanweisungen:

- die sequentielle Verbundanweisung,

- die nebenlaufige Verbundanweisung,

- die parallele Verbundanweisung,

- die kompakt sequentielle Verbundanweisung.

Letztere wird im Abschnitt 2.3.6 diskutiert werden.
Die sequentielle Verbundanweisung hat die Form
seqbegin S3;S,;...; S, end ;

Die Semantik ist, daBl die Anweisung S; initiiert wird, nachdem die Anweisung S;_,
terminiert hat. Dies bedeutet aber nicht notwendigerweise, da8§ S; unmittelbar nach
der Terminierung von S;_; initiiert wird, da es nebenliufig aktive Teile geben kann,
die mit dieser Anweisung interferieren. Ausgedriickt in Interpretierten Petri-Netzen
korrespondiert diese Anweisung zu dem in Abb. 28 skizzierten Netzmuster.

St 52 Sn

Abb. 28: Petri-Netz fir seqbegin ... end
Die nebenliufige Verbundanweisung hat die Form:
conbegin $y;5;;...; S, end ;

Die Semantik ist, daB bei Initijerung der gesamten nebenlaufigen Verbundanweisung
alle eingebetteten Anweisungen Sy; Sy; ...; Sn nebenlaufig initiiert werden. Sie werden
nun vollstindig unabhangig voneinander ausgefithrt. Wenn die zeitlich letzte diesefr
Anweisungen terminiert hat, terminiert die gesamte nebenlaufige Verbundanwei-
sung. Es sollte bemerkt werden, daB die Anordnung der Anweisungen Sy; Ss;...; S,
innerhalb einer nebenlaufigen Verbundanweisung natirlich ohne ser.nanti§che Bedel%-
tung ist. Ausgedriickt in Interpretierten Petri-Netzen korrespondiert diese Anwei-
sung zu dem in Abb. 29 skizzierten Netzmuster.

88

Abb. 29: Petri-Netz fiir conbegin ... end

Das folgende Beispiel zeigt, weshalb zwei konsekutive Anweisungen in einer sequen-

tiellen Verbundanweisung nicht notwendigerweise unmittelbar hintereinander aus-
gefihrt werden:

conbegin
segbegin
a:=1;
b := 10/a
end ;
a =0
end

In diesemn Beispiel enthalt eine nebenlaufige Verbundanweisung zwei Anweisungen:

. - a
eine sequentielle Verbundanweisung und eine einfache Zuweisungsanweisung. ([;

. . . - . . . 1e
es keine innere Synchronisation zwischen ihnen gibt, kann es geschehen, daf

Zuweisung a := 0 direkt nach der ersten Zuweisung (a := 1) der eingebetteten

sequentiellen Anweisung, aber vor deren zweiter (b := 10/a) ausgefihrt wird, was
zu unvorhergesehenen Problemen fihren kann.

Die parallele Verbundanweisung hat die Form:

parbegin Si;5;;..;5, end ;

In diesem Fall sind die eingebetteten Anweisungen Sy;Si;...; S, typmaBig einge-
schrinkt auf Zuweisungsanweisungen. Die Semantik ist, daB all diese Anweisungen

initilert werden, wenn die gesamte parallele Verbundanweisung initiiert wird. Dant
werden sie strikt synchron ausgefithrt, d.h. die Ausfihrung einer Anweisung $; hat

89

keinerlei Auswirkung auf die anderen Anweisungen derselben parallelen Verbund-
anweisung. Natirlich ist die Anordnung der eingebetteten Anweisungen Si;...; S,
innerhalb der parallelen Verbundanweisung ohne semantische Bedeutung.

Beispiel :

parbegin a := b ; b := a end ;

Dies beschreibt eine einfache swap-Operation wahrend
conbegin a :=b ; b := a end ;

ein nondeterministisches Verhalten beschreiben wiirde.

2.3.2.2 Zuweisungs-Anweisung

Eine Zuweisungs-Anweisung fithrt dazu, daB ein neuer Wert in ein speicherndes
Datenobjekt eingespeichert wird. Das empfangende Datenobjekt halt diesen Wert
solange, bis eine weitere Zuweisung stattfindet. Die Zuweisungs-Anweisung hat die
Form:

assignment_target := expression ;

Im einfachsten Fall ist assignment_target eine Referenz auf ein Datenobjekt. Es
muf} mit dem zugewiesenen Ausdruck typkompatibel sein. Beide Seiten einer Zuwei-
sungs-Anweisung konnen aber auch ganze Records oder Arrays sein.

Beispiel:
var register.array : array [0 :15]
of word ;
memory_bank : array [0 : '"(4)FFFFFFFF"]

of word ;

memory_bank
[save_area base : save.area base + 15] := register.array ;

Das Zuweisungsziel kann auch durch eine Konkatenation von Datenobjekten, durch
Substrings oder eine Kombination von beiden gegeben sein.

Beispiele: '
Angenommen, der Typ word steht fiir bit(32). Dann kann durc.h die folgende Zu-
weisung der Inhalt eines Registers iiber zwei Speicherzellen verteilt werden:

(memory bank [adr] || memory bank [adr+1]).(48 : 16)
:= register_array [reg.adr] ;

90

Weiterhin sind Mehrfachzuweisungen erlaubt, wodurch ein identischer Wert einer
Liste von Datenobjekten zugewiesen wird.

Beispiel :

buffer register.1 , buffer register 2 := memory.address ;

Zuweisungen kénnen verzogert werden, um Echtzeitverhalten zu modellieren. Dieses
Konzept ist in DACAPO auf allen Ebenen verfiigbar, ist aber hauptsachlich auf der

Gatter- und Schalterebene von Bedeutung, weshalb es in diesem Kontext (Abschnitt
2.3.5) detailliert diskutiert wird.

2.3.2.3 If - Anweisung

Die If-Anweisung erlaubt es, alternative Ausfihrungsstrome zu beschreiben. Die
Entscheidung wird auf der Basis des aktuellen Wertes eines Datenobjekts oder eines
Ausdrucks vom Typ bit(1) getroffen. Die If-Anweisung hat die folgende Form:

if condition then S; elge S; ;

Semantik: Falls der aktuelle Wert von condition "1" ist, dann wird S; ausgefiihrt.
Ist dieser Wert "0", so wird S; ausgefithrt. Fiir alle anderen Fille kann der Anwender
durch das Setzen von Optionen angeben, was zu geschehen hat (z.B. die gesamte
Anweisung ignorieren, den true-Teil wihlen, ...). Im Gegensatz zu anderen Sprachen
darf in DACAPO der else-Teil einer If-Anweisung nicht fehlen. Ausgedriickt in

Interpretierten Petri-Netzen korrespondiert diese Anweisung zu dem in Abb. 30
skizzierten Netzmuster.

91

2.3.2.4 Case - Anweisung

Wie die If-Anweisung beschreibt die Case-Anweisung einen alternativen Strom von
Anweisungen. In diesem Fall jedoch ist man nicht auf zwei Alternativen einge-
schrinkt, sondern kann zwischen einer beliebigen Anzahl wahlen. Die Auswahl
geschieht auf der Basis des aktuellen Wertes eines Datenobjekts oder eines Aus-
drucks. Die Menge {v1, vy, ..., -1} muf eine Teilmenge des Wertebereichs dieses
Datenobjekts oder Ausdrucks sein. Die Case-Anweisung hat die Form:

case condition of vy :S1;v2:52 ; ... Upo1 ¢ Sp—1 ; else S, end ;

Semantik: In Abhingigkeit von dem aktuellen Wert von condition wird eine der
Anweisungen S, ..., S, ausgefithrt. Die Selektoren konnen zu Listen gruppiert wer-
den. Weiterhin wird eine Reihe von Kurzschreibweisen zur Beschreibung von Wer-
tebereichen von Selektoren angeboten.

Beispiel:

case opcode of
add, sub : seqgbegin
result:= argl + arg? ;

condition := if overflow then
not condition
else
condition
end ;
andcode : result := argl & arg2 ;
orcode : result := argl | arg2 ;
else : error (’illegal opcode’)

end ;

2.3.2.5 While - Anweisung

Die While-Anweisung ist das grundlegende DACAPO-Schleifenkonstrukt. Sie hat
die folgende Form:

while condition do S ;

Dabei ist condition ein Datenobjekt oder ein Ausdruck vom Typ bit (1) und S
eine beliebige Anweisung. Diese Anweisung hat die folgende Semantik:

if condition then seqbegin S ; while condition do S end
else ;

92

Ausgedriickt in Interpretierten Petri-Netzen korrespondiert diese Anweisung zu dem
in Abb. 31 skizzierten Netzmuster.

S

Abb. 31: Petri-Netz fiir while ... do

2.3.2.6 Repeat - Anweisung

Die Repeat-Anweisung ist der While-
besteht darin, daB der Schleifenrum
Test stattfindet. Diese Anweisung h

Anweisung sehr zhnlich. Der Hauptunterschied
pf zunéchst ausgefithrt wird und dann erst der
at die folgende Form:

repeat S until condition H

Semantik: Diese Anweisung ist dquivalent zu:

seqbegin S ; while pot condition do S end H

Ausgedriickt in Interpretierten Petri-

Netzen korrespondiert diese Anweisung zu dem
in Abb. 32 skizzierten Netzmuster.

S

Abb. 32: Petri-Netz fur repeat ... until

2.3.2.7 For - Anweisung

Syntaktisch ahnelt die DACAPO For-

) Anweisung der von PASCAL. Jedoch ist in
vielen Fillen die Semantik unterschj;

edlich. Die For-Anweisung hat die folgende

93

or index := start_value application selection final_value by step.size

Dabei ist S eine beliebige Anweisung (man beachte die unten aufgefithrten Restrik-
tionen), index bezeichnet ein Datenobjekt, wihrend start_value, final.value
und step_size Konstante, bzw konstante Ausdriicke, sind.

Der Term application_selection hat eine der folgenden Formen:

® seqto , seqdownto {sequentielle Anwendung}

e conto , condownto {nebenliufige Anwendung}

e parto , pardownto {synchronisiert parallele Anwendung}

e to , downto {kompakt sequentielle Anwendung}

Semantik: In DACAPO bezeichnet die For-Anweisung zunachst keine Schleife, son-
dern es ist eine Kurzschreibweise fiir eine Verbundanweisung. Sei # € {m , con,

par } und bezeichne Sindex — value die Anweisung S, wobei jedes Auftreten der
Variable index durch die Konstante value ersetzt wird. Dann gilt:

for index := start_value #to final_value EZ step_size do S ;
ist aquivalent zu
#begin

Sindex — start._value
Sindex — start_value+step.size ;
Sindex — start.value+2*stepsize ;

Sindex — final._value
end ;

Der Fall der #downto- Version wird analog definiert. Aus der Definition folgt unmit-
telbar, daB die eingebettete Anweisung im Fall von parto und downparto auf die
Zuweisungsanweisung eingeschrankt ist. Fir den Fall to und downto gibt es andere
Restriktionen, die im Abschnitt 2.3.6 erlautert werden. Der Term step_size kann
entfallen, falls er den Wert 1 hat.

94

Beispiele :

for adr := 0 comto 6/2 do
register [adr] := adr ;

Diese Anweisung ist Aquivalent zu:

conbegin
register [0} :=
register [1] :=
register [2] :=
register (3] :=
end ;

e s v

Q)MP"O

for index := 0 parto 2 do
flags.(index) := if index > O then flags.(index - 1)
else flags.(2) ;

Diese Anweisung ist Aquivalent zu:

parbegin
flags.(0) := flags.(2) ;
flags. (1) := flags.(0) ;

flags.(2) flags. (1)
end ;

2.3.2.8 At/When - Anweisung

Ublicherweise wird in der imperativen Programmierung der Kontrollfiufl vollstindig
durch die Kontrollstruktur des Algorithmus gegeben. Dies macht es jedoch etwas
schwierig, eine Synchronisation des Algorithmus mit externen Ereignissen zu be-
schreiben. Solche Ereignisse konnen vereinzelt auftreten (z.B. ein Tastendruck) oder
regelmaBig (z.B. ein Taktsignal). Um derartige Beschreibungen zu unterstirtzen,
kann in DACAPO einer vorhandenen Kontrollstruktur eine Synchronisationsstruk—
tur Gberlagert werden. Die Grundidee ist, daf jeder Anweisung ein Ereignis zu-
geordnet werden kann, mit dem sie sich synchronisiert. In diesem Fall wird eine
Anweisung ausgefuhrt, wenn dies aufgrund des "normalen” Kontrollflusses der Fall
ware und danach das Ereignis stattfindet. Das Synchronisationsereignis kann ent-

weder ein. Wertwechsel oder ein Wertepegel sein. Die At-Anweisung beschreibt eine
Synchronisation mit Wertewechseln. Sie hat die Form:

at direction (event) do statement ;

E.ief ist event .ein be.liebi‘gm Datenobjekt oder ein beliebiger Ausdruck, je vorn Typ
ﬁ;f)v und direction ist aus {up , down , change} mit offensichtlicher Bedeu-

95

Statement ist eine beliebige Anweisung. Diese Anweisung wird ausgefiihrt, wenn
sie wegen des "normalen” Kontrollflusses initiiert werden wiirde und danach das
Ereignis wahr wird, d.h. der bezeichnete Wertewechel stattfindet.

Beispiel:
¥hile true do
conbegin
seqbegin
" at up (cl1) do S ;
at up (cl1) do S,
end ;
at up (cl1) do S3
wd —

Dies beschreibt die zyklische Ausfithrung einer nebenliufigen Aktiyitéit, die aus zwei
Zweigen besteht. Der erste davon beinhaltet die sequentielle Ausfuh¥ung zweier 'An—
weisungen. Ohne die Prafixe at up(cl1) wiirde pro Zyklus S3 zu einem beheb"xgen
Zeitpunkt wahrend einer Aufithrung von S; und S; stattfinden. Wegen der Prifixe
jedoch lauft das folgende ab: i

Bei Initiierung der nebenliufigen Verbundanweisung wiirden S und.Sg wegen des
"normalen” Kontrollflusses initiiert. Es wird aber noch gewartet, bis danafh c.li
seinen Wert von "0" auf “1" wechselt. Erst dann werden S; und S3 tats,?chhch
ausgefihrt. Nach Terminierung von S; wiirde Sp aufgrund "der ”norrr?ailen Kon-
trollstruktur initiiert. Wieder wird jedoch gewartet, bis die nach.ste posm.lve F.lanke
von c11 auftritt. Dann wird S; ausgefithrt. Nach ihrer Te"rminlerung vard. (?1? ge-
samte nebenlaufige Verbundanweisung terminiert, was die nachste Iteration initiiert.

Die When- Anweisung beschreibt die pegelsensitive Alternative. Sie hat die Form:

when condition do statement ;

Condition ist ein beliebiges Datenobjekt oder ein belieb.iger’Ausdruck,' je vom
Typ bit(1), statement ist eine beliebige Anweisung. Die When-Anweisung ist
aquivalent, zu:

if condition then statement
else at up (condition) do statement ;

Beispiel:)
Schreibt man das obige Beispiel um, so erhalt man:

while true do

conbesin

96

seqbegin
when cli do 51 ;
when cll do 57
end ;
when cli do S3

end

Nun ist das Verhalten wie folgt:

Bei Initiierung der nebenlaufigen Verbundanweisung wiirden Sy und S5 wegen des
» normalen” Kontrollflusses initiiert. Hat c11 zu diesem Zeitpunkt den Wert 1", s0
werden S, und S; sofort gestartet. Wenn nicht, so wird gewartet, bis danach <11
seinen Wert von "0" auf "1" wechselt, bis 5; und S3 tatsachlich ausgefithrt werden.
Nach Terminierung von S; wirde S; aufgrund der "normalen” KontrollstIUkt:UI
initiiert. Hat c11 noch oder wieder zu diesem Zeitpunkt den Wert "1", s0 wird
S, sofort ausgefithrt. Ansonsten wird gewartet, bis die nachste positive Flanke von
c11 auftritt. Dann wird S, ausgefuhrt. Nach ihrer Terminierung wird die gesamte
nebenlaufige Verbundanweisung terminiert, was die nachste Iteration initiert.

2.3.2.9 Prozeduraufruf

Die Organisation von Algorithmen mittels Prozeduren ist eine wichtige Struktur?*
rungsmethode. Da der gesamte Modularisierungsmechanismus von DACAPO im
Abschnitt 2.3.3 behandelt wird, wird eine detaillierte Beschreibung von Prozedur-
aufrufen auf diesen Abschnitt verschoben. Ein Prozeduraufruf hat die Form:

procedure_identifier (list of actual parameters) ;

Der procedure_identifier identifiziert das Prozedurobjekt, das zu aktivieren ist.
Dieses Prozedurobjekt kann eine von mehreren Inkarnationen eines Prozedurtyps
sein. Die (optionale) Liste aktueller Parameter bindet einen aktuellen Parameter an
jeden formalen des Prozedurobjekts. Ein aktueller Parameter kann ein beliebigfZr
Ausdruck sein, wobei in DACAPO im Gegensatz zu fast allen anderen Sprachen die
Art des aktuellen Parameters den Typ der Parameteriibergabe steuert. Eine einfa-
che Referenz auf ein Datenobjekt fihrt zu "call by reference”, was nur moglich ist,
falls die Parameteriibergabe in Richtung auf die gerufene Prozedur stattfindet. Alle

anderen Arten von aktuellen Parametern haben ”call by value” zur Folge. Natirlich
findet eine strenge Typpriifung auf den Parametern statt.

Beispiel :

calculate something (a , (a) , 5, if akb then c else d) ;

In diesem Fall wird die Prozedur calculate_something aktiviert und vier aktu-

97

elle Parameter werden an formale gebunden. Nur der erste wird "by reference”
gebunden, da es sich um die einfache Referenz auf ein Datenobjekt (einfache Varia-
ble) handelt. Die Parameter (a) und if a&b then c else d sind kompliziertere
Ausdriicke und werden wie die Konstante 5 by value” gebunden. Eine Prozedur-
aktivierung resultiert nicht notwendigerweise in einer sofortigen Initiierung ihrer
Aktivitat, um diesen Auftrag zu erfiillen, da es fur dasselbe Prozedurobjekt konkur-
rierende Auftrige geben kann und ein Prozedurobjekt nur einen Auftrag gleichzeitig
bearbeiten kann. (In Abschnitt 2.3.3 wird dies detaillierter dargestellt.)

2.3.2.10 Leeranweisung

Die Leeranweisung ist syntaktisch eine leere Zeichenkette. Es gbt zwei Griinde fir
ihre Existenz:

* In der if-Anweisung ist der else-Teil verpflichtend. Benutzt man eine Leeran-
weisung als die im else-Teil auszufiihrende Anweisung, so hat man die gleiche
Wirkung wie beim Weglassen des else-Teils.

* Es gibt zwei Anweisungen in DACAPO, die Realzeit konsumieren kdnnen:
Die Zuweisungs-Anweisung und die Leeranweisung. DACAPO bietet die volle
Maglichkeit der Realzeit-Beschreibung auf allen Ebenen. Da diese Eigenschaft
aber hauptsachlich auf der Gatter-/Schalterebene von Interesse ist, wird sie in
Abschnitt 2.3.5 behandelt.

Beispiel:

Seqbegin
if a > b then ¢ := a delay (loadtime)
else delay (prechargetime) ;

delay (loadtime) ;
end ;

In diesem Beispiel sind zwei Leeranweisungen enthalten. Die erste wird zur ”Si-
mulation” eines fehlenden else-Zweiges benutzt und dazu, um auszudriicken, daf
eine gewisse Zeit (der aktuelle Wert der Variable prechargetime) zu verstreich.en
hat, bis die konsekutiv folgende Anweisung ausgefihrt werden kann. Die zweite
Leeranweisung wird nur dazu benutzt, um auszudriicken, da nach Beendigung der
if‘Anweisung eine gewisse Zeit zu verstreichen hat, bis die gesamte sequentielle Ver-

bundanweisung terminiert.

2.3.3 Beschreibungen in DACAPO III auf der Systemebene

In diesem Abschnitt werden eine Reihe von Sprachkonzepten beschrieben, dif auch
fir andere Abstraktionsebenen wertvoll sind. Da aber die wesentliche Unterstiitzung
der Systemebene in der Modularisierung und Einkapselung besteht, werden alle

98

damit zusammenhingenden Spracheigenschaften in diesem Abschnitt behandellt.
Ebenfalls hier werden auf hoher Abstraktionsebene liegende Konzepte der Ereig-
nissteuerung behandelt.))

Eine DACAPO-Beschreibung gliedert sich in Module. Dabe; wird untersch.leden Zwl-
schen Definition Modules, die die Schnittstelle zur Umgebung spezifizieren, ufld
Implementation Modules, welche die Interna beschreiben. Das duflerste Modul.lst
ein solches ohne Unterscheidung zwischen Definition Module und Implementation

Module. Module konnen unter Benutzung von Prozeduren und Funktionen weiter
organisiert werden.

2.3.3.1 Prozeduren

In DACAPO bilden Prozeduren die Grundtechnik der Blockstrukturierung von Be-
schreibungen. Eine Prozedur hat die folgende Form:

procedure procedure_identifier (Liste von formalen Parametern) ;

constant definitions {optional} ;
type definitions {optional} ;
variable declarations {optional} ;

procedures/function declarations {optional}

»

assertions {optional} ;
interrupt service routines {optional} ;
reactive part {optional} ;
algorithmic part {zvingend} .

Die Teile constant definitions,
wurden im Abschnitt 2.3.1 erlutert,.
Erweiterungen eingefithrt. Der alg
schrieben, wahrend der reaktive Te

wird. In DACAPO wird zwischen d
den:

type definitions und variable dec:larat'ions
In diesem Abschnitt werden hierzu geringfugige
orithmische Teil wurde in Abschnitt 2.3.2 be-
il in den Abschnitten 2.3.4 und 2.3.5 beha.ndf:lt
rei Klassen von formalen Parametern unterschie-

- Inputparameter (direction=i_n in der Parameterliste),
- Outputparameter (direction=out in der Parameterliste) und
- bidirektionale Parameter (direction=inout in der Parameterliste).

espondierende aktuelle Parameter
nur Referenzen auf Datenobjekte (d.h. keine dartiber hinausgehenden Ausdriicke
oder Konstanten) erlaubt. Eine Liste formaler Parameter wird angegeben als Liste

99

von Parameterspezifikationen, getrennt durch Semikolons. Eine Parameterspezifi-
kation hat die Form:

direction list_of_identifiers : type

Direction ist aus { in , out , imout }. Die Liste von Bezeichnern ist durch Kom-
mata getrennt. Der Typ ist ein beliebiger der im Abschnitt 2.3.1 eingefithrten Typen.
Die gesamte Parameterliste ist optional.

Beispiel :

procedure processor
(inout memory_bus, address_bus : implicit bit(32);

in int_req : array[0:7] of bit ;
out int_ackn : array [0:7] of bit ;
out memory_request : record

read_request,
write_request : bit
end ;
out status : bit(8)) ;

Eine Prozedur wird durch Nennung ihres Bezeichners und durch Binden von ak-
tuellen Parametern an ihre formalen aktiviert. Aktuelle und formale Parameter
miissen typkompatibel sein. Parameter der Art explicit werden mit threm Wert
zum Zeitpunkt des Aufrufs ubergeben und erhalten den Wert des dazugehdrigen
formalen Parameters zum Zeitpunkt der Terminierung der gerufenen Prozedur. Bei
Parametern der Art implicit wird kontinuierlich die Gleichheit von aktuellem und
formalem Parameter sichergestellt.

Beispiel] :
Die Prozedur mit dem oben angegebenen Prozedurkopf kann aktiviert werden durch:

Processor (sys_bus, mem_bus, interrupts, ackn, memreq, stat) ;

Dabei wurde angenommen, daf die aktuellen Parameter typkompatibel sind, bei-
splelsweise muf} interrupts vom Typ array[0:7] of bit sein.

Ist eine Prozedur einmal aktiviert, so bleibt sie solange aktiv, bis ihr algorithmischer
Teil terminiert wird. Im Gegensatz zu Sprachen wie PASCAL behalten alle Variable
von der Art explicit ihren Wert, wenn eine Prozedur deaktiviert wird. Die Regeln
beziiglich des Giltigkeitsbereichs von Bezeichnern sind genau die von PASCAL, d.h.
wenn ein Bezeichner in einer Prozedur an ein Objekt gebunden wird, so ist er dies
auch in allen statisch enthaltenen Prozeduren, solange er darin nicht an ein anderes
Objekt gebunden wird.

Eine wichtige Eigenschaft einer Prozedur ist, da8 sie zu einem Zeitpunkt nur einmal

100

aktiviert sein kann. Andererseits kann es konkurrierende Aktivierungsversuche ge-

ben. In einem derartigen Fall selektiert ein eingebauter Arbitrierungsmechanismus
den zuerst zu befriedigenden Aufruf.

2.3.3.2 Funktionen

Funktionen unterscheiden sich von Pro
ein Objekt, das durch den Fun
hat eine Funktion einen Typ,

zeduren nur dadurch, daB sie einen Wert an
ktionsbezeichner identifiziert ist, zuriickgeben. Daher
der im Funktionskopf spezifiziert werden mu8:

function function-

identifier (list of formal parameters) : type ;

Der Typ kann ein beliebi

ger der in Abschnitt 2.3.1 beschriebenen Typen sein. Der
Funktionsrumpf ist der

gleiche wie bei einer Prozedur. Allerdings mufl es eine

Beispiel :

function match_can (in pattern : bit(16))
var memory : array [0 :1023] of record

—_ T T key : bit(1e) ;
data : pit(32)

: bit(1024) ;

end ;
i : bit(10) ;
conbegin
bttt - Sl

for i := ¢ pParto 1023 do

match_cam. (i) := mem—ory[i] = pattern
end ;

Diese Funktion modelliert den Such
16-bit-Schliissel und 32-bit-Daten.
Durch die folgende Anweisung wird die Fu

nktion aktiviert, um zu entscheiden, ob
€in gegebenes Muster i dem Speicher enth

alten ist (man nehme an, daB die Varia-
ble hit vom Typ bit(1) ist):

prozeB in einem 1KW-Assoziativspeicher mit

hit := (or) match_cam("(4)FF pp»)

Wie auch Prozeduren, kénnen Funktionen zu einem Zeitpunkt nur einmal aktiviert
sein. So haben

auch sie einen eingebauten Mechanismus, um eventuelle Konflikte
durch konkurrierende Aufrufe aufzulogen.

101

2.3.3.3 Exportprozeduren

Exportprozeduren sind die DACAPO-Notation fiir Implementierte Abstrakte Daten-
typen, falls verlangt wird, da8i die Operationen des IADT gegenseitig ausschlielich
aktiviert werden sollen. Ist diese Restriktion nicht gefordert oder nicht sinnvoll, so
kénnen IADTs auch mittels Modulen spezifiziert werden (siehe Abschnitt 2.3.5).
Eine Exportprozedur wird durch einen Exportprozedurkopf und einen Exportproze-
durrumpf gegeben. Der Exportprozedurkopf hat das folgende Aussehen:

export (list_of_operations) procedure export_procedure_identifier ;

Der Rumpf einer Exportprozedur ist dem einer einfachen Prozedur sehr dhnlich.
Allerdings ist der algorithmische Teil durch das Schliisselwort end zu ersetzen. Fiir
jeden Bezeichner, der in der Liste der Operationen im Kopf der Exportprozedur
enthalten ist, mufl es genau eine Prozedur oder Funktion mit demselben Bezeich-
ner geben. Durch sie wird die Implementierung dieser Operation definiert. Der
gegenseitige AusschluB der Operationen ergibt sich einfach dadurch, daB eine Ex-
portprozedur eine Prozedur ist. Als solche kann sie zu einem Zeitpunkt hochstens
einmal aktiv sein.

Beispiel:

Das folgende Beispiel beschreibt einen Fifo-Puffer mit einer Kapazitat von 8 32-
bit-Worten. Er hat die Operationen reset, insert und remove. Eine insert-
Operation wird zuriickgewiesen und ein ”voll”-Anzeiger wird gesetzt, falls der Puffer
voll ist. Eine remove-Operation auf einem leeren Puffer wird analog gehandhabt.
Der IADT ist auf einem Array mit zwei zirkularen Zeigerregistern implementiert.

export (reset, insert, remove) procedure fifo ;

var buffer: array [0 : 7] of bit(32) ;
next, first: bit(4) ;

Procedure reset ;
seqbegin
__—?I;;E, next := 0
end ; {reset}

procedure insert (in item : bit(32) ; out full : bit) ;
conbegin -
if (next |+| "0001") mod 8 = first
then full := *1"
else conbegin
buffer [next] := item ;
next := ({ mext [+| "0001") mod 8) ;

102

full := Qv
end
end ; {insert}

procedure remove (out item : bit(32) ; out empty : bit) ;
conbegin -
_ﬂrst = next
then empty := wqnw
else conbegin

item := buffer (first] ;
first := ((first |+] “0001") mod 8) ;
empty := 'Q¢
end
end ; {remove}

end ; {fifo}

Eine insert-Operation kann angefordert werden durch:
fifo.insert (data, error flag)

Falls nebenl'a'uﬁg eine Anfrage besteht, ein Datum zu entfernen, z.b. durch:
fifo.remove (data, error flag) ;

so wird eine der beiden Anforderungen solange zuriickgehalten, bis die andere erfillt
ist.

2.3.3.4 Prozedur-, Funktions-

In DACAPO ist das Ty
on Prozeduren, F i

X Exportprozedurtypen

) tisch sein, diese alg zweidimensionales Array
4 bei 2 zu arrangieren. Solch eip System kann auf dje folgende Weise beschrieben
werden:

type fifo =

export (reset, insert, remove) Procedure fifo ;

var buffer . artay [0 : 7] of bit(32) ;
next, first ; bit(4) ; T

103

procedure reset ;
seqgbegin
first, next := 0
end ; {reset}

procedure insert (in item : bit(32) ; out full : bit)

conbegin
if (next |+| "0001") mod 8 = first

then full := "1"

else conbegin
buffer [next] := item ;
next := ((next |+| "0001") mod 8) ;
full := "O"

end

end ; {insert}

procedure remove (out item : bit(32) ; out empty : bit) ;
conbegin
if first = next
then empty := "1"
else conbegin
item pbuffer [first] ;
first := ((first [+] "0001") mod 8) ;
empty := "0"
end
end ; {remove}

end ; {fifo}

var fifo_array : array [0 : 3 , 0 : 1] of fifo

Durch diese Deklaration werden 8 Instantiierungen des JADT fifo gemacht, jede
mit eigenem Zustandsraum. Sie konnen nebenlaufig aktiviert werden, doch kann
innerhalb einer bestimmten Instanz zu einem Zeitpunkt immer nur eine Operation
stattfinden. Fine reset-Operation beispielsweise an einem bestimmten fifo-Objekt

kann angefordert werden durch:

fifo.array [3,1] . reset ;

104

2.3.3.5 Generische Typen

In vielen Fallen ist es angenehm, von einem bestimmten Typ Instar.ltiier.ungen AN
kreieren, die sich geringfiigig unterscheiden. So mag man beispielsweise F?fo—Puffer
unterschiedlichen Datentyps und unterschiedlicher Kapazitat bendtigen. Diese Mog-
lichkeit wird durch generische Typen gegeben. Um einen Typ generisch zu machen,

muf man die Typbeschreibung mit einer generischen Spezifikation prafixen. Diese
hat die Form:

generic list_of generic.attributes :

Die generischen Attribute in der Liste werden durch Semikolons getrennt. Jedes
davon hat die Form:

type.identifier oder const_identifier

womit ausgedriickt wird, da$ entweder der entsprechende Typ oder die entspre-
chende Konstante generisch sind. Dadurch werden diese Bezeichner formale At-
tribute des Typs. Falls ein Objekt dieses Typs instantiiert wird, mussen aktuele
Attribute an diese formalen gebunden werden. Dies geschieht, indem man eine durch

Kommata getrennte und in eckige Klammern eingeschlossene Liste von aktuellen At-
tributen (Typen oder Konstante) der Deklaration nachstellt.

Beispiel :

Es sei angenommen, da8 drei Fifo-Puffer bendtigt werden, einer mit Kapazitat von
64 Einzelbytes, einer mit Kapazitit von vier Records, die aus zwei Worten u-
terschiedlicher Lange bestehen, und einer mit Kapazitat von zwei Arrays aus 16
Worten. Ein derartiges System kann wie folgt beschrieben werden:

type fifo

= gemeric comnst depth ; type item_type :
export

(reset, insert, remove) procedure fifo ;

var buffer : array [0 : depth - 1] of item_type ;
next, first : bit(depth) ;
procedure reset ;
Segbegin
first, next := @
end ; {reset}

Procedure insert (in item : item_type ; out full : bit) ;
conbegin - -
if (next {+{ "poo1»

) mod depth = first
then full := "qw

105

else conbegin
buffer [next] := item ;

next := ((next {+| "0001") mod depth) ;
full := "O"
end
end ; {insert}

procedure remove (out item : item_type ; out empty : bit)
conbegin
if first = next
then empty := "i"
else conbegin
item buffer [first] ;
first := ((first [+] "0001") mod depth) ;
empty := "0"
end
end ; {remove}

end ; {fifo}

var byte_fifo_array : array [0 : 3 , 0 : 1] of fifo [64 , E}j(s)];

var record_fifo . fifo [4 , record opc : bit(8) ;
adr : bit(24) end J;
var array_fifo : fifo [2, array [16] of bit(32) J ;

Es sollte bemerkt werden, daB das Generic-Konzept nicht auf Prozeduren, Funk-
tionen und Exportprozeduren beschriankt ist, sondern auf alle Typen angewandt
werden kann.

2.3.3.6 Module

Ein Modul ist eine Ubersetzungseinheit in DACAPO III. Somit erlaubt das Modul-
Konzept nicht nur, Beschreibungen zu strukturieren, sondern auch, Bibliotheken
(vor-)iibersetzter Beschreibungen zu halten. Es gibt zwei Hauptarten von Modulen:
Definitionsmodule, die die Schnittstelle eines Moduls zu seiner Umgebung spezifi-
zieren, d.h. diejenigen seiner internen Objekte, die es der Umgebung zur Verfugung
stellen méchte, und Implementationsmodule, die das Innere von Modulen beschrei-
ben. Fir jeden Modulbezeichner muB es genau ein Paar aus Definitions- und Im-
plementationsmodul mit diesem Bezeichner geben.

Ein Definitionsmodul stellt ein internes Objekt einfach dadurch zur Verfugung, da8
es es mit Bezeichner und Typ auflistet. Man beachte, daB die formalen Parameter

106

von Prozeduren und Funktionen Teil ihrer Typdefinition sind: Falls ein (Deﬁrglttlon;
oder Implementations-) Modul ein von einem anderen Definitionsmodul ange 10 enln
Objekt benutzen will, hat es es zu importieren. Dies geschieht durch Importklause
nach dem Modulkopf. Eine Importklause] hat die Form:

from module_identifier import object_identifier ;

Importierte Objekte werden referenziert mit der Notation:

module_identifier . object_identifier

Ein Modulkopf hat die Form:

definition.module module_identifer ;

falls es ein Definitionsmodul ist, oder:

implementation module module.identifer ;

falls es ein Implementationsmodul ist. ' ¢
Das duBerste (Implementations-)Modul hat kein Definitionsmodul. Sein Modulkop
hat einfach das Aussehen:

module module.identifer ;
Beispiel :

Es sei angenommen, daB eine grobe Beschreibung eines einfachen Computers anzu-
fertigen ist. Diese Beschreibung soll in folgende Hauptobjekte organisiert werden:

- Ein CPU-Objekt,
- ein [OP-Objekt und
- ein ALU-Objekt fir die CPU.

Sie kann dieser Dekomposition folgend in Module organisiert werden, wodurch maft
die folgende mbgliche Beschreibung erhalt:

definition_module cpu ;

type opcodes = (andcode, addcode, cmpcode) ;
var ac, {accumulator}

dr {data register} : bit(16) ;

ac_zero {accumulator = 0} : bit

procedure action ;
end cpu .

definition_module iop ;

procedure action ;

segbegin

procedure read (in adr : bit(16) ;
out dat : bit(32)) ;
procedure write (in adr : bit(16) ;
in dat : bit(32)) ;
end iop .
definition_module alu ;
procedure action (in opc : bit(2)) ;
end alu .
module main ;
from cpu import action ;
seqbegin
Cpu.action
end main .
implementation_module cpu ;
from iop import read, write ;
from alu import action ;
const eternity = "0" H
loadop = "0000" ;
storeop = "0001" ;
addop = "0010" ;
andop = "0011" ;
jumpop = "0100" ;
jumpzop = "0101" ;
compop = "0110" ;
rshop = "0111" ;
multop = "1000" ;
swpop = "1001" ;
var mr { multiplyer register } : bit(32)
ar, { address register }
pc {program counter } : bit(16)
ir {instruction register } : bit(4)
count { 5 bit counter} bit(6)
dr { data buffer register} : bit(32)

107

108

)

31 do

Tepeat
seqbegin
ar := Pc ;
iop.read (ar,dr) ;
conbegin
PC := pc + "(4)0001"
ir := dr.(31 . 28)
end ;
case ir of
loadop : seqbegin
ar :=dr.(156 : 0) ;
iop.read (ar, dr)
ac := dr ;
ac.zero := (nor) ac
end ;
storeop : segbegin
conbegin
ar :=dr.(15 : 0)
ac := dr ;
end ;
iop.write (ar, dr)
end ;
SWPOP : seqbegin
ac Il mr :=mr || 5¢ ;
ac_zero := (nor) ac
end ;
multop Segbegin
ar :=dr.(15 ; ¢)
copbegin
10p.read (ar, dr
mr := ac¢
end ;
conbegin
ac = nge ;
ac_zero := 'tqn
end ;
for count := g geqto
seqbegin

if mr.(0) = wyn

then
alu.action (addcode)

109

ac_zero := (mor) ac
end ;
addop : seqgbegin
ar := dr.(15 : 0) ;
iop.read (ar, dr) ;
alu.action (addcode)
end ;
andop : seqbegin
ar := dr.(15 : 0) ;
iop.read (ar, dr) ;
alu.action (andcode)

end ;
jumpop :pec :=dr.(156 : 0) ;
jumpzop : if ac_zero then pc :=dr.(15 : 0) else ;
compop : alu.action (cmpcode) ;
rshop : segbegin
ac || mr := shr (ac || mr, 1) ;
ac_zero := (mor) ac
end ;
end ;
end
until eternity

end cpu .

implementation_module iop ;
var mm {main memory } : array [0 : "(4)FFFF"] of bit(32) ;

procedure read (in adr : bit(16) ; out dat : bit(32)) ;
seqbegin o
dat := mm [adr]
end ;

procedure write (in adr : bit(16) ; im dat : bit(32)) ;

seqbegin
mm [adr] := dat
end ;
end iop .

implementation_module alu ;
from cpu import opcodes, ac, ac_zero, dr ;

Procedure action (im opc : bit(2)) ;
seqbegin

110

case opc of

cpu.addcode : cpu.ac := cpu.ac {+| cpu.dr ;
cpu.andcode : cpu.ac := cpu.ac & cpu.dr ;
Cpu.cmpcode : cpu.ac := not cpu.ac ;
end ;
€pu.ac_zero := (nor) cpu.ac
end
end alu .

Es sollte darauf hin
voriibersetzten Besch

werden, in die Parameterliste der Prozedur action
das Problem teilweise gelost. Als weiteres Problem existiert der Aufzéhlungstyp
opcodes. Er wurde benutzt, da angenommen wurde, daB zu diesem Zeitpunkt die
Codierung der Operationen noch nicht festliegt. Dieses Problem wiirde dadu.rch
geldst, daB man die Prozedur action von alu durch eine Exportprozedur, die diese
Operationen exportiert, ersetzt. Module konnen wie Exportprozeduren dazu be-
nutzt werden, Implementierte Abstrakte Daten-Typen zu beschreiben. Die Ope{a-
tionen des IADT werden bej Exportprozeduren in der Exportliste aufgezahlt, be.lr'n
Modulansatz werden die entsprechenden Funktionen und Prozeduren im Definiti-
onsmodul aufgefiihrt. Eig wichtiger Unterschied zwischen diesen beiden Ansatzen
besteht darin, dag eine Exportprozedur eine Prozedur ist und damit sicherstellt,

von alu aufnehmen, so ware

interrupt (Priority)

111

Die Prioritat ist eine numerische nichtnegative Konstante, wobei 0 die hochstmogliche
Prioritat und aufsteigende Zahlen abnehmende Prioritat bedeuten. Ein Interrupt-
Signal kann nur zwei Werte annehmen:

{set, reset}.

Auf Interrupt-Signale reagieren Interrupt Service Routinen. Falls ein Interrupt-
Signal den Wert "set" bekommt, wird jede gerade aktive Prozedur oder Funk-
tion, in der eine Interrupt-Service-Routine fiir dieses Interrupt-Signal deklariert ist,
unterbrochen. Alle anderen nebenliufig aktiven Prozeduren und Funktionen blei-
ben unberithrt. In einer unterbrochenen Prozedur oder Funktion wird zunachst
die Interrupt-Service-Routine ausgefithrt und dann die Aktivitat dort wieder auf-
genommen, wo sie unterbrochen wurde. Wichtig ist, daB bei diesem Konzept ein
Interrupt-Signal gleichzeitig von verschiedenen Interrupt-Service-Routinen bedient
werden kann, wobei sich die verschiedenen Reaktionen unterscheiden koénnen. Ein
"System-Reset” mag als Beispiel fir solch eine Situation dienen. Es lost bei ver-
schiedenen Modulen die lokale ”Reset”-Operation aus, die fur die verschiedenen
Komponenten sehr unterschiedlich sein kann.

Interrupt-Service-Routinen werden in einer Prozedur oder Funktion in einem spezi-
ellen Teil deklariert:

interrupts list_of_interrupt_service routines
Eine Interrupt Service Routine hat die Form :
on interrupt { interrupt_signal_expression) do statement

Hier ist statement eine beliebige Anweisung aus dem algorithmischen Teil. Die
interrupt_signal_expression ist ein Ausdruck ausschlieBlich auf Interrupt-Signa-
len und nur mit den Operatoren and (&) und or (). Eine Interrupt-Service-
Routine hat die folgende Wirkung:

Falls die interrupt_signal_expression wahr wird (
reset wie false interpretiert) dann wird die Prozedur oder Fun
Service-Routine deklariert ist, einschlieBlich aller dynamisch aufgerufenen Blocke,
unterbrochen. Dies gilt allerdings nur, wenn diese Funktion oder Prozedur gerade
aktiv ist. Unterbrechen einer gerade aktiven Funktion oder Prozedur bedeutet, daB
alle gerade aktiven nicht unterbrechbaren Aktionen normal weiterverarbeitet wer-
den, aber keine Folgeaktionen mehr initiiert werden. Nicht unterbrechbare Aktionen

sind:

hierbei wird set wie wahr und
ktion, in der die

o Kompakt sequentielle Verbundanweisungen (mit begin ... end eingeschlos-

sen, siche Abschnitt 2.3.6),

o Kontrollausdriicke in if, case, while, for,

112

o Zuweisungs- Anweisungen,

o Leeranweisungen.

Wenn die letzte nicht unterbrechbare Aktion beendet ist, wird die Interrupt-ﬁeivlll:
Routine initiiert und all die Interrupt-Signale, die diese Unterbrechung E.Llli%e Ozn g
ben, werden lokal fiir diese Funktion oder Prozedur auf reset gesetzt. Sie org; e
andere Bldcke sehr wohl gesetzt bleiben. Nach Terminierung der Interr_upt- e
Routine wird die unterbrochene Aktivitat wieder aufgesetzt, d.h. all d}e. }'\'ktlto Di;
die ohne die Unterbrechung gerade initiiert worden waren, werden nun mlt:uer .dem
Werte von Interrupt-Signalen werden fiir Funktionen oder P.rozeduren., die zuDiese
Zeitpunkt, zu dem die Signale gesetzt werden, nicht aktiv sind, gespeichert.
Blocke werden dann sofort nach ihrer Aktivierung unterbrochen.

. . . . b e-
Interrupt-Signale kdnnen nur mit bestimmten Operationen manipuliert und abg
fragt werden. Dies sind die folgenden:

k-
disable (x) mit x ein Interrupt-Signal. Bedeutung: In der Prozedur odertF:‘Hilst.
tion, in der diese Operation ausgefiihrt wird, wird danach ignoriert, daB x gesetz

enable (x) mit x ein Interrupt-Signal. Bedeutung: Inverse Qperation zu
disable (x).

sint (x) oder sint (z,,23,...,2,). Bedeutung: Das Interrupt-Signal x (oder
die Signale z; bis z,,) werden gesetzt.

. k-
wait. Bedeutung: Die Operation, die dieser Anweisung bzgl. der Kontrollstru

. [. . .] jeser
tur folgt, wird erst dann initiiert, wenn irgendeine Interrupt-Service-Routine dies

Funktion oder Prozedur nach Ausfithrung der Anweisung

wait ausgefiithrt worden
ist.

vait (z,|z3)...|z,). Bedeutung: Dies schrinkt die wait-Operation darauf ein, daB
eines der erwahnten Interrupt-Signale bedient worden ist.

vait (z1&z:&. &z,). Bedeutung: Dies schrankt die wait-Operation darauf it
da alle erwahnten Interrupt-Signale bedient worden sind.

Beispiel : .
Im Abschnitt 2.1.2.2 wurde CSP mit seinem Kommunikationsstil " Rendevouz™ €

gefihrt. Das Interruptkonzept arbeitet, mit " Broadcasting” zur Kommunil.catior.l-
Dennoch kann man das ”Rendevouz™ -Konzept mit Interrupts einfach modellieren:
procedure Tendezvous_by_interrupts ;

var channel : bit(80) ;

113

send, ackn : interrupt(0) ;

procedure sender ;
var message : bit(80) ;

interrupts

on interrupt (ackn) do segbegin end ;

while power_on do

segbegin
message := 'hallo test’ ;
channel := message ;

sint (send) ;
wait (ackn) ;

end ;

procedure receiver ;

var message : bit(80) ;

interrupts
on interrupt (send) do segbe in
- message := channel ;
sint (ackn)
end ;

while power_on do
segbegin

wvait (send) ;

114
end ;

Segbegin

conbesin enable (send) ; enable (ackn) end ;
conbegin sender ; receiver end

end ;

Es sollte bemerkt werden, dafl diese Beschreibung eine Situation spemfi21ert,hdl(.fb‘s’;;1
”Rendevouz”-Konzept geringfiigig verschieden ist. In der vorliegenden Besc t:fll"n e
wird die Prozedur receiver gezwungen, eine Nachricht zu empfangeri, unabha f”_
davon, in welchem Zustand sie sich gerade befindet. Beim reinen ”Rendevou .
Ansatz wiirde sie die Nachricht nicht akzeptieren, bis sie aufgrund i'hrer K('mdtrr‘:ur
struktur den richtigen Zustand erreicht hitte. Durch die wait-Anweisung wir fang
sichergestellt, daB der receiver-Prozess nicht tiber den Zustand, wo der Emp de
der Nachricht stattfinden soll, hinauslauft, ohne da8 dje Nachricht empfangen w“rde;
Beim ? Rendevouz”-Ansatz dirrfte die Prozedur receiver nur unmittelbar nac'hhen
¥ait-Anweisung sensitiv fiir das Interrupt-Signal send sein. Um dies zu erreichen,
muf} die Anweisung vait(send) ersetst werden durch:

enable(send) ; wait(send) ; disable(send)

Die Prozedur sender beschreibt dag ”

ihrem Senden nich fortfahren kann, bi
statigt hat.

: h
Rendevouz”—Konzept korrekt, da S'lehtn?)(;'
s die Prozedur receiver die Nachric

2.3.3.8 Protokollspeziﬁkation
Neben der Spezifikation der Funktionalitat eines Moduls muB auch spezifiziert we::
den, wie es mit seiner Umgebung kommuniziert, d.h. ein Protokoll muB angeg
ben werden. Protokolle werden in DA
Hilfe des at/when

gunstig. So kann das im Abschnitt 2.3.3.7 als Beispiel benutzte ”Handshaking™-
Protokoll sehr einfach im at/when-Sti] umgeschrieben werden:

Procedure rendezvous_by_at_when H

var channe} * bit(80) ;
send, ackn : bit := wou .

= ’

procedure sender ;

var message : bit(80) ;

while power_on do

seqbegin
message := ’hallo test’ ;
channel := message ;
send := "1"
at up (ackn) do ackn := "0" ;
end ;

procedure receiver ;

var message : bit(80) ;

while power_on do
seqbegin

when send do seqbegin

message < channel ;
ackn i= "M
send = "o"

end ;

end ;

113

116

conbegin sender ; receiver end

Dies beschreibt die "Rendevouz™-Technik exakt. Beide Pl.'.ozesse l.(omr?lgnlzzzg
nur in dafiir vorgesehenen Zustanden, und beide Prozesse k.onnen n'lcht' 1u e:lderen
Zustande hinausgelangen, ohne daB die entsprechende Al-(tlor.l des Jewei sPaozedur
Prozesses stattgefunden hat. Man beachte, daB es essentiell ist, daB die Pr i
receiver das Signal send mit einer vhen-Anweisung testet. Angenommgfl, oy
wiirde durch eine at-Anweisung geschehen. Dann kann es geschehen, daB let b
zedur sender ihre Nachricht gesendet und daher auch das Signal send gesetz K iev
bevor die Prozedur receicer die at-Anweisung erreicht hat. Dann a}zer wartg .;e
auf die nachste positive Flanke des Signals send, um fortfahren zu k.onnen. 1 1 o
Flanke kann aber nie auftreten, da die Prozedur sender erst eine steigende F :ﬂ 0
des Signals ackn empfangen muff um fortfahren zu kénnen und dadurch eventue

das Signal send wieder setzen zu konnen. Somit bestiinde die Gefahr eines
"Deadlock”.

procedure S_370_I0

var bus_in , bus_out : bit(12) ;
iop_out ¢ record
address, select
end ;
iop_in : record

» command, service,

operational, address

» status, service,
end ;

Procedure iop ;
{local variables}

while power_op do
Seqbegin
bus_out := device_adr ;
iop_out . address := wyw ;
iop_out . select := nqw ;
2t up (jop_in . operational) do
- —Iop_out - address := ugn i
a2t up (iop_in . address) 4o
if bus_in = device_adr

then segbesin

bus_out := command ;

iop_out . command := "y

at down (iop_in . address) do
iop_out . command := "o"

at up (iop.in . status) do
if bus_in = required_status
then seqbegin
iop_out . service := "

117

at down (iop_in . status) do

iop_out . service := "o

at up (iop.in . service) do
data := bus_in ;

iop_out . service := "y

at down (iop.in . service) do

iop_out . service := "ot

[s9

en
else {some error handling}

|

(o9

en

else {some error handling}

end ;
procedure device ;
{local variables}

while power.on do
seqbegin
when iop_out . select do
if bus_out = own_adr

then segbegin

- iop.in . operational L= WM
at down (iop_out . address) do

bus_in = own_adr ;

jop.in . address :< i
at up (iop.out . command) do
command_register := bus_in ;

jop_in . address := "o

at down (iop.out . command) do
bus_in = own_status ;

jop_in . status := "y

at up (iop_out . service) do

__igi_in . status := "0"

at down (jop.out . service) do

118

bus_in = data ;
iop_in . service := R A
at up (iop_ out . service) do
-ia_in - service := "Q" ;
end ;

else ; {other device addressed, ignore}
end ;

conbegin iop ; device end .

. e
Die Beschreibungen von Funktionalitit und Protokollen sind gegenseitig O_Ttl?;g‘:i‘:;t
Sichten eines Objekts. Im Falle der Protokolle ist das Innere dﬁs Ob.lle bedient.
von Interesse. Es wird lediglich beschrieben, wie es seine Schmttsteli e ert
Beschreibt man ein Objekt als Interpretierten Abstrakten Datentyp, 80 abstr bt
man von dem Protokoll, das die Operationen auslsst. Nur die Operationen s
und jhre Auswirkung auf dep globalen Zustand werden beschrieben.

. t
Auf der algorithmischen Ebene werden Systeme imperativ beschrieben. ;glzfe
durch dje Einfihrung des at/when-Konstrukts wird nur eine untergeord{lete Doch
zusdtzlicher Synchronisation innerhalb eipes imperativen Bereichs etabherF- ol
kann die imperative Steuerung bedeutungslos werden, wie im folgenden Beispiel:
Conbegin
\while true do
at up (event_1) do action_1 ;
while true do
at up (event_2) do action 9 ;

¥hile trye do

2t up (event_n) do actionn ;
end ;

In diesem Fap} sind alle Q-Anweisungen standig nebenliuﬁg aktiv. Somit haben wir
innerhalb ejpeg imperativen Bereichs eine reaktive Bmchreibung erhalten. Zm_' Ver-
einfachung der Schreibweige wird in DACAPQO eine derartige reaktive B&‘Chr_e’bun.g
in einen speziellen Tej) konzentriert, der mit dem, Schliisselwort impdef emgefie'l’
tet wird. Innerhalp dieses Teils werden das globale Conbegin ... epd und die

. - . 't
while true. do-Prifixe der at/vhen—Anwelsungen als gegeben angenommen. Som!
n das obige Muster umgeschrieben werden zy:

119

impdef
at up (event_1) do action.l ;
at up (event_2) do action? ;

at up (eventn) do actionn ;

Natiirlich hat die Rethenfolge der Anweisungen innerhalb eines impdef-Teils keinen
EinfluB auf die Semantik einer derartigen Beschreibung. Die benutzten Ereignisse
sind beliebige Ausdriicke vom Typ bit(1), und die aufgefiibrten Aktionen sind
beliebige DACAPO-Anweisungen. Damit haben wir eine Registertransfersprache
erhalten, die etwas allgemeiner als iiblich ist, da in den meisten RT-Sprachen die
Aktionen auf Zuweisungen eingeschrankt sind.

Angenommen, die Aktionen seien auf Zuweisungen mit speichernden Datenobjekten
als Zuweisungsziele eingeschrinkt. Dann wird durch eine Anweisung der Form:

at up (event_ 1) do target := expression ;

ein flankengesteuerter Transfer eines Wertes in ein Register beschrieben. Dieses
Zielregister reagiert nur auf steigende Flanken. Register, die durch fallende Flanken
angesteuert werden, werden beschrieben durch:

at down (event.1) do target := expression ;

Falls eine Master-Slave-Operation zu beschreiben ist, miissen zwei "Guards” kom-
biniert werden:

at up (event.1) do
2% down (event.1) do target := expression ;

oder
at down (event_1) do

[

t up (event_.1) do target := expression ;

I

Falls das Puffer-Register von explizitem Interesse ist, kann dies ersetzt werden durch:

,ﬁ'

t up (event) do master.target := expression ;
t down (event) do slave target := master target ;

’ﬂ

ode

~

120

t down (event) do master_target := expression ;

at up (event) do slave_target := master_target ;

Die Werte im Zeitverlauf der nicht speichernden Datenobjekte werden ebenfalls im

impdef-Teil definiert. Fiir jedes deklarierte derartige Objekt muB es genau eine
Gleichung geben der Art:

target := expression ;

Obwohl dies wie eine Zuweisung aussieht, liegt in diesem Fall tatsichlich e.m; GIZ:
chung vor, denn das Zielobjekt hat standig den zugewi&sene.n Wer.t, d.h.' dleb ulvlvtzt
sung wird kontinuierlich ausgefiihrt (konzeptionell; im Fall einer Stlmulatlon. elz; Ny
man effizientere Alternativen gleicher semantischer Wirkung). Eine derartige

: : i alt
chung kann eine when-Bedingung als Prafix haben, womit man eine Anweisung erha
der Form:

when condition do target := expression ;

i . ik dieser
Hier ist condition ein beliebiger Ausdruck vom Typ bit(1). Die Semantik diese

Anweisung ist, daf das Zuweisungsziel dem Wert des Ausdrucks solange_fOIgtv WI:
condition den Wert ”1” hat. Wenn condition den Wert "0” erhilt, beh:«tlt targe’t
seinen zuletzt zugewiesenen Wert, bis condition wieder den Wert ”1” erhilt. Somi
wird mit dieser Anweisung ein pegelgesteuertes ”Latch” mit transparentem MOd“i
wahrend des Pegels 17 beschrieben. Ein "Latch”, das beim Pegel 70” transparen

ist, kann durch einfache Negation von condition beschrieben werden.
Wie in Abschnitt 2.3.2 erwahnt, kann jed

auch wenn die Zuweisung tatsichlich in

» daBl der Verzogerungsausdruck ein Ausdrl?C}I:
vom Typ timevar (d.h, bit(64) mit jedes Bit eingeschrankt auf den Wertebereic

{"0", "1"}) ist. Somit sieht ein Registertransfer mit Verzogerung wie folgt aus:

at up (event) do target := expression delay (some.delay)

wert berechnet. Die Zuwe.isung
e Zeiteinheiten verzogert, wxe‘def
nkt behalten die Zielobjekte ihre

Xpression wird jedoch um soviel

Verzégerungswert angibt. Bis zu diesem Zeitpu

alten Werte.
DACAPO kennt keinen vordefin

ierten impliziten Takt Somit konnen sowohl syn-
chrone wie asynchrone Systeme

beschrieben werden. Wird ein Takt benotigt, kann

121

er leicht dadurch erzeugt werden, daB man ein nicht speicherndes Objekt vom Typ
bit(1) deklariert und es im impdef-Teil als sein eigenes Komplement mit einer ge-
eigneten Verzogerung definiert.

Beispiel:
var clockl, clock2 : implicit bit ;
impdef

clockl := not clockl delay (100PS) ;
clock? := not clock2 delay (if clock2 = "1" then 50PS else 150PS) ;

Das Objekt clocki beschreibt ein symmetrisches Taktsignal mit einem 200psec-
Zyklus, wahrend clock2 eines beschreibt, das zwar ebenfalls einen Zyklus von
200psec hat, dabei aber 150 psec den Wert 707 halt und nur 50 psec den Wert
"1”. Eine Kurzschreibweise dafiir wird in Abschnitt 2.3.5 eingefiihrt werden.

Beispiel:
Es sei ein Operationswerk der Struktur wie in Abb. 33 angedeutet gegeben.

load-adr1 load-adr2 load-ir load-acc1 load-acc2

aluout

load-c

adrbus S _bus:a__ . |
S O 3 A AR
& I | g

adr2-to-bus-a ir-to-bus-b acci-to-bus-a acc2-to-bus-a

adr1-to-bus-b

adr2-to-adrbus

mem-to-bus-b
adr1-to-adrbus

Abb. 33: Ein Operationswerk

122

; i die die
Das Operationswerk besteht aus einem adressierbaren SPelcher, emizzeAr;dSé o
Operationen ADD, SUB und AND ausfiihren kann., zwei Adr&ssrzgacc2 i
adr2, einem Instruktionsregister ir, zwei Datenregistern acc1 tug ALU-Ausgangs
Statusflipflop c. Uber den Bus aluout kann der aktuelle Wer. es dor ALU kann
in alle Register und den Speicher geladen werden. Der obere Emga.‘;lg1 s 4 dem
aus adr2, accl und acc? {iber den Bus bus_a, der untere aus a rs,dem Register
Speicher iiber bus_b geladen werden. Die Adresse kann entweder' a:iu o Stoneerk
adr1 oder aus adr?2 fiber dep Bus adrbus geladen we':rden. Es wird ei
angenommen, das die folgenden Steuerleitungen bereitstellt:

- Fiir jedes Register, das F

lipflop und den Speicher je ein Ladesignal:
load adri,

» load_accl, load.c, load_mem
. B, AND}
- fir die ALU eine Steuervariable op mit dem Wertebereich {ADD, SU

. iable:
- fir jedes Register und jeden Bus, den es laden kann, eine Steue;VZila
adrl_to_adrbus, adr2_to_adrbus, adr2 to_bus_a, acci_to_bus.a,
acc2.to bus_a, adri_to_bus_b, ir_to_bus b, mem_to_bus_b.

Dieses System kann in der folgenden Weise beschrieben werden:

Procedure datapath (in load_adri,

load_adr2, load_ir, load_acct, load_acc?2,

load_mem, load_c : implicit bit ;
in adrl_to_adrbus, adr2_to_adrbus, adr2_to_bus_a,
accl_to_bus_a, acc2_to_bus_a, adri_to_bus_b,

ir_to_bus_b, mem_to_bus_b : implicit bit ;
i3 op : (ADDOP, SUBOP, ANpOP) ;

in power : implicit bit)

const from_adry = "100" ;
from_acct = 010" R
from_acc? = "001" ;
from_adri = 100" ;
from_mem = "010% H
from_ir = "oot" H
by_adri = B (e
by_adr2 = "o1r
var mem farray [0 : "(4)FFFF"] of bit(16) ;
adri, adr2, ir, acel,acec2 bit(16) ;
c :m;
adrbus

* implicit bit(16) ;

bus_a, bus_b, aluout * implicit bit(16) ;

123

impdef
adrbus := case adril_to_adrbus || adr2_to_adrbus of
by_adrl : adri ;
by_adr2 : adr2 ;
else : "(4)0000"
end ;
bus_a := case adr2_to_bus_a || acci_to_bus_a || acc2_to_bus_a of
from_adr2 : adr2 ;
from_accl : accl ;
from_acc2 : acc2 ;
else : "(4)0000"
end ;
bus_b := case adri_to_bus_b || mem_to_bus_b || acc2_to_bus_b of
from_adrl : adri ;
from_mem : mem ;
from_ir s ir
else : "(4)0000"
end ;

aluout := case op of

ADDOP : (("0" |} bus_a) + ("0" |] bus_b)) . (15 : 0) ;
SUBOP : (("0" || bus_a) ~ ("0" {! bus_b)) . (15 : 0) ;
ANDOP : bus_a & bus_b
end ;
at up (load_mem) do memory [adrbus] := aluout ;

at up (load_adrl) do adrl :=aluout ;
2t up (load_adr2) do adr2? :=aluout ;
at up (load.ir) do ir :=aluout ;
at up (load_accl) do accl :=aluout ;
at up (load_acc2) do acc2 :=aluout ;
2t up (load_c) do ¢ := case op of

ADDOP : (("0" Il bus_a) + ("0" Il bus_b)) . (16) ;
sSuBop : (("0" || bus_a) - (*0" {{ bus_b)) . (16) ;

124

ANDOP : (&)(bus_a & bus_b)
end ;

segbegin
at down (power) do
end

Einige Kommentare:

are
In diesemn Beispiel ist keine Information iber das Zeitverha_dten en.thalter;;"l E;;WEin
sehr einfach, dies mittels geeigneter Verzdgerungsspezifikationen hmzudzuB i Regi
expliziter Takt wurde ebenfalls weggelassen. Es wurde angenommen, arden. Dies
ster direkt mit den steigenden Flanken der Steuersignale a‘ng&stoﬁen we atisich
ist ein schlechter Entwurfsstil und sollte in der Praxis verrieden werdltzltl.- egister
bendtigt das angenommene Steuerwerk Information liber das I’nstru ’IOI(lﬁe o
ir und das Status-Flipflop c. Diese beiden Objekte konnten einfach in 4o ange
meterliste als out-Parameter aufgenommen werden. Bei den Buss.en wurden 8
nommen, daB hochohmige Zustande als logischer Wert "0” intefpretlert V\;ert ur;l tie
der Beschreibung der ALU wurden relativ komplizierte Ausdru-cke benutz ,a e
Behandlung von Uberlaufsituationen korrekt wiederzugeben. Die Konka; eI;n diesen
ner ”0” links an die Argumente fithrt zu Ausdriicken vom Typ .hli(17). 2 zum
Ausdriicken kann kein Uberlauf stattfinden. Die rechten 16 Bit “werden n‘:lrde Tie
Alu-Ausgang geleitet, wahrend das linkeste das Status-Flipflop ¢ ladt. Es w otz
Annahme gemacht, dafl im Falle einer AND-Operation dieses Flipflop dafu” r-aber.
wird, anzuzeigen, daf beide Argumente an allen Bitpositionen den Wert 1‘ e
Wie in Abschnitt 2.3.3 bereits erwihnt, ist eine Prozedur genau solange akt'lk:,’ ok
ihr algorithmischer Teil ist. Im vorliegenden Fall, als typische RT-Beschrei ‘mg,an-
man an einem Objekt interessiert, das aktiv bleibt, solange die Stromversol’gunfmer
geschaltet ist. Es wurde angenommen, da8 dies durch den Eingabepatamem“tphm s
angezeigt wird. Wenn diese Variable den Wert 0" erhilt, wird der Algorlﬁ von
und damit die Prozedur beendet. Es handelt sich hier um den typischen POS.t X “
DACAPO RT-Modulen. Im Falle einer Simulation kostet dies keine Si.mula.tlor'lsz‘ite
Da diese Prozedur standig aktiv ist, reagiert sie auf ihre Umgebung, mc.iem sx; 1kla—
Eingabeparameter beobachtet. Deshalb wurden sie als implicit—Va.nal'Jle eRT‘
tiert. Derartige Parameter werden kontinuierlich beobachtet. Hierarchische
Beschreibungen in DACAPO folgen typischerweise dem folgenden Schema:

Definition von Prozedur Typen mit implicit Parametern
{Typen der benutzten RT-Module}

Deklaration der globalen Verdrahtung
{implicit}-Variable}

Instantiierung von Objekten von RT-Modulen

125

conbegin ... end, darin jedes instantiierte RT-Modul mit den passenden
globalen Dréahten als aktuelle Parameter
{Verbindung und initiale Aktivierung}

2.3.5 Beschreibungen in DACAPO III auf der Gatter/Schalterebene

Auf der Gatterebene muB eine Menge von Booleschen Gleichungen angegeben wer-
den. Wie bereits in Abschnitt 2.3.4 angedeutet, geschieht dies dadurch, daBl man
implicit-Variable benutzt und ihnen Ausdriicke im impdef-Teil zuweist. Da die
beteiligten Objekte nicht auf den Typ bit(1) beschrinkt sind, kénnen Funktio-
nenbiindel in pragnanter Kurzform spezifiziert werden. Zumindest auf dieser Ebene
wird die Beschreibung des Zeitverhaltens wichtig. Das voreingestellte " Timing”-
Konzept von DACAPO ist Einheitsverzogerung (unit delay). Falls keine explizite
Information iber das Zeitverhalten in einer Beschreibung gegeben wird, wird an-
genommen, daff jede Zuweisung genau eine Zeiteinheit bendtigt. Der Wert dieser
Zeiteinheit kann durch eine globale Option gesetzt werden, wobei es keinerlei Re-
striktionen zu beachten gilt. Daher ist auch der Wert 0 einer der erlaubten Werte.
Zum Zweck einer praziseren Beschreibung des Zeitverhaltens kann der Benutzer je-
der Zuweisung und jeder Leeranweisung eine spezifische Verzdgerung zuordnen. Da
auch in diesem Fall die voreingestellte Verzogerung fur alle Zuweisungen angenom-
men wird, fur die keine Verzogerung explizit genannt wird, ist es ratsam, in diesem
Fall den Wert der voreingestellten Einheitsverzogerung auf 0 zu setzen. Explizite
Information iiber das Zeitverhalten wird durch einen Postfix zu Zuweisungs-und
Leer-Anweisungen gegeben. Dieser Postfix hat die allgemeine Form:

delay (Verzdgerungsspezifikation).

Die allgemeine Semantik ist wie folgt:

Falls eine Zuweisung initiiert wird, wird ein Schnappschufl der aktuellen Werte der
Argumente sowohl der Zuweisung wie auch der Verzégemngsspeziﬁkation genom-
men. Auf der Basis dieser Werte werden der Wert E des zuzuweisenden Ausdrucks
und der Wert D der Verzégerungsspeziﬁkation berechnet. Die Zuweisung von E an
die Zielvariablen der Zuweisungsanweisung jedoch wird solange hinausg&scho.ben,
bis D Zeiteinheiten seit Initilerung der Anweisung verstrichen sind. Wahrend dieser
Zeitperiode behalten die Zielvariablen ihren alten Wert (falls sie nicht durch ander.e
Zuweisungen verandert werden). Alle Wertanderungen, die wahrend dniaer Zeitperf-
ode an den Argumenten des zuzuweisenden Ausdrucks oder der Verzogerungsspezl-
fikation stattfinden mogen, haben keinen EinfluB auf E und D. Im einfachsten Fall
ist eine Verzogerungsspezifikation einfach ein Ausdruck, z.B. eine Konstante:

delay (35)
delay (gate.delay)

126
delay (latency_time + seek_time)

Die Verzdgerungsspezifikation kann eine Fallunterscheidung auf den Werten (é&:ti:;
zuweisenden Ausdrucks beinhalten. Dies wird typischerweise benutzt, wenn

. . . EE I I d
praziser modelliert werden sollen. In diesem Fall unterscheiden sich die "rise”- un
"fall”-Zeiten meist erheblich.

a :=Db & c delay (if b & ¢ then rise_ delay else fall delay)

Dies ist zwar eine gultige Verziigerungsspeziﬁka,tion, jedoch nicht nur muhsarlzl :lz
derzuschreiben, sondern auch ineffizient in der Simulation, da der Ausdruc ;
¢ zweimal zu berechnen ist. Daher bietet DACAPO firr diese héuﬁg auftr_eten €
Situation eine Kurzschreibweise an, die zudem in der Ausfithrung effizienter ist:

delay (up Verzégerungsspezifikation , down VerzégerungSSPeZifikatlon)

. . : b
Diese Art der VerngerungsspeZiﬁkatlon kann mit allen Typen an .Zuwelsunlgen di;
nutzt werden. Falls das Zuweisungsziel nicht vom Typ bit(1) ist, erhalten

. 1fizierten
verschiedenen Bits des Ziels ihre neuen Werte unabhangig mit der spezifizierte
Verzdgerung,

Beispiel: (a sei vom Typ bit(2), und die Anweisung werde zum Zeitpunkt #o ini-
tilert. Es sei angenommen, daB a vorher den Wert 10" hat.)
a 1= "01" delay (up 10, down 20)

Dies fuhrt zu der folgenden Sequenz von Werten von a:

to+10 H a = "{»
toy20 : a = "o1v

In vielen Fillen ist die exakte Ve

stimmte Bandbreite moglicher

DACAPO jede Verzégerungssp
den:

rzOgerungszeit nicht bekannt, sondern nur eine bf;
Werte. Um diese Situation zu beschreiben, kann lr
ezifikation auch in der folgenden Form gegeben we

min_delay.specification to max_delay._specification

wobei min_delay_specification und max_delay_specification beliebige
Ausdriicke sind.

Beispiel:

delay (Up 30 to 32, down 22 to 38)

127

Dies wird so interpretiert, daB zunachst ein unsicherer Wert zugewiesen wird und
erst nach Ablauf des Unsicherheitsintervalls der endgiiltige definierte Wert. Wenn
im obigen Beispiel die Zuweisung des Wertes "0” zum Zeitpunkt ¢, initiiert wiirde,
so wirde zum Zeitpunkt tp4g, der Wert "x” und endlich zum Zeitpunkt #o,35 der
Wert ”0” zugewiesen.

Im Extremfall kénnen Beschreibungen auf der Gatterebene in Netzlisten-Form ge-
geben sein. In diesem Fall diirfen die zuzuweisenden Ausdriicke nur einen Operator
enthalten. Diese Form der Beschreibung dokumentiert die Implementationsstruktur
durch Einzelgatter sehr prazise. Im anderen Extrem kann ein gesamtes kombina-
torisches Schaltnetz mit n Primdrausgangen und m Primareingingen einfach durch
n Ausdriicke mit jeweils bis zu m Argumenten beschrieben werden. Ein weitver-
breiteter Kompromif besteht darin, gemeinsame Teilausdriicke zu identifizieren und
sie Zwischenvariablen (internen Verzweigungen), die dann als Argumente fiir andere
Ausdriicke dienen, zuzuweisen.

Beispiel:
Es sei ein kombinatorisches Schaltnetz mit zwei Primarausgingen £ und g und vier

Primareingingen a, b, c und d angenommen. Die Ausgange seien definiert als

f:=not a
8 = not (

Es sei angenommen, daf aus irgendeinem Grund ein Entwerfer entschieden hat,
diese beiden Funktionen so zu implementieren, wie in Abb. 34 angegeben.

n2 n3

D)- g
c

D l neG

d n5s

Abb. 34: Gatterschaltung fiir zwei Boolesche Gleichungen

Eine Beschreibung, die diese Implementation dokumentiert, allerdings die Verzo-
gerungen nicht prazise verteilt, kann wie folgt aussehen:

114?=b'cdela.y(St_oiO);
03 := ((a& pot b) | nd) delay (15 to 30) ;
86 := not d | n4 delay (10 to 20) ;

Schlielich kann ein prazises Modell der Implementierung unt_er Benutzung von gat-
termodellen aus einer Bibliothek durch dje folgende Beschreibung gegeben sein:

definition module library ;
type sn_not =

procedure sn_not (in arg: implicit bit; out res: implicit bit);
type sn_or =
procedure sn_or

(in arg1, arg: implicit bit; out res: implicit bit);
type sn_and =
procedure sn_and

(in argt, arg2: implicit bit; out res: implicit bit);
type sn_nand =

procedure sn_nand
= —nre

(in argi, arg2: implicit bit; out res: implicit bit);

end library ;

implementation module library ;

type sn_not =
_—E;ocedure sn_not
(in arg: implicit bit; out res: implicit bit);
impdef
Tes := not arg delay (U 3to5, dovn2to4) ;
seqbegin at down (power) do
ed ; T T T _—

type sn_or =
——E;ocedure sn_or
‘“‘235‘2251, arg2: implicit bit; out res: implicit bit);
impdef T T
Tes := argl I arg? delay (up

_

4 %06, down 3 to5) ;
seqbegln_g} down (power) do

end ;

type sn_and =
Procedure sn_ang

129

(in argl, arg2: implicit bit; out res: implicit bit);

impdef .
res := argl & arg2 delay (up 4 to 7 , down 3 to 6)
seqbegin at down (power) do

end ;
type sn_nand = ' o . ¢ ros:
procedure sn_nand (in argl, arg2: implicit bit; out :
implicit bit);
impdef]
res := not (argl & arg2) delay (up 3 to 6 , down 2 to 5) ;
segbegin at down (power) do

end ;
end library ;
module main ;

nand ;
from library import sn_not, sn_oT, sn_and, sn. ;

: sn_and ;
v et : sn_or ;
orl, or2, or3, or4 o mot
notly mot : sn_nand ;
nandi

ni, n2, n3, n4, n5, n6, a, b, ¢, 4, £, g implicit bit ;

conbegin

ort (b, c, n4) ;
or2 (n4,n5,n6) ;
or3 (n2,n4, n3) ;
or4 (n3, n6, g) ;
andi (a, ni, n2) ;
notl (b, n1) ;

not2 (d, n5) ;
nandl (n3, n6, £) ;

»

end

end main ;

3 3 i ich. Die erste
Die Vor- und Nachteile der verschiedenen Ansa.tze Sl.nd ;ffensxcll:zléc};rag;ant e
B@'Chfeibung ist mehr eine Speziﬁkatio?. ‘Sle b&sglr}‘r'eﬁft ”m‘l:;{poch b srob. Die
beiden intendierten Funktionen, ist beziiglich des "Timng™)

130

dritte Beschreibung gibt sehr prazise die Implementierung auf der'Basi.s vordefi-
nierter Bibliothekselemente wieder. Jedoch ist die intendierte Funktion nicht mf?hr
explizit sichtbar, sondern muB extrahiert werden. Ublicherweise werden derartige
Netzlisten- Beschreibungen nicht in textueller Form eingegeben, sondern.aus dem
Ergebnis eines graphischen Editings ("Schematic Capture”) oder besser eines Sy{x—
thesealgorithmus generiert. Die zweite Beschreibung ist eine Art KOIIIPI‘OII'?IB. Sx‘e
{iberdeckt das Schaltnetz mit Biumen. Somit erhilt man eine im Vergleich mit
der Netzliste lesbarere Beschreibung, und die Implementationsstruktur ist dennoch
weiterhin sichtbar. Nur etwas ” Timing”- Information geht verloren.

Die Schalterebene wird in DACAPO nicht durch spezielle Sprachkonstrukte un-
terstiitzt. Die 7-wertige Logik und eine Reihe vordefinierter Prozeduren zusammen

mit der allgemeinen Machtigkeit der Sprache erlauben dennoch ziemlich prazise Be
schreibungen auf der Schalterebene.

Beispiel: Ein Benutzer mdchte Schaltungen auf der Schalterebene dadurch model-
lieren, daB er das folgende Modul anbietet:
definition module switches ;

type switchvar = implicit record value: bit;

strength: (0", "1") end ;

type nswitch = procedure nswitch
T (in gate : switchvar ;
inout drain, source : switchvar);
type pswitch = procedure pswitch
- (in gate : switchvar ;
inout drain, source : switchvar);
type puswitch = procedure puswitch
(in gate : switchvar ;
out res : switchvar);
type ynet = procedure ynet

(inout argl, arg2, arg3 : switchvar);
end switches ;

implementation module switches ;

»

type switchvar =implicit record value :bit ; strength : bit e_‘lc_l i

type nswitch = procedure nswitch
(in gate : switchvar ;
inout drain, source : switchvar);
impdef

drain || source := if gate.value
then source |} drain
else case valtest(drain.value,"0") |l

131

valtest(drain.value,"1") ||
valtest(drain.value,"L") ||
valtest(drain.value,"H") of

"1000" . IILII ;
"0100" H llHll ;
"0010" H "Ll' ;
"0001" : “H" ;
dj H Ilzll
end |! drain.strength ||

valtest(source.value,"0") ||

valtest(source.value,"1") ||
valtest(source.value,"L") ||
valtest(source.value,"H") of

|l1000" : HLII ;
"0100" . |lHII ;
"0010" . llLll ;
"0001" : IIHII ;
else HERYAY
end || drain.strength ;
segbegin at down (power) do end ;
type pswitch = procedure pswitch (in gate : switchvar ;
inout drain, source : switchvar);
impdef
drain || source := if not gate.value
then source || drain
else case valtest(drain.value,"0") ||

case

valtest(drain.value,"1") ||

valtest(drain.value,"L") ||

valtest(drain.value,"H") of
i 1000" : "L" ;

"0100" : VH" ;
"0010" : "L ;
"0001" : “H" ;
else : "Z"
end || drain.strength ||

valtest(source.value,"0") ||
valtest(source.value,"1") ||
valtest(source.value,"L") 1l
valtest(source.value,"H") of

"1000" : llLl' ;

"0100" : "H" ;

"0010" H "L" ;

132

"0001" H IIHII :
else LAY
end || drain.strength ;
seqbegin at down (power) do end ;

type puswitch = Procedure puswitch (ig gate : sw?tchvar H
out res : switchvar);

impdef
res := if gate.value then "10Q"

else "HO" ;
seqbegin at down (power) do end ;

: : swi)
type ynet = procedure ynet (inout argl, arg?2, arg3 : switchvar
impdef

argl.value , arg2.value » argd.value

= collect (argt.value » arg2.value , arg3.value) ;
argl.strength , arg2.strength , arg3.strength

th)i
= (or) (argl.strength || arg2.strength || arg3.streng
seqbegin at down (power) do end ;

end switches.

module main

from switches import switchvar, nswitch, pswitch, puswitch, ynet ;

igg_nprech, switchi, switch2, Switch3, switch4 : nswitch
Pprech : pswitch
Tesnet : ynet ;
pPrech, ei, e2, e3, e4, prechout,
ni, n2, n3, n4, ndout : switchvar ;

Conbegin

PPrech(prech, "11", prechout) ;

switch4(es, edout, nq) ;

switch3(e3, n4,n3) ;

switch2(e2, n3,n2) ;

switchi(et, n2,n1) ;

nprech(prech,"Oi“, ni) ;

resnet(prechout, e4out, andout)

s
»

end

end main

Einige Kommentare:

133

Das "Switches”-Paket, wie oben beschrieben, ist nur ein rohes Modell fiir die Schal-
terebene und funktioniert nur bei zyklenfreien Schaltungen. Weiterhin behandelt
es Nichtdeterminismus nicht korrekt. Das Beispiel soll lediglich die Idee, maBge-
schneiderte Pakete anzufertigen, illustrieren. Durch einen simplen Trick sind in
dem Beispiel die beiden Signalstirken, die DACAPO anbietet, zu vieren verdoppelt
worden. Nun gibt es zwei "driving”-Starken und zwei der Art "charging”. Doch
wird der Widerstand von Transistoren nur im Fall des "pullup” (puswitch) model-
liert. Die eingebaute Funktion valtest(Argument, Konstante) liefert den Wert
"1”, falls das Argument der Konstante in jeder Beziehung gleicht, den Wert "0
sonst. Die eingebaute Prozedur collect weist den Wert mit der grofiten Starke
von allen Argumenten zu. Gibt es auf dem hochsten vorkommenden Starkeniveau
unterschiedliche logische Werte, so wird ein unsicherer Wert (also "X" oder "Y")

zugewiesen.

2.3.6 ”Behavioral”-Beschreibungen in DACAPO

Die Bezeichnung ”Behavioral Language” ist mifiverstindlich. Man benutzt sie fur
Sprachen, die ausschlieflich das E/A-Verhalten eines Objekts beschreiben. In den
meisten Fallen werden hierfitr algorithmische Sprachen benutzt, obwohl eine Funk-
tion zu beschreiben ist. Dabei wird angenommen, da8 diese Funktion immer dann
zu berechnen ist, wenn ein Signalwechsel an irgendeinem Primareingang des Objekts
stattfindet. Die Argumente dieser Funktion sind der aktuelle Zustand des Objekts
und die aktuellen Werte an seinen Priméreingangen. Die Funktion berechnet den
neuen Zustand des Objekts und die Werte an seinen Primarausgangen. Alle Interna
des Objekts sind ohne Interesse. Dies ist genau die Art und Weise, wie Gattermo-
delle in einem ereignisgetriebenen Simulator auf der Gatterebene betrachtet werden.
Tatsachlich entstammen die sogenannten »Behavioral Languages” der Absicht, kom-
plexere " Gatter” fir derartige Simulatoren bereitzustellen. Da ein vollstindig da-
tengetriebener Ansatz verfolgt wird, konnen derartige Modelle nicht benutzt werden,
nebenlaufige Kontrollstrukturen (Algorithmen) zu spezifizieren oder zu dokumentie-
ren. Auf der anderen Seite fithrt dieser Ansatz zu relativ schnellen Simulationszeiten,
da die Objektmodelle in direkt ausfuhrbaren Code iibersetzt werden konnen. Ob-
wohl DACAPO nicht fiir diesen Zweck gedacht ist, kann es auch als ”Behavioral
Language” eingesetzt werden. Zu diesem Zweck gibt es eine Spezialform der Ver-

bundanweisung:
m ... end

Diese Anweisung modelliert eine zeitlose und nicht unterbrechbare Aktivitat. Daher

ist die Klasse der in dieser Verbundanweisung erlaubten Anweisungen b%chf&nkt‘
Es ist keine Verzégerung und kein at/when-Prafix erlaubt, und dies gilt auch inner-
halb enthaltener Anweisungen. Konsequenterweise konnen anch nur solch'e Proze-
duren und Funktionen aufgerufen werden, die eine derartige Verbundanweisung als

134

algorithmischen Teil haben,

Beispiel: o

Diag Beispiel beschreibt das Verhalten eines Multiplizierers. Der einzige Ef[f;?:{:
von Interesse ist, daB das Ergebnis das Produkt der beiden Argumer.lte 1§t- e
dieses Produkt mit Hilfe eines sequentiellen Algorithmus berechnet wird, ist ohn
Bedeutung fiir die Umgebung.

begin
__——}es =0 ;
for i i= 0 to 15 do
besin
if argl.(0) = nqw then res := res |+| arg?
else ;
res || argl := shr (res Il argi , 1)
end
end

Dies beschreibt dje reine Funktion "Multiplikation”. N un missen noch der Zglt{;
verbrauch der gesamten Multiplikation modelliert werden und die Tatsache,Df;S
diese bei jeder Werténderung eines der Argumente durchgefithrt werden r:luﬂ. dled
geschieht dadurch, da8 map diese Verbundanweisung als Aktion eines "Guar
Command” innerhalkh eines impdef-Tejls benutzt:

at change (argy | arg2) do

seqbegin
begin
__;ZE =0 ;
for i := 0 to 15 go
begin
if argl.(0) = wqyw then res := res |4] arg?
else ;
res || argl := gpp (res || argl , 1)
end
end ;
delay (30 + 30 = °necount(argl))
end
Bemerkungen:
Das begin . ..

end ist zeitlos, Daher wird das
begin ... end beschrieben, oder genauer
sung, die nach der Termjnierung des begi

B ... end ausgefithrt wird. Es wird
angenommen, daf die Funkt;

135

Hardwarekomponente beschreibt, sondern nur dazu dient, als Hilfsfunktion eine be-
stimmte Eigenschaft einer Hardwarekomponente anzugeben. Dies ist generell ein
weiterer Verwendungszweck der begin ... end-Anweisung. Somit kann ein Syn-
thesealgorithmus so gesteuert werden, daB er derartige Anweisungen ignoriert. Die
Funktion onecount kann wie folgt aussehen:

function onecount (in argument : bit(16)) : timevar
var i : integer ;
onecount := 0 ;
for i := 0 to 15 do
if argument.(i) = "1" then omecount := onecount + 1 else

end ;

2.4 Literaturhinweise

Objektorientierte Programmierung wurde zuerst beim Entwurf der Programmier-
sprache SIMULA [05] eingefithrt. Diese Idee wurde von anderen Sprachen aufgegrif-
fen, 2.B. [16] und [46]. M. Stefik und D.G. Bobrow liefern in [41] einen exzellenten
Uberblick iiber dieses Paradigma. Der theoretische Hintergrund ist die Theorie der
Abstrakten Daten-Typen. Die Literaturstellen [13} und [18] fithren in diese Theorie
ein, wahrend in [12] und [08] syntaktische Systeme auf der Basis von ADTs unfi de-
ren Anwendung dargestellt werden. Petri-Netze wurden von C. A. Petri entwickelt
[33]. Der Artikel von J. L. Peterson [34] und mehr detailliert das Buch von w.
Reisig [39] sind sehr gute Einfiihrungen in dieses Gebiet. In [38] und [42] werden
Anwendungen in der Programmierung und zum Hardwareentwurf diskutiert. CSP
stammt von C. A. R. Hoare, zunichst in [22] und spater, allerdings recht stark mo-
difiziert, in seinem Buch [23] publiziert. R. Milner hat einen ahnlichen, aber'mehr
algebraischen Ansatz entwickelt [30]. Die Sprache PMS wird in [04] beschrieben,
HIT in [02] und [03]. SDL, eine Sprache, die zur Protokoll-Speziﬁka.tmn gedacht ist,
wird in [44] dokumentiert. Ein interessanter Ansatz zur graphxsch‘en Darstellun.g
von Spezifikationen auf der Systemebene wurde von D. Harel entw1ckflt [19]. Die
Literaturstelle [01] ist eine vollstindige Beschreibung von ISPS. Sehr frith scho'n hat
H. Berndt Mikroprogrammierung auf der Basis einer Universalsprache.beschrTebe‘n
[06). Guarded Commands, ein Software-Prinzip, das der reaktiven Sicht, wie sie
auf der Registertransferebene bevorzugt wird, entspricht, wurde von E. W. Dijkstra
entwickelt [10]. Es sind sehr viele RT-Sprachen entstanden, st:)daB [09], [.11], [20] }md
[21] nur als Beispiele dienen konnen. In [15] wird ein graphisches Aq}nv‘alennt einer
RT-Sprache beschrieben. HILO, wie in [14] beschrieben, kann als Beispiel far eine
fortschrittliche Sprache auf der Gatterebene dienen. In [24] diskutieren T: Lengauer
und K. Mehlhorn einen interessanten Ansatz auf der Schalterebene. Die Sprache
HILL enthilt Konstrukte zur Erzeugung von Beschreibungen, d.h 'Metasprach-
Konstrukte. Ahnliche Ansatze auf hoheren Abstraktionsebenen sind in MoDL [40]

136

und ZEUS [26] zu finden. Es gibt eine ganze Reihe sogenam}ter.”thavwg}a;?:hggzr
ges”, beispielsweise [14], [17], [45] und {49]. ELLA [31] scheint in dxeser.nd e ot
sauberste Ansatz zu sein. Der sehr interessante CONLAN-Ansatz wir 5 € i
im CONLAN-Report [35] dokumentiert. Die Literaturstelle [25] mag als Beisp
ine machtige Sprache in diesern Rahmen dienen. _

gie Evolutiin vr:)n DACAPO von DIGITEST II bis DACAPO III kann in [36]’1[)3A7]-
und [48] beobachtet werden, wobei (48] ein vollstindiges Sprau:hhan.dbudlll :?zdiga
CAPO 111 ist. Eine Einfithrung in VHDL gibt [27], wahrend [4:7] ein volls : oA
Sprachhandbuch darstellt. VHDL wurde in Richtung auf Vertraglichkeit mi

o LA
[50] entwickelt, im Gegensatz zu DACAPO 111, welches in Richtung auf MODU
11 {43) orientiert ist.

{01] M.R. Barbacci :

. - ication
Instruction Set Processor Specification (ISPS): The Notation a.nfi lts‘APPg;g 10
Techn. Report Dept. of Computer Science, Carnegie Mellon University, 1

{02] H. Beilner, A. Scholten :

Strukturierte Modellbeschreibung und strukturierte Modellanalyse :
Konzepte des Modellierungswerkzeugs HIT

in : Informatik Fachberichte, Vol. 110, Springer, 1985

{03] H. Beilner :

Workload Characterization and Performance Modeling Tools

-
in: G. Serazzi (ed.) : Workload Characterization of Computer Systems & Comp
ter Networks,

North Holland, 1986

[04] C.G. Bell, M. Knudsen, D. Siewiorek :
PMS : A Notation to Describe Computer Structures

Digest of 6th Annual IEEE Computer Scociety International Conference, 1972
{05) O. Belness :

The Use of SIMULA for Real-Time Implementation

Norwegian Computing Center, Oslo, 1978

{06} H. Berndt :

Functional Microprogramming as a Logic Design Aid
IEEE ToC, Vol. C-19, No. 10, Oct. 1970

[07} D. Borrione :

Language de description des systemes logiques - Proposition pour une methode for”
melle de definition

These d’Etat, INPG Grenoble, July 1981

137

[08] V. Carchiolo et al. :
A LOTOS Specification of the PROWAY Highway Service
IEEE ToC Vol. C-35, No. 11, Nov. 1986

[09] Y. Chu :
Introducing CDL
IEEE Computer, Dec. 1979

(10} E.W. Dijkstra : o
Guarded Commands, Nondeterminacy, and Formal Derivation of Programs
Comm. ACM, 18,8, Aug. 1975

[11} J.R. Duley, D.L. Dietmeyer
A Digital System Design Language (DDL)
IEEE ToC, C-24, No. 2, 1975

(12] H. Ehrig, W. Fey, H. Hansen : ' '
ACT ONE : An Algebraic Specification Language With Two Levels of Semantics

TU Berlin, Ber. 83-03, Feb. 1983

(13] H. Ehrig, B. Mahr :
Fundamentals of Algebraic Specification) '
in: ETACS Monographs on Theoretical Computer Science, Vol. 6, Springer, 1985

[14] P.L. Flake, G. Musgrave, M. Skarland :

The HILO Logic Simulation Language o
in: Proceedings 1975 International Symposium on Computer Hardware Description
Languages and their Applications,

IEEE Catalog No 75CH1010-8C, 1975

(15] G. Girardi, R. Hartenstein, U. Welters :
ABLED - A RT Level Schematic Editor and Simulator Interface
in : Proceedings of EUROMICRO, 1985

(18] A. Goldberg, D. Robson :)
Smalltalk-80 - The Language and its Implementation
Addison Wesley, 1983

(17] M. Gonauser, F. Egger, D. Frantz :
$LIILE - A Multilevel Simulation System
n : Proceedings of ICCD’84, 1984

138

[18] J. Guttag, J.J. Horning :

The Algebraic Specification of Abstract Data Types
Acta Informatica, 10, 1978

[19] D. Harel :

Statecharts : A Visual Formalism for Complex Systems
Science of Computer Programming, 8, 1987

[20] R. Hartenstein :

Fundamentals of Structured Hardware Design
North Holland, 1977

[21] F.J. Hill et al. :

Structural Specification with a Procedural Hardware Description Language
IEEE ToC, Vol. C-30, No 2, Feb. 1981

[22] C.A.R. Hoare :

Communicating Sequential Processes
Comm. ACM, Vol. 21, No. 8, 1978

[23] C.A.R. Hoare :

Communicating Sequential Processes
Prentice-Hall 1985

{24] T. Lengauer, K. Mehlhorn :

The HILL System : A Design Environment for the Hierarchical Specification, Comr
paction, and Simulation of Integrated Circuit Layouts

in : Proceedings Conference on Advanced Research in VLSI, MIT, 1984

{25] A. Lewke : DL
CAPLAN : Ein Mitglied der CONLAN Sprachfamilie auf der Ebene von CAP/DS
Diplomarbeit, Univ. Dortmund, FB Informatik, 1986

[26] K.J. Lieberherr, S.E. Knudsen :

ZEUS : A Hardware Description Language on VLSI
in : Proceedings 20th DAC, 1983

[27] R. Lipset, E. Marschner, M. Shaldad
VHDL - The Language

IEEE Design & Test of Computers, April 1986

[28] M.D. May :
OCCAM

139
ACM SIGPLAN Notices, Vol 18-4, April 1983

[29] M.D. May, R. Shepard :

Occam and the Transputer

in: G. Reijns (ed.): Concurrent Languages in Distributed Systems, North Holland,
1985

[30] R. Milner :
A Calculus of Communicating Systems ‘
Lecture Notes in Comuter Science, Vol. 92, Springer, 1980

[31] 3.D. Morrison, N.E. Peeling, T.L. Thorp : .

The Design Rationale of ELLA, a Hardware Design and Description Language .
in : Proceedings of 7th International Conference on Computer Hardware Descrip-
tion Languages and their Applications,

North Holland, 1985

(32] J. Noe, G. Nutt :
Macro E-Nets for Representation of Parallel Systems
IEEE ToC, C-22, No. 8, 1978

[33] C.A. Petri:
Kommunikation mit Automaten ik
Schriften des Rheinisch Westfaelischen Instituts fuer Instrumentelle Mathematik,

Bonn, 1962

[34] J.L. Peterson
Petri Nets
ACM Computing Surveys, 1977

[35] R. Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, P. Skelly:
CONLAN Report)
Lecture Notes in Computer Science, No. 151, Springer

(36] F.J. Rammig : .

DIGITEST II : An Integrated Structural and Behavioral Language Description
in: Proceedings 1975 International Symposium on Computer Hardware Descriptio
Languages and their Applications,

IEEE Catalog No 75CH1010-8C, 1975

(37] F.J. Rammig :
Preliminary CAP/DSDL Language Reference Manual

Forschungsberichte der Abt. Informatik der Univ. Dortmund, No. 129, 1980

140

[38] F.J. Rammig :

: ing Langy-
Structured Parallel Programming with a Highly Concurrent Programming
age in : Atti di Congresso Annuale AICA’80, 1980

[39] W. Reisig :
Petri Nets : An Introduction
Springer, 1985

[40] J. Smit et al. :

. . MoDL
Definition of the Syntax and Semantics of the Modeling and Design Language

in : Dewilde (ed.) : The Integrated Circuit Design Book
Delft University Press, Delft, 1986

{41] M. Stefik, D.G. Bobrow :

Object-Oriented Programming : Themes and Variations
The Al Magazine, 1985

[42] S. Wendt :

. tial Cir-
Using Petri Nets in the Design Process for Interacting Asynchronous Sequen
cuits

In : Proceedings IFAC Symposium on Discrete Systems, 1977

[43] N. Wirth :

Programming in MODULA 2
Springer, 1982

{44] ~:

Proposed, Revised, and Expanded Recommendations for CCITT
Specification and Description Language (SDL)

CCITT COM XI-395E, or AP VII-No. 20-E, June 1980

[45] ~:

HELIX 1.3 HDL Reference Manual

Silvar Lisco Doc. No. M-026-1, 1983

{48] - :

Mainsail Language Manual
Xidac Corp., Menlo Park, CA, 1985

[47] -
IEEE Standard VHDL
Language Reference Manual,

141
IEEE, iStd 1076 - 1987

(48] —:
DACAPO III System User Manual
DOSIS GmbH, Dortmund, 1987

[49] - :
DABL Reference Manual
Daisy Systems Corporation, Mountain View, CA, 1985

[50] —:
ADA Programming Language
ANSI/MIL-STD-1815A, 1983

142

3 Implementationsaktivitaten

N

vz N\ %

Leve! /7R ‘\V
Z

Le?gi‘e / 'S ‘\V’
EE N

% S\ 7%

A oo ;. QW
N
AN

% N
Lesé?cmcal /‘ ‘\%"

Languages

N

D

/

Design
Docgments

Abb. 35: Implementationsaktivititen im Entwurfsprozel

3.1 Systemebene zur Algorithmischen Ebene

Ei.ne nichttriviale Hardwarekomponente, d.h. ein ”Prozessor” im weiteren Sinn,
vxflrd auf der Systemebene als ADT modelliert. Der Instruktionssatz einer derar”
tigen Komponente entspricht einer Programmiersprache, die durch die Instruktio-
nen zusammen mit Verwendungsregeln gegeben ist. Das bedeutet, daB eine solche
Kom;ione.nte nicht einfach eine Menge unabhingiger Instruktionen, sondern eine
vollstandige Programmiersprache definiert. Auf der algorithmischen Ebene ™

143

diese Programmiersprache implementiert werden , indem man einen Interpretations-
algorithmus dafiir schreibt. Dieser Algorithmus muB in einer bestimmten Sprache
geschrieben werden. Diese Sprache aber korrespondiert wieder mit anderen Hard-
warekomponenten, von denen angenommen wird, daff sie diese Sprache verstehen.
Damit wird dieser Prozess solange rekursiv fortgesetzt, bis "atomare” Hardwarekom-
ponenten erreicht sind. Aus dieser Sicht bedeutet Hardwareentwurf nichts anderes
als das Schreiben von Interpretern unter Beriicksichtigung von Restriktionen.

Zwischen Interpretern auf einer Ebene muff zur Kommunikation ein bestimmtes
Protokoll definiert werden. Derartige Protokolle miissen beim Ubergang von der
Systemebene zur algorithmischen den ADT’s der Systemebene hinzugefiigt werden.

3.2 Algorithmische Ebene zur Registertransferebene

Auf der algorithmischen Ebene mufi die Programmiersprache einer Komponente
durch Schreiben eines interpretierenden Algorithmus implementiert werden. Dieser
Algorithmus mu8 in einer bestimmten Sprache geschrieben werden. Diese wiederum
korrespondiert zu anderen Komponenten, die diese Sprache verstehen. Der ProzeB
wird rekursiv fortgesetzt, bis "atomare” Hardwarekomponenten erreicht sind. Diese
elementaren Komponenten fihren auf Anforderung bestimmte Operationen durch.
Die Menge all dieser Komponenten wird Operationswerk (data path) des Systems
genannt, wahrend die (hierarchische) Kontrollstruktur des (hierarchischen) Algo-
rithmus auf ein Steuerwerk (controller) abgebildet wird.

Die Dekomposition in ein Opera.tionswerk und ein Steuerwerk ist eine Hauptakti-
vitit der Transformation von der algorithmischen Ebene auf die Registertransfere-
bene. Dabei sind fiir diese Transformation verschiedene Entwurfsstile moglich:

(1) Monolithische Dekomposition

Bei diesem Ansatz wird der gesamte zu implementierende Algorithmus auf eine nicht
hierarchische Form eingeebnet. Die elementaren Datenoperationen werden dann ex-
trahiert und auf ein Operationswerk abgebildet. Fir die (potentiell nebenlaufige)
Kontrollstruktur wird ein dquivalenter endlicher Automat konstruiert und mit dem
Operationswerk iiber Steuer- und Statusleitungen verbunden. Abb. 36 charakteri-
siert diesen Ansatz.

Dieser Entwurfsstil scheint fiir kleine Algorithmen mit wenig
net zu sein.

Nebenlaufigkeit geeig-

(2) Parallele Dekomposition

Bei diesem Ansatz (siehe Abb. 37) werden zunachst die Teile des abzubildenden Al-
gorithmus, die nebenlaufig ablaufen konnen, identifiziert. Diese Teile we'rc.ien auf
semiautonome Komponenten abgebildet, was zu einer neuen Dekomposition auf
der Systemebene fihrt oder zu einem gemeinsamen Operationswerk, auf dem fir

144

control lines status lines

Abb. 36: Monolithische Dekomposition

jeden nebenliufi
benlaufigkeit zu
tionen iiber Bust

. Ne-
gen Teil des Algorithmus je ein Steuerwerk agiert. Um echte

> : : re Sek-
erlauben, sollte das gemeinsame Operationswerk in mehre
rennschalter separiert werden konnen.

Abb. 37: Parallele Dekomposition

(3) Hierarchische Steuerwerks-Dekomposition
In diesem Fall wird die Hierarchie d

es abzubildenden Algorithmus auf eine Hierar-
chie von Steuerwerken abgebildet,

. jestufe
Steuerwerke auf einer hoheren Hlerarchm;t:;er
haben keinen Zugriff auf das Operationswerk, sondern nur auf Steuerwerke au

s ey : ; ittel-
nachst niedrigeren Hierarchieebene. Nur die untersten Steuerwerke wirken unmit
bar auf das Operationswerk. Abb, i

diese untersten Steuerwerke mit lin
Diese Methode arbeitet mit einem]

pretiert werden muf. Somt wird eine Dekomposition auf der Systcmeb'ene du}mb'
gefiihrt, bei der neue "Prozessoren” definiert werden, Abb. 39 skizziert diesen
Ansatz,

145

control lines status lines

Abb. 38: Hierarchische Steuerwerks-Dekomposition

Die verschiedenen Methoden schlieBen sich nicht notwendigerweise aus. In prakti-
SCl}en Anwendungen werden Kombinationen dieser Ansitze benutzt. So passen bei-
spielsweise die parallele Dekomposition und die hierarchische Steuerwerks-Dekompo-

sition sehr gut zusammen.

-

Abb. 39: Hierarchische Dekomposition

3.2.1 Monolithische Dekomposition

Um diesen Entwurfsschritt ausfithren zu konnen, muB ein zu implementierender
Algorithmus vorliegen. Dieser agiert nach einer bestimmten Kontrollstruktur auf
gewissen Elementaroperationen, die auf Daten ausgefiithrt werden, die in noch nicht

146

gebundenen Speicherorten (virtuellen Registern) gfspeichert.sind. .Es ist die Aufg;be
dieses Implementierungsschrittes, fir diesen Algorithmus eine (vutuelle)‘MasC ine
zu konstruieren. Dieser Schritt wird auch Binden eines abstrakten Algorithmus an

reale Komponenten genannt. Die Aufgabe kann in verschiedene Teilschritte unter-
teilt werden:

(i) Binden komplexer Kontrollstrukturen an elementare,

(i1) Identifikation von Hilfsvariablen,

(i) Binden von Variablen an Speicherzellen (Register, adressierbare Speicher),

(iv) Binden von Operatoren an Operationseinheiten,

{v) Binden von gemeinsamen Referenzen auf Daten an Verbindungskomponenteﬂ
(gemeinsame oder dedizierte Busse mit Multiplexern)

(vi) Bestimmung der endgultigen Kontrollstruktur

{vii) Binden logischer Zeitablaufe an Zeitphasen

(1) Binden komplexer Kontrollstrukturen an elementare

Der zu implementierende Algorithmus kann bestimmte Kontrollstrukturen eﬂth?‘l'
ten, die von der Zielmaschine nicht als elementar angesehen werden. Derartige
Strukturen konnen entweder in der explizit genannten Kontrollstruktur enthfllteﬂ
oder in Adressierungsmethoden verborgen sein. Solche Kontrollstrukturen m'ussen
durch eine geeignete Komposition elementarerer ersetzt werden. Aus P“‘iStls,Cher
Sicht kann diese Situation im vorliegenden Ansatz gar nicht auftreten, da dieses
Vorgehen nichts anderes als hierarchische Dekomposition des Algorithmus bedeute.t'
Aus praktischer Sicht jedoch sind diese Substitutionen meist derart einfach, daB kein
elaborierter Ansatz notig ist.

Der Implementationsalgorithmus mu8 in der Lage sein, nicht elementare Kontw’n‘
strukturen zu identifizieren, und muB wissen, wie sie zu ersetzen sind. Die Identl f-
kation der zu ersetzenden Strukturen bedeutet (partielles) Parsen des Algorithmus
wahrend das Substitutionswissen durch parametrisierte Ersetzungsregeln gegeben
werden kann. Die Substitution selbst schlieBlich kann durch Umschreiben des ur”
springlichen zu implementierenden Algorithmus laut diesen Ersetzungsregeln .ge-
schehen. Somit sind bei diesem ersten Teilschritt Bild- und Urbildbereich gleich-

Dies macht es leicht, ihn, wann immer notig, vor die restlichen Implementationsak-
tivititen einzufiigen.

147

Beispiel:
Es sei angenommen, dafi der zu implementierende Algorithmus Schleifen und If-
Anweisungen enthalten kann, die Zielstruktur aber nur strikte Sequenzen und Sprin-
ge erlaubt. Weiterhin sei eine globale Operationsweise der folgenden Form angenom-
men:
while true do
seqbegin
ap := ap +1 ;
case ap of
1 : actiont ;
2 : action2 ;

D.h. es wird angenommen, dafl der ubliche Interpretationszyklus mit einem " Pro-
grammzahler”, genannt ap, benutzt wird. Man beachte, dafl diese Schleife auferhalb
des Wirkungsbereichs der Ersetzungsregeln liegt, da sie lediglich den globalen Ope-
rationsmodus beschreibt.

Geignete Ersetzungsregeln konnten sein:

replace (if condition them action.l else action_2)

by (if condition then ap := true_part else false_part ;
true_part : segbegin action_1 ; ap := exit end ;
false_part : seqbegin action_2 ; ap := exit end ;
exit :)

replace (while condition do actiom)
by (start : if condition then ap := loopstart

else ap := leave ;
loopstart : segbegin action ; ap
leave :)

:= start end ;

replace (repeat action until condition)
by (start: segbesin
action ;
if condition then ap :=
end
leave:)

leave else ap := start ;

148

Die erste Regel nimmt jedes If-Konstrukt in dem zu im'plemenherende; tAiLg:‘
rithmus und ersetzt es durch die angegebene Struktur. Sie benutzt cond gkat‘m’l
action_1 und action_2 als Parameter, die in die Zielstruktur ohne Modi \ ;er
itbernommen werden. true_part, false_part und exit sind lokal-e Parar(rilfe ;e ¥
Regel. Sie werden durch geeignete Werte bezogen auf den Kontext, in delm bl: 1ed%g-
angewandt wird, ersetzt. Das seqbegin ... end innerhalb der Rege gld b
lich an, daB die Anweisung ap := exit mit einer ” Adresse” versehen v&{er ; Dié
die um Eins grofler ist als die letzte ” Adresse” von action_i.bzw. actllon 't.hmus
zweite Regel ersetzt jedes while-Konstrukt des zu implementierenden A gortl e
durch die angegebene Struktur. Sie hat condition und action al's Paranrnelek,alerl
in die Zielstruktur unverandert ibernommen werden. Durch Zuwelsur.xg der lo 2
Parameter leave oder start an den Aktivititszeiger ap werden unbedlxllgte Spru:gd
erhalten, die zum Schleifendurchlauf fithren. Wieder dient das seql:egln e e;:‘;
in der Regel nur dazu, dafl die Anweisung ap := start mit einer Adfesse. v ol
hen werden soll, die um Eins grofer als die letzte " Adresse” von action ist.
dritte Regel wirkt in dhnlicher Weise auf repeat-Konstrukten.

Wendet man diese Regeln auf folgenden Teil eines Algorithmus an:

seqbegin
a:=b+c;
while a < d do
seqbegin
" repeat
b:=b+ 1
until b > ¢ ;
a = a3+ b
end ;

=23

a
0
™

so erhalt man:

SEQBEGIN
AP := 0 ;
WHILE TRUE DO
SEQBEGIN
AP := AP + 1 :
CASE AP QF

-
.

a :=b+c¢
if 2 < 4 then ap := 2 else ap := 6
b =b+1

»

oo WN

ifb> c then ap := 4 else ap := 2 ;
ta =a+p;

149

6: ap := 1 ;

Man beachte, daB nur der in Kleinbuchstaben geschriebene Teil das Ergebnis der
Ersetzungsregeln ist, und nur dieser Teil explizit von den weiteren Schritten des Im-
plementationsalgorithmus weiter bearbeitet werden mu8. Der in GroBbuchstaben
geschriebene Teil gibt den allgemeinen Betriebsmodus wieder, der fir diesen Imple-
mentationsstil als global angesehen wird. Er wurde hier mit aufgefihrt, um den
Ablauf sichtbar zu machen.

(ii) Identifikation von Hilfsvariablen

Wihrend des Prozesses, komplexe Kontrollstrukturen durch elementarere zu sub-
stituieren, werden meist zusatzliche Variable , d.h. solche, die im urspriinglichen
Algorithmus nicht enthalten waren, eingefiihrt. Diese Variablen miissen wie die im
zu implementierenden Algorithmus explizit genannten Variablen behandelt werden.
Im obigen Beispiel wurde die Variable ap als derartige Hilfsvariable eingefiihrt.

(iii) Binden von Variablen an Speicherzellen

Alle Variablen, seien sie nun orginale oder zusatzliche, mussen an Objekte mit
Speicherfihigkeit gebunden werden. Die einfachste Methode ist, eine eins-zu-eins-
Zuordnung zwischen Variablen und Registern einzufiihren. In diesemn Fall muf ein
dediziertes Register fiir jede Variable vorgesehen werden. Weiter entwickelte Bin-
dungsalgorithmen fithren ein dynamisches Binden durch. In diesem Fall konnen Va-
riablen, die in einer Lebenszeit-Analyse nicht iiberlappende Lebenszeiten aufweisen,
gemeinsame Register teilen. Dies fuhrt insbesondere im Fall von komplizierteren
Algorithmen zu kompakteren Operationswerken. (Man beachte, daf die hier be-
nutzten Register interne Register des Interpretationsalgorithmus sind, die nicht mit
den von einem externen Benutzer des " Prozessors” sichtbaren Registern verwechselt
werden darfen.)

Weiterhin muf in diesem Schritt der Typ der zu benutzenden Speicherelemente
gewahlt werden. Es kénnen entweder individuelle Register fur die abzubildenden
Variablen benutzt werden, oder man bevorzugt einen adressierbaren Speicher, z.B.
ein Register-File. Register-Files erleichtern die Bindungsprozedur ein wenig, beson-
ders im Fall gemeinsamer Speicherzellen. Auf der anderen Seite hat diaism Verféhren
den Nachteil einer geringeren Bandbreite zum Speicher, falls man weniger Speicher-

ports als Speicherzellen hat.

150

Beispiel:

Nimmt man das obige Beispiel, so kann man die folgenden Lebenszeiten der ver-
schiedenen Variablen ableiten:

-

-

=R 2 T - -
(SR
~N o~

Dies zeigt, daB geteilte Speicher nicht mdglich sind. Somit sind enth3deT 5.d§1’n
zierte Register, Ra, Rb, Rc, Rd und Rap ndtig, oder man speichert die Varia ;
a, b, ¢, d, ap in einem Register-File RF unter den Adressen 0, 1, 2, 3"d r
Falls es zwei Lese-Ports und einen zusitzlichen Schreib-Port gibt, entstehen bei aél

. : B
zweiten Losung keine zusitzlichen Probleme. In diesem Fall wird der (nicht gro
geschriebene Teil des) Algorithmus zu:

RF{0] := RF[1] + RF[2] ;

if RF{0] < RF{3] then ap := 2 else ap := 6
RF[1] := RF[1] + 1 ;

if RF[1] > RF[2] then ap := 4 else ap := 2

’

~N o ;b W

RF{0] := RF[0] + RF[1] ;
1 ap =1
: RF[3} := RF(0]

: L 1
Nimmt man nun an, daB nur ein bidirektionaler Port existiert, so mufl man den A

. . b
gorithmus unter Benutzung zusitzlicher Variablen, die an Speicherzellen auferhal
von RF gebunden werden missen, wie folgt umschreiben:

1: auxi = RF[1] ;

2: aux2 := auxi + RF[{2] ;

3: RF{0] := auxi + aux? ;

4: aux3 := RF[0] ;

5: if aux3 < RF[3] then ap := § else ap := 12 ;
6: aux4 := RF[1] ;

7: BF{1] := aux4 + 1 ;

8: if aux4 > RF[2] then ap := 8 else ap := 5 ;
9: aux§ := RF[0] ;

10: aux6 := RF[1] ;

11: RF[0] := aux5 + aux6 ;
12: ap = 3 ;
13: aux7 := RF[0] ;

14: RF[3] := aux7 ;

151

Hier erscheint die Anzahl von Hilfsvariablen im Vergleich zur Anzahl der zu verwal-
tenden Speicherzellen sehr hoch zu sein. Tatsdchlich kann die Anzahl der Hilfsva-
riablen nach einer einfachen Lebenszeit-Analyse auf zwei reduziert werden. Dies ist
gerade die maximale Anzahl an Adressen in einer Anweisung abziglich der Anzahl
verfiigbarer Ports. Somit erhilt man schlielich unter diesen Annahmen die folgende
Version:

1: auxl := RF[1] ;

2: aux2 := auxi + RF[2] ;

3: RF[0] := auxl + aux? ;

4: auxi := RF[0] ;

5: if auxl < RF[3] then ap := 5 else ap := 12 ;
6: auxl := RF[1] ;

7: RF[1] := auxl + 1 ;

8: if auxl > RF[2] then ap := 8 else ap := 5 ;
9: aux1l := RF[0] ;

10: aux2 := RF[1] ;

11: RF[0] := auxl + aux2? ;

12: ap = 3

13: aux1l := RF[0] ;

14: RF[3] := auxl ;

(iv) Binden von Operatoren an Operationseinheiten

Bei diesemn Schritt miissen alle Operatoren, die in dem zu implementierender} Al
gorithmus benutzt werden, an Operationseinheiten gebunden werden. .In einem
trivialen Ansatz kann angenommen werden, daB es fiir jedes Al.lftret:an eines ~O;'>e—
rators im Algorithmus eine dedizierte Operationseinheit gibt. Dies wiirde natiirlich
zu extrem redundanten Implementationen fithren. '
In einem sinnvolleren Ansatz wird zunachst die Menge der Op'era‘tlonen pro ele-
mentarem Schritt des zu implementierenden Algorithmus identlﬁmert.' Sei OPS;
diese Menge fiir den i-ten elementaren Schritt. Auf der .and.eren. Seite kann es
eine Menge vordefinierter Operationseinheiten geben, die Jew'e1.ls eine M(.enge von
Operationen anbieten. Diese Menge kann in wechselseitig d1§Junkte Tellmeng'en
gleichzeitig verfiigbarer Operationen eingeteilt werden. In} elnfachstt?n Fall bsle-
tet eine Operationseinheit zu einem Zeitpunkt nur genau eine .Ope.ratx?n an. e;
Oer(CAPkll_CAPk'gy..., CAP, i) der k-te Typ einer Operz.xtlonsemhext mlt.d;n gie]c -
selseitig disjunkten angebotenen Operationen C AP, bis C AP jm. Sel ‘_,-(d)
die j-te Instantiierung eines derartigen Typs, I j(CAPk,l), ...,.Ij(CAFk'km) die atz'u—
gehorigen instantijerten Operationenmengen. Zwei Mengen mstantnert;rIOg.era lx';);
nen I;,(CAP ;) und I;(C APp) heiBen im Konflikt §tehend_, falls 1; 1‘1;10 f{pw‘fm .
Instantiierung desselben Typs von Operationseinheit bez‘.elclu‘xen un ' S,p

CAP,, , wechselseitig exklusive Mengen von Operationen in diesem Typ sind.

152

Beispiel:)
Eine typische ALU bietet Operationen wie ADD, SUB, AND, OR, NAND an. Diese
Operationen sind wechselseitig exklusiv. Sie wurde daher beschrieben durch:
OUALU({ADD}, {SUB}, {AND}, {OR}, {NAND})

ALU; == L,(OUALU)und

mogen zwei Instantiierungen sein. Dann gilt:
L(ADD) steht im Konflikt mit J;{ AN D) aber nicht mit I;,(ADD)

Folgendes Abbildungsproblem ist somit zu lasen:

Gegeben sind Mengen OPS,, OPS,, ..., OPS, von Operationen innerhalb von ele-
mentaren Schritten des zu implementierenden Algorithmus sowie vordefinierte Ty-
pen von Operationseinheiten QU,, QU,, ..., OU,,. Finde eine Uberdeckung von O-{JS“
OPSy,...,OPS, durch Instantilerung von hinreichend vielen Operationseinhelten
L;{OUy), sodaBl keine im Konflikt stehenden Operationen zur Implementation*von
Operationen eines OPS; benutzt werden und die Kosten minimal sind. Um ul?er
Kosten sprechen zu konnen, mufl eine Kostenfunktion eingefiihrt werden. Als ein-
fachstes Beispiel kann von gleichen Kosten fiir jede Instantiierung eines jeden Typs

von Operationseinheiten ausgegangen werden.
Beispiel:

Nimmt man das obige Beispiel, so erhalt man die folgende Menge notwendiger Ope-
ratoren:

OPS1 := D
OPS2 = {4}
OPS3 := {+}
OPS4 := @
gpPss = {<}
apPsé :=

OpPS7 := {+}
oPS8 = {>}

0PSY :=
OPS10 := Q@
OPS11 := {+}
OPS12 := g
0PS13 := @
OPS14 :=

Es sei angenommen, daf$ die folgenden Typen an Operationseinheiten zur Verfagung
stehen:

153

OUALU := ({+}, {-}, {<}, (>}
OUPLUS := ({+})
OUCOMPARE := ({<}, {>})-

Dfimit wiirde die Instantiierung eines Objekts vom Typ OUALU ausreichend sein.
Die Instantiierung von je einem Element OUPLUS und OUCOMPARE wire eine
andere Moglichkeit. Welche der beiden Losungen vorzuziehen ist, ist von der Ko-
stenfunktion abhangig.

In. den meisten CAD-Systemen, die diesen Implementationsschritt unterstitzen,
wird lineares Programmieren benutzt, um eine Operatorbindung mit minimalen Ko-
sten zu bestimmen. Da typischerweise relativ wenige Operatoren in einem Algorith-
mus benutzt werden, wird die Anzahl der Gleichungen in einem derartigen System
nicht zu grof. Allerdings muB der gleiche Operator angewandt auf Operanden un-
terschiedlichen Typs als unterschiedlich abzubildender Operator aufgefaBt werden.
E.s ka‘nn vorkommen, da ein Entwurfsingenieur nicht bereit ist, so viele Operations-
emhfelten zu benutzen, wie aufgrund hochparalleler Operationen benotigt wirden.
In diesern Fall miissen Elementarschritte in eine Folge von Elementarschritten auf-
gebrochen werden. Dies kann zu weiteren Speicherelementen zur Speicherung von
Zwischenresultaten fithren.

(y) Binden an Verbindungsstrukturen
Nach den vorausgegangenen Schritten sind alle Unterobjekte der implementieren-

den stmktur bekannt. Durch einfache DatenfluBanalyse kann nun die notwendige
Yerbmdungsstruktur ermittelt werden. Die Regeln, die zu logischen Verbindungen
fiihren, sind einfach:

1) Fiir jede Referenz eines Operators zu einer Variable fithre eine Verbindung
herelements, das diese Variable speichert,

von einem Ausgangs-Port des Speic
den Operator realisierenden Operations-

zu dem richtigen Eingangs-Port der
einheit ein.

2) Fir jede Zuweisung eines Ausdrucks an eine Variable fithre eine Verbindung
von dem richtigen Ausgangs-Port der Operationseinheit, welche den Ausdruck
reprasentiert, zu einem Eingangs-Port des Speicherelements, das diese Variable

enthilt, ein.

Beispiel:

Betréchtet man das obige Beispiel in der
ner einzigen universellen ALU, dann kann
werden:

Version mit dedizierten Registern und ei-
der Algorithmus wie folgt umgeschrieben

1: Ra := ALU.PLUS (Rb , Rc);
if ALU.LESS (Ra ,Rd) then Rap := 2 else Rap := 6
3: Rb := ALU.PLUS (Rb , 1) ;

N

154

4: if ALU.LESS (Rc ,Rb) then Rap := 4 else Rap := 2 ;
5: Ra := ALU.PLUS (Ra , Rb);

6: Rap :=1 ;

7: Rd := Ra

Bezeichnet man die beiden ALU-Eingangs-Ports mit alu left und alu_righ't “lild
den ALU-Ausgangs-Port mit aluout, so erhalt man die folgende Menge logischer

Verbindungen:
aluout — Ra
aluout — control_ unit
aluout — Rb
Ra — aluleft
Ra — Rd
Rb — aluleft
Rb — alu.right
Rc — aluleft
Re — aluright
Rd — aluright
1 — aluright
1 — Rap
2 — Rap
4 — Rap
6 — Rap

Diese Liste ist nach Sendern sortiert worden. Nach Empfangern sortiert erhalt mart:
aluout — Ra
aluout — Rb
Ra — Rd
Ra — aluleft
Rb — aluleft
Rc — aluleft
Rd — aluright
Rb — alu_right
Rec — alu_right
1 — aluright
1 — Rap
2 — Rap
4 — Rap
6 ~ Rap
aluout —

control unit

Logische Verbindungen miissen nun auf physikalische abgebildet werden. Es gibt
dabei zwei hauptsachliche Ansatze:

- dedizierte Verbindungen,

155

- gemeinsame Busse.

Im Fall der dedizierten Verbindungen wird fiir jede logische Verbindung genau eine
physikalische eingefithrt. Falls es fiir einen Eingangs-Port mehr als einen Sender
gibt, wird vor diesen Eingangs-Port ein Multiplexer geschaltet.

Im Fall der gemeinsamen Busse werden mehrere logische Verbindungen an eine ge-
meinsame physikalische gebunden. Aus Sicht des Algorithmus sind nie mehr Busse
nétig, als wihrend eines Elementarschritts des Algorithmus maximal Datentrans-
porte stattfinden. Aus Sicht der Implementation kann gefordert sein, daB diese
Anzahl noch weiter vermindert wird.

Die Abbildung von logischen Verbindungen auf physikalische kann wie die Abbildung
von Operatoren auf Operationseinheiten behandelt werden, falls eine physikalische
Verbindung als Operationseinheit angesehen wird, die die Operation ”Datentrans-
port” anbietet,.

Beispiel:
Mit dem Ansatz dedizierter Verbindungen wird das obige Beispiel zu:

1: Ra := ALU.PLUS (left.mux , right_mux);
if ALU.LESS (left.mux , right_mux) then ap := apmux
else ap := apmux

3: Rb := ALU.PLUS (left_mux , right mux) ;

4: if ALU.LESS (leftmux , rightmux) then ap := ap.mux
else ap := apmux ;

5: Ra := ALU.PLUS (left_mux , right_mux);

6: ap := apmux ;

7: R4 := Ra

Nun muB noch die Definition der Multiplexersteuerung hinzugefigt werden. Dies
fihrt zu einem zusatzlichen impdef-Teil:

impdef
left_mux := case ap of
1 :Rb;
2 : Ra ;
3 : Rb;
4 : Re ;
5 : Ra
end ;
Tight_mux := case ap of
1:Rc ;
2 : Rd ;
3:1 ;
4 : Rb ;
5 : Rb

ﬁ)
ap_mux := case (ap || alu_out) of
2011 :2;
2110: 6 ;
4 |l 1:4;
411 0:2;
61l 1:1;
6110:1
end ;

(vi) Bestimmen der endgiiltigen Kontrolistruktur

Nachdem die vorausgegangenen Schritte durchgefiithrt wurden, ist der. urcs)pnf;%ilfn}:
zu implementierende Algorithmus derart transformiert worden,.daﬁ ein p? -
werk und ein Steuerwerk einfach entworfen werden konnen. I?le Speicherele tionsj
die Operationseinheiten und die Verbindungen dazwischen bilden das OPerz wird.
werk, wahrend das verbleibende Skelett der Kontrollstruktur zum Steuerwer o
Im einfachsten Fall besteht dieses Steuerwerk nur aus einem Zustandsreglstiler'tun_
einer kombinatorischen Logik, um den Folgezustand und die Werte dejr Ste.uer e‘leden
gen zu berechnen. Es gibt eine Steuerleitung fir jede Lade-.Operatlon e&nfﬁ. ;weﬂs
Speicherelements. Zusatzliche Steuerleitungen mussen fiir die Ausvyahl ;r .1ls e
richtigen Operation fiir jede Operationseinheit vorgesehen werden, die mehr 2 er
Operation anbietet. Weitere Steuerleitungen werden fiir die Auswahl-Emgf{nsl; o
benutzten Multiplexer bendtigt. Falls gemeinsame Busse anstelle von Muls’lp i -
(d.h. als Multiplexer mit verteilter Steuerung) benutzt werden, miissen 3\1 P
enable”-Leitungen statt der Auswahl-Einginge der Multiplexer benutzt wer enl.(tu—
Immer, wenn der Folgezustand oder der Wert einer Steuerleitung nicht nur vom akten
ellen Zustand des Steuerwerks, sondern auch von bestimmten Werten von Obje

. . itungen
innerhalb des Operationswerks abhingen, missen dafiir spezielle Statusleitung
vorgesehen werden.

Beispiel:

.y : legt
Es sei das obige Beispiel betrachtet. Sehr frith im Entwurfsprozed ist f?shtgenei—
worden, daf der grundsataliche Operationsmodus des Steuerwerks als Ausfl:1 z;dge)
schleife auf einem Aktivitatszeiger ap als Zustandswert gegeben ist. Somit

. n-
alle Manipulationen des Registers Rap innerhalb des Steuerwerks statt. Die folge
den Steuerleitungen werden benétigt:

load Ra {lade Register Ra}

load Rb {lade Register Rb}

load Rc {lade Register Rc}

load Rd {lade Register Rd)

right mux_sel : (fromRb, fromRc, from.Rd, from.1)
left mux sel : (fromRa, fromRb, fromRc)

<

opsel : (ADD, LESS)
Es gibt genau eine Statusleitung:
aluout . (0)

Dies ergibt das folgende endgiiltige Steuerwerk:

seqbegin
—§;5_7= 0 ;
while true do
seqbegin
Rap := Rap + 1 ;
case Rap of
1: parbegin
op.sel := ADD
left_mux_sel := from_Rb
right_mux.sel := from_Rc
load_Ra i= M
load_Rb = MO
load_Rc := "Q"
load_Rd r= oY
end ; {a:=b+c}
2: parbegin
op_sel := LESS
left_mux_sel ;= from_Ra
right_mux_sel .= from_Rd
load_Ra := "'oY
load_Rb 1= "QY
load_Rc := Q"
load_Rd ;= "Q"
Rap = if alu
end ; {if a < d then ap
3: parbegin
op_sel = ADD
left_mux_sel := from_Rb
right_mux_sel := from_1
load_Ra i= MQY
load_RDb i= MY
load_Rc 1= oM
load_Rd4 = Q"
end ; {b:=b+11}

4: parbegin
op.sel := LESS

’

’

out . (0) then 2 else 6

:= 2 else ap

;= 6}

157

158

left _mux_sel := from_Rc ;
right_mux_sel := from Rb ;
load_.Ra 1= Qv H
load_Rb = Q" ;
load_Rc 1= Q" H
load_Rd 1= Q" ;
Rap := if alu_out .
end ; {if b > ¢ then ap
5: parbegin
op._sel := ADD ;
left_mux_sel := from_Ra ;
right_mux_sel := from_Rb ;
load_Ra H Y ;
load_Rb i= "OM H
load_Rc = "o" H
load_Rd = Q"
end ; {a :=a+Db}
€: parbegin
" op.sel := LESS ;
left_mux_sel := from_Rc ;
right_mux_sel := from_Rb ;
load_Ra ;= MOM ;
load_Rb H A ;
load_Rc 1= oM ;
load_Rd r= MM ;
Rap =1
end ; {ap := 1}
7: parbegin
op.sel := ADD 3
left_mux_sel := from_Ra ;
right_mux_sel := from_Rb ;
load_Ra iz nQn ;
load_Rb i= Qe ;
load_Rc cx= Qe ;
load_Rd r= Ngn
end ; {d := a}

end
end

end

Einige Kommentare:

:= 4 else ap

{arbitrary
{arbitrary
{arbitrary

{arbitrary
{arbitrary
{arbitrary

(0) then 4 else 2

value
value
value

value
value
value

;= 2 }

possible}
possible}
possible}

possible}
possible}
possible}

Die Architektur dieses Steuerwerks wurde als der {ibliche v.Neumann-Typ angeno™”
men. Es wurden noch keine Annahmen dariiber gemacht, wie die Funktionen es

159

Steuerwerks zu berechnen sind. Wegen der unvollstandigen Spezifikation behan-
delt diese Implementation nicht die Situation beim Verlassen des Algorithmus, d.h.
die Situation, wenn Rap den Wert 8 erhilt. Es wird die Annahme gemacht, daf die
kombinatorische Logik (d.h. die ALU) ihr Ergebnis vor dem Zeitpunkt des Anstofes
der Lade-Operationen der Register berechnet hat. Diese Annahme mu8 respektiert
werden, wenn der logische Zeitablauf an Phasen gebunden wird.

(vii) Binden des logischen Zeitablaufs an Phasen

Der zu implementierende Interpretationsalgorithmus ist iiblicherweise zirkular. Sein
Zeitablauf wird meist nur als Kausalititsstruktur ohne Spezifikation von realen Zeit-
punkten ausgedriickt. Die Implementationsstruktur ist ebenfalls zirkular. Jeder Zy-
klus kann individuell in Phasen eingeteilt werden, doch aus praktischen Erwagungen
heraus ist diese Partition fiir alle Zyklen identisch. Im einfachsten Fall ist ein Zyklus
gerade als vollstindiger Zyklus eines Taktsignals definiert. Dann besteht ein Zyklus
aus den folgenden zwei Phasen:

Phase 0 : Das Taktsignal hat den Wert ”0”

Phase 1 : Das Taktsignal hat den Wert "1”

Zusatzlich gibt es noch zwei Ereignisse, die durch flankenempfindliche Einheiten ab-
gefragt werden konnen:

Event_up : Das Taktsignal wechselt von 0" auf ”17

Event_dn : Das Taktsignal wechselt von "1” auf 70",

Diese Zeitablaufstruktur wird Single-Phasen—Struktur genannt.

Falls notwendig, kann ein Zyklus auch in mehr Phasen eingeteilt werden. Mehr Pha-
sen sind dann ndtig, wenn kompliziertere Sequenzen atomarer Operationen in einem
Zyklus auszufithren sind. Als Beispiel mag eine Implementationstechnik genannt
werden, bei der Busse vorgeladen werden, bevor ihre endgiltigen Werte berech-
net werden. Zeitablaufstrukturen mit mehr als zwei Phasen werden Poly-Phasen-
Strukturen genannt. Beim Binden an Phasen muB die Zieltechnologie beachtet wer-
den. In jedem Fall ist die Zielstruktur ein endlicher Automat, der den Folgezustand
Snew aus dem aktuellen Zustand S_old und einer Eingabe X berechnet:

Snmevw := d (X, Soold) .

Der neue Zustand S_new muB im selben Register gespeichert werden, aus dem der

aktuelle Zustand S_old gelesen wird:

stateregister := delta (X, state_register)

Es sei nun angenommen, das Register state_register sei durch Latches zu imple-

mentieren, die durch die Phase "1” des Taktes getaktet sind:

160

when phase i do state_register := delta (X, state_register)

Es sei:

tone © der Zeitabschnitt von Phase 1

thero © der Zeitabschnitt von Phase 0

thota : der Zeitraum stabiler Eingaben, bendtigt, um ein Latch zu laden
i @ die Zeit, die zum Laden eines Latch bendtigt wird
(Latch-Verzogerung)

temin ¢ die Minimalzeit, die zur Berechnung von delta benotigt wird
{Minmal-Verzégerung)

temaz ¢ die Maximalzeit, die zur Berechnung von delta benotigt wird
(Maximal-Verzbgerung)

Damit missen offensichtlich folgende Ungleichungen gelten:

1) tone > thod
2) tonc < tld *+ lemin
3) trero > td + tomax

Insbesondere bei Hochgeschwindigkeits-Implementationen ist es sehr schwierigl die
Phasenstruktur in Einklang mit diesen drei Ungleichungen zu bringen. Darubff
hinaus ist dies auch sehr gefahrlich, da es stets eine gewisse Variation von Verzo-
gerungswerten in physikalischen Einheiten gibt. Es ist eher ratsam, das Zustands-

register in eine Folge von zwei Latches, die durch entgegengesetzte Phasen getaktet
werden, aufzuspalten:

vhen phase.l do stateregister := state_buffer ;
when phase 0 do state.buffer := delta (X, state_register) ;

In diesem Fall missen nur einfache Ungleichungen gelten, die lediglich aussagen dab
die Phasen lang genug sein miissen, um die Latches zu Jaden und die Berechnung
von delta durchzufithren. Die gleichen Argumente gelten auch im Fall von flan-

kengetriebenen Flipflops. Auch hier ist der gepufferte Operationsmodus (genannt
"Master/Slave” -Operationsmodus) vorzuziehen:

at event_up state.register := state_buffer ;

do
at event dn do state.buffer := delta (X, stateregister) ;

und nicht:

at event._up do state.register := delta (X, state_register)

161

Ublicherweise kostet es erheblich weniger Zeit, das Zustandsregister zu laden, als
delta zu berechnen und den Zustandspuffer zu laden. Daher impliziert der Master/-
Slave-Modus asymmetrische Taktphasen. Als Alternative kann auch der kombina-
torische Teil in zwei Teile zerlegt werden, wovon einer zwischen den Zustands-Puffer
und das Zustands-Register plaziert wird:

delta (X, stateregister) = delta2 (deltal (X, state_register))

In diesem Fall erhalt man:

vhen phase 1 do stateregister := delta2 (state_buffer);
when phase 0 do state_buffer := deltal (X, state_register);

Dieser Ansatz kann offensichtlich auf Poly-Phasen-Strukturen erweitert werden.
Nun kann das Binden logischer Zeitablaufe an Phasen nach den folgenden einfa-

chen Regeln stattfinden:

1. Jeder Hauptzyklus des zu implementierenden Algorithmus muf zu genau ei-
nem Hauptzyklus des Taktschemas korrespondieren.

2. Zwei aufeinanderfolgende Speicheroperationen diirfen nicht von derselben Phase
oder dasselbe Ereignis angestoBen werden.

3. In bedingten Spriingen konnen Phasen oder Ereignisse ibersprungen ('d.h.
nicht benutzt) werden, solange eine Ubereinstimmung mit dem allgemeinen

Taktschema gegeben ist.

3.2.1.1 Ein vollstindiges Beispiel zur monolithischen Dekomposition

Es sei angenommen, daf der folgende Algorithmus fiir einen sequentiellen Addierer

implementiert werden soll:

Procedure seqadd (in inbus: implicit bit(8); out outbus: bit(8));
function fulladd (in a, b , ¢: bit): record sum, c_out: bit end;
parbegin -
sum := (@) (@ Il b1l ¢);
c_out := akb | akc | b&c | akb&c
end;

var x, y: bit(8) ; i: bit(3) ; c.im: bit;
seqbegin
parbegin
x := inbus ;

162

c.in := "Q"
end;
Y := inbus;
for i 1= 0 seqto 7 do
segbegin)
cin Il x.(0) := fulladd (x .(0), y .(0), c_in);
parbegin o
x := ror (x) ; { rotate right 1 position }
y := ror (y) { rotate right 1 position }
end ;

outbus := x

end .

Diese Beschreibung verbirgt das Aufrufprotokoll. Weiterhin wird angenommt.end, tjiaf
die Umgebung die beiden Argumente zur rechten Zeit anbietet.. Daher wir d:s
Algorithmus nun so umgeschrieben, daf ein standig aktives ObJekt. entsteh?”l’7
eine Eingabeleitung req beobachtet. Wechselt der Wert dieser Leitung aut 1%
so liest das Addiererobjekt inbus und setzt danach den Wert der Au§g::mgsleltungt
ackn auf ”1”. Die Umgebung reagiert darauf dadurch, daB sie das zweite Argume'ltle
auf inbus legt und danach req auf "0" setzt. Danach liest der Addierer das zwel

Argument, fihrt die Addition durch und setzt ackn auf "0", nachdem das Ergebnis
auf outbus verfigbar ist.

procedure seqadd (in inbus implicit bit(8) ;
in req : implicit bit H
out outbus : implicit bit(8) ;
out ackn : implicit bit);

function fulladd (in a, b
parbegin
sum := (@) (a || b || c);
c-out := a%b | agc | bec | akbé&c

» €t bit): record sum, c_out: bit end;

end;

Yar x, y: bit(8); i: bit(4); c.in, FFackn: bit;
impdef
—_—gagbus = x H
ackn FFackn;
while power_on do
segbegin
when (req) do
seqbegin
parbegin

x ‘= inbusg;

163

c.in := "0V
end;
FFackn := 1"
when not (req) do y := inbus;
for i := 0 seqto 7 do
segbegin -
c.in 1} x.(0) := fulladd (x.(0), y.(0), c_in);
parbegin
x := ror (x) ; { rotate right 1 position }
y := ror (y) { rotate right 1 position }
end;
FFackn := "0"
end

end .

(i) Binden von komplexen Kontrollstrukturen an einfache:

l\(Vendet man das allgemeine Konzept eines v.Neumann-artigen Interpretations- Zy-
lus und die folgende Ersetzungsregel:

Teplace (for index := first seqto last do statement)
by (start : seqbegin

index := first ;

proceed : statement ;

index := index + 1;

if index > last then ap := leave

éigg ap := proceed;

leave :

end)

80 erhalt man folgende Form des Algorithmus:

Procedure seqadd (in inbus : implicit bit(8);
ig req : imglicit bit :

out outbus: implicit bit(8);

out ackn : implicit bit);

iEEEEiEE fulladd (in a, b, c: bit): record sum, c_out: bit end;
parbegin
sum := (@) (a ||l b il ¢ ;
c_out := agb | a&c | b&c | a&b&c
end;

Var x, y: bit(8); i: bit(4); c_in, FFackn: bit; ap: bit(4) := 0 ;

164

impdef

outbus := x

’

ackn := FFackn ;

while power..

segbegin
ap :=

on do

if ap = 9 then 1 else ap + 1 ;

case ap of

1 : vhen (req) do
parbegin
x ;= inbus;
c_in := "QO¥
end;
2 : FFackn := "1";
3 : when not (req) do y := inbus;
4 : 1 :=0;
5 : c_in 1] x.(0) := fulladd (x.¢0), y.{0), c-in)
6 : parbegin
X := ror (x); { rotate right 1 position }
y := ror (y) { rotate right 1 position }
end ;
7 :1:=1+1;
8 : if 1 > 7 then ap := 8 elge ap :
9 : FFackn := "Q"
end

I

end .

Durch einen einfachen Parallelisierungsalgorithmus, der Aktionen, die nicht 1o

tenkonflikt stehen (siehe Abschnitt 4.3), zusammen gruppiert, erhalt man:

procedure seqadd (in inbus

function fulladd (im a, b, c: bit): record sum, c_out: bit

in req : implicit bit
out outbus: implicit blt(B)
out ackn : implicit bit);

parbegin
sum = (@) (@ |l b |i e);
c_out := akb | akc | b&c | akbic
end;

var x, y: bit(8); i: bit(4); c_in, FFackn: bit; ap: bit(3) :

impdef
outbus
ackn

=X
:= FFackn;

.
»

: implicit bit(8);

»

_—

Da-

end;

0;

165

while power_on do
seqbegin
ap := if ap = 7 then 1 else ap + 1;
case ap of
1 : when (req) do
parbegin
b4 := inbus ;

c_in := 0"
end;
2 : FFackn := "1";
3 : when not (req) do
parbegin
y := inbus;
i:=0
end;
: c_in |l x.(0) := fulladd (x.€0), y.(0), c_in);
: parbegin
% := ror (x); { rotate right 1 position }
= ror (y) { rotate right 1 position }
i+l

LS
-
W

end ;
:gi>7thenap:=6elseap:=3
: FFackn := "O"

o®
2 N o

l

end .

(ii) Identifikation von Hilfsvariablen:

Es gibt auBer ap keine Hilfsvariablen.

(iii) Binden von Variablen an Speicherzellen:

Wir entscheiden uns hier, dedizierte Register fur die Variablen x, y, i, FFackn
und c_in zu benutzen. Die Variable ap wird als Teil des Steuerwerks angesehen.
Formale Parameter sind nichts als Referenzen zu den korrespondierenden aktuellen
Parametern. Daher missen sie nicht zugeordnet werden. Nicht speichernde Varia-
ble werden in diesem Schritt lediglich festgehalten, um bei der Konstruktion des
Datentransportes benutzt zu werden. Somit erhalt man folgende Zuordnung von

Variablen zu Registern:

x -> Rx
y -> Ry
1 -> Ri
C

-in -> FFc_in

166

FFackn -> FFackn

{(iv) Binden von Operationen an Operationseinheiten:

Es sei angenommen, daB die folgenden Operationseinheiten zur Verfugung stehen:

FULLADDER ({fulladd})

COUNTER ({store}, {load}, {+1})
SHIFTREG ({store}, {shr})

Dann werden benbtigt: Eine Instantiierung von FULLADDER : FA,

Wegen ihrer Speicherfahigkeiten konnen SRx, SRy und CNTi die Register RX,
und Ri ersetzen.

(iv) Binden an Verbindungsstrukturen:

Die folgenden Verbindungen werden bendtigt:

SRx
inbus

0

1

inbus

0
FA.c_out
FA.sum
o]

FFackn

Nach Empfangern sortiert wird dies zu:

inbus. (7 :

inbus. (0)
FA.sum

inbus

0

zwei Instantiierungen von SHIFTREG
eine Instantiierung von COUNTER :

outbus
SRx
FFc_in
FFackn
SRy
CNT1
FFc_in
SRx. (0)
FFackn
ackn

1

-> SRx.(7

-> SRx.(0)
-> SRx. (0)

-> SRy
-> CNTi

-> FFc_in

t 1)

: SRx, SRy und
CNTi

Ry

FA.c_out

SRx

FFackn

167

-> FFc_in

-> FFackn
-> FFackn

-> outbus

-> ackn

Es .Werde'entschieden, da8 dedizierte Verbindungen zu benutzen sind. Somit sind
drei Multhlexer nétig, um die Konflikte bei SRx. (0), FFc_in und FFackn zu lésen.
Somit erhilt man das folgende Operationswerk:

Procedure data_path (in SRx_load, SRx0_load, rotate, SRy_load, CNTi_.ld,

CNTi_cnt, FFc_in_1d, FFackn_1ld : implicit bit;
{load signals} -

in from_inbus, init, one: imglicit bit;
{multiplexor controls}

in inbus : implicit bit(8) ;
out outbus : implicit bit(8) ;
out ackn : implicit bit ;

" {to environment}
out finished: imElicit bit);
{to controller}

Yar SRx, SRy: bit(8) ; CNTi : bit(4) ; FFc_in : bit ;
FA : record sum, c_out : implicit bit end ;

impdef
at up (SRx_load) do SRx := inbus;
2t up (SRx0_load) do SRx.(0) := if from_inbus then inbus.(0)
- else FA.sum ;
2t up (rotate) do SRx := ror(SRx);
at up (SRy_load) do SRy := inbus
at up (rotate) do SRy := ror(SRy);
at up (CNTi_1d) do CNTi :=0 ;
at up (CNTi_cnt) do CNTi := CNTi + 1;
at up (FFc_in_1d) do FFc_in := if init then 0 else FA.c_out;
at up (FFackn_1d) do FFackn := if one then 1 else 0 ;
FA.sum := (@) (SRx.(0) II SRy.(0) II FFc_in) ;
FA.c_out := SRx.(0)&SRy.(0) I

SRx.(0)&FFc_in I
SRy.(0)&FFc_in I
SRx. (0)&SRy. (0)&FFc_in;

finished := CNTi.(3);
outbus := SRx;

168

ackn := FFackn;

segbegin at down (power_on) do

end

(vi) Bestimmung der endgiiltigen Kontrollstruktur:

i in e i i werk zu bauen
Es sei angenommen, daB ein einfaches mikroprogrammiertes Steuer

ist. Somit erhalt man:

procedure controller (in finished, req:
out SRx_load, SRx0_load, rotate,
SRy.load, CNTi_ld,
CNTi_cnt, FFc_in_14, FFackn_ld:
out from_inbus, init, one:

var ap 1= Q;g(ZS_:= 1;
mword : record

x_load,

x0_load,

y_load,

rotate,

i_14d,

i_cnt,

c_in_ 14,

ackn_14d,

x_src,

c_src,

ackn_src: bit

end;
impdef
SRx_load := mword.x_load ;
SRx0_load := mword.x0_load H
SRy.load := mword.y_load ;
rotate = mword.rotate ;
CNTi_ld := mword.i_1d H
CNTi_cnt := mword.i_cnt H
FFc_in_1d := mword.c_in_1d H
FFackn_1d := mword.ackn_ld 5
from_inbus := mword.x_src H
init := mword.c_src R
one := mword.ackn_src;
while power_on do

seqbegin

case ap of

implicit
i S

i icit
}mp11c1

1m21icit

bit;

bit;
Bit);

1 : parbegin

mword.
mword.
mword.
mword.
mword.
mword.
mword.
mword.
mword.
nword.
mword.

ap
end;

2 : parbegin

mword

mword.
mword.
mword.
mnword.
nword.
mword.
mword.
mword.
mword.
mword.

ap
end;
3 : parbegin

mword.
.x0_load

mword

nword.
mword.
mword.
mword.
mword.
.ackn_1d

nword

mword.
mword.
mword.

ap
end;

4 : parbegin

{idling state,

x_load
x0_load
y_load
rotate
i_ld
i_cnt
c_in_1d
ackn_ld
X_src
c_src

ackn_src :

.x_load

x0_load
y-load
rotate
i_ld
i_cnt
c_in_1d
ackn_14d
X_Src
C_SIC

ackn_src :

x_load

y.load
rotate
i_1d
i_cnt
c_in_1d

X_src
c_S1¢C

ackn_src :

PHOOR,ROOODOO OO

WO+ OO0k O0OO0 O

..

{idling state,

wait for req = 1}

2]
]
e
ot
=2
[
[=]
n
[
[}
w
o
-

wait for req =0}

169

170

mword.
mword.
mword.
mword.
mword.
mword.

mword
mword

mword
mword
ap
end;
§ : parbegin
mword
nword

nword
mword
mword

mword
mword
mword

ap
end;

6 : parbegin

mword.
mword.
mword.
mword.
114
.i_cnt
.e.in 1d
.ackn_1d
.X_Src
.C_BIrc
.ackn_src

mword
mword
mword
mword
mword
mvord
mword
ap
end;

7 : parbegin

mword

x_load
x0_load
y.load
rotate
i_ld
i_cnt

.¢c.in_14d
.ackn_1d
mword.

X_8IcC

.C_8TIC
.ackn_src

.x_load
.x0_load
mword.

y.load

.rotate
.i.1d
.i_cnt
mword.

c_in_1d

.ackn_1d
.X_8TC
.C_8TC
mword.

ackn_src

x_load
x0_load
y.load
rotate

.X_load

R R RN

NOOOOPOOQOHO

TR
[T I .

P
[.

OOOOOOOOOOO

e an es ae
on o on M

WoW oW

R W W

Pt

if req then 4 else §

O:OOOOOOHOHOO

i71

mword.x0_load
mword.y_load
mword.rotate
mword.i_ld
mword.i_cnt
mword.c_in_ld
mword.ackn_14
mword.x_src
mword.c_src
mword.ackn_src :
ap i=

end;

8 : parbegin

-—E;g;a.x_load
mword.x0_load
mword.y_load 1=
mword.rotate
mword.i_ld e
mword.i_cnt
mword.c_in_1ld4
mword.,ackn_ld
mword.x_src
mword.c_src i=
mword.ackn_src :=

0

0
0
1
0
1
0
0
0
0
if finished then 8 else 6

4
HOO0OOKOOOOODOO

end;
end
end .

(vii) Binden von logischen Zeitablaufen an Phasen:

Man kann beobachten, daB eine allgemeine Sequenz der folgenden Form zu imple-
mentieren ist:

1) Berechne eine neue Mikro-Instruktion,

2) in Abhangigkeit davon: Fithre Datenoperationen durch,

3) moglicherweise in Abhangigkeit davon: Berechne neuen Zustand. _
Daher wird ein Poly-Phasen-Schema benutzt. Es wird angenommen, dafi al!e Flip-
flops flankenempfindlich sind. Da in mehreren Fallen der neue Wert eina-F lipflops
von seinem alten abhingt, ist es ratsam, im Master/Slave-Modus zu arbeiten. Nur
d*fs Register muord bildet hiervon eine Ausnahme.

Die Phasenstruktur ist die folgende:

Phase 0 : Jade ap und microword

Phase 1 : lade data-register-buffer

Phase 2 : lade data-register

172

Phase 3 : lade ap-buffer.

Es wird angenommen, daf alle Ladeoperationen bei der steigenden Fla.nke.der ent-
sprechenden Phase stattfinden. Diese Poly-Phasen-Struktur wird mit zwei Tal'iten
data.cl und cntl_cl, beide abgeleitet von einem Takt maincl, implementiert.
Abb. 40 zeigt diese Phasenstruktur.

load ap microword load ap-buffer contrailer activities

} phase0 | ophaset | phase2 | ophasea | phaseO

1
main-clock

0

1 1] 1
cnth-ct

(¢}

| 1

0

(-

data-cl

load data-register-buffer data activities
load data-register

Abb. 40: 4-Phasen-Struktur

Somit wird die endgiltige Implementation, wobei das Steuerwerk in reaktive Form
umgeschrieben wurde, zu:

procedure seqadd (in imbus : implicit bit(8) ;
in req ¢ implicit bit H
out outbus : implicit p_—i_—t(a) ;
out ackn : implicit bit);

var SRx_load, SRx0_load, rotate, SRy.load, CNTi_l4,

CNTi_cnt, FFc_in_ld, FFackn_ld : implicit bili
from_inbus, init, one, finished : implicit bit;
main_cl, data_cl, entl_cl : implicit bit;
phase : pig(2) =0

impdef

at change (main_cl) do phase := if phase = 3 then O else phase * 1;

173

main_cl := not main_cl delay(100) ;
cntl_cl := phase = 0 | phase = 1 | phase = 2 ;
data_cl := cntl_cl & main_cl ;

procedure data_path (in SRx_load, SRx0_load, rotate, SRy_load, CNTi_ld,
CNTi_cnt, FFc_in_ ld, FFackn_ld: implicit bit ;

in from_inbus, init, one : implicit bit ;
in inbus : implicit 213(8);
in data_cl : implicit bit ;
out outbus : implicit b1t(8)
EEE ackn : implicit blt ;
out finished : implicit Eiﬁ)N

var SRx, SRx_buffer, SRy,SRy_buffer: bit(8);

CNTi, CNTi_buffer : bit(4);
FFc_in, FFc_in_buffer : bit H
FA : record sum, c_out : imglicit bit end ;
impdef
at up (SRx_.load & data_cl) do SRx_buffer := inbus R
at down (SRx_load & data_cl) do SRx := SRx_buffer ;

at up (SRx0_load & data_cl) do SRx_buffer.(0)
:= if from_inbus then inbus.(0) else FA.sum ;

at down (SRx0_load & data_cl) do SRx.(0) := SRx_buffer.(0);

at up (rotate & data_cl) do SRx buffer := ror(SRx) :
at down (rotate & data_cl) do SRx := SRx_buffer ;
at u (SRy_load & data_cl) do SRy.buffer := inbus ;
at down (SRy_load & data_cl) do SRy 1= SRy_buffer ;
at up (rotate & data_cl) do SRy_buffer := ror(SRy) ;
at down (rotate & data_cl) do SRy := SRy_buffer ;

at up (CNTi_1d & data_cl) do CNTi_buffer:= 0 ;
at down (CNTi_ld & data_cl) do CNTi := CNTi_buffer;

at up (CNTi_cnt & data_cl) do CNTi_buffer:= CNTi + 1
at down (CNTi_cnt & data_cl) do CNTi := CNTi_buffer;

at up (FFc_in_1d & data_cl) do FFc_in_buffer
o := if init then 0 else FA.c_out ;

at down (FFc_in_ld & data_cl) do FFc_in := FFc_in_ buffer ;

174

at up

at down (FFackn_ ld & data_cl)

FA.sum

FA.c_out :

finished :

outbus
ackn

(FFackn_1d & data_cl)

do

do

FFackn_buffer
:= if one then 1 else 0

FFackn

(@) (SRx.(0) I{ SRy.(0) || FFe_in) ;

SRx. (0)&SRy. (0) |
SRx. (0)&FFc_in |
SRy. (0)&FFc_in |

SRx.(0)&SRy.{(0)&FFc_in ;

CNTi.(3)
SRx
FFackn

B
’

’

seqbegin at down (power_on) do

end ; {data path}

procedure controller (in

in cntl_cl

finished, req

out SRx_load, SRx0_load,

rotate, SRy_load, CNTi_ 14,

CNTi_cnt, FFc_in_ 14,

FFackn_1ld

out from_inbus, init, one

var ap : bit(4) =1 ;
mword : record
x_load,
x0_load,
y-load,
rotate,
i_1d,
i_cnt,
c_in_1d,
ackn_1d,
x_src,
c_src,
ackn_src : bit
end ;
impdef
SRx_load = mword.x_load
SRx0_load := mword.x0_load :
SRy_.load = mword.y_load
rotate =

mword.rotate

: imglicit

:= FFackn_buffer ;

: implicit b1t
impLit2”

: implicit

: implicit

175

3

[4)]
o]
=
0
®
>

then 8 else 6 ;

CNTi_ld := mword.i_1d ;
CNTi_cnt := mword.i_cnt H
FFc_in_1d = mword.c_in_1d ;
FFackn_1d4 := mword.ackn_1l4d ;
from_inbus := mword.x_src ;
init := mword.c_src ;
one 1= mword.ackn_src;
at up (entl_cl) do
parbegin -
ap := ap_buffer
mword := case ap._buffer of
1 : 0000 0000 000"
2 : "0100 1000 001"
3 : 1001 0000 000"
4 : "0000 0000 0OOQ"
5 : "0000 0010 100"
6 : "0000 1000 010"
7 : "0000 0101 000"
8 : "0001 0000 000"
end
end ;
at down (cntl_cl) do
ap_buffer := case ap of
1 : if req = "1" then
2 :3;
3 : 4 ;
4 : if req = "0" then
5 : 6 ;
6 :7;
7 : if finished = "1"
6 :1;
end ;

Seqbegin at down(power_on) do

end ; {control

conbegin
>Z2begin

ler}

data path (SRx_load, SRx0_load, rotate, SRy lead, CNTi_ld,
CNTi_cnt, FFc_in_ld, FFackn_ 1d, from_inbus, init, one,
inbus, data_cl, outbus, ackm, finished);

controller (finished, req, cantl._cl,

SRx_load, SRx0_load, rotate,

176

SRy_load, CNTi_ld, CNTi_cnt, FFc_in_1d, FFackn_ld,
from_inbus, init, one) ;
end . {sequential adder}

3.2.2 Parallele Dekomposition

In diesem Abschnitt wird nur die Alternative eines gemeinsamen Operationswer-
kes mit mehr als einem darauf wirkenden Steuerwerk betrachtet. Die grundlegffnde
Idee ist, solche Teile des zu implementierenden Algorithmus zu finden, die geringe
Konnektivitat mit den restlichen Teilen dieses Algorithmus haben. Die Kontroll-
strukturen derartiger Teile werden dann auf getrennte Steuerwerke abgebildet. Ty-
pischerweise ist die Vereinigung dieser getrennten Steuerwerke weniger komplex a}S
ein monolithisches mit der kombinierten Funktionalitit dieser Steuerwerke. Ein
typisches Beispiel ist ein konventioneller Prozessor. Hier werden fir "instructifm
fetch", “operand fetch" und "instruction execute" relativ unabhangige Te“le
des gesamten Interpretationsalgorithmus bendtigt. Sie konnen zusatzlich noch 1m
"Pipelining” arbeiten. Daher erscheint es adaquat , diese Teile auf getrennte, n€
benliufig arbeitende Steuerwerke abzubilden. Das Operationswerk kann ebenfalls in
Sektionen, die meistens nur von einem bestimmten Steuerwerk angesprochen wer-
den, unterteilt werden. Da aber dennoch hin und wieder zwischen ihnen Daten
auszutauschen sind, ist es eine weit verbreitete Technik, Busse vorzusehen, die das
gesamte Operationswerk umspannen, an den Grenzen der Sektionen aber trennbar
sind. Ein typisches Beispiel einer derartigen Architektur ist das Opera.tionswerk
des Motorola 68000-Prozessors. Es besteht aus drei Teilen: Ein Teil wird als Ope-
rationswerk der ”execution”-Einheit (16 Bit breit) benutzt, wahrend die anderen
beiden der Adressierung dienen. Alle drei Teile sind durch zwei 16 bit breite Busse
verbunden. Diese Busse konnen gesteuert durch die Steuerwerke an den Grenzen
der Operationswerke getrennt werden.

Im Fall der parallelen Dekomposition kann der Entwurfsproze ahnlich wie beim
monolithischen Ansatz durchgefithrt werden. Man mu8 nur anfangs die Partitionie-
rung in Subalgorithmen und daraus folgend eine Partitionierung des Operationswer
kes vornehmen. Danach kénnen die individuellen Sektionen wie oben beschrieben
implementiert werden.

Die Identifikation von Subalgorithmen ist eine sehr schwierige Aufgabe, da sowohl
der Kontrollgraph als auch der DatenfluBgraph analysiert werden missen. Ein idea-
1er‘ Kandidat fiir einen Subalgorithmus ist ein derartiger mit hoher Konnektivitat
seines Kontrollgraphen mit wenigen Kanten zum umgebenden Kontrollgraphen und
glfexchzeitig mit intensivemn Zugriff auf eine Teilmenge der Operationseinheiten, die
wiederum selten von auBerhalb des Subalgorithmus angesprochen werden. Aus die-
ser Be_trachtung folgt, daB Schleifen mit nichttrivialem Rumpf und Prozeduren gute
Kand'ldaten fur derartige Subalgorithmen sind. Eine Heuristik zur Suche nach Sub-
algorithmen wird daher derartige Strukturen zuerst untersuchen.

Wenu eine Partitionierung in Subalgorithmen erfolgreich abgeschlossen ist, muf un-

177

tersucht werden, wie diese Teile zusammenwirken. Im Idealfall kann der gesamte
Algorithmus als nur aus einigen Prozessen bestehend angesehen werden, wobei alle
globale Steuerung durch Proze8kommunikation dazwischen ausgefihrt wird. In kom-
plizierteren Fillen wird ein zusatzlicher ”Supervisor” bendtigt, um die nebenlaufigen
Aktivititen der einzelnen Steuerwerke zu organisieren. In diesem Fall wird eine ge-
mischte hierarchische und parallele Dekomposition benutzt.

Sollen die Substeuerwerke im "Pipelining” arbeiten, so muB ihre Interaktion de-
taillierter untersucht werden. Im Idealfall arbeiten alle Substeuerwerke stets mit
der gleichen Geschwindigkeit, unabhingig von den aktuell zu bearbeitenden Daten.
In diesem Fall konnen die Daten einfach durchgereicht werden. In komplizierteren
Fillen ist nur die Durchschnittsgeschwindigkeit gleich, die Varianz aber ungleich
Null. In diesem Fall werden Puffer benotigt. Die GroBe der Puffer ist von der zu er-
wartenden Varianz der Arbeitsgeschwindigkeiten abhangig. Hier ist eine sorgfaltige
Leistungsanalyse notwendig.

Zusammenfassend sind die folgenden Schritte im Fall der parallelen Dekomposition
durchzufihren: :

(i) Identifikation geeigneter Subalgorithmen in dem zu implementierenden Algo-
rithmus,

(i) Identifikation der diesen Subalgorithmen iibergeordneten Kontrollstruktur,

(ii) Untersuchung, ob Puffer zwischen Substeuerwerken ndtig sind, und gegebe-
nenfalls Bestimmung ihrer Grofe,

(iv) Vereinheitlichung der in den Subalgorithmen benutzten Datenobjekte,
(v) Durchfithrung einer monolithischen Dekomposition fiir jeden Subalgorithmus,

(vi) falls erforderlich, Durchfithrung einer monolithischen Dekomposition fir den
”Supervisor” und den Datenaustausch unter den Substrukturen.

3.2.3 Hierarchische Steuerwerksdekomposition

Dieser Ansatz nimmt ein uniformes Operationswerk an, konstruiert aber eine hie-
tarchische Struktur von Steuerwerken dazu. Damit ist dieser Ansatz zu dem mono-
lithischen sehr ahnlich, solange man die Ableitung des Operationswerkes betrach-
.tet_ Der Unterschied kommt dann ins Spiel, wenn das Steuerwerk zu konstruieren
ist. Die hierarchische Steuerwerksdekomposition betrachtet nur eine lineare Sequenz
von Instruktionen des zu implementierenden Algorithmus als elementar, alle ande-
ren Kontrollmechanismen werden als komplex angesehen. Zur Vereinfachung soll
2undchst angenommen werden, daB ein strukturierter Algorithmus zu implexflen'-
tieren ist. Weiterhin soll angenommen werden, daf alle Schritte einer monolithi-
schen Dekomposition bis auf die eigentliche Konstruktion des Steuerwerks bereits
ausgefiihrt, sind. Dieses Steuerwerk wird nun als Hierarchie von Substeuerwerken

178

durchgefithrt, wobei diese Hierarchie unmittelbar die Konstruktion' eines Algnorlth-
mus aus algorithmischen Konstrukten wiederspiegelt. Somit entspricht das h_OChSte
Steuerwerk unmittelbar dem duflersten algorithmischen Konstrukt, d.h. es imple-
mentiert unmittelbar dieses Konstrukt. Hierzu aktiviert es diejenigen .Steuerwerlfe,
die die algorithmischen Konstrukte unmittelbar unter dem ZuBersten implementie-

hochste Steuerwerke angesehen werden. Das Verfahren kann nun fortgeS?tZt W(e—rde}l,
bis elementare algorithmische Konstrukte (lineare Sequenzen) erreicht sind. Fiir ein
héheres Steuerwerk bedeutet die Aktivierung seiner Substeuerwerke nichts anderes
als die Aktivierung von Steuerleitungen sonst auch, und die Uberpriifung 3“1: Fer-
tigmeldungen von Substeuerwerken unterscheidet sich nicht von der l{befprljf“ng
von Statusleitungen. Dag Ubermitteln von Fertigmeldungen an das nachsthéhere
Steuerwerk entspricht dem Setzen einer Steuerleitung.

Beispiel:
Der folgende Algorithmus sej zy implementieren:
seqbegin
opl ;
op2 ;
while condi do
segbegin
op3 ;
op4 ;
if cond2 then
segbegin
for range1 do
segbegin
opSs ;
if cond3 then
segbegin
op6 ;

B
1

|

179

end

Das hochste Steuerwerk (level_o_controller) hat fir dieses Beispiel die Struktur:

segbegin
opl ;
op2 ;
level_1_controller
end

Der level 1_controller wird zu:

while condl do
level_2_controller

Der level 2_controller wird zu:

seqbegin
op3 ;
op4 ;
level_3_controller
end

Der level 3_controller wird zu:
if cond2 then level_4_controller else

Der level 4_controller wird zu:

segbegin
level_5_controller H
opl0

end

Der level 5 controller wird zu:

for ranget do
level_6_controller

Der level 6_controller wird zu:

Segbegin
op5 ;

level_7_controller
end

180
Der level 7_controller wird zu:

if cond3 then level_8_controller.l else level_8_controller.2
Der level 8_controller_1 wird zu:

segbegin
opb ;
op7
end

Der level 8_controller 2 schlieBlich wird zu:

seqbegin
op8 ;
op9
end

Dieses Beispiel ist natirlich extrem konstruiert. Es existieren sehr viele Substeuer-
werke von jeweils extrem einfacher Struktur. In solch einem Fall werden fiblicherweise
Substeuerwerke zu komplexeren verschmolzen, was zu einer Reduzierung der Ebe-
nenanzahl fuhrt.

In der Regel fithrt die hierarchische Steuerwerksdekomposition zu Skonomischeren
Ergebnissen(beziiglich der gemeinsamen Komplexitat des Gesamtsteuerwerks, z.B.
in Siliziumfliche gemessen) als der monolithische Ansatz. Dies kommt daher, daf
nur die Summe der einzelnen Entscheidungsrdume (conditions.i X states.i) 24
implementieren ist, im Gegensatz zum Raum (all.conditioms X all_states).
Man bezahlt mit der tendenziell groBeren sequentiellen Tiefe des Schaltwerks, das
den (globalen) Folgezustand berechnet. Bei Implementierungen in Silizium wird dies

durch die kleineren zu ladenden Kapazititen ausgeglichen, die daher rithren, daf die
fir die Implementierung ndtige Flache geringer ist.

3.3 Registertransferebene zur Gatterebene

3.3.1 Steuerwerksentwurf

Wahrend des Entwurfsprozesses bis zur Registertransferebene wurde eine SpeZlﬁ‘
kation des zu implementierenden Steuerwerks erhalten, die als abstrakter endlicher
Automat gegeben ist. Falls mehrere Automaten involviert sind, um das gesamte
Steuerwerk zu implementieren, so konnen sie individuell auf die Gatterebene ab-
gebildet werden. Somit ist die bei diesem Entwurfsschritt zu lésende Aufgabe, far
einen abstrakt definierten endlichen Automaten (FSM) eine Implementierung au
der Gatterebene zu finden. Zwar gibt es eine Vielzahl an Mabglichkeiten, el_ﬂen
derartigen FSM zu implementieren, doch sind dies letztlich nur Variationen €in®

181

i)r(1put output
Y : = lambda(X,S)
gld state :
new state
S’ : = delta(X,S)

elements
ya

clock

Abb. 41: Huffman-Normalform fiir sequentielle Schaltwerke

(::;zifgecgsndeHRpifs, das durch Huffman’s Normalform sequentieller Schaltwerke

Bae: gchen W1‘rd (siehe Abb. 41):

die Auzg;;ge lnlsdl&se FSM kénnen zu einem Statuswort kombiniert werden,

e G&sga, mtge a Steufrwort angesehefl werqen konnen. Vom Zeitsteuerungskonzept

e gepuﬁsy:tems hangf es ab, ob.eme.s dlesfzr beiden Worte, oder beide, in Regi-

st zuer werden missen. Oft ist dies beim Steuerwort der Fall, und sein Regi-
sammen mit dem Zustandsregister getaktet. Es gibt zwei Hauptansatze,

eine FSM zu implementieren:

wahrend

® Fest verdrahtete Implementierung,

® Mikroprogrammierung.

Die fest verdrahtete Implementierung bildet die F SM-Spezifikation auf ein System
nem kombinatorischen Schaltnetz zur Be-

und der Ausgabe (A-Funktion) besteht.
M-Spezifikation und bil-

::c,hizs aus einem Zustandsregister und ei
DieserI;\g des F_Olgez.ustands (6-Funktion)
det o a;l;a'tz ibernimmt .unmittelbar die Struktur der FS
et e(line Implementierung ab. Die Mikroprogrammierung basiert auf der Be-
Gl g, daB ein Steuen.nerk nichts anderes als ein zyklisches Programm ist, das
it ;1:!1 recht !{onventxonellen Prozessor vom v. Neumann-Typ implementiert
4 berechnnn. In diesem Fall werden die zwei vom kombinatorischen Teil der FSM
e g enden Funktionen im Speicher dieses Prozessors tabelliert (gespeichert),
gl grechne.t zu werden. Der Speicher wird in diesem Fall Kontrollspeicher
2 e tatt d_xe Funktionen zu berechnen, mufl die Mikroprogrammiereinheit die
igen Worte im Einklang mit der zu implementierenden Folge adressieren.

182

3.3.1.1 Fest verdrahtete Implementierung von Steuerwerken

Bei diesem Ansatz wird die globale Struktur des Steuerwerks als gegeben angenom-

men. Dennoch bleiben eine Reihe von Freiheitsgraden beziiglich Detailentscheidun-
gen erhalten:

e Codierung der Zustande, Eingaben und Ausgaben.

Falls bei der Spezifikation der FSM bereits eine Codierung benutzt wurde, so
muf diese nicht notwendigerweise auf der Gatterebene beibehalten werdeI“L In
den meisten Fillen wird jedoch nur eine symbolische Codierung der Zustinde
auf der Spezifikationsebene angegeben.

Die Codierung der Eingabe ist meist fest, was durch Anforderungen des Op"i'
rationswerkes begriindet ist. Dennoch sind meist einfache Umcodierungen wie
die Negation von Statusleitungen moglich.

Ahnlich mag auch aus Sicht des Operationswerkes die Codierung der Ausgab:
festgelegt sein. Falls jedoch gewisse Steuerleitungen nicht simulta.n gcsetzd
sein diirfen, ist es sinnvoll, das Steuerwort in Sektionen zu partitiomer(uen un
die Sektionen gesondert zy codieren. In diesem Fall werden die endg‘_lmge;l1
Werte der Steuerleitungen durch einen Decoder bestimmt. Falls man jedoc
bereits einen Decoder hat, so hat man volle Freiheit in der Bestimmung des
Ausgabecod@s, der von der FSM berechnet wird. .

Die Wahl der Codierung bestimmt nachdriicklich die Komplexitat der zu be-
rechnenden Booleschen Funktionen. Es existieren auf der Basis von FluBana-
lysen des zu implementierenden Automaten elaborierte Algorithmen, um d;n
optimalen Code zu berechnep. Dabei ist die grundlegende Idee, daB sich die

Codierung benachbarter Zustinde an moglichst wenig Bitstellen unterscheiden
sollten.

® Typ des Automaten.

Man kann zwischen einem Automaten vom Mealy-Typ und einem solchen. Vo{n
Moore—Typ wahlen. Dabej besteht der einzige Unterschied in der Art, wie d'l:3
A-Funktion berechnet wird. Im Fall des Mealy- Automaten hat man output '<.i-
A(input, state), wahrend im Moore-Fall gilt: output := A(state). Beide
Ansétze haben dieselbe Machtigkeit, doch kann ein Moore-AutOma'tf zur Be-
rechnung derselbep Ausgabefolge mehr verschiedene Zustande bendtigen. .

Der Unterschied wird deutlicher, wenn man in der Huffman-Normalform dlg
beiden Funktionen des kombinatorischen Teils getrennt zeichnet. Abb. 4

zeigt auf diese Weige einen Moore—Autornaten, Abb. 43 einen Mealy- Auto-

maten in Standard-Technik und Abb. 44 einen Mealy-Automaten in Parame-
trisierungstechnik.

status
lines

state
register

next state
function

output
function

present state

Abb. 42: Moore-Automat

statug =
lines

next state
function

output
function

present state

Abb. 43: Mealy-Automat

status—J

lines

next state
function

output
function
alternatives

present state

183

control
lines

control
lines

controt
lines

Abb. 44: Mealy-Automat im Parametisierungstechnik

184

o Registertyp

Neben der grundsatzlichen Entscheidung zwischen Latches und flankengesteu-

erten Flipflops muf eine Auswahl zwischen verschiedenen logischen Verhalten
getroffen werden. Typische Beispiele sind:

- Pegelgesteuertes RS- Flipflop :

q Il nq := case set || reset of
"00" : q |l ngq ;
"10" . ”10" ;
ll01|l : “01" ;
“11" : error
end

- Pegelgesteuertes D- Flipflop :

when clock do q |} nq :=d |l pot(d)

- Flankengesteuertes D- Flipflop :

at up(clock) do q il nq := d || not(d)

- Flankengesteuertes JK- Flipflop :

at up(clock) do q Il nq := case j || k of
00" : q Il nq ;
nyprn . 1Q"
"01" . |l01"
"11" : nq Il q

>

»

In Abhangigkeit von dem gewahlten Flipflop-Typ mu8 die §-Funktion ut”
gerechnet werden. Das D-Flipflop bildet dabei den einfachsten Fall. In de®
anderen Fillen muB ein Boolesches Gleichungssystem gelost werden.

185

¢ Implementationstechnik fiir die Kombinatorik.

Beim kombinatorischen Teil der FSM mu8 ein Biindel Boolescher Funktionen
implementiert werden. Diese Funktionen konnen durch Boolesche Ausdriicke,
(oder Boolesche Ausdrucksysteme, falls interne Verzweigungen vorhanden sind,)
beschrieben werden. Beliebige Boolesche Ausdrucksysteme kénnen nun un-
mittelbar auf Gatternetze abgebildet werden. In diesem Fall erhdlt man eine
Implementierung in sogenannter ”"Krauser Logik”. Andererseits konnen auch
vorstrukturierte logische Elemente benutzt werden. Hier sind PLAs (Pro-
grammable Logic Arrays) von besonderer Bedeutung.

3.3.1.1.1 Implementierung in krauser Logik

Jeder Boolesche Ausdruck definiert eine Boolesche Funktion, doch ist fiir eine gege-
bene Boolesche Funktion der darstellende Boolesche Ausdruck nicht eindeutig. Da-
her wurden Normalformen Boolescher Ausdriicke zur Darstellung Boolescher Funk-
tionen definiert. Als Beispiel einer derartigen Normalform mag die disjunktive Nor-
malform dienen. Sie ist wie folgt definiert:

Def. 3.3.1.1.1.1 (Disjunktive Normalform Boolescher Ausdriicke)

Sei
f : {071}n i {Ovl}vf(X) = f(xn—lw'-,zo) =y

eine Boolesche Funktion.

Sei

n—1

e()) € {0,1)%, e(i) = €(i)nory-melidoy i= 2)i ¥ 2"

1]
(2;)°% bezeichne z; falls e(z); = 1 und pot (z;) falls e(i); = 0-

Dann kann £ umgeschrieben werden in die Form:
27—t

JX) = T A T

=0 =0

wobei die Summe fiir das logische oder und das Produkt fiir das logische und stehen.

Der Term

ﬂI:f(xj)e(i)j

j=0

186

wird der j-te Minterm genannt.

<

Somit werden in der disjunktiven Normalform die Minterme, die den Wert 1 erge-
ben, mit logisch oder verkniipft. Ein Minterm ist das Produkt aller Variablen <'ier
Funktion, entweder in negierter oder nicht negierter Form, je nach Exponent. }?me
andere Art, eine Boolesche Funktion zu definieren, ist, sie zu tabellieren. Von eimer
derartigen Tabelle kann die disjunktive Normalform sehr einfach abgelesen werden.

Beispiel: -
Die beiden Funktionen eines Volladdierers sind durch die folgende Tabelle definiert:

D
(o]
)

wobei ¢; carry-in bedeutet, a und b sind
die Summanden, s ist die Summe und ¢,
bedeutet carry-out.

o e e e OO O
—_—— O k= e O O
—_o = O = O = Ol

_0 O DOl

— - O - O OO

Hier wurden zwei Funktionen (s und ¢,) tabelliert, wobei gemeinsame Ar'gumeflt‘
spalten und eine Ergebnisspalte fiir jede Funktion benutzt wurden. Die disjunktive
Normalform einer Funktion erhilt man dadurch, daB man fiir jede Zeile der entspre-

chenden Ergebnisspalte, wo eine 1 aufgefithrt wird, den entsprechenden Minterm
nimmt und diese Minterme aufsummiert.

187
Fiir s(c;, a,b) und c,(ci, @, b) erhalt man so:

s(ci, a, b) = not(c;)) & not(a) & b or not(c;) & a & not(b) or
c; & not(a) & pot(b) or c; & 2& D

c(ci, a, b) = not(c;) & a & b or ¢; & not(a) & b or

c; & a & not(®) orc; 8 a &b

Beispiel:
Steuerwerk in krauser Logik fiir das Beispiel aus Abschnitt 3.2.1.

Hier ist ein Steuerwerk mit 8 Zustinden zu implementieren. Es sei entschieden
worden, daB diese Zustande wie folgt codiert werden:

1 -> "ooo",
2 -> 001",
3 -> “o10",
4 -> o11n,
5 -> "1o0v,
6 -> 101",
7 -> 110",
8 -> nyqqn

D.h. es wurde die binire Darstellung der Zustande ohne weitere Uberlegungen ge-
nommen. Weiterhin sei entschieden worden, die Codierung des Steuerworts mword
und der Statusleitungen req und finished unverandert zu lassen.

Man beobachtet, daf der Wert des Steuerwortes mword nur vorm aktuellen Zustand,
der im Register ap_buffer gespeichert ist, abhangt, wahrend der Folgezus&and vom
aktuellen Zustand und den beiden Statusleitungen req und finished alzhangt. S?-
mit ist ein Moore-Automat zu implementieren. Fiir die A-Funktion erhalt man die
folgende Tabelle:

ap
buffer
1

3
2
e}
=
(=9

—
w

(===l -

.—-MHHOOOOJ(\D

[B =S e S e Y e T e i cu] [O]
QOO0 O O
oI e Bl o B e Y e R e g) [

=T I =R e e i e T e])

OO OO O Ok

—C = OO - OO

OO OO0 O OS

[PR = B o B == B e B R i e} V]
-0 0 0 O — O Ol

OO OO0 O Ol

—_— D e OO
o~ o000 OO

188

Davon kann man unmittelbar die folgenden Funktionen extrahieren:

mword. (0) := pot(ap_buffer.(2)) & not(ap_buffer.(1)) & ap.buffer.(0)
mword. (1) := ap_buffer.(2) & not(ap_buffer.(1)) & ap_buffer. (0)
mword. (2) := ap_buffer.(2) & not(ap.buffer.(1)) & Bgi(ap-b“ffer'(O))
mword.(3) := ap_buffer.(2) & ap_buffer.(1) & not(ap_buffer.(0))
mword. (4) := mword.(2)
mword. (58) := mword.(3)
mword. (6) := mword.(0) or mword. (1)
mword. (7) := not(ap_buffer.(2)) & ap_buffer.(1) & not (ap_buffer. (0))
or ap_buffer.(2)

& ap_buffer.(1) & ap_buffer.(0)
mword. (8) := mword.(0)
mword. (9) := mword.(Q)

mword. {10 := not(ap_buffer.(2)) & ap_buffer.(1) & not (ap_buffer. (0))

189

Fir die §-Funktion erhalt man die folgende Tabelle:

ap

o
=
@
=]
©
T

nicht abhingig von finished

weder von finished noch von req abhangig

weder von finished noch von req abhangig

nicht abhangig von finished

weder von finished noch von req abhangig

weder von finished noch von req abhangig

nicht von req abhingig

weder von finished noch von req abhangig

e e N
i e I e e i o B v R v Y cvve S e S e Y o Y e S e Y e Y e Y e S e S s B o B e S e O G

L R
— - D D O D OO O O R ke bk e e OO0 0000 O

—
bt ot bt (D D D D b bt b e OO O OO OO OO OO0 OO0
bt

OO = OO s OO, H OO OO OOME QOO O Ol

O O OOt b b b 2 HOHR O OO0 00 00000 QO

o
O OO~ B OO~ P HOO00O O Ok =-—O OO O
O OO O = OO OO OO FEOOOC OO OO

—
O O O OO OO, OO, OO OFORFOFOM Ol

Davon kann man unmittelbar die folgenden Gleichungen extrahieren:
ap. (0)

= not(ap_buffer.(2)) & not(ap.buffer.(1)) & not (ap_buffer.(0)) & req

190

or

ap.buffer.(2) & not(ap. buffer.(1)) & ap.buffer.(0) or
not(ap_buffer.(2)) & ap buffer.(1) & ap.buffer.(0) & req o
ap_buffer.(2) & not{ap-buffer.(1)) & g_cﬁ(ap_buffer.(O)) or
ap.buffer.(2) & ap.buffer.(1) & not(ap.buffer.(0))
ap. (1)

:= not(ap_buffer.(2)) & pot(ap buffer.(1)) & ap_buffer.(0)
or

;_;)_t_:(ap_buffer.(Z)) ‘% ap_buffer.(1) & not(ap buffer.(0))
or

n—_m:(ap~buffer.(2)) & ap._buffer.(1) & ap_buffer.(0) & req
or

ap_buffer.(2) & not(ap_buffer.(1)) & ap_buffer.(0)
or

ap_buffer.(2) & apbuffer.(i) & not(ap buffer.(0)) & finished

ap. (2)

:= not{ap.buffer.(2)) & ap_ buffer.(1) & ap.buffer.(0) & not (req)
or :

ap.buffer.(2) & not(ap.buffer.(1)) & not(ap_ buffer.(0))
or

ap_buffer.(2) & not(ap-buffer.(1)) & ap.buffer.(0)
or

Z;)_buffer.@) & ap buffer.(1) & not(ap.buffer.(0))

. in
Somit erhilt man die in Abb. 45 dargestellte Implementierung des Steuerwerks 1
krauser Logik.

3.3.1.1.2 Implementation durch Array-Logik

Jede Boolesche Funktion kann durch einen Booleschen Ausdruck beschrieben “yerl‘l
den, der eine Summe von Produkten ist (logisches oder von Termen, die aus d%lrc;)
logisches und verknipften negierten oder nicht negierten Argumenten gebildet wir
Sind die Produktterme von maximaler Lange, d.h., enthalten sie jedes Argurf]enf\zge_
nau einmal entweder negiert oder nicht negiert, so erhalt man die disjunktive ort
malform (Def. 3.3.1.1.1.1). Es ist nun naheliegend, ein universelles Schaltelemnen
zu bauen, das aus den folgenden Komponenten besteht:

: . . . jebige
- Eine Unterkomponente A, die personalisiert werden kann, um eine bel;lel:f
(bis zu einer Maximalanzahl) Anzahl beliebiger Produktterme zu bereciinel,

: : en-
- eine Subkomponente B, die personalisiert werden kann, um (wieder in Gr

zen) eine beliebige Anzahl beliebiger Summen von Produkttermen zu berech-
nen.

191

€

L 3

14

~»

pJomuw
G

»

9

L 8 6 0L 0

1

b

Ar Av

Jaynqg-de

paysiuy

i

OLe

Abb. 45: Steuerwerk in krauser Logik

192

Tatsachlich ist es relativ einfach, derartige personalisierbare Strukturen zu bauen.
Sie werden Programmable Logic Arrays (PLAs) genannt. Die Subkomponer{te. A
wird And-Plane genannt, da sie die Produktterme bereitstellt, indem sie die benotigten
Argumente mit und verknfipft, wihrend die Subkomponente B Or-Plane genann't
wird. Die Grofle'eines PLA wird durch das Tripel (args, terms, funcs) charakter-
siert. Dies bedeutet, daff ein PLA der GroBe (a,t,f) f verschiedene Funktionen auf
insgesamt maximal a Argumenten berechnen kann, wobei nicht mehr als insgesamt
t Produktterme bendtigt werden diirfen. Natiirlich kdnnen Produktterme von ver
schiedenen Funktionen benutzt werden, und verschiedene Produktterme konnen auf

gemeinsamen Variablen definiert sein. Graphisch kann ein PLA wie in Abb. 46
dargestellt werden.

product terms
e
e
AND-Plane . Or-Plane
EEmemme e 2
T T - L] - T v v » - = l
arguments

results
Abb. 46: Struktur eines PLA

Ein PLA wird durch zwei Personalisierungsmatritzen personalisiert:

* Die Matrix PA dient zum Personalisieren der And-Plane. Sie hat eine spalte
fiir jedes Argument und eine Zeile fir jeden Produktterm. Die i-te Zeile der
J-ten Spalte (PA(i,j)) wird auf einen der drei folgenden Werte gesetzt:

- +, falls das j-te Argument im i-ten Produktterm in nicht negierter Form
benotigt wird,

- -, falls das j-te Argument im i-ten Produktterm in negierter Form benotigt
wird,

- 0, falls das j-te Argument fiir den i-ten Produktterm nicht benotigt wird.

193

. flie Matrix PO dient zum Personalisieren der Or-Plane. Sie hat eine Spalte fur
jede Funktion und eine Zeile fir jeden Produktterm. Die i-te Zeile der j-ten
Spalte (PO(3,j)) wird auf einen der folgenden beiden Werte gesetzt:

- +, falls der i-te Produktterm fiir die j-te Funktion bendtigt wird,
- o, falls der i-te Produktterm fiir die j-te Funktion nicht bendtigt wird.

Die Personalisierungsmatritzen konnen sehr einfach in physikalische Modifikatio-
nen der vordefinierten PLA-Struktur umgesetzt werden. Wie dies geschieht, hangt
von der zugrundeliegenden Technologie ab. Beispielsweise konnen sele}(tiv an den
Schnittpunkten orthogonaler Leitungen Transistoren eingefiigt werden. Ublicherwei-
se wird eine Variable durch ein Paar von Leitungen dargestellt, eine Leitung fur den
nicht negierten Wert und eine fiir den negierten. Doch dies sind im vorliegenden
Kontext Implementationsdetails von geringerem Interesse.

Um den kombinatorischen Teil eines Steuerwerks fiir eine PLA-Implementierung
aufzubereiten, miissen also die folgenden Schritte ausgefhrt werden:

a) Leite (beliebige) Ausdriicke fur die zu implementierenden Funktionen ab,
b) Transformiere diese Ausdriicke jeweils in disjunktive Form,
¢) Minimisiere (Siehe Abschnitt 4.4),

d) Konstruiere oder selektiere PLA-Strukturen geeigneter Grofe,

¢) Personalisiere die And-/Or-Planes.

Beispiel :

Im obigen Beispiel gibt es 5 Argumentvariabl
ap.buffer.(0), finished, req) und 13 Fun
mvord. (9), mword.(8), mword.(7), mword.(6), mword. (5),
mword. (3), mword.(2), mword.(1), mword.(0), ap.(2), ap.(1), ap. (0)).

Man beobachtet jedoch, daB gilt mword. (4) = mword. (2), mword.(5) = mword.(3),

mword. (8) = mword. (0), und mword.(9) = mword. (0). Dies reduziert die Anzahl
driicke des obigen Bei-

de_’ verschiedenen Funktionen um 4 auf 9. Werden die Aus
spiels benutat, so werden die folgenden Produktterme bendtigt:

e (ap-buffer. (2), ap-buffer. (1),
ktionen zu berechnen (mword. (10),
mword. (4),

Pl = not(ap_buffer.(2)) & Pit(ap_buffer.(l)) & ap_buffer.(0)
fur mword. (0), mword.(6), ap- (1)

P2 = ap buffer.(2) & gcﬂ:(ap_buffer.(i)) & ap
fir mword. (1), mword.(6), ap.(0), ap.(1),

P3 = ap_buffer.(2) & not(ap_buffer.(1)) & pot(ap-bu
fir mword.(2), ap.(0), ap.(2)

P4 = ap_buffer.(2) & ap_buffer-(i) & z_m_t(ap_buffer.(o))
fir mword. (3), ap.(0), ap-(2)

_buffer. (0)
ap.{(2)
ffer.(0))

194

p5 = not(ap.buffer.(2)) & ap.buffer.(1) & not(ap_buffer.(0))
far mword.(7), mword.(10), ap.(1)
p6é = ap_buffer.(2) & ap_buffer.(1) & ap buffer.(0)
far mword. (7)
p7 = not(ap_buffer.(2)) & not(ap buffer.(1)) & not(ap buffer.(0)) & req

fir ap. (0)
not(ap_buffer.(2)) & ap.buffer.(1) & ap_buffer.(0) & req
fir ap.(0), ap. (1)
p9 = apbuffer.(2) & ap buffer.(1) & not(ap buffer.(0)) & finished
fur ap. (1)
p10= not(ap_buffer.(2)) & ap buffer.(1) & ap.buffer.(0) & not(req)
fiar ap. (2)

p8

Es wird also ein PLA mit 5 Argumentvariablen, 10 Produkttermen und 9 Ausgangs:
funktionen benbtigt. Personalisiert bekommt es die in Abb. 47 gezeigte Form.

1 |=]=1+]Olo}40|+]|0}0]0]4+{0]O]O|+
2 {+]={+]O]o4+]|+]|+]|oO|+]0jO}+]|O
s |+]={=]o]JoA+]ol+]0}o}o]Of+]|0Of0
s |+]+|=lo]loA+]|ol+]0}ojo]+]0}0fO
s |=|+]=]ojorHoj+|oj+|+]0O]O]0O]0OjO
s |+i+]+{o]loFHojolo]o]l+]|o]o]fo]o]o
7 |=]=1=-lol+4olo[+|o]olojolo]olo
s |=|+l+]o]+ 40 |+l+]0l0]o]0o]ol0jO
o |[+{+l -{+lo}Ho|+]olo]ololojo]o]o
wo|={+|+{o]=-FA+]0]0]olojo]olojo]o
TTTTT TITLILTTLT]
2 1 ¢ req 2 1 010 7 6 3 2 1t Q
ap-butfer finished ap mword

Abb. 47: Personalisiertes PLA

3.3.1.2 Mikroprogrammierte Steuerwerksimplementation

Ersetzt man die And-Plane eines PLA durch einen Dekoder, welcher eine (Pwd“k“,erm_
) Leitung pro Bitkombination der Einginge auswahlt, so wird aus dem PLA e
ROM (Read Only Memory). Damit werden die Funktionen nicht mehr berech-
net, sondern tabelliert, und die Funktionswerte werden einfach durch die Werte det

195

Ar.gumente adressiert. Mit dieser Beobachtung erhalt man die erste Version der
M1kr(?programmierung. Ersetzt man das ROM durch ein RAM (Random Access
Schreib/ Lesespeicher), so kann das Mikroprogramm, d.h. der Inhalt des Steuerspei-
chers,. dynamisch programmgesteuert verandert werden. In diesem Fall spricht man
von einem ” Writable Control Store”. Ein Wort im Steuerspeicher, d.h. der Wert
aller Funktionen beim selben Argumentwert, wird Mikroinstruktion genannt. Eine

Mikroinstruktion enthilt zwei Hauptteile:
¢ Das Steuerfeld,

¢ das Folgeadressfeld.

Die Adresse der nichsten Mikroinstruktion wird aus dem Wert des Folgeadressfel-
des Zusammen mit dem Wert der Statusleitungen berechnet. In den meisten Fallen
enthalt ein Steuerspeicher mehr als ein Mikroprogramm, typischerweise eines fur jede
II.IStI‘llktIOII des zu implementierenden Prozessors. Jedes Mikroprogramm beginnt an
emer b-estimmten Adresse, die aus dem Operationscode-Feld im Instruktionsformat
?bgelelteE v.verden kann. Damit wird jedoch ein weiteres Feld im Mikroinstruktions-
ormat ndtig, das angibt, da die Folgeadresse nicht in der Mikroinstruktion selbst
Ezt}}al‘ten ist, sondern vom Opcode der Instruktion abgeleitet werden muB. Natiirlich
forli:i:tgtdman daftr nich.t notwendigerweise eir.l eig.enes. Feld im Mikroinstruktions-
Fol » da man dur?h einen speziellen Code im (in diesen Fall bedeutungslosen),
0 gea.dressfeld anzeigen kann, daB das aktuelle Mikroprogramm abgearbeitet ist
I”}d die Startadresse des nichsten vom Opcodefeld des Instruktionsformates abge-
eitet werden muB. Mit der bisherigen Diskussion erhalt man

el ik i inhei
ner Mikroprogrammierungseinheit:

das typische Gerippe

Procedure micro_controller
(in op_code : bit(s) ;
in status_lines : implicit bit(k)

in controller_clock, power : implicit bit ;

out control_lines : bit(n)) ;
tyﬁ microinstruction = record
control_word : bit(m) ;
next_address : bit(m)
var co end ; . - : .
-2 control_store : array[0 : exp(n)-1] of microinstruction ;
m_instr_register . microinmstruction ;
control_word_address : implicit bit(m) ;
modified_address : implicit bit(m) ;

function address_modifier(in next_address : implicit bit(m) ;

in status_lines : implicit P_i_E(k))
- implicit bit(m);

196

{function body describing a combinational function that calculates tI}e mo-
dified address from the values of the next address-field within the current microin-
struction and the status_lines}

function new_micro_program(in microword : implicit microinstruction):
implicit bit
mplicib 2=

{function body describing a combinational function that calculates whether the next
control word address is included in the current microinstruction}

function start_address(in op_code : implicit gi_t(s))
- implicit bit{m);

{function body describing a combinational function that calculates the start address
of the microprogram for the instruction identified by op_code}

imgdef

control_lines
modified_address
control_word_address :

m_instr_register . control_word ;
address_modifier(next_address, status_lines);
if new_micro_program(m_instr,register)

then start_address(op._code)

else modified_address ;

at Q(controller_clock) do

m_instr_register := ;:;ntrol_store[control_vord_address] H

seqbegin at down(power) do
end .

Bildlich 1aBst sich diese Struktur wie in Abb. 48 darstellen.

start-
address

control-store

new-micro- address-
program moditier

. status-lines
control-lines

Abb. 48. Struktur eines Mikroprogrammierwerkes

197

Fir das B-eispiel des sequentiellen Addierers muB dieses Gerippe personalisiert wer-
den, womit man dann das folgende Steuerwerk erhalt:

(Da hier nur eine Instruktion zu implementieren ist, werden der Eingabeparameter
op.code und die Funktionen new_micro_program und start_address nicht benbtigt.)

procedure micro_controller

(in status_lines : implicit bit(2)
in controller_clock, power : imglicit bit ;
out control_lines : bit(11)) ;

type microinstruction = record
control_word : bit
next_address : bit
end ;

var control_store : an-az{o : 71 of microinstruction :=
"001 00000000000 ,

»010 01101000001" ,
"011 10010000000" ,
"100 00000000000" ,
101 00000010100 ,
v110 00001000010" ,
w111 00000101000" ,
000 00010000000" ;

11) ;

(
3

m_instr_register . microinstruction ;
control_word_address : implicit bit(3) ;
modified_address : implicit bit(m) ;

SEEEEiﬁB address_modifier(in next_address @ implicit bit(3) ;
in status_lines : implicit bit(2))
— implicit bit(3) ;
Var req, finished : implicit bit ;
lmpdef -
req := status_lines . (0) ;
finished:= status_lines . (1) ;
address_modifier . (0) :=
not(next_address.(2)) & BQE(n°Xt-address'(1)) *
next_address.(0) & req
or
not(next_address.(2)) & next_address.(1) & next_address. (0)
or
next_address.(2) & gg}(next-addfess°(1)) &
not(next_address.(0)) & req
or

198

next_address.(2) & next_address.(0) ;
address_modifier . (1) :=
not(next_address.(2)) & next_address. (1)
or
next_address.(2) & not(next_address.(1)) &
not(next_address.(0)) & req
or
n;;t_address.(2) & next_address.(1) & ggs(next,address.(o))
or
ne;;_address.(2) & next_address.(1) & next_address.(0) & finished;
address modifier . (2) :=
next address.(2) & not(mext address.(1)) %
not(next_address.(0)) & not(req)
or
n;;t_address.(Q) & not(next_address.(1)) & next_address. (0)
or
next_address.(2) & next_address.(1) ;
seqbegin at down(power) do

end ;
impdef

control_lines = m_instr_register . control_word ; es);
modified_address := address_modifier(next_address, status_lines/)s
control_word_address := modified_address ;

at up(controller.clock) do

m_instr_register := control_store[control_word_address] ;

segbegin at down(power) do
end .

Ein paar mégliche Modifikationen: .
Man beobachtet in dem Beispiel, daB das FolgeadreBfeld in jeder Mikroinstruktion
einfach die nichste Adresse beinhaltet. Dies ist mehr oder weniger typisch. D.ahef
sparen Mikroprogrammiereinheiten, die die Folgeadresse nicht im Steuerspeicher
halten, sondern stattdessen mit einem Mikroadresszahler arbeiten, Platz im Stefl'
erspeicher. Es ist dieselbe Beobachtung, die zur Einfihrung des Befehlszihlers‘ mn
friihen Computern fithrte. Durch diese Modifikation wird die Mikroprogmmmler—
einheit ein konventioneller v.Neumann-Rechner.

Im obigen Beispiel wurde ein Bit der Mikroinstruktion fur jede Steuerleitung vor:
gesehen. Damit 148t sich der optimale Parallelitatsgrad beziiglich der Oper.atlonelﬁ
eines Steuerwerks erreichen. Dieser Mikroprogrammierungsstil wird »horizonta'®
Mikroprogrammierung” genannt. Man beobachtet jedoch, dafl es auch inkompe
tible Mikrooperationen gibt, z.B. das Laden eines Busses von verschiedenen Quellen
zur gleichen Zeit. Damit wird nicht wur Platz im Steuerspeicher verschwendet‘

199

sondern auch eine Quelle firr inkorrekte Mikroprogramme geschaffen. Es scheint
kliger zu sein, Klassen gegenseitig inkompatibler Mikrooperationen zu identifizie-
ren. Dann kann man fir jede solche Klasse ein Feld im Mikroinstruktionsformat
vorsehen, wohinein dann die einzige Mikrooperation der jeweiligen Klasse codiert
werden kann. Damit kénnen im Konflikt stehende Mikrooperationen nicht mehr
gleichzeitig aktiviert werden, und zugleich wird die Wortlange der Mikroinstruktion
reduziert. Dieser Mikroprogrammierungsstil wird ”zonenorientierte Mikroprogram-
mierung” genannt. Es ist dabei weiterhin moglich, daB verschiedene Aktionen par-
allel aktiviert werden, eine aus jeder Klasse (Zone). Im Extremfall jedoch gibt es
nur eine einzige Klasse. In diesem Fall spricht man von 7 vertikaler Mikroprogram-
mierung”. Da die zonenorientierte Mikroprogrammierung ein Kompromifl zwischen
horizontaler und vertikaler ist, wird sie oft ”diagonale Mikroprogrammierung” ge-
nannt. Es sollte erwahnt werden, daB diese Unterscheidung beziglich der Struktur
des Steuerwortes nicht spezifisch fur die Mikroprogrammierung ist, sondern auf die
anderen Arten des Steuerwerksentwurfs ebenso angewandt werden kann.

3.3.2 Datenpfadentwurf

Der Datenpfadentwurf soll hier nicht weiter erlautert werden. Beim Ubergang von
der algorithmischen Ebene zur Registertransferebene wird festgelegt, welche Ope-
rationswerke bendtigt werden, und wie die Kommunikationskanale zwischen ihnen
l9gi50h auszusehen haben. Diese logische Verbindungsstruktur ist nun auf phy-
sikalische Verbindungen abzubilden. Hier bedient man sich entweder dedizierter
Verbindungen oder versucht, die gesamte Kommunikation auf wenige globale Busse
abzubilden. Natiirlich sind auch beliebige Zwischenformen moglich.

Die Operationswerke selbst konnen in der Regel sehr regelmaBig aufgebaut werden.
Liegt die Losung fir Einbit-Operanden fest, so kann die Erweiterung auf n Bit.s
meist durch einfache Replikation gewonnen werden. Diesen Ansatz nennt man ? Bit
slice”-Methode. Ahnlich kann man im Falle einer uniformen Busstruktur die ver-
schiedenen Operationswerke als "function slices” auffassen. Man erhalt dann ein
sehr uniformes Schema von orthogonal zueinander stehenden Daten- und 'Steuer-
Strémen. An den Schnittpunkten von speziellen Steuerleitungen und bestimmten
Datenleit“ngeﬂ befindet sich dann die Zelle, die das "bit slice” fir die genannten
Datenbits des ” function slice” der vorliegenden Steuerleitungen darstellt. Abb. 49
zeigt das Schema einer solchen Zelle im Falle eines Zweibus- Ansatzes.

3.4 Literatur

Der Entwurf von prozessorahnlichen Systemen wird allgemein bei Anceau [0}] und
nd Algorithmen auf hoheren

Langdon [22] s . .

ehr schon beschrieben. Synthesesystemeu

Abstraktionsebenen sind nicht zu haufig. Hier sind vor allem das MIMOLA-S;'st?Sn
[25, 26, 43, die Arbeiten in Karlsuhe [05, 34, 35], das ALGIC-System [' Da
19] sowie die Arbeiten der CMU bazw. der USC 2, 27, 28, 42] zu nennen. Da-

200 ‘ ‘ ‘

E S Le———control line 1
""" STttt : :
-—)ta . e A R «————control fine 2
<—:—— ------- -------- 4 ------ - ----- —— control line n
————| : : : ——- Carry line 1
] | «———-carry line 2

‘ a
: : : : «— carry line m
- : : :
BUS A * BUS B
result-BUS

Abb. 49: Zelle fur "bit slice” /" function slice”-Ansatz

tenfluBanalyse wird bei [29, 30, 32, 33) eingesetzt. In den meisten Fallen dle“nt ‘;;
CHDL auf der algorithmischen Ebene als Ausgangspunkt, doch werden auch.gf:]n%3 o
Programmiersprachen hierzu benutzt. Die Verdffentlichungen [06, 10, 24]’ s:lnlanger
spiele hierzu. Synthesetechniken von der RT-Ebene zur Gatterebene sin e
bekannt. Hier sollen [07, 11, 16, 23, 37, 38] als Beispiele dienen. Noch wexteée e
unten synthetisierende Systeme werden meist Silicon Compiler genannt, wo)Als
echter Silicon Compiler ebenfalls auf der algorithmischen Ebene starten SOHte-t e
Uberblick mdgen [08, 09] dienen, wihrend [03, 40] Beispiele fiir (%erartlge Sys -
sind. In [14] wird ein vollstindiges industriell verfigbares derartlgés System skte
seinem Hintergrund dargestellt. Spezialsysteme existieren fir verschiedene ASP}E mz
hier sei nur auf die Spezialisierung auf Datenpfade {15, 41] hingewiesen. Die :)en-
plexitit der Problemstellung legt die Verwendung von KI-Techniken und Exper

. o din
systemen nahe {21, 36]. In [02] werden Taktungschemata beschrieben, wahren
{04, 13, 31} asynchrone Ansitze verfolgt werden.

[01] F. Anceau:

The Architecture of Micro-Processors
Wiley & Sons, 1983

[02] F. Anceau:

A synchronous approach for clocking VLSI systems
IEEE Journ. of SSC 17, No.1, 1982

[03] N. Bergmann:
A Case Study of the F.LR.S.T. Silicon Compiler
Proceedings Third CALTECH Conference on VLS, 1983

201

[04] R. Briick, B. Kleinjohann, T. Kathofer, F.J. Rammig:
Synthesis of Concurrent Modular Controllers from Algorithmic Descriptions
Proceedings 23rd DAC, June 1986

(05] R. Camposano, W. Rosenstiel:
A design environment for the synthesis of integrated circuits
Proceedings EUROMICRO 85, 1985

[08] G. V. Collis, G. V. Edwards:
Automatic Hardware Synthesis from a Behavioural Description Language: Occam

Proceedings EUROMICRO, 1986

(07] J. A. Darringer et al.:
LSS : a system for production logic synthesis
IBM Journ. on R&D 28, No. 5, 1984

[08] D. D. Gajski:
Silicon Compilation
VLSI Design, Nov. 1985

[09] D. D. Gajski, N. D. Dutt, B. M. Pangrle:
Silicon Compilation (Tutorial)
Proceedings of IEEE 1986 Custom Integrated Circuits Conference

[10] E. F. Gircysk, J. P. Knight:
An Ada to Standard Cell Hardware Compiler Based on
duling

Proceedings ICCD, Oct. 1984

Graph Grammers and Sche-

(11] W. Grass, H.-M. Lipp: i
LOGE - 4 highly effective system for logic design automation
ACM SIGDA Newsletter 9, No. 2, 1979

(12] L. J. Hafer, A. C. Parker:

A Formal Method for the Specification, Analysis and D
Level Digital Logic

IEEE ToCAD, Vol. CAD-2, No. 1, 1983

esign of Register-Transfer

[13]_ M. Hirayama:
A Silicon Compiler based on Asynchronous Architecture
Proceedings ICCD, Nov. 1985

202

(14] E. Hérbst, C. Miiller-Schloer, H. Schwartzel:
Design of VLSI Circuits Based on VENUS
Springer, 1987

[15] C. Y. Hitchcock, D. E. Thomas:
A Method of Automatic Data Path Synthesis
Proceedings 20th DAC, June 1983

{16] C.-L. Huang:

Computer-Aided Logic Synthesis Based on a New Multi-Level Hardware Design
Language - LALSD 11

Ph. D. Dissertation, SUNY at Binghamton, 1981

{17] H. Joepen, M.Glesner:

Architecture Construction for a General Silicon Compiler
Proceedings ICCD’85, Nov. 1985

[18] H. Joepen, M. Glesner:

Optimal Structuring of Hierarchical Controll-Pathes in a Silicon Compiler System
Proceedings ICCAD86, Nov. 1986

[19] H. Joepen:

Ein Verfahren zur Herleitung hierarchischer Kontrollpfad- Datenpfad- Strukturen

aus verhaltensorientierten Systembeschreibungen und dessen Einsatz in emem Sily
con Compiler System

Dissertation TH Darmstadt, erscheint in Reihe Fortschrittsberichte,
VDI-Verlag, 1988

{20] D. Johannsen:
Bristle Blocks: a Silicon Compiler
Proceedings 16th DAC, June 1979

{21] T. J. Kowalski:

The VLSI Design Automation Assistant: A Knowledge-Based Expert System
Ph.D. Dissertation, Carnegie Mellon University, 1984

[22] G. Langdon:
Computer Design
Computeach Press, 1982

[23] H. M. Lipp, M. Nolle, K. Sutter:

LOGE - Ein leistungsfahiges CAD-System zum Entwurf digitaler Steuerungen
Proceedings 10th Internatl. Cong. Microelectronics, 1982

203

[24] T. Mano, F. Maruyama, K. Kakuda, T. Konato, T. Uehara:
OCCAM to CMOS - Experimental Logic Design Support
Proceedings CHDL'85, 1985

[25] P. Marwedel:

Ein]Software-System zur Synthese von Rechnerstrukturen und zur Erzeugung von
Mikrocode .

Habilitationsschrift, Universitat Kiel, 1985

[26] P. Marwedel: - .
AH]Algorithm for the Synthesis of Processor Structures from Behavioral Specifica

tions
Proceedings EUROMICRO, 1986

[27] A. C. Parker:
Automated Synthesis of Digital Systems
IEEE Design and Test, Nov. 1984

(28] A. C. Parker, J. T. Pizarro, M. Mlinar:
MAHA : A Program for Datapath Synthesis
Proceedings 23rd DAC, 1986

[29] P. G. Paulin, J. P. Knight, E. F. Gircyc: ;
HAL: A Multi~Par;digm Approach to Automatic Data Path Design

Proceedings 23th DAC, 1986

[30] P. G. Paulin, J. P. Knight: _
Force-Directed Schéduling in Automatic Data Path Design

Proceedings 24th DAC, 1987

(31] z. Peng:
Let’s design asynchronous VLSI systems
Proceedings EUROMICRO, 1988

(32] P. Pfahler:
Ubersetzermethoden zur automatischen Hardware-Synthese

Dissertation Universitat-GH Paderborn, 1988

(33] P. Pfahler:
Folding of Multiprocessor Networks
Proceedings EUROMICRO, 1987

204

[34] W. Rosenstiel:

Synthese des Datenflusses digitaler Schaltungen aus formalen Funktionsbeschreibun-
gen

Fortschrittsberichte der VDI-Zeitschriften, Reihe 10, Nr. 37, 1984

[35] W. Rosenstiel, R. Camposano:
The Karlsruhe DASL Synthesis System

in D. Borrione {Ed.): From HDL Descriptions to Guaranteed Correct
Circuit Designs, North Holland, 1987

[36] W. Rosenstiel:

Computer Aided Synthesis of VLSI Systems by Al Techniques
Proceedings COMPEUROQO, 1987

[37] R. Radell, A. L. Sangiovanni-Vincentelli, G. DeMicheli:
A Finite State Machine Synthesis System
Proceedings ISCAS, 1985

{38] A. L. Sangiovanni-Vincentelli:
An Overview of Synthesis Systems

Proceedings Custom Integrated Circuits Conference, May 1985

{39] D. P. Siewiorek, C. J. Tseng:

Facet : A Procedure for the Automated Synthesis of Digital Systems
Proceedings 20th DAC, 1983

{40] J. R. Southard:

MacPitts: An Approach to Silicon Compilation
IEEE Computer, Vol. 16, No. 12, Dec. 1983

{41] D. E. Thomas:
Automatic Data Path Synthesis
IEEE Computer, Vol. 16, No. 12, Dec. 1983

[42] C. Tseng, D. P. Siewiorek:
Emerald: A Bus Style Designer
Proceedings 21st DAC, June 1984

[43] G. Zimmermann:
MDS - The Mimola Design System
Journal of Digital Systems, Vol. 4, No. 3, 1980

205

4 Optimierungsaktivitaten

System
ﬂ Level m

Algorithmic
Leve

Electrical
Leve!

Design Desi
esign
Languages Docgments

rozeB

Abb. 50: Optimierungsaktivitaten im Entwurfsp

4, s e

1 Optimierung auf der Systemebene
mebene sollen hier nicht bebandelt werden.
chen Methoden "hottlenecks” des Entwurfs
Beheben solcher Engpasse konnen

Optimi s
Hitl@er“ngsaktxvxtaten auf der Syste
T gilt es, mit simulativen und analytis

zu i oo
u identifizieren und gezielt zu beheben. Zum

ent FORT
weder zusiatzliche Komponenten (Ressourcen) eingefihrt werden, oder vorhan-
rden. Man beachte, dafl in diesem

dene mp .
Zus: miissen leistungsfahiger implementiert We
mmenhang der Ressourcentyp »Datentransport” eine zentrale Rolle spielt.

206

4.2 Optimierung auf algorithmischer Ebene

Auf algorithmischer Ebene hat man es mit Optimierungsaufgaben 2 tun, die aus
dern Bereich der Codegenerierung im Rahmen der Ubersetzung von u}.)hcher}‘ Pro-
grammiersprachen bekannt sind. Zusatzliche Optimjerungsméglichke{ten konnen
sich noch durch die Ausnutzung von Parallelitit ergeben. Ein wesentlicher Unt'er-
schied ist allerdings, daB man bei der Codegenerierung fur iibliche Programrm;r-
sprachen sehr wohl abschitzen mu8, ob sich groBe Aufwande dabei lohnen, da der
Ubersetzungsaufwand stets in Relation zu dem Optimierungsgewinn zu sehen 1.st};
Im Falle der Generierung von Hardware ist der Ubersetzungsaufwand m Vergleic
zumn Optimierungsergebnis jedoch stets vernachlissigbar. Dies ergibt sich aus der
meist sehr grofen Auflage der zu generierenden Hardware und den im Vergleich zu
Software sehr grofien Fertigungskosten {zu unterscheiden von Entwicklgngskostefl)-
Bei allen Unterschieden jedoch sind die Aufgabenstellungen derart ahnlich, daB hier
nur bekannte Verfahren aus dem Bereich der Codegenerierung aufgefithrt werden
sollen. .
In diesem Bereich unterscheidet man meist zwischen Verfahren, die die Optime
rung von Basisblécken {linearen Codesequenzen ohne Verzweigungen) und solchen,
die Schieifen betreffen. In beiden Fallen dient eine Datenfluffanalyse zur Beschaffung
der fiir die Optimierung notwendigen Information.

4.2.1 Optimierung von Basisblocken

Unter Basisblocken von Beschreibungen auf der algorithmischen Ebene vers'.neht man
solche Programmteile, die an einer Stelle betreten werden und sequentiell ohne
mdgliche Verzweigungen bis zu einem wohldefinierten Ende durchlaufen Wer.den'
Wegen der Abwesenheit bedingter Verweigungen kann bei der Optimierung dieser
Blacke auf die Kenntnis der Kontrollstruktur verzichtet werden.

(1) Konstantenfaltung (Constant Folding)

Quellspezifikationen auf der algorithmischen Ebene enthalten oft Ausdriicke, d‘_e
ein konstantes Ergebnis haben. Dies rithrt daher, daB aus Kenngrofien wie Sper
chergrofle, Wortbreite, Registeranzahl, etc. weitere Kenngrofien abgeleitet werden-
Durch Verwendung von konstanten Ausdriicken 18t sich dann eine sowohl pard”

.. . - H ion
metrisierbare wie auch fir jeden Parameterwert in sich konsistente Spezlﬁkatl
erreichen.

Beispiel:

const wordlength = 72 ;
transfer_unit = §5 ;

»

207

next_address := present_address + wordlength * transfer_unit

Derartige konstante Ausdriicke sollen natiirlich in der spezifizierten Hardware nicht
berec?net werden, sondern als Konstanten zur Verfiigung gestellt werden. Es ist
nun fu}‘ einen Optimierungsalgorithmus auf algorithmischer Ebene relativ einfach,
derartige konstante Ausdriicke zu erkennen und durch ihren Wert zu ersetzen.

(ii) Reduktion der Operatorkosten (Strength Reduction)

Durch Anwendung algebraischer Ersetzungsregeln ist es oft moglich, Operatoren mit
tfeurer Hardwarerealisierung durch Teilausdriicke zu ersetzen, deren Hardwarereali-
Slér“n.g billiger ist. Ein Standardbeispiel ist hier die Ersetzung der Multiplikation
mit ciner Zweierpotenz durch Linksschieben. Ein Algorithmus fir eine derartige
O}’F‘mle.rung bendtigt fiir jede Operation die Information iiber die relativen Kosten.
Vgelterhm ist eine Menge von erlaubten algebraischen Ersetzungsregeln notig. Diese
kénnen nun angewandt werden wobei, die Kosten fiir das Ergebnis jeweils zu be-
;echnen sind. Die billigste so erhaltene Losung stellt dann das Optimierungsergebnis
ar.

(iii) Eliminierung gemeinsamer Unterausdriicke
g, daB es geschehen kann,

Grundlage dieses Optimierungsverfahrens ist die Uberlegun
d zur Verfigung stehen

dilﬁ der Wert eines Teilausdrucks bereits berechnet ist un
konnte, wenn er in einer Speicherstelle gespeichert ware. Dies kommt insbesondere
im Falle der Indizierung relativ haufig vor. Natiirlich ist sicherzustellen, daB bei
.aHEH Varianten, die fiir den zu optimierenden Basisblock bestehen, diese Werte-
identitat vorliegt. Liegen alle genannten Voraussetzungen vor, so kann man einen
derartigen Unterausdruck einmal berechnen und das Ergebnis in einer Speicherzelle
S?lange speichern, wie dieser Wert benotigt wird. Hierbei ist natirlich die ubliche
I\’Osten-I\Iutzen—Analyse durchzufithren. Die zur Speicherung des Zwischenergeb-
lisses notwendige Speicherzelle ist in der Regel nicht kostenlos. Entweder steht
berhaupt keine derartige Speicherzelle zur Verfigung, so daB sie neu angelegt wer-
den miBte, oder man kann auf eine vorhandene Speicherzelle zurickgreifen. Im
ersten Fall sind die Kosten fur eine zusatzliche Speicherzelle in Relation zu setzen
Zl.l den eingesparten Operator—(Benutzungs—)Kosten. Im zweiten Fall milssen nur
die Speicherbenutzungskosten betrachtet werden, die wegen eines moglichen Wett-
bewerbs mit anderen moglichen Benutzern aber auch relativ hoch sein konnen.

Algorithmen zur Eliminierung gemeinsamer Unterausdriicke sind im vorliegenden
Kontext daher etwas komplizierter als im Falle der dblichen Codegenerierung. Um
die Optimierungsmoglichkeit aufzuzeigen, ist € notwendig, einen "dag’ moglicher
Yerwendung von Unterausdriicken aufzustellen. Fur jede zeitlich spatere Referenz
ist dann eine Kostenfunktion zu berechnen und mit den Kosten einer Neuberechnung

Zu vergleichen.

208

4.2.2 Optimierung von Schleifen

Der Interpretationsalgorithmus eines Hardwarebausteins, von der{x xfaturhch an(gi'&
nommen wird, daf er trotz seiner Endlichkeit "ewig” lebt, ist naturhc.h hochgra 1{;1
zyklisch. Der Optimierung von Schleifen kommt damit besonderes G:e\fncht 2u. Doc
selbst Programme fiblicher Software befinden sich zu 90% ihrer Zeit in Schleifen.

(i) Extraktion schleifeninvarianter Ausdriicke (Code Motion)

Relativ hiufig werden innerhalb eines Zyklus Werte berechnet, die fir jeden S_Chle"
fendurchlauf identisch sind. In den meisten Fallen ist es dann sirmvollZ die Bflf-
rechnung dieses Wertes vor die Schleife zu ziehen und den in einer Spe‘Chefzele
gespeicherten Wert zu referenzieren. Zyklusinvariante Werte von Texlausdn.lc.keﬂ
lassen sich bei einer DatenfluBanalyse dadurch identifizieren, dafl keima_(trams;twe)1
Abhingigkeit des Wertes vom Wert des Schleifenindexes vorliegt. War in (%er E{ege
im Falle der Ausnutzung gemeinsamer Unterausdriicke innerhalb von Basisblocken
eine sorgfiltige Kosten-Nutzen-Analyse notwendig, so kann sie hier meist entfallen,

da sich wegen der meist sehr grofien Anzah! von Schleifendurchlaufen ein Uberwiegen
des Nutzens ergibt.

(ii) Optimierung von Indexvariablen

In den meisten Fallen wird in irgendeiner Weise der aktuelle Schleifendurchlauf iden-
tifiziert. Bei unendlichen Schleifen, wie sie fiir Hardware den Normalfall darste.llen,
liegt natiirlich eine zyklische Identifikation vor. Bei allen Variablen, die von dieser
Identifikationsvariablen abbingen ist nun im Sinne einer Kosten-Nutzen- Analyse
zu priifen, ob das Speichern dieser weiteren Variablen weniger Kosten verursacht als
eine Neuberechnung,

Weiterhin ist in diesem Zusammenhang nochmals eine Analyse der Operatorkosteﬂ
vorzunehmen. Ergibt sich eine Variable als Produkt aus einem schleifendurchlau'fs'
invarianten Wert und dem Wert der Schleifenidentifikation, so ist in der Regel eine
Addition pro Schieifendurchlauf billiger als diese Multiplikation.

Beispiel:
for index := 0 seqto 100 do
seqbegin
address :=

startaddress + wordlength * index ;

209

ist in der Regel aufwendiger als:

segbegin
displacement := 0 ;
for index := 0 seqto 100 do
seqbegin -
address := startaddress + displacement ;
displacement := displacement + wordlength ;

end ;

(iii) Schleifenaufrollen (Loop Unrolling)

E(::S;iecﬁllmk, die da.r.in besteht, Schleifen bekannter Iterationsanzahl im Falle gerin-

da o ¢ iah ;’lf)n Tterationen aufzurollen, ist fir Hardware von geringerer Bedeutung,

Schleit, ch hier sehr oft um unendliche Schleifen handelt. Bei eingeschachtelten
en geringer Zykluszahl kann sich jedoch auch hier ein Aufrollen lohnen.

(iv) Schleifenverschmelzen (Loop Jamming)

die von dem gleichen Schleifenindex abhangen,

H
at man getrennte Schleifen vorliegen,
Diese Situation tritt jedoch re-

SO ka,n : . .
lat; n man diese Schleifen zu einer verschmelzen.
atv selten auf.

4.3 Optimierung auf der Registertransferebene

Optimi . L .
Ptimierungstechniken auf dieser Ebene gehen davon aus, daB eine initiale Register-

;;ngfgr:Struktur sowohl fir das Operationswerk wie auch das Ste.uerwerk efltwtorfe.n
Oder‘ S.ll‘es‘e StrPktur muB nun beziglich gewisser Entwurfsziele wie Gfﬁchwmdx'gklet
rung al lfzm.mﬂach.e optimiert werden. Im Idealfall kann man S.lCh bei der Optimie-
das o tu éine Tellstfuktur beschranken, d.h. entweder fur ein fest&s' Steuerwerk
teue;r’ v:male OPel.‘a.tlonSWel'k entwerfen oder fir ein gegebenes O;.)eratxonsw.erk das
Algoritherk optimieren, wobei in beiden Fallen natiirlich der zu 1mPlement1erende
birmient mus betrachtet werden muB. Meist konnen d.ie l.)exden Tellt? nicht se?ar_at op-
des an dWerden’ <¥a Modifikationen eines Teils die Frelhextsgrac.ie bei der Optimierung
b deren b(iem.ﬁussen konnen. So wird ein globales Optlmum.oft trotz Umge-
Als g eines beziiglich Operationswerk oder Steuerwerk lokalen Optimums gefunden.
gut‘e Heuristik hat sich ein Ansatz erwiesen, der versucht, das angemessene

d eperatlollSwerk der am haufigsten benutzten Instruktionen des zu implementieren-
1 Systems zu entwerfen, und dies beim Entwurf des endgiltigen Steuerwerks als

gegeben annimmt.

210

4.3.1 Eine Heuristik zur Zustandsminimierung von Steuerwerken

In diesermn Abschnitt wird eine Methode beschrieben, die von J. Tredennik entwickelt
wurde. Es wird hier von der speziellen (von Tredennik als essentiell betrachteten
graphischen) Notation abstrahiert. Weiterhin findet eine Konzent'ration aunf den
Optimierungsaspekt des Ansatzes statt. Die folgende Information wird als gegeben
angenommen:

(i) Der Instruktionssatz des zu implementierenden Moduls,
(i1) das Operationswerk des Systems auf der RT-Ebene,

(ili) fiir jede Instruktion ein initialer Interpretationsalgorithmus, a.usged"ri'ICkt m
den Registertransfers, die von dem Steuerwerk angestoffen werden mussen.

Das Ziel ist es, ein Steuerwerk zu finden, fur das gilt:

(i) Die Sequenz an Zustanden pro Instruktion ist minimal,

{ii) die Gesamtmenge an Zustanden ist minimal.

Die Methode soll nun anhand eines Beispiels erklart werden. Es sei angenommfefis
daB ein Prozessor mit 8 fiir den Programmierer sichtbaren Registern und dem ot
genden Instruktionsformat zu implementieren ist:

instruction_format = record
effective_address : record))
ry, address_mode : bit(8
end ;

rx , op : bit(8)
end

die Operationen sind : add, sub, and, bz (branch if zero), load, storé
test.

Diese Operationen haben die folgende Wirkung:

add(operand1l, operand?)

operand2 := operandl + operand? ;
sub(operandl, operand?) operand2 := operandl - operand? ;
and(operand1, operand?) operand2 := operandi & operand? ;
bz(operandl, operand?) pc := if zero then operand2

g_l_s_gpc"’l H

load (operandi, operand?) operand!l := operand? ;
store(operandl, operand2) operand2 := operandi ;
test(operandl, operand?) operand? := operand? ;

211

iiéessénaizn V&{)I;Fd d(zitbei der Bedingungsmerkffr zero berechnet. Im Falle von add,
o dafl Y er das Vorzeichen des Operationsergebnisses an, im Falle von 1oad
e orzeichen des Wer.tas von operand2, im Fall von store das von
P . Die Operanden werden in Abhangigkeit vom Adressmodus bestimmt:

Der operandi is i
' t stets das Register, das durch rx adressiert wi d. Fi
gibt es die folgenden Falle: ert wird T operanc?

addressing. mode = ab (base + displacement) :
operand2 := memory(register([ry] + memory(
. . y[pe+1]]
addressing_mode = ai (register indirect) :
dd .Operand2 e memory[register[r}']]
ressing_mode = ar (register direct) :
operand2 := register[ry]

Es wird ni ;

o I:dt IllCh.t von einem orthogonalen Instruktionssatz ausgegangen: Wihrend fur

i SS' rduktlonen add, sub, and, load, store alle Adressierungsarten erlaubt
,sind test auf ab und ai, und bz auf ai beschrankt.

Beispiel ;

add rx ar ry

bezei i :

Ad:;sCh‘net eine add-Instruktion mit Operanden rx und ry unter Benutzung der
sierungsart ar. Es wird angenommen, da das folgende Operationswerk fiir

dies
en Prozessor entworfen worden ist:

Procedure datapath (in load_from_a_r, load_from b.r :

implicit bit(8);
load_from_a_tl, load_from_a_t2,
load_from_a_pc, load_from.a_ao,
load_from_b_t1, load_from_b_t2,
load_from_b_pc, load_from_b_ao,
load_from_a_do, load_from_edb_din,
load_from_edb_ir, load_from_ir_irb
load_from_alu_t1: implicit bit ;
joad_to_a_r, load_to. b.r : implicit EEE(B);
load_to_a_tl, load_to_a_t2,
load_to_a_pc,
load_to_b_tl, load_to_b_t2,
load_to_b_pc, load_to_b_din :
power, clock : implicit bit ;
alu_b_source : (b, one, null);
alu_op : (add, sub, and) ;

zero : bit ;

s

implicit bit;
impilcit B~

O [H [k
lg Ib |blu

212

out

eab : bit
inout edb : bit

£(32)

var r : array [0:7] of bit(32) ;

a0, pc, ti, t2, do, dim, ir, irb : bit

bus_a, bus_b, alu_out, alu_b_in

impdef

alu_out := case alu_op of

add : bus_a + alu_b_in ;
sub : bus_a - alu_b_in ;
and : bus_a & alu_b_in

end ;

alu_b_in := case alu_b_source of
: pit(32)1
1 bit{32)0 ;

one

null

else :
end ;

bus_.a := case load_to.a.rllload_to_a_tillload_to_a. t2111load_to.2.P

»00000000
700000000
100000000
*00000001
00000010
700000100
00001000
"00010000
00100000
01000000
710000000
else

end ;

bus_b

0
0
i
0
0
0
0
0
0
0
0

OOOOOOOOOPO

1"

oll
0"
o
oll
o"
0"

T pc ;
o
o" -
: rlo] ;
: 1] ;
: r(2]
: rf3] ;
: r(4] ;
1 r[s] ;
o :
o" :

: "(4) 2Z2ZZ7Z27Z"

t2
t1

(6] ;
r[7] ;

(32))

: implicit 213(32) H

¢ of

bus_b := cagse load_to_b_rl|load_to_b_t1]|load_to_b_t2|}load_to b pell
load_to_b_din of

'"00000000
"00000000
00000000
"00000000
00000001
*00000010
"00000100
*00001000
"00010000

0
0
0
1
0
0
0
0
0

0000 QC QO+~ OOl

OO0 00O OO

1"
oll
oll

: din ;
:pe
12
HE 5 S
: r[o0]
: rl1]
: r[2]
: ri3]
: r4]

eab
zero :

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

%00100000 0 0 0 0" : r(5] ;

"01000000 0 0 O O" : r(6] ;

110000000 0 0 0 0" : r[7] ;

else . w(4) Z222272Z"
end ;
ao ;
t1
(clock & load_from_a_r.(0)) do r[0] := bus.a ;
(clock & load_from_a_r.(1)) do r[1] := bus.a ;
(clock & load_from_a_r.(2)) do r[2] := bus.a ;
(clock & load_from_a_r.(3)) do r[3] := bus_.a ;
(clock & load_from_a_r.(4)) do r{4] := bus_a ;
(clock & load_from_a_r.(5)) do r[6] := bus.a;
(clock & load_from_a_r.(6)) do r[6] := bus_a ;
(clock & load_from_a_r.(7)) do r[7] := bus_a ;
(clock & load_from_b_r.(0)) do r[0] := bus_b ;
(clock & load_from_b_r.(1)) do r[1] := bus_b ;
(clock & load_from_b_r.(2)) do rf2] := bus_b ;
(clock & load_from_b_r.(3)) do r[3] := bus_b ;
(clock & load_from_b_r.(4)) do r[4] := bus_b ;
(clock & load_from_b_r.(5)) de r[5] := bus.b ;
(clock & load_from_b_r.(6)) do r[6] := bus_b ;
(clock & load_from_b_r.(7)) do r(7] := bus.b ;
(clock & load_from_a_t1) do t1 := bus.a
(clock & load_from_.b_t1) do t1 := bus.b;
(clock & load_from_alu_t1) do t1 =% alu_out
(clock & load_from_a_t2) do t2 = bus.2a
(clock & load_from_b_t2) do t2 := bus b ;
(clock & load_from_a_pc) do pc = bus.a;
(clock & load_from_b_pc) do pc = bus.b ;
(clock & load_from_a_ao) do a0 := bus.2a ;
(clock & load_from_b_ao) do ao := bus.b ;
(clock & load_from_a_do) do do = bus.a;
(clock & load_from_edb_din) do din := edb ;
(clock & load_from_edb_ir) de ir = edb;
(clock & load_from_ir_irb) deo irb := ir ;

m-‘ at down

(power) do end ;

Ein paar Bemerkungen:

Das Operationswerk enthilt den fiir den Pro
(l'[O :7])) zwel a-llgen]eine ve
d-o 2um externen Datenbus edb, ein Eingab
e Instruktionsregister ir und ein Instruktions-Puffer-

rborgene Register t
e- Puffer-

gra
1 und t2, ein Ausga

Register din von

213

mmierer sichtbaren Registersatz
be-Puffer-Register

diesem Bus,

Register irb um " Prefet-

214

ching” zu erlauben. Es wird angenommen, da wahrend eine.s Taktzy}dus Daten
uber die verschiedenen Busse und durch die ALU zu den verschiedenen Zielen ?rans-
portiert werden konnen. Daten werden mit der fallenden Flanke des Taktsignals
iibernommen. Abb. 51 zeigt diesen Prozessor.

eab ‘edb
controller B

5
T

UL

Abb. 51: Ein Beispielprozessor

Um die Steuerwerksoperationen zu beschreiben, wird nun die folgende Kurzschreib-
weise benutzt (man nehme geeignete Konstantendefinitionen an):

source_via_bus_to_destination

eichnete Register zu speichern, auf ”1” und alle anderen
Steuerleitungen auf 7¢” gesetzt werden. Wird als destination die ALU gex.lannt,
so wird implizit angenommen, da8 das ALU- Resultat nach t1 gespeichert wird.

Beispiel :
rx.via b_to_alu

bedeutet, daB 1oad_to b_r. (rx) und load_from alu t1 auf ”1” alu_b_source auf
b und alle anderen Steuerleitungen auf 79" gesetzt werden.

In dieser Notation kann nun der initiale Algorithmus far jede Instruktion zusammen
mit jeder Adressierungsart formuliert werden.

215

Beispiele:

add rx ar ry :

seqbegin
parbegin
rx_via_a_to_alu ;
ry_via_b_to_alu
end ;
parbegin
ti_via_b_to_ry
end
end

add rx ai ry :

Segbegin
parbegin
ry_via_b_to_ao ;
edb_to_din
end ;
parbegin
din_via_b_to_alu ;
rx_via_a_to_alu
end ;
pParbegin
ry_via_b_to_ao ;
ti_via_a_to_do
end

=2

end

—

. i an das In-
Jede Instruktion kann nun auf diese Weise deﬁ{“ert wercliens» wt;(s)::nttemSteuerwerk
tendierte Verhalten erhalt. Leider reicht dies“ msht, ;m altugn saufgaben durch-
2u spezifizieren. Es miissen namlich noch zusatzhc}:ie elrI:ZJfﬁhrgenden Instruktion
gefihrt werden. Typischerweise sind dies (.:la.s Holen e;"ahrenden Instruktion. Diese
und die Berechnung der Adresse der als nachstes auSz‘:- unswerk nebenlaufig zu den
Verwaltungsaufgaben bendtigen Dienste_ vom Opefa 10 Um diese Nebenlaufigkeit
A“fgaben, die das intendierte Verhalten implementieren.

auszudriicken, wird die Notation

conbegin
operation_tasks ;
housekeeping_tasks
end

—_—

216

benutzt. Die Steuerwerksequenzen, die man so erhilt, werden ”getrennte Sequen-
zen” genannt.

Beispiele: .

Die beiden obigen Beispiele werden nun zu folgenden Sequenzen, wobei angenommen
wird, daB die aktuelle Instruktion aus irb ausgefihrt wird, sodaB das Holen der
nichsten Instruktion nebenlaufig ausgefihrt werden kann (instruction prefetch):

add rx ar ry :

conbegin
segbegin {begin operation tasks}
parbegin
rx_via_a_to_alu ;
ry.via_b_to_alu
end ;
parbegin
_——?I:;Ea_b_to-ry
end
end ; {end operation tasks}
seqbegin {begin housekeeping tasks}
parbegin
pc.via_b_to_ao ;
edb_to_ir
end ;
parbegin
pc-_via_a_to_alu ;
one_to_alu
end ;
parbegin
ir_to_irdb ;
ti.via_b_to_pc
end
end {end housekeeping tasks}
end

add rx ai ry :

conbegin
segbegin {begin operation tasks}
parbegin
Try.via_b_to_ao ;
edb_to_din
end ;

217

parbegin
din_via_b_to_alu ;
rx_via_a_to_alu
end ;
parbegin
ry_via_b_to_ao ;
ti_via_a_to_do
end
end ; {end operation tasks}
seqbegin {begin housekeeping tasks}
parbegin
pc_via_b_to_a0 ;
edb_to_ir
end ;
parbegin
pc-via_a_to_alu ;
one_to_alu
end ;
parbegin
ir_to_irdb ;
ti_via_b_to_pc
end
&n {end housekeeping tasks}

end

Operations- und Verwaltungsaufgaben bendtigen gemeinsame Ressou.rcen innerhalb
des Operationswerkes. Somit enthalt die obige Beschreibung eine Reihe von paten-
konflikten. Dieses Problem wird nun dadurch gelost, daB die beiden nebenlaufigen

Sequenzen in eine einzige gemischt werden, wobei folgendes beachtet wird:

ie vereinigte Sequenz dasselbe Resul-

(i) Beziiglich der Operationsaufgaben mu d .
fur die Operationsaufgaben.

tat haben wie die urspriingliche Sequenz

vereinigte Sequenz dasselbe Ver-

(ii) Beziiglich der Verwalt fgaben muf die
Bl cor Ternalungse fur die Verwaltungsaufgaben.

halten haben wie die urspringliche Sequenz

(iii) Die Gesamntzahl an Zustanden (parbegin ... end - Konstrukte) soll mini-

mal sein.
i . . »
Die so erhaltenen Sequenzen werden "Vereinigte Sequenzen genannt.

E§ gibt viele Freiheitsgrade bei Durchfihrung der Vereinigl.mgsopel'ation. Da ht:;
Pischerweise nur kleine Teile des gesamten Steuerwerksalgonth.mus zu unl;ersxucd
sind, kann dabei die optimale Losung entweder durch menschliche Cleverness oder

218

durch duBerst triviale Algorithmen wie brutales "trial and error” iiber alle mi')glic.heln
Kombinationen gefunden werden. Natiirlich kann man auch intelligentere Heu‘nstl-
ken anwenden. Die Optimierung, die man durch einfache Modifikationen erreichen
kann, wird durch das folgende Beispiel illustriert:

add rx ar ry :
a) Triviale Vereinigung in eine Sequenz:

{seqbegin
instruction_fetch_of_next_instruction (into_ir) ;
execute_current_instruction (from_irb) ;

calculate_address_of_instruction_after_next_instruction
end}

seqbegin

parbegin
pc_via_b_to_ao ;
edb_to_ir

end ;

parbegin
rx_via_a_to_alu ;
ry_via_b_to_alu

end ;

parbegin
ti_via_b_to_ry

end ;

parbegin
pc.via_a_to_alu ;
one_to_alu

end ;

parbegin
ir_to_irdb ;
ti_via b_to_pc

end

end

Hier wird eine Sequenz von 5 Zustinden bendtigt, wihrend das theoretische Op-
timum nur einen Zustand hatte, da nur im ersten Zustand die externen Busse des
Prozessors benotigt werden. Nun ist dieses theoretische Optimum, bei dem alle
Operationen in diesem Zustand ausgefiihrt werden, im vorliegenden Fall nicht zu €r”
reichen, da es zu viele wetteifernde Anforderungen an gemeinsame Ressourcen gibt.

219

Doch kann die Anzahl der Zustande durch folgende Beobachtungen reduziert werden:

- Der Inhalt von pc kann auch iiber bus.a an ao gesandt werden. Gleichzeitig

kann er auch an alu gesandt werden.

- Man kann annehmen, daB das Register t1 ein Master/ Slave—Regist.er ist.
Somit kann ein neuer Wert im selben Zustand gespeichert werden, in dem der
bisherige Wert an ein anderes Ziel geschickt wird.

- Die Ausfithrung der aktuellen Instruktion, wobei genau zu Beginn beide Bus'se
bendtigt werden, kann unmittelbar initiiert werden, da sie aus dem bereits
geladenen Register irb ausgefuhrt wird.

Mit diesen Beobachtungen kann man nun die folgende Losung erhalten, die nur drei
Zustande bendtigt:

b) Optimierte Implementation :

segbegin
parbegin
rx_via_a_to_alu ;
ry_via_b_to_alu
end ;
parbegin
pc_via_a_to_alu ;
one_to_alu ;
pc_via_a_to_ao ;
edb_to_ir ;
ti_via_b_to_ry
end ;
parbegin
ir_to_irb ;
ti_via_b_to_pc
end
end

=

WEitere Optimi X .

Pl angenomme individuell fir jede In-
Is b i werkssequenz 1ndividu€ '
ko e st o Steulferlt werden muB. Dies wiirde jedoch zu

struktion mit jeder Adressierungsart entwic - .

: ischerweise
einem sehr grofen Steuerwerk fihren, wenn man betra.chtet, Sﬁeaotp)::anden !
viele verschiedene Instruktionen gibt, die moglicherweise me T

220

unterschiedliche Adressierungsarten haben. Hat man n Insttuktion“en mit jeweils m
Operanden und dafiir jeweils k verschiedene Adressierungsarten, waren w0
s = (n * m * k) Sequenzen ndtig. Hat man einen typischen Prozessor m1”t etwa;) o
Instruktionen, im Mittel zwei Operanden und 10 Adressierungsartfen, s0 waren 11)1
verschiedene Sequenzen notwendig. Eine offensichtliche Losung fur. dieses Pro ilsl‘f
ist die Benutzung von Unterprogrammen fur die Adressierungsarten 1m’Steuervierk)
algorithmus. Dies reduziert die Anzahl verschiedener Sequenzen auf 8’ = (n : sei:
Allerdings kostet der Aufruf eines Unterprogramms Zeit. Das Steuerwerlf mu it
nen aktuellen Zustand retten, bevor die Kontrolle einem anderen Zustand iiberge en
werden kann. Ist das Unterprogramm beendet, muf} der urspri'mglic}.le Zustand wxe(;
der hergestellt werden. Somit mufl dieser Ansatz sorgfaltig be?ﬁghch Nutzen \1112“
Kosten abgewogen werden. Nun kann man zumindest das Abspeichern des aktue
Zustands sparen, wenn alle Sequenzen mit der Ausfilhrung eines Unterprogramms
starten und sowohl die Adresse des Unterprogramms wie auch der I-.Izmptsequ(’aﬂlzl
direkt aus dem Instruktionscode abgeleitet werden konnen. Im vorliegenden Fjit
werden Operationscode und Adressierungsart direkt vom Instruktionsfo'rmat be.rel -
gestellt, sodal die Adressierungsroutinen unabhiangig von den Operaﬁlonsrout(;ﬂelf
aktiviert werden konnen. Somit kann idealerweise in jedem Fall die geeignete A rf.
sierungsroutine in Abhingigkeit von der Adressierungsart aktiviert we'rden und 1{a11
nach die Operationsroutine in Abhangigkeit vom Operationscode. D{ese}' Idea da
funktioniert allerdings nur dann perfekt, wenn die Qperationen unabhangxg VOI; ‘:;
Adressierungsart ausgefuhrt werden konnen. Weiterhin werden durch diese 1es _
globale Anordnung die Freiheitsgrade beziiglich des Vereinigens der Sequt?nlen j\m’
geschrankt. Die einzelnen Sequenzen miissen nun zu einem einzigen enthhen ‘u-
tomaten vereinigt werden. Bei diesem Schritt muB nun ein Zustandsregxster' ein
gefiihrt werden und die Berechnung des Folgezustands mufl zu den Oper:‘i-tlonen
eines jeden Zustands hinzugefiigt werden. Als Ergebnis dieses Schrittes erhalt man
die Zustandstabelle des Automaten.

Auf der Ebene der Zustandstabelle kann nun eine weitere Optimierung wegen der
Beobachtung, da8 viele Sequenzen gleich enden, durchgefiihrt werden. Diese Postﬁ;-
Sequenz muB dann vom Steuerwerk nur einmal bereitgestellt werden, und k.ann sent
einfach durch einen unbedingten Sprung innerhalb des Steuerwerks aktiviert wer

den. Bei den meisten Steuerwerksimplementationen kostet ein derartiger unbeding-
ter Sprung keinerlei Zeit.

4.3.1.1 Beispiel einer Optimierung auf RT-Ebene
Es soll nun der gesamte Demonstrationsprozessor optimiert werden:
Erster Schritt: Abtrennen von Adressierungs-Sequenzen.

Dabei wird jedoch beobachtet, da$ sich die Operationen im Falle der.R"fg_i_SterI‘l
Adressierung anders verhalten als bei Referenz auf Speicherworte. Somit musse

221

jeweils zwei Arten von Sequenzen vorgesehen werden.
Zweiter Schritt: Die getrennten Sequenzen werden konstruiert:

Adressierungsart-Sequenzen:

ab :

conbesin
seqbegin {begin operation tasks}
parbegin
one_to_alu ;
pc.via_a_to_alu ;
pc_via_a_to_ao ;
edb_to_din
end ;
parbegin
t1_via_a_to_pc
end ;
parbegin
din_via_b_to_alu ;
ry.via_a_to_alu
end ;
parbegin
edb_to_din ;
tl_via_b_to_ao ;
ti_via_b_to_t2
end
end—?_ {end operation tasks}
;;;begin {begin housekegping tasks}
end {end housekeeplng tasks}
end

ai

Conbegj
—2cgin . ‘
Seqbegin {begin operation tasks}
parbegin
ry_via_b_to_ao ;
ry_via_b_to_t2 ;
edb_to_din
end
end ;- {end operation tasks} -
sagbe i ing tasks
Seqbegin {begin housekeeping

222

end {end housekeeping tasks}
end

Operations-Sequenzen mit Hauptspeicher-Referenz:

load:

conbegin
seqbegin {begin operation tasks}
parbegin
din_via_b_to_rx H
din_via_b_to_t2
end ;
Parbegin
___EE:;;é_a_to_alu ;
zero_to_alu
end

end ; {end operation tasks}

seqbegin . {begin housekeeping tasks}
parbegin
e
PC.via_a_to_alu ;
Pc_via_a_to_ao ;
one_to_aly ;
edb_to_ir
end ;
par?egln
ir_to_irb ;
tl_via_b_to_pc
end
end
end

{end housekeeping tasks}

store :

Conbegin
"‘EEEEEgin
—_— .
parbegin
e
rx_via_a_to_aly
rx_via_a_to_do ;
t2_via_b_to_ao H
Zzero_to_aly
end
end ;
seqbegin

{begin operation tasks}

3

{end operation tasks}
{begin housekeeping tasks}

parbegin

_—_52:;Ia_a_to_alu H
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin

T ir_to_irb ;
tl_via_b_to_pc

ggé_—- {end housekeeping tasks}

add, and, sub :

Conbegin
—_—§§§E§§}§ {begin operation tasks}
parbegin
—_—a;;:;ia_b_to_alu ;
rx_via_a_to_alu
end ;
parbegin
t1_via_a_to_do ;
t2_via_b_to_ao
end

=

end ; {end operation tasks}

EESEEEEE {begin housekeeping tasks}

parbegin

———SE:;;a_a_to_alu H
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
ir_to_irb ;
ti_via_b_to_pc

end ' X
end {end housekeeping tasks

test .

conbegi
Sonbegin

223

224

segbegin {vegin operation tasks}
parbegin
din_via_b_to_t2
end ;
parbegin
t2_via_a_to_alu ;
zero_to_alu

end
end ; {end operation tasks}
segbegin {begin housekeeping tasks}
parbegin

pc.via_a_to_alu ;
pc.via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
ir_to_irb ;
ti_via_b_to_pc

end

end

end {end housekeeping tasks}
end

Operations-Sequenzen ohne Hauptspeicher-Referenz:

load :

conbegin
segbegin {begin operation tasks}
parbegin
ry_via_a_to_alu ;
ry_via_a_to_rx ;
zero_to_alu
end
end ; {end operation tasks}
seqbegin {begin housekeeping tasks}
parbegin
pc.via_a_to_alu ;
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir
end ;
parbegin
T ir_to_irb ;

tl_via_b_to_pc

end
end
end
store
Conbegin
Seqbegin
—_———
parbegin
DE——
TX_via_a_to_alu ;
rx_via_a_to_ry ;
zero_to_alu
end
end ;
se i
2egbegin
Parbegin
e
Pc_via_a_to_alu ;
pPc_via_a_to_ao ;
one_to_aluy ;
edb_to_ir
end ;
parbegin
I CCgtn
ir_to_irb ;
tI_via_b_to_pc
end
end
end

add, and, syb

Conbegj
Sonbegin
2¢qbegin
Parbegin
————

Ty_via_b_to_alu ;

rx_via_a_to_alu
end ;
tl_via_a_to_ry ;
end
end ;
2%9begin
Parbegin

225

{end housekeeping tasks}

{begin operation tasks}

{end operation tasks}

{begin housekeeping tasks}

{end housekeeping tasks}

{begin operation tasks}

{end operation tasks}
{begin housekeeping tasks}

226

pc.via_a_to_alu ;
pc._via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
ir_to_irdb ;
ti_via_b_to_pc

end

end {end housekeeping tasks}
end

Sprung-Instruktion:

bz :
conbegin
segbegin {begin operation tasks}
end ; {end operation tasks}
seqbegin {begin housekeeping tasks}
parbegin
—__;§:;§a_a-to_alu H
ry.via_a_to_ao ;
one_to_alu
end ;
if zero then {branch}
parbegin
ir_to_irb ;
tl_via_b_to_pc
end
else {no branch}
segbegin
parbegin
pc_via_a_to_alu ;
pe_via_a_to_ao ;
one_to_alu ;
edb_to_ir
end ;
parbegin
ir_to_ird ;
ti_via_b_to_pc
end
end
end

{end housekeeping tasks}

end

Dritter Schritt: Mischen von getrennten Sequenzen in vereinigte:

Adressierungsart-Sequenzen

ab :

seqbegin
——_EE;EEgin
one_to_alu ;
pc_via_a_to_alu ;
pc_via_a_to_ao ;
edb_to_din
end ;
parbegin
tl_via_a_to_pc
&nd ;
parbegin
din_via_b_to_alu ;
ry_via_a_to_alu
end ;
parbegin
edb_to_din ;
tl_via_b_to_ao ;
tl_via_b_to_t2
end

=2

end

ai

parbegin

—_—;yj;za_b_to_ao H
ry_via_b_to_t2 ;
edb_to_din

end

OperationS-Sequenzen mit Hauptspeicher-Referenz:

load .

Seqbegin
—
pParbegin
din_via_b_to_rx ;

227

228

din_via_b_to_t2 ;
pPc_via_a_to_alu ;
Pc.via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
t2_via_a_to_aly ;
Zzero_to_alu ;
ir_to_irdb ;
tl_via_b_to_pc

end

end
store :

seqbegin
parbegin
rx_via_a_to_alu ;
rx_via_a_to_do
t2_via_b_to_ao
zero_to_alu
end
parbegin
PC_via_a_to_aly ;
Pc.via_a_to_ao
one_to_aluy
edb_to_ir
end ;
parbegin
ir_to_irb ;
tl_via_b_to_pc
end

»

»

3

end
add, and, sub :

seqbegin
parbegin
din-via_b_to_alu ;
TX_via_a_to_aly

end ;
parbegin

229

tl_via_a_to_do ;
t2_via_b_to_ao

end

parbegin
pc.via_a_to_alu ;
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
ir_to_irb ;
ti_via_b_to_pc

end

en

===

test

seqbegin

parbegin

-——EIE:;ia_b_to_t2 ;
pc_via_a_to_alu ;
pc.via_a_to_ao ;
one_to_alu ;
edb_to_ir

end ;

parbegin
t2_via_a_to_alu ;
zero_to_alu ;
ir_to_irb ;
ti_via_b_to_pc

end

=

end

-

Operations-Sequenzen ohne Hauptspeicher-Referenz:

loaq .

Seqbegin
= .
parbegin
%81
ry.via_b_to_t2 ;
ry_via_b_to_rx ;
Pc_via_a_to_alu ;
pc_via_a_to_ao ;
one_to_alu ;

230

edb_to_ir

end

parbegin
t2_via_a_to_alu ;
zero_to_alu ;
ir_to_irb ;
ti_via_b_to_pc

end

end
store :

seqbegin

parbegin

v~—;;:;;a_b_to_t2 H
rx_via_b_to_ry ;
zero_to_aln ;
pc_via_a_to_alu ;
pc_via_a_to_ao
one_to_alu ;
edb_to_ir

end ;

parbegin
t2_via_a_to_alu ;
zero_to_alu
ir_to_irb ;
tl_via_b_to_pc

end

!

’

end

add, and, sub :

segbegin

parbegin
ry.via_b_to_alu ;
rx_via_a_to_alu

end ;

parbegin
tLvia_b_.to,ry ;
pc.via_ a_to. alu ;
pc.via_a_to_ao
one_to_alu ;
edb_to_ir

231

end
parbegin
ir_to_irdb ;
ti_via_b_to_pc
end
end

Sprung-Instruktion:

bz :
segbegin
parbegin
ry_via_a_to_alu ;
ry_via_a_to_ao ;
one_to_alu
end ;
if zero then {branch}
parbegin
ir_to_irb ;
t1_via_b_to_pc
end
else {no branch}
segbegin
parbegin
pc_via_a_to_alu ;
pc.via_a_to_ao ;
one_to_alu ;
edb_to_ir
end ;
parbegin
ir_to_irb ;
ti_via_b_to_pc
end
end
end end

. Sequenzen
Vierter Schritt: Umschreiben als Zustandstabelle, gleiche Postfixe von 5eq

Vereinigen:

%tme@
case state of

abi:parbesin

232

one_to_alu ;
pc.via_a_to_alu ;
pc.via_a_to_ao ;

edb_to_din ;
state := ab2
end ;

ab2:parbegin
ti_via_a_to_pc ;
state := ab3
end ;
ab3:parbegin
din_via_b_to_alu ;
ry.via_a_to_alu
state := ab4d
end ;
ab4:parbegin
edb_to_din ;
ti_via_b_to_ao ;
ti_via_b_to_t2 ;
state := ire.operation_code
end ;

ail:parbegin
ry_via_b_to_ac ;
ry_via_b.to_t2 ;

edb_to_din ;
state := irb.operation_code
end ;

1dmi:parbegin
~jﬁ;:hLbjojx;
din_via_b_to_t2 ;
pc.via_a_to_alu ;
pc.via_a_to_ao ;

one_to_alu ;

edb_to_ir ;
state := tli
end ;

tli:parbegin
t2_via_a_to_alu ;
zero_to_alu ;

’
ir_to_ird ;

ti_via_b_to_pc ;
state := next_instruction
end ;
stmi:parbegin
rx_via_a_to_alu ;
rx_via_a_to_do ;
t2_via_b_to_ao ;
Zero_to_alu ;
state := tl12
end

3

tl2:parbe5in

pc_via_a_to_alu ;
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir ;
state := tl13
end ;
tl3:parbegin
ir_to_irb ;
tl_via_b_to_pc ;
state := next_instruction
end

anl:parbegin
din_via_b_to_alu ;
rx_via_a_to_alu ;
state := am2
end ;
am2:parbegin
ti_via_a_to_do ;
t2_via_b_to_ao ;
state := t12
end

»

tsl:parbesin

din_via_b_to_t2 ;
pc.via_a_to_alu ;
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir ;

233

234

state := tl11
end ;

1r1:parbegin
ry_via_b_to_t2 ;
ry_via_b_to_rx ;
Pc_via_a_to_alu ;
Pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir ;
state := t11
end ;
sri:parbegin
rx.via_b_to_t2 H
rx_via_b_to_ry H
zero_to_aly ;
Pc.via_a_to_aly
pc_via_a_to_ao ;
one_to_alu ;
edb_to_ir ;
State := t11
end ;

=2

>

arl:parbegin
ry_via_b_to_aly ;
IrX_via_a_to_alu
state := ar?2
end ;
ar2:parbe§in
ti_via_b_to_ry H
PC_via_a_to_alu ;
Pc_via_a_to_ao ;
one_to_alu
edb_to_ir :
state := t13
end ;

»

»

bz1:parbegin
ry-via_a_to_alu ;
ry_via_a_to_ao
one_to_aly ;

state := if zero then t13 else t12

235

end ;
next_instruction : state := irb.addressing_mode
end ;

4.4 Optimierung auf der Gatterebene

Auf der Gatterebene hat man mit der Booleschen Algebra ein sehr elegantes algebrai-
sches Modell zur Verfiigung, wodurch Optirnierungsaufgaben sehr prazise formuliert
und algorithmisch durchgefiihrt werden konnen. Die bereits in Abschnitt 2.1.1 ange-
gebene Definition einer Booleschen Algebra soll daher hier in etwas anderer Notation
nochmals wiederholt werden:

Def. 4.4.1 (Boolesche Algebra)
B = (B,|,&,n0t,0 ,1) heift Boolesche Algebra :&

1) B ist eine Menge (Tragermenge)

2)|,&: B> - B (Addition, Multiplikation)
3not: B> B (Komplement)

40,1¢B (neutrale Elemente)

5)Vab € B:alb = bla, a&b = b&a (Kommutativitit)

6)Vabce B : (a|b)lec = (ake)l(be), (a&b)lc = (alc)&(blc)
(Distributivitat)

)Va€B:al0=a,akl =a

8)Ya € B: ajnot(a) =1, a¬(a) =0

9 3abeB:a<>b

o

Boolesche Algebren lassen sich auf den verschiedensten Tragermengen definieren,
Die kleinstmogliche

die jedoch stets 2" fir n >= 0 Elemente haben mussen.
Trigermenge besteht aus {0,1}. Eine darauf definierte Boolesche Algebra wird auch
Sc_haltalgebra genannt. Fur Boolesche Algebren gelten eine Reihe von strukturellen
Eigenschaften und Rechenregeln, die fur die zu leistenden Optimierungsaufgaben
von Bedeutung sind. Einige werden nachfolgend (ohne Beweis) angegeben.

Lemma 4.4.1

1)(EHEB:\;’aEB:a|11=a,)=>n=0,
(3neB:VaeB: akn=a) = n=1

DVaeB: [(IkeB: ajk=1 und akk=0) = k=not(2)]

236

3)Vae€ B: ala=a=aka

4)Va€B: a|l=1, ak0=0

5) not(0)=1, not(1)=0

6) ¥ a € B : not(not(a))=a

7) ¥ ab € B : al(a&b)=a, a&(alb)=a

8) V a,b,c € B : al(blc)=(alb)[c, ad(blc)=(akb)dc

9)V a,b € B : not(alb)=not(a)¬(b), not(a&b)=not(a)|not(b)

<

Das Gesetz 1 zeigt die Eindeutigkeit von 0 und 1, 2 die Eindeutigkeit des K'Oﬂlple(i
ments. Die Eigenschaft 3 wird Idempotenz genannt, 6 Involution, 7 Absorption un
8 Assoziativitat. Die Regeln 9 schlieflich werden De Morgansche Regeln genanant.

Auf Booleschen Algebren 138t sich nun sehr einfach eine Halbordung definieren
durch:

Def. 4.4.2

Sei B = (B, |, &, not, 0, 1) eine Boolesche Algebra.
VabéeB:a<=b:& a=akb

<

Eine Boolesche Algebra zusammen mit der oben definierten Halbordnung bildet et-
nen Booleschen Verband.

Aus Booleschen Algebren kann man durch eine einfache Kreuzproduktkonstruktion
eine weitere Boolesche Algebra konstruieren. Damit lassen sich dann auch Ope-

rationen auf Bitketten ebenso einfach darstellen und manipulieren wie solche auf
einzelnen Bits.

Def. 4.4.3 (Kreuzprodukt Boolescher Algebren)

Sein € IV und fur i € {0:n} seien B; = (B, |;, &, not;, 0;, 1;) Boolesche Algebren.
Dann ist das Kreuzprodukt B = (B, |, &, not, 0, 1) gegeben durch:

(i) B :=ByxByx..xB,

237

() | : B?— BmitV(a1,az .., an), (b1, b2 b0)
@ o B
(iv) not : gl_’f%;i‘:"g,&zg";?":;’::)) :¢= (a1&1by, az&abs, ..., andinbn)
9 0 oS g

lg)i?ts rﬁrt?u?);o"iUkt Boolescher Algebren ist wieder eine Boolesche Algebra. Dies

Boolesc}l:; chlmsbesondere auch, wenn das Kreuzprodukt aus lauter identischen

wicht s nd' g‘;bren besteht, z.B. J.ewexls aus der Schaltalgebra. In diesem Fall sind

dontinct led ertemeflgen. der Elnz.elalgebren, sondern auch deren Operationen

dundh ko’ und man erl‘la.lt eine natiirliche Erweiterung der Schaltalgebra auf Tupel
mponentenweise Anwendung der Operationen.

Def. 4.4.4

E;Ee {t(;)*gle k:bbik'iung f.: {0, 1}* — {0,1} heifit n-stellige Schaltfunktion. An Stelle

Stehen’ . d‘nn eine behe%nge Menge, auf der eine Boolesche Algebra definiert ist,

I Viel.e nFﬁlﬁem }f‘all SRI’]C}.It man dann von einer n-stelligen Booleschen Funktion.

f\mktio::b all'en wird mit einer Booleschen Funktion implizit einfach eine Schalt-
ezeichnet.

A .
uf der Menge der n-stelligen Schaltfunktionen kann man ebenfalls die Operationen

|;§ und not definieren durch:

f = Hlf:<=>Vme {0,1}": f(m) = fi(m)|fa(m)

§ = fikfyi<=> V¥ me {0,1}": f(m) = fr(m)& fo(m)
=not(f,) :<=> VY me {0,1}": f(m) = not(fl(m)).

o

liebige Menge, auf der eine Boolesche
dieselbe Konstruktion durchfihren.
onen bildet mit den so definierten Ope-
was sich leicht zeigen 1a8t. Diese Boo-
efihrten Halbordnung zu
Ibordnung ablicherweise

iiﬁe:}zt man fiie Menge {0,1} durch eine be

DiieMra definjert werden kann, so kann man

ratio enge der n—s.telligen Booleschen Funkti

l$ChEilllhrerer§e|ts .eine Boolesche Algebra,

cinen. Vgebra 138t sich ebenfalls mit der in Def. 4.4.2 eing

ol f_:rband ausweiten. In diesem Kontext wird die Ha
plikation genannt:

238

Def. 4.4.5

Seien f und g n-stellige Boolesche Funktionen.
f impliziert g (f — g) 1< Vm € {0,1}": (f(m) =1 = g(m)=1).
{(Man sieht leicht, daB gilt: { — g:& f<=g.)

<

Die Frage ist nun, wie Boolesche Funktionen adiquat dargestellt werden konnen.
Dies kann sicherlich durch Tabellieren stattfinden, indem man fir jedes Argument
(-Tupel) den Funktionswert angibt. Die nachfolgende Tabelle beispielsweise Listet
alle 2-stelligen Schaltfunktionen auf:

ab|00]01]02{03]04a]05]06|07]0809]10]11]12]|13]14]15
oojo |0 |o 0 0 fo fr {1 |r 1 |t 1 |t |1
01{o {o to |o {1 j1 |t |1 jo o jo jo 1 y1 1 41
1010 {0 {1 {1 {0 o |1 y1 jo jo |1 f1 |0 [0 J1 }1
1o |1 o 1 jo j1 jo |1 jo |1 o |1 |0 |1 |O |1

Die Funktion 01 ist beispielsweise die Funktion &, die Funktion 07 ist die Funktioq J.
Da man jedoch 2" Wertepaare benotigt, um eine n-stellige Schaltfunktion zu tabellie-
ren, ist diese Methode ab einer gewissen Stelligkeit nicht mehr handhabbar. Da aber
die Menge der n-stelligen Booleschen Funktionen eine Boolesche Algebra darstellen,
kann man Boolesche Funktionen auch als algebraische Ausdriicke auf der Basis von
Elementarfunktionen darstellen (konstruieren). Ublicherweise benutzt man hierfar

die syntaktischen Regeln arithmetischer Ausdriicke, wobei man dabei | wie + und
& wie * wertet.

Beispiel:

not(x) & (y | not(z)) ist eine Boolesche Formel in drei Variablen.

Booleschen Formeln kann man nun unter Anwendung der unter Def. 4.4.4 ange
gebenen Vereinbarungen Boolesche Funktionen zuordnen, wobei einer Formel in

Variablen eine n-stellige Boolesche Funktion zugeordnet wird. Diese lassen sich dant
auf Argument-Tupel anwenden (ausrechnen).

Def. 4.4.8
Sei bf eine Boolesche Formel in n Variablen. Mit <bf> wird die bf zugeordnete
n-stellige Boolesche Funktion bezeichnet, mit <bf> (a1, aa, ..., a,) deren Wert auf

dem Argument-Tupel q, bis a,,.

<

239

Beispiel:
<not(x) & (y | not(z))> (0,1,1) =1

Oft werden Boolesche Formeln mit den ihnen zugeordneten Booleschen Funktionen
identifiziert. Dies ist jedoch nicht sinnvoll, da zwar nach Konstruktion einer Boole-
schen Formel bf genau eine Boolesche Funktion <bf> zugeordnet wird, die Gegen-
richtung jedoch nicht eindeutig ist. Tatsachlich 138t sich jede Boolesche Funktion
durch unendlich viele verschiedene Boolesche Formeln darstellen, was man aufgrund
der Gleichheit <x> = <not{not(x))>, wobei x eine beliebige Boolesche Formel ist,
sofort sieht. Neben der damit sofort aufkommenden Frage nach Normalformen stellt
sich somit auch das Problem einer nach gewissen Kriterien optimalen Darstellung
einer gegebenen Booleschen Funktion als Boolesche Formel. Dies genau ist das auf
Gatterebene zu l6sende Optimierungsproblem.

Def. 4.4.7

Eine Formel der Form x oder der Form not(x), wobei x eine Variable ist, heiBt Li-

teral.

Eine Formel der Form z,&z&.. &2y, wobei alle z; Literale sind, heiBt Produktterm.
Eine Formel der Form z;|z3|...|«, wobei alle z; Literale sind, heifit Summenterm.
Fiir eine Boolesche Funktion in n Argumenten heifit ein Produktterm maximaler
Lange, d.h. mit n verschiedenen Variablen, Minterm.

F‘:lr eine Boolesche Funktion in n Argumenten heifit ein
Lange, d.h. mit n verschiedenen Variablen, Maxterm.
Schreibt man statt z z' und statt not(z) z°, so erhlt man fiir einen Minterm die
Form T &2 k... &x. Interpretiert man den String e,_1€n-2---€0 als Binardarstel-
lung der Zahl i, so kann man vom i-ten Minterm sprechen. Analog kann man Max-

terme darstellen.

Summenterm maximaler

>

Beispiel:
EOS gebe drei Variable a, b, c. Dann kann
@ &b'&c!. Dies ist gleichwertig zu not(a)&bé&c.

man den dritten Minterm schreiben als

Def. 4.4.8
Fir eine Boolesche Funktion f in n Argumenten heift die folgende Formel Minterm-

Normal-Form:

f =3 < Pl (2 vl 2 & f(€n-15 -+ €0)

n-2

ec{0,1}"

2490

<

Mit der Minterm-Normalform hat man eine Darstellung, die aus einer tabellarischen
Darstellung einer Schaltfunktion unmittelbar abgeleitet werden kann. Man muf nur
iiber die Minterme summieren, fiir die der Funktionswert ”1” angegeben ist. Die
Werte "0" und ”1” in den entsprechenden Zeilen ergeben dabei unmittelbar den
Exponentenstring.

Beispiel:
Die Funktion, gegeben durch die Tabelle

— e e O OO O
- O O O

,_,o,_.op-o;-loﬁ
R o =R~ R B ==~)

ergibt die Mintermnormalform
a®b°c®la%' ct{a'dl !, gleichbedeutend mit
not(a)¬(b)¬(c) | not(a)ibkc | agb&c.

Nimmt man nun an, daB eine Summe mit n Summanden billiger ist als eine solch.e
mit n+1 Summanden und analog ein Produkt mit m Faktoren billiger als eines rﬁlt
m+1 Faktoren, so ist die Mintermnormalform eher teuer, da man die maximal notige
Anzahl von Produkttermen bendtigt, die ihrerseits jeweils die maximale Lange ha-
ben. Bleibt man innerhalb des Schemas von Summen von Produkttermen (dies sol

im folgenden stets geschehen) so kann man beispielsweise die obige Funktion auch
durch die Formel

not(a)¬(b)¬{c) | bic

darstellen, womit man nicht nur weniger Produktterme bendtigt, sondern in einem
Fall auch einen kirzeren.

Def. 4.4.9

Eine Summe von Produkttermen heift minimal :¢ Es gibt keine billigere Summe
von Produkttermen, die die gleiche Funktion darstellt.

241

o

gamit l'éBt' sich das Optimierungsziel formulieren als:
ftgf?ben eine Boolesche Funktion f, finde alle Formeln bf mit <bf> = f und bf ist
minimale Summe von Produkttermen.

Def. 4.4.10

Es sei f eine n-stellige Boolesche Funktion und p, p’ Produktterme mit maximal n
Literalen.

l) P ist Implikant von f e <p>—f
i) 1\; 1;°,t Primimpliant von f :4 p ist Implikant von f und
P<p>—o<p>o fm<p>=<p>

¢

f; r:n‘ilénllphl;fmten sigd 'al‘so Implikanten ”maximaler 1-Uberdeckung” so wie Min-
aus Prim'p lka.nten mn.umaler l—pbe{deckung”_sind. Eine Summe bestehend nur
leicht mlzlfglphkantgn wird also dlle kur.ze.ste mbogliche Summe darstellen. Ebenso
(amn o \c t man sich klar, dafB8 ein .Prlmlrr}plikant ein Implikant minimaler Lange
ﬁberdeclll(lthten-theral? enthaltend) ist, da jedes zusatzliche Literal die Anzahl der

en Einsen hochstens vermindern kann. Die zu lsende Optimierungsauf-
gabe lautet daher:

1. Finde alle Primimplikanten einer Funktion

2. Fim{e die Menge alle minimalen Summen derartiger Primimplikanten, die die
gewunschte Funktion ergeben.
Beispiel:
Fior 4 .
S(:;dle oben tabellierte Funktion sind die Produktterme not(a)¬ (b) ¬ (<)
OWie bgc (alle) Primimplikanten, die Formel not(a)¬ (b)¬(c) | béc daher
éine minimale Summe.

ne Reihe

Z . .
ur Erzeugung der Primimplikanten einer Booleschen Funktion gibt es el
e Baum-

:I?:t }Ilwethoden. Hier sollen nur zwei kurz dargestellt werden: die sogenannt
ode und der Algorithmus von Quine-McClusky.

D
er Baummethode liegen zwei Beobachtungen zugrunde:

die als Produkt von Funktionen gegeben

® Jeder Primimplikant einer Funktion,
kanten der Einzelfunktionen schreiben.

ist, 148t sich als Produkt von Primimpli

242

e Fir jede n-stellige Boolesche Funktion f und jedes Argument a gilt:
f =< a® > &fao} < @* > &fa: (Shannon-Zerlegung). Dabei versteht man
unter der Subfunktion fu1(f.0) die Funktion, die entsteht, wenn in der Funktion
f das Argument a durch die Konstante ”1” (”0”) ersetzt wird.

Man muB also lediglich eine Boolesche Funktion, die als Summe von .Produkten
gegeben ist, rekursiv solange in Subfunktionen zerlegen, bis das Bestu"nrﬂen der
Primimplikanten der Subfunktionen trivial ist, und dann diese Primimphks.mten zu
Produkten zusammenfiithren. Die Menge der so erhaltenen Produktterme ist dfmn
identisch mit der Menge der Primimplikanten. Dies leistet der folgende Algorith-
mus, der in DACAPO-ihnlichem Pseudocode angegeben ist. Die Bedeutungen der.
benutzten Variablen, Typen und nicht niher aufgeschliisselten Funktionen ist dabei
selbsterklarend. Man beachte, daB es sich um einen rekursiven Algorithmus handelt,
der in dieser Form in DACAPO also nicht aufgeschrieben werden kann.

function formula_out(in formula_in : sum_of_products) ;
sum_of _products ;

fuction simplify (in formula_in : sum_of_products) :
sum_of_products ;
seqbegin

simplify := if one_productterm_"1"
then "1*" else ;

simplify := if one_productterm_"0O"
then formula_in_without_it else;

simplify := if one_productterm_twice

then formula_ in_without_doublicates else
end;

function multiply
(in formula_in : product_of_sums) : sum_of_products ;
segbegin

multiply := simplify(formula_in_transferred_to_sum_product_fOH“)
end;

function eliminate_extensions (in formula_in : sum_of_products) :
sum_of_products ;
seqbegin
forall productterms_in_formula_in do
productterm :=
if productterm =

extension_of_productterm_in_formula_in
1_1!8_!! ngn
else productterm ;

243

eliminate_extensions := simplify(sum_of_productterms)
end;

seqbesin
formula := simplify(formula_in);
if formula = "1" or formula = "O"
then formula_out := formula
else seqbegin
a := select_argument(formula);
forall pj_in_set_of_productterms_of_formula do
parbegin
pjoO := if a.in_pj then 0
else if not_a_in_pj then pj-without_a
else pj;
pjl := if not_a_in_pj then 0
else if al_in_pj then pj-without_a

else pj
end;
formula0 := simplify(sum.of_all_pj0);
formulal ;= simplify(sum_of_all_pjl);

formula0_new := formula_out (formula0);
formulal_new := formula_out (formulal);
formula_new := not(a)&formulaO_new |
atformulal_new |
formulaO_new&formulal_new;
simplify(multiply(formula_new));
eliminate_extensions(formula_new)

formula_new
formula_out :=
end;
g“ﬁe{ Algorithmus liefert zu der eingegebenen Formel eine Formel fir die gleiche
unktion in Form der Summe aller Primimplikanten.

Beispiel:
:Vendet man obigen Algorithmus auf die Formel
= aknot(d) | bamot(c) | not(a)
a1, 50 kann man zunachst nach b entwickeln und er
fa= not(c)|not{a) und
oo = ajnot(a).
Jor 188t sich nach ¢ weiter zerlegen, womit man erhalt:
foa = not(a) und
fb_lco = ”l”lnot(a) .
Die einzig mdgliche Zerlegung von fo nach @ ergibt die Formeln
Jooar = 71" und
froao =717,

halt damit die Formeln

244

Genauso lassen sich auch fyyc; und furco nur nach a weiter zerlegen, womit man auch
dort jeweils erhilt:

_nan
f blclel = 1 y
="1"
f blclal = »
= 7"
f b1c0al —]
Frrcoao =717
! - . -
Nun werden in der rekursiven Prozedur von den Blittern nach oben die Formeln fiir

die Subfunktionen neu gebildet, wobei nun nur noch Summen von Primimplikanten
konstruiert werden:

fora = a&”0” [not(a)&"1"|70°&”1” = not{a)

forco = a&’1” [not(a)&"1"|"17&"1” ="17

fr2 = c¬(a)lnot(c)&” 1" |not(a)&”1” = not{c)|not(a)

fro = a&’ 17 |not(a)&” 1717 &"1” = "1"

f = b¬(c)|b¬{a)|not(b)&”17|"1" ¬(c)|" 1" ¬(a)
= not(b)|not(c)|not(a)

Die gleiche Methode liegt letztlich den Karnaugh-Tafeln zugrunde. Hier tabell'lert
man die Funktion in einem zweidimensionalen Schema, wobei jede Spalte und jede
Zeile bestimmten Argumentwerten entsprechen. Dabei hat man zu beachten, daB
benachbarte Zeilen bzw. Spalten jeweils den Hamming-Abstand eins haben, dh.

sich nur in einem Argument unterscheiden diirfen. Fiir das obige Beispiel sieht die
Karnaugh-Tafel beispielsweise wie folgt aus:

a=1
b=1
———— .
1 ERIERE c=1
11 1

Die Spalten(-Tupel} und Zeilen(-Tupel) entsprechen hier den Subfunktionen. ?mn—
implikanten kann man dadurch ablesen, daB man mdglichst grofie Rechtecke, d;e.nur
mit 717 gefillt sind, sucht und die dazugehorigen Argumentkombinationen abha’t,
wobei ein Argument=1 fiir die nicht komplementierte Variable als Literal steht, ein
Argument=0 fir die komplementierte. Weiterhin ist zu beachten, dafl die Karnaugh-
Tafel als Torus aufzufassen ist. Karnaugh-Tafeln sind bei Funktionen mit nicht.Zu
vielen Argumenten ein beliebtes und effizientes Hilfsmittel, um schoell die Primim-
plikanten bestimmen zu konnen. Allerdings muB die Funktion tabelliert vorliegen.

Ein weiteres sehr einfaches Verfahren ist das von Quine/Mc Cluskey. Hier wird vor-

ausgesetzt, da8 fir die zu minimierende Funktion die Minterm-Normalform vorliegt:
Das Verfahren beruht auf der einfachen Konsensus-Regel:

245

akx | not(a)&x = x wobei a eine Variable und x ein beliebiger Produktterm, der
a nicht enthalt, ist.

Der folgende, ebenfalls in Pseudocode aufgeschriebene Algorithmus zeigt dieses Ver-
fahren:

function qm_result (in formula_in : minterm-normal-form)
: sum_of_products;

seqbesin
formula := simplify(formula_in) ;
repeat
seqbegin
b = "o ;
forall p in productterms.of_formula_in do
forall q in productterms_of_formula_in do

seqbegin
¢ = simple_consensus(p,q);
b:=b | c
end ;
b := simplify(b) ;
if b <> "0" then formula := eliminate_extensions(formula | b)
else
end
M b = ng¥ ;
qm_result := formula

end ;

===

E.in Paar Bemerkungen: < L die sich
Ein einfacher Konsensus ist natiirlich nur zwischen Produkttermen moglich, die sic

in genau einem Literal unterscheiden. Man kann daher die Suche nach moglichen
Konsensuspartnern vereinfachen, wenn man die Produktterme nac}f dc?r Anzahl der'
nicht komplementierten Literale sortiert. Der Algorithmus funktlc')mer’t auch.bex
partiellen Funktionen, d.h. solchen, die fir gewisse Argumentkombinationen nicht
definiert ("X") sind.

Beispiel:

Gegeben sei wieder die durch die Formel] L.
m0t(b) | bapot(c) | mot(a) definierte Funktion. Sie wi
Normalform dargestellt:

rd wie folgt in Minterm-

a0t (b)c | atmot(b)tnot(c) | atbinot(c) | not(a)ebimot(c) |
not(a)abac | not(a)dmot(b)ac | not(a)imot(b)¥mot(c)

246
Die Produktterme selen nun durchnumeriert.

Konsensus (07,02) ergibt Produktterm 8 : not(b) ¬(c)
Konsensus (07,04) ergibt Produktterm 9 : not(a)¬(c)
Konsensus (07,06) ergibt Produktterm 10 : not(a)¬(b)
Konsensus(02,01) ergibt Produktterm 11 : a¬(b)
Konsensus (02,03) ergibt Produktterm 12 : a&pot(c)
Konsensus(04,03) ergibt Produktterm 13 : b¬(c)
Konsensus(04,05) ergibt Produktterm 14 : pnot(a)&b
Konsensus (06,01) ergibt Produktterm 15 : not(b)&c
Konsensus(06,05) ergibt Produktterm 16 : pot(a)kc

Die Produktterme 1 bis 7 sind Verlangerungen der Produktterme 8 bis 16, konnen
also gestrichen werden.

Konsensus(08,13) ergibt Produktterm 17 : not(c)
Konsensus(08,15) ergibt Produktterm 18 : not(b)
Konsensus (09,16) ergibt Produktterm 19 : not(a)

Die Produktterme 8 bis 16 sind Verlingerungen der Produktterme 17 bis 19, konnen
also gestrichen werden. Damit hat man wieder die drei Primimplikanten n_oﬁ(fl) '
not(b) und not(c) erhalten, und der Algorithmus gibt die Summe dieser drei Prim-
implikanten als Ergebnis aus.

Hat man nun mit einem beliebigen Verfahren die Menge aller Primimplikanten g€
funden, so gilt es nun, eine minimale Summe zu finden. Diese muB nicht notwen-
digerweise alle Primimplikanten beinhalten, da bereits die Summe einer Teilmenge
von Primimplikanten die Funktion implizieren kann.

Beispiel:
Man betrachte die Funktion:

f = < ctnot(d) | not(a)¬(bléc | a&b | mot(a)¬(c)¬(d) >

Fiir diese so gegebene Funktion kann man mit einem der obigen Verfahren als Menge
der Primimplikanten bestimmen:

P1 = a&c

P2 = a&db

P3 = akd

P4 = not(a)¬(c)
P5 = cl¬(d)

P6 = not(b)&c

P7 = bamot (d)

247

Nun ist es nicht notwendig, £ als Summe aller sieben Primimplikanten zu realisie-
ren. Man kann aus dieser Summe die Primimplikanten PS und P1 streichen und
realisiert immer noch dieselbe Funktion. Man kann sich dies verdeutlichen, wenn
man die Funktion tabelliert und fiir jede Argumentkombination {(Minterm), die den
Wert ”1” ergibt, die Menge der Primimplikanten notiert, die diese "1” uberdecken.
Primimplikanten, die nur solche "1” iiberdecken, die auch von anderen Primimpli-
kanten iberdeckt werden, konnen gestrichen werden. Nun hat man (jabei eine Reihe
von Freiheitsgraden, sodaB es recht kompliziert ist, eine minimale Uberdeckung zu
finden. Weiterhin ist diese minimale fIberdeckung nicht eindeutig, d.h. es kann
mehrere solche geben. Es stellt sich damit die Frage nach einer systematischen al-
gorithmischen Methode, die Menge aller minimalen Uberdeckungen zu finden. Man
macht sich zunachst leicht klar, daB gilt:

Seien P, ..., P, Produktterme.
< Pi|...|P; > uberdeckt £ :& £ impliziert < Py|...| Py >.

Den Begriff der Uberdeckung kann man auch fiir durch einen einzigen Produktterm
gegebene Funktionen formulieren:

Def. 4.4.11

Seien Q, P, 1y ooy P, Produktterme. I heifit Uberdeckungsindexmenge wenn gilt [=
ek und < P,|...|P, > iiberdeckt < @ >. Kann man aus I keinen Index
herausstreichen, ohne da8 die Uberdeckungseigenschaft verloren geht, so heifit I
Minimale ﬁberdeckungsindexmenge. Mit 0(9, Py|...|P,) bezeichnet man die Menge
der Uberdeckungsindexmengen, bzw. mit MU(Q, Py|...|P,) die der minimalen Uber-
deckungSindexmengen von P, ..., P, bzgl. Q.

o

Ist Q ein Minterm, so werden die fjberdeckungsinde_xmengen natﬁ;lich immer ein-
elementig, sind damit automatisch auch minimal. U(Q,...) = MU(Q,...) besteht
dann einfach aus der Menge der Indizes aller Produktterme, die die entsprechende
”1” Giberdecken. In Termen gesprochen, sind dies alle Produktterme aus der Menge
A, ..., P,, die eine Verkiirzung von Q sind. Ist Q ein beliebiger Produktterm, zB
¢in Primimplikant, so werden die Uberdeckungsindexmengen i. A. mehrelementig.
U(Qv'--) und MU(Q,...) werden damit i.A. auch verschieden.

Beispiel:

Setzt man in obigem Beispiel Q = P; und betrachte
als Uberdeckungskandidaten, so erhalt man:

MU(P, p,|..|P,) = {{1},{3,5},{2,6},{3,6,7}}-

t die sieben Primimplikanten

248

Ist nun die zu realisierende Funktion als Summe von Produkttermen gegek?en, z.B.
als Summe von Mintermen oder als Summe von Primimplikanten, so formuliert man
als Uberdeckungsfunktion, daf alle Produktterme durch eine minimale Uberdeckung
durch Primimplikanten uberdeckt werden sollen:

Def. 4.4.12

Gegeben eine Funktion fin der Form f =< @y]...]Qn > sowie die Menge PI(f) =
{P1, ..., P}. Sei a = Py|...|P:. Die k-stellige Boolesche Funktion

UF = < ﬁ[S (II=01>

=1 1eMU(Q;0) €1

heiBt Uberdeckungsfunktion fir a uber Q,]...|Q..
&

Man beachte, dafl die in der flberdeckungsfunktion vorkommenden Variablen n.ld?ts
mit den Variablen der Funktion f zu tun haben. Sie bezeichnen vielmehr dA'e Je
weils benutzten Primimplikanten. Es 1ifit sich nun zeigen, da8 far die Funktion {
eine Summe von Primimplikanten P; |...|P;,, genau dann eine minimale Summe dar-
stellt, wenn z; &...&z;,, Primimplikant der flberdeckungsfunktion ist. Diese aber
lassen sich sehr einfach bestimmen, da in der fJberdeckungsfunktion nur nicht kom-
plementierte Variable vorkommen, sich die Primimplikanten also durch einfaches
Streichen von Verlingerungen bestimmen lassen.

Das folgende Beispiel soll das Verfahren nochmals erlautern:
Es sei die oben bereits benutzte, durch die Formel

c¬(d) | not(a)¬(b)c | akb | akd | not(a)imot(c)¬(d)

definierte Funktion gegeben, fiir die als Primimplikanten bestimmt wurden:
Pl = a%c

P2 = a&b

P3 = akd

P4 = pot(a)¬(d)
PS5 = cknot(d)

P6 = not(b)&c

P7 = bknot(d).

249

Die Funktion ist also auch gegeben durch die Summe aller Primimplikanten:
f= < akc | a&b | a&d | not(a)¬(d) | c¬(d) | not(b)&c | b¬(d) >.

Auf dieser Basis soll nun eine minimale fJberdeckung gesucht werden. Zunachst mufl
man die minimalen Uberdeckungen durch Primimplikanten der einzelnen Produkt-
terme der zugrundeliegenden Darstellung finden, in unserem Fall fir die einzelnen
Primimplikanten. Man erhalt:

MU(P,,...) = {{P,},{Py, P}, {Ps, Ps},{Pa Pe, P2}}
MU(P,,..) = {{P,},{Ps, P}}

MU(P,,...) = {{P3}}

MU(P,,...) = {{Py}

MU(P;,...) = {{Ps},{P1, Ps}, {Pe, Pr}}

MU(Ps,...) = {{Ps}}

MU(P,,..) = {{P;},{Ps, P2}}.

Es fallt dabei auf, daB die Primimplikanten P3, Py und Pg nur von sich selbst
iberdeckt werden. Man nennt derartige Primimplikanten Kernimplikanten. Sie
mﬁsien natiirlich in jeder minimalen Summe enthalten sein.

Als Uberdeckungsfunktion erhalt man:

UF = < (Py| Py& Ps| P3& Ps| Ps& Ps& Pr)& (P3| Ps&c Pr)& Psle Pa&
(Ps| Py& P3| Ps& Pr)& P& (Pr| P& Pp) >

P3, P, und P als Kernimplikanten konnen ausgeklammert werden und brauchen

auch in den einzelnen Summen nicht mehr aufgefiihrt zu werden, da sie bf:i den nach
dem Ausmultiplizieren resultierenden Produkttermen sowieso nur zu Verlangerungen

fihren wiirden. Man erhilt damit:

UF = < P& P,& Ps&(P,| Ps| Py P)&(Py Pr)&
(Ps|P,|P)&(Pr| Py) >

Multipliziert man aus und streicht alle Verlangerungen von Produk'ttermen, so erhalt
Man als Summe von Primimplikanten fur die Uberdeckungsfunktion:

UF = < P& Py&c P& Py| P& Po&c Pobi Py > .

Es gibt fiir f also zwei Darstellungen als minimale Summe von Primimplikanten:

f=<ath | atd | not(a)¬(d) | not(b)&c >
= < akd | not(a)¬(d) | not(b)&c | b¬(d) >.

250

Beide Darstellungen sind Summen von vier Produkttermen, die je zwei Literale ent-
halten. Wenn alle Variable in komplementierter und nicht komplementierter Form
vorliegen, so sind diese beiden Darstellungen gleichwertig, liegen sie nur in nicht
komplementierter Form vor, so bendtigt man fir die zweite Alternative eine Nega-
tion mehr, so daB in diesem Fall die erste Alternative vorzuziehen ware.

In vielen Fallen sucht man jedoch nicht eine optimale Realisierung einer isolierten
Booleschen Funktion, sondern die eines Funktionenbiindels. Darunter versteht man
eine Menge von Booleschen Funktionen, die von gemeinsamen Variablen abbangen.
Als Beispiel sei der Volladdierer genannt, der aus den gemeinsamen Argumenten a,
b und carry_in die Funktionen sum und carry_out berechnet. Noch krasser tritt
die Situation bei der Realisierung von Steuerwerken auf, wo im Prinzip alle Bits des
Steuerworts und des codierten Folgezustands von allen Bits des Statusworts und des
codierten aktuellen Zustands abhangen.

Nun kénnte man natirlich firr jede Funktion eines Funktionenbiindels isoliert eine
optimale Realisierung suchen. Die Vereinigung dieser Realisierungen stellt aber nicht
notwendigerweise die minimale Gesamtlosung dar. Man kann sich leicht tberlegen,
daB es in vielen Fallen giinstiger ist, an Stelle eines Primimplikanten eine Verlanger-
ung davon zu benutzen, wenn diese Verlingerung auch eine oder mehrere weitere
Funktionen des Biindels impliziert. Die Frage ist nun, wie sich minimale Realisie-
rungen von Funktionenbiindeln konstruieren lassen. Zentraler Begriff ist hierbei der
des multiplen Primimplikanten (manchmal auch Koppelterm genannt):

Def. 4.4.13

Sei F = {f1, f2, ..., fn} eine Menge von Booleschen Funktionen. Ein Produktterm p
heifit multipler Primimplikant von F :¢ Es gibt eine nicht leere Teilmenge F’ von
F, soda8 p Primimplikant des Produkts aller Funktionen aus F’ ist.

<

Man beachte, dafi alle Primimplikanten natirlich auch multiple Primimplikanten
sind, da einelementige Teilmengen F’auch erlaubt sind. Man kann nun zeigen, da‘B
eine minimale Realisierung eines Funktionenbiindels dann vorliegt, wenn sie aus mr
nimalen Summen von multiplen Primimplikanten besteht. Es gilt also, zunachst die
Menge der multiplen Primimplikanten zu bestimmen. Dies ist jedoch sebr einfach
moglich: Man bat hierzu nur die Menge der Primimplikanten der einzelnen Funk-
tionen zu bestimmen und danach die Menge aller Produkte von Primimplikanten
fur verschiedene Funktionen zu bilden. Aus dieser Menge miissen nun noch ever
tuelle Verlingerungen gestrichen werden und das Ergebnis mit der urspriinglichen
Primimplikantenmenge vereinigt werden. Die so erhaltene Menge von Implikanten
ist die Menge aller multiplen Primimplikanten des Funktionenbiindels.

Beispiel:

251

Es seien zwei Funktionen gegeben:

f = <akbic | not(b)¬(d) | not(a)&c&d>
g = <akbkc | b&d | not(a)&c>

Als Primimplikanten von f bestimmt man:

PI(f) = {atbac,not(b)¬ (d),not(a)&cd, atichnot(d), bkckd,
not(a)¬(b)&c)

PI(g) = {b&d,not(a)tc,béc}

Bildet man nun alle Produkte Q mit § = < P&P, > mit P, aus PI(f) und F; aus
PI(g), so erhalt man folgende Produktterme:

akbickd, not(a)&b&cid, bhckd, not(a)émot(b)&cinot(d), not(a)tcd,
ot (a) tbéced, not (a)¬ (b)&c, akbkc, not(a)ibkckd, a&bicinot(d).

Streicht man alle Terme, die Verlangerung anderer Terme sind, so bleiben:

bécgd, not(a)&ckd, not(a)&mot(b)éc, akbkc.

Diese Menge von Produkttermen mu8 nun noch mit der Menge der Primimplikanten
der Einzelfunktionen vereinigt werden. Damit erhalt man als Menge MPI (f,g) aller

multiplen Primimplikanten:

¥PI(f,g) = {bicad, not(a)&ckd, mot(a)énot(b)kc, adbkc, not(b)émot(d),
agc¬(d), b&d, not(a)kc, b&c}

Man beachte, daB in dieser Menge b&céd liegt, obwohl dieser Produktterm. eine echte
erlingerung des ebenfalls in der Menge enthaltenen Produktterms. bic ist.
Das Uberdeckungsproblem lost man in analoger Weise wie im Fall isolierter Boole-
scher Funktionen.
ler wurde nur das Problem besprochen, minimale Summen von Produkten zu fin-
den. Dies ist eine Darstellung, die bei Vorliegen entsprechender Gatter (Und-Gatt.;et,
Oder-Gatter) und unter der Annahme, daB alle Variablen auch in korfxplemePh.ep
ter Form vorliegen, laufzeitgiinstige Realisierungen ergibt. Man erhalt. natu'rl;)c'h
hur dann eine zweistufige Realisierung, wenn man potentiell Gatter mit beh; ig
Vielen Eingangen zur Verfugung hat. Ist dies nicht der Fall, mufl man ausklam-

mern, kommt damit aber auch zu mehr als zwei Stufen. Fir konventionelle PLAs

252

ist die beschriebene Methode auch sehr gut geeignet. Man mufl fir c%ies_e Reah.sne-
rung ja gerade minimale Summen fir Funktionenbiindel suc}.len, wobel hler_ wemg{:
die Eigenschaft von Primimplikanten, kurz zu sein, interessiert, sondern die, gro
Bereiche der zu realisierenden Funktionen zu iiberdecken. Dadurch spart man po-
tentiell Produktterme ein, minimiert also die einzige Dimension bei einem PLA, wo
man Freiheitsgrade hat. o _
Sucht man reine NOR- oder NAND-Realisierungen, so lassen sich minimale zwexi
stufige Realisierungen durch einfaches Anwenden der De Morganschefx Rege'ln aﬂh
minimale Summendarstellungen finden. Mehrstufige Realisierungen konnen jedoc
kostengiinstiger sein. Sie lassen sich auf diese Weise nicht finden.

4.5 Literatur

Zur Optimierung auf der algorithmischen Ebene gibt es zahlreiche Arbeiten aus flem
Gebiet der optimierenden Codegenerierung. Die Referenzen [04}, [08] und [15] mogen
als Beispiele dienen. Die Methoden wurden fiir den Hardwareentwurf a,ufgegrlfferf
und speziell Giberarbeitet, beispielsweise in [10], {12], {13}, | 14] und [17]-' Dabet
spielen auch optimierende Schedulingmethoden eine wichtige Rolle. Der A‘rtﬂ'(el V;'D
Tredennik {19] ist schon als klassisch zu bezeichnen. Er beschreibt vorbildlich e
verschiedenen Optimierungsmoglichkeiten auf der RT-Ebene. Ansatze auf der Basis
der linearen Optimierung finden sich auch in [10]. Fir die Optimierung auf der Gat-
terebene gibt es eine reiche Literatur. Hier mogen die Bicher [09], [11] und [20] éls
Beispiele fir Ubersichtsliteratur dienen. In [18] findet man eine vorbildliche einheit-
liche Darstellung. Die im Text beschriebenen Algorithmen gehen auf Mc Cluskey
[09] und Reusch [16] zuriick. In [07] wird ein sehr leistungsfahiges Softwaresystem
fiir diesen Bereich, das inzwischen auch kommerziell verfugbar ist, vorgestellt. AuC.h
das ESPRESSO-System [02]und {03] fand weite Verbreitung. Ebenfalls mit d.er M_l'
nimisierung von Funktionenbiindeln beschaftigt sich [01]. In [05] und [06] wird emn
alternativer, mehr lokaler und mehr regelbasierter Ansatz vorgestellt.

{01] J. Beister, R. Ziegler:
Zur Minimisierung von Funktionenbiindeln
Nachrichtentechnische Fachberichte 49, 1974

[02] R. K. Brayton, G. D. Hachtel, L. A. Hamchada, A. R. Newton,
A. L. M. Sangiovanni-Vincentelli:

A comparison of logic minimization strategies using ESPRESSO: an APL program®
package for partitioned logic minimization
Proceedings ISCAS, 1982

{03] R. K. Brayton, G. D. Hachtel:

Logic minimization algorithms for VLSI synthesis
Kluwer Acad. Publ., 1984

253

[04] R. P. Brent:) .
The Parallel Evaluation of General Arithmetic Expressions
JACM 21:2, Apr. 1974

[05]J. A. Darringer et al.: ‘
LSS:a system for production logic synthesis
IBM, Journal on R & D 28, Nr. 5, 1984

[06] 3. A. Darringer, W. H. Joyner:
A New Look at Logic Synthesis
Proceedings 17th DAC, 1980

o7 w. Grass, H.-M. Lipp: . . tion
LOGE - 5 highly effective system for logic design automati
ACM SIGDA Newsletter 9, No. 2, 1979

[08] M. S. Hecht:
Flow Analysis of Computer Programs
North Holland, 1977

(09] E. J. McCluskey: s
Introduction to the theory of switching circuits
Me Graw Hjll. 1965

[10] p. Marwedel: ung von
Ein Software.System zur Synthese von Rechnerstrukturen und zur Erzeugung

Mikrocode
Habilitationsschtift, Universitat Kiel, 1985

[11] s, Muroga:
Logic design and switching theory
John Wiley, 1979

(12] p. G, Paulin, J. P. Knight:]
Force-Directed Scht;duling in Automatic Data Path Design

Toceedings 24th DAC, 1987

[13] P. Pfahler:
Tsetzermethoden zur automatischen Hardware-Synthese
Dissertation Universitit-GH Paderborn, 1988

254

[14] P. Pfahler:
Folding of Microprocessor Networks
Proceedings EUROMICRO, 1987

[15] C. V. Ramamoorthy, M. J. Gonzalez:

Subexpression Ordering in the Execution of Arithmetic Expressions
CACM 14-7, July 1971

[16] B. Reusch:

Generation of Prime Implicants from Subfunctions and a Unifying Approach to the
Covering Problem

IEEE ToC C-24, 1975

[17] W. Rosenstiel:
Optimizations in High Level Synthesis
Proceedings EUROMICRO 86, 1986

(18] G. Szwillus:
Schaltwerktheorie

Skriptum zur gleichnamigen Vorlesung, Universitat Dortmund,
FB Informatik, 1988

{19] N. Tredennik:
How to Flowchart on Hardware
IEEE Computer, Vol. 14, No. 12, Dec. 1981

[20] S. Wendt:

Entwurf komplexer Schaltwerke
Springer, 1974

255

5 Evaluierung, Validierung, Verifikation

Design
Design Documents
Languages

Abb. 52: Evaluierung, Validierung, Verfikation im Entwurfsprozef

5.1 Formale Verifikation

Unter Verifikation soll hier der Nachweis verstanden werden, daﬁ, gewws;girzef:r;
dierte) Eigenschaften eines Entwurfsobjekts vorliegen. Man kann @t veﬁsc i enen
Methoden versuchen, diesen Nachweis zu fithren. In diesem Kap 1te'l sdo a‘nfl‘iee en-
men werden, daf der Nachweis durch formales Schlieﬁe'n auf der Basis er I‘;‘; latigven
den Entwurfsdokumente gefiihrt wird. Dies ist u.a. im Gegensatz zg Slerimenten
MEthoden zu sehen, bei denen eine hinreichend grofie Anza.l‘xl von k);r; oo
durchgefﬁhrt wird, bis man zur Uberzeugung kommt, da8 ein korre

vorliegt.

256

Formale Verifikation kann auf die verschiedenen Sichten und zugleich auf t'iig Veli-l
schiedenen Abstraktionsebenen angewandt werden. Die nachfolgende Ubersicht so
die verschiedenen Bereiche skizzieren:

a) Systemebene

a.1) Verhaltenssicht
- Leistung
- Deadlockfreiheit
- Kommunikationskompatibilitat
a.2) Struktursicht
- Vollstandigkeit der Komponenten
- statische Schnittstellenkompatibilitat
- widerspruchsfreie Inklusionseigenschaften
a.3) Geometriesicht
- Kompatibilitait mit Aufbautechnik
- Partitionierbarkeit

a.4) Testsicht

- Fehlertoleranz

- Existenz globaler Teststrategie
- Fehlerlokalisierbarkeit

=z

Algorithmische Ebene

b.1) Verhaitenssicht

- Vollstindigkeit des Instruktionssatzes

- Korrektheit des Interpretationsalgorithmus
- Leistung

- Algorithmusinterne Deadlockfreiheit
b.2) Struktursicht

- statische Schnittstellenkompatibilitat
b.3) Geometriesicht

- entfallt weitgehend
b.4) Testsicht

- Fehlerbehandlung

- Existenz pfadiberdeckender Testsitze

¢} Registertransferebene

257

c.1 Verhaltenssicht
- Korrektheit der RT-Implementierung
- Vollstandigkeit der RT-Implementierung
- Leistung
- Widerspruchsfreie Abbildung auf Taktstruktur
- Konfliktfreiheit auf Datenwegen
c.2) Struktursicht
- statische Schnittstellenkompatibilitat
- widerspruchsfreie Inklusionseigenschaften
c.3) Geometriesicht
- Existenz gewisser Anordnungsprinzipien
c.4) Testsicht

- Einhaltung von DFT-Regeln
- Verwendung von Modulen geringer Testkomplexitat

d) Gatterebene

d.1) Verhaltenssicht
- Korrektheit der Gatterimplementierung
- Einhaltung von Zeitrestriktionen (insb. hold- und setup-Zeiten)
- Minimalitat
- Hazardfreiheit
- Synchronitat
d.2) Struktursicht
- statische Schnittstellenkompatibilitat
- Einhaltung von Lastfaktorrestriktionen
- korrekte Beschaltung aller Eingange
- Korrektheit der Stromversorgung
d.3) Geometriesicht
- Einhaltung gewisser Anordnungsprinzipien
d.4) Testsicht
- Erreichbarkeit und Beobachtbarkeit
- Einhaltung von DFT-Regeln

- Existenz von Selbsttesteinrichtungen
- Testmuster mit ausreichendem Fehleriiberdeckungsgrad

€) Schalterebene, Ebene des symbolischen Layouts

258

e.1) Verhaltenssicht
- Korrektheit der Schalterimplementierung
- Minimalitat
- Einhaltung von Konstruktionsregeln (z.B. nur " steering logic”)
e.2) Struktursicht
- statische Schnittstellenkompatibilitat
- Einhaltung symbolischer struktureller Entwurfsregeln
- Vollstandigkeit der Stromversorgung
- Freiheit von statischen Kurzschliissen
- Freiheit von isolierten Teilgraphen
e.3) Geometriesicht

- Einhaltung symbolischer geometrischer Entwurfsregeln
- Gleichmafige zweidimensionale Anordnung
- Korrekte Benutzung der Dotierungsebenen

e.4) Testsicht

- Identifizierung mdglicher Kurzschlusse (benachbarte Leitungen)
- Sichtbarmachen von Testpunkten

f) Elektrische Ebene, Layoutebene
f.1) Verhaltenssicht

- Korrektheit der Transistor/Kapazitorimplementierung
- Einhaltung von Zeitrestriktionen
- Einhaltung elektrischer Parameter
- Einhaltung von EMV-Regeln
£.2) Struktursicht

- statische Schnittstellenkompatibilitat

- Einhaltung struktureller Entwurfsregeln

- Vollstandigkeit der Stromversorgung
£.3) Geometriesicht

- Einhaltung geometrischer Entwurfsregeln
- Gleichmafigkeit der Flachenausnutzung
f.4) Testsicht

- Elektrische Testbarkeit

- Partitionierbarkeit zu Testzwecken
Neben diesen zu tberprifenden Eigenschaften auf speziellen Abstraktionsebenen
und innerhalb gewisser Sichten gilt es weiterhin, eventuelle manuelle Implementa-

tionsaktivitaten zu verifizieren. D.h., es ist zu fiberpriifen, ob eine Implementation
einer Spezifikation tatsachlich diese Spezifikation erfalit.

259

5.1.1 Formale Verifikation von Verhaltenseigenschaften

Um gewisse Eigenschaften des Verhaltens formal verifizieren zu konnen, benotigt
man ein formales System sowohl fiir die Spezifikation wie auch fiir die Implementa-
tion. Dieses formale S ystem muB syntaktisch und semantisch wohl definiert sein. Fir
die Syntax derartiger Systeme hat man eine breite Auswah! verschiedener Ansitze.

Beziiglich der Semantik gibt es drei Hauptansitze:

¢ Operationale Semantik
® Denotionale Semantik
¢ Axiomatische Semantik.

Die operationale Semantik definiert die Bedeutung von syntaktischen Konstrukten
durch dje Aktionen, die eine abstrakte Maschine durchfithrt, wenn sie mit einer'n
derartigen Konstrukt konfrontiert wird. Man geht also davon aus, daB die s'yntaktll-
sche Beschreibung von einer derartigen abstrakten Maschine interpretiert wird. .Dle
in Abschnitt 2.1.2.1 eingefithrten Petri-Netze konnen als Beispiel einer derartigen
abstrakten Maschine gelten.

Bei der denotionalen Semantik wird von dieser interpretierenden abstrakten Ma-
schine abstrahiert. Sie wird ersetzt durch eine Menge von Funktionen, die Zustande
auf andere Zustinde abbildet. Jedem syntaktischen Konstrukt kann nun eine der.—
artige Transformationsfunktion zugeordnet werden. Man sieht, déﬁ die Unterschei-
dung zwischen operationaler und denotionaler Semantik flieBend ist. '

Die axiomatische Semantik assoziiert gewisse pradikatenlogische Formeln mit {ien
zu definierenden "Programmen” (Spezifikationen). Mathematisch bedf:ute.t d1.$,
daB eine formale Sprache, die nicht Bestandteil eines formalen Systems l’St, in eine
solche formale Sprache, fiir die es ein syntaktisches Ableitungskonzept gibt, trans-

formiert wird,

Formale Verifikationsverfahren fiir Hardware beruhen in der Regel auf dem axioma-
tischen Ansatz. Er soll daher etwas naher erlautert werden.

Ein formales axiomatisches und deduktives System muf folgenden Bedingungen
genligen:
i) Das Vokabular ist endlich und geordnet.
ii) Es gibt Regeln zur Konstruktion von Formeln. So generierte Formeln werden
"wohlgeformt” genannt.

iii) In der Menge der wohlgeformten Formeln gibt es eine Teilmenge, deren Galtigkeit
vorausgesetzt wird (Axiome).

260

iv) Es gibt eine Menge von Relationen zwischen wohlgeformten Formeln, die wohl-
geformte Formeln in solche transformieren (Inferenzregeln).

Unter einer Interpretation einer wohlgeformten Formel in einem System mit aus-
schlieBlich pradikativen Funktionen versteht man eine Zuordung von Wahrheitswer-
ten an alle atomaren Komponenten. Enthilt das System neben Pradikaten auch
Funktionen, so missen durch eine Interpretation Funktionen und Pradikate den
Funktions- und Pradikatssymbolen zugeordet werden. Eine Berechnung einer wohl-
geformten Formel ist eine Funktion, die ihr, ausgehend von einer maglichen Interpre-
tation, einen Wahrheitswert zuordnet. Eine wohlgeforme Formel heift Tautologie,
falls ihre Berechnung bei jeder moglichen Interpretation den Wert ”wahr” ergibt.
Gibt es wenigstens eine derartige Interpretation, so heift die Formel erfiillbar. Eine
Demonstration in einem formalen System ist eine Folge von wohlgeformten Formeln
fi..fa, wobei f; ein Axiom ist und jedes f; aus {fs,..., f»} durch Anwendung einer
Inferenzregel aus f;; erzeugt wird. Die Formel f, wird dabei Theorem genannt.
Unter dem Entscheidungsproblem eines formalen Systems S versteht man das Pro-
blem, zu entscheiden, ob eine wohlgeformte Formel ein Theorem ist. Kann man far
dieses Problem einen Algorithmus konstruieren, so heift das System entscheidbar.
Ein formales System heit vollstindig, wenn alle giiltigen wohlgeformten Formela
Theoreme sind, und konsistent, falls nur giltige wohlgeformte Formeln Theoreme
sind. In der Aussagenlogik werden die logischen Operatoren prazisiert und einfa-
che Inferenzregeln wie modus ponens ({A = B & A = wahr] = B = wahr) und
modus tollens ([A => B & B = falsch] = A = falsch) eingeflibrt. Die Aus-
sagenlogik ist konsistent, vollstindig und entscheidbar. Darauf aufbauend JaBt sich
die Pradikatenlogik erster Stufe definieren. Hier unterscheidet man zwischen Sub-
jekten und Relationen darauf, den Pridikaten. Einstellige Pradikate werden dabei
auch Eigenschaften genannt. Weiterhin fithrt man die Quantoren Vz : (fir alle x
gilt:) und 3z : (es gibt ein x, sodaB gilt:) ein. Variable in wohlgeformten For-
meln, die so quantifiziert sind, heiflen gebundene Variable, alle anderen freie Va-
riable. Die Pradikatenlogik erster Stufe ist vollstindig und konsistent, aber nicht
entscheidbar. LiBt man als Argumente fiir Pradikate wieder Pradikate zu, erhalt
man Pradikatenlogiken hoherer Ordnung. Da man zur vollstindigen Beschreibung
des Verhaltens von Hardware auch iiber zeitliche Zusammenhange sprechen muB,
wird meist eine Erweiterung der Pradikatenlogik, die temporale Logik, benutzt.
Eine Alternative ist es, eine spezielle Variable ”Zeit” zu benutzen und Pradikate
unter ihrer Mitbenutzung zu formulieren. In der temporalen Logik werden zu den

gplichen Konstrukten der Aussagenlogik weitere Operatoren hinzugefiigt. Es sind
ies

i) zum néchsten Zeitpunkt gilt(O)
it) ab jetzt gilt (g)
iil) eventuell wird gelten (<)
iv) bis (u)

261

Diese Operatoren konnen wie folgt interpretiert werden:

i) OF : F wird zum nachsten Zeitpunkt wahr sein.

i) OF :F wird ab jetzt fiir alle Zeit wahr sein.

i) OF : abdem nachsten Zeitpunkt kann es einen solchen geben,
zu dem F wahr ist.

V) FUG: G ist Jetzt wahr oder G wird irgendwann in der Zukunft wahr,
und F ist von jetzt an bis dahin wahr.

In jedem Fall nimmt man an, daB die Vergangenheit linear war. Nimmt man das-
selbe fiir die Zukunft an, d.h. nimmt man an, daB sich das System in die Zukunft
eindeutig entwickelt, so spricht man von linearer temporaler Logik. Geht man davon
aus, daf sich die Entwicklung in der Zukunft in verschiedene Alternativen verzwei-
gen kann, so spricht man von verzweigter temporaler Logik. Weiterhin muff man
noch festlegen, ob Aussagen nur {iber einzelne Zeitpunkte gemacht werden, oder uber
Zeitintervalle. Im letzteren Falle spricht man von intervalltemporaler Logik und muf
noch festlegen, ob derartige Intervallaussagen fiir alle Zeitpunkte des Intervalls (glo-
baler Ansatz) oder fiir mindestens einen Zeitpunkt (lokaler Ansatz) gelten missen.

Es ist heute weitgehend akzeptiert, dafl letztendlich formale Verifikationsmethoden
ahzustreben sind. Derzeit steckt dieser Ansatz jedoch noch in den Kinderschuhen,
obwohl schon komplette VLSI-Chips und Mikroprozessoren formal verifiziert worden
sind. Es werden noch sehr starke Restriktionen beziiglich der Verifikationsobjekte
gemacht, und die Verifikationsalgorithmen sind noch eher im Forschungsstadium
angesiedelt. In nicht zu ferner Zukunft wird jedoch die formale Verifikation das
Hilfsmittel Simulation in weiten Bereichen verdringt haben.

5.1.2 Verifikation des Zeitverhaltens getakteter Systeme

Eine getaktete sequentielle Schaltung 138t sich wie bereits gezeigt in der 'Hu“ffme_m-
Normalform darstellen. Theoretisch muB nun lediglich die Taktfrequenz hml:ang'hch
niedrig sein, um sicherzustellen, daB die Schaltung so wie intendiert funktioniert.
In dieser, Idealfall ist es auch relativ einfach, diese Frequenz zu bestimmen. Man
muf lediglich den langsamsten Pfad durch den kombinatorischen Teil der Schaltung
bestimmen. N ach dieser "reinen Lehre” erhalt man in der Regel jedoclll S.chalFl.m—
gen von nicht sehr guter Leistungscharakteristik. Um an die dur"ch. dle. Jewell‘lge
Technologie gegebenen Leistungsgrenzen heranzukommen, ist es notig, eine Re{he
das reine Konzept verletzende lokale Optimierungen vorzunehmen. Damit 138t sich
die Verifikation des Zeitverhaltens aber nicht mehr durch einfache globale Berech-
tungen durchfihren. Zunichst soll ein etwas praziseres Modell des Zeitverhaltens
vou Schaltelementen eingefithrt werden. Bei einem kombinatorischen Schaltelement

Werden folgende Verzogerungswerte definiert:

tpy Zeit, die zwischen einer auslosenden Wertinderung an eil,'em. Ei{lgang und ~d]:;
reagierenden Wertinderung am Ausgang vergeht. Dabei wird im Falle nic

262

idealer Flanken jeweils der Zeitpunkt gewihlt, an dem das jeweilige Signal
den halben Potentialwert erreicht hat. Fiir xy wird dabei entweder HL oder LE
eingesetzt, je nachdem, ob die resultierende Flanke am betrachteten Ausgang
von ”1” nach ”0” oder von ”0” nach "1” geht.

tiry ¢ Zeit, die bei nicht idealen Flanken zwischen 10% Potentialanderung vom ur-
springlichen Wert bis 90% Potentialinderung vergeht. Fir xy wird wie oben
entweder HL oder LH eingesetzt. Fiir diese Werte konnen auch Intetvau—
werte angegeben werden, um den Streubereich zwischen Maximal- und Ml
nimalwert anzugeben. Man beachte, daB bei den meisten Technologien die
Verzdgerungszeiten zwischen positiven und negativen Transitionen recht un-
terschiedlich sind. Bei pegelgesteuerten Flipflops (Latches) sind zusatzlich
sogenannte Setup- und Hold-Restriktionen zu betrachten:

toerp @ Zeit, die zwischen der letzten Wertinderung eines Dateneingangs des Latches
und der Wertanderung des Takteingangs auf den Wert, der das Latch auf den
transparenten Modus schaltet, mindestens verstreichen muf. Wahrend das
Taktsignal diesen Wert hat, mufl das Datensignal stabil sein.

thotd ¢ Zeit, die zwischen der Wertanderung des Taktsignals auf den Wert, der 'das
Latch auf den Speichermodus schaltet, und der ersten Wertinderung €ines
Dateneingangs danach mindestens verstreichen muf.

Diese Werte lassen sich auch fir flankengesteuerte Flipflops definieren. In diesem
Fall kann der Taktimpuls auf die Linge null verkiirzt werden, falls man mit idealen
Flanken arbeitet. Ansonsten sind die entsprechenden t;,, und #,,, zu addieren. Abb.
53 verdeutlicht diese Verzdgerungsdefinitionen. ,
Aufgabe der Laufzeitiberprifung ist nun, bei vorgegebener Taktstruktur und bel
bekannten Verzégerungszeiten zu berechnen, ob die Restriktionen bzgl. Setup- und
Hold-Zeiten eingehalten werden. Man unterscheidet hier zwischen pfadorientier-
ten und knotenorientierten Verfahren. Bei pfadorientierten Verfahren werden all’e
Pfade bestimmt, die von irgendeinem Primareingang oder Flipflopausgang zu -
nem Flipflopeingang gehen. Fiir jeden dieser Pfade wird nun die Gesamtlaufzeft
bestimmt. Diese so gefundenen Laufzeiten werden mit den Restriktionen vergh-
chen. Im Falle von Verletzungen kann der verletzende Pfad sofort angegeben und
das Ausmafl der Verletzung quantifiziert werden. In dieser sehr feinen und einfa'-
chen Analysemoglichkeit liegt der groBe Vorteil dieses Verfahrens. Sein Nachteil
ist das mit der Anzahl der Knoten im zu analysierenden Schaltwerk exponentielle
Wachstum des Aufwandes. Dies liegt eben darin, daB alle Pfade bestimmt werden
miissen. Bei knotenorientierten Verfahren beginnt man an den Primareingangen und
Flipflopausgangen der Schaltung zu einem festen (angenommenen) Zeitpunkt und
rechnet nun Schaltwerkknoten fiir Schaltwerkknoten aus, nach welcher Zeit am Aus-
gang des Knotens relativ zu diesem Startzeitpunkt eine Wertanderung stattfindet.
Dabei bekommt man an einem Knoten die bereits berechneten Zeitpunkte der diesen

263

Vv
! ptH —™
X
.......... [
X
+ t
_____________ !
)
.
v
A .
]
______________ N
)
]
]
______________ '
]
)
]
:
Vsetup
clock X f
¥
; — lhold —
! X
' 1]
! U
data stable ' stable X stable

Abb. 53: Definition von Verzogerungsparametern

264

Knoten treibenden Knoten geliefert. Man besucht also jeden Knoten nur einmal, hat
also einen Algorithmus linearer Komplexitat bzgl. der Knotenanzahl. Sind an de.n
Primarausgangen der zu analysierenden Schaltung (d.h. den Flipflopeingangen) die
Zeitrestriktionen relativ zu dem angenommenen Anfangszeitpunkt bekannt, so kann
man die berechneten Werte damit vergleichen. Im Falle von Verletzungen kann man
nun den Differenzwert zwischen berechneter und geforderter Zeit riickwarts durch
das Schaltwerk propagieren, wobei im Falle interner Verzweigungen der grofiere der
Verletzungswerte zu betrachten ist. Ist man bei diesem Durchgang wieder an den
Eingingen angelangt, so kann man an jedem Eingang ablesen, wie grof die Zeitver-
letzung an diesem Eingang ist. Man beachte, da damit noch nicht der kritische
Pfad selbst identifiziert ist. Dieser 1aBt sich dann aber relativ einfach konstruieren.

Beispiel:

Es seien folgende vereinfachende Annahmen gemacht:

- Flanken sind ideal.

- Es gibt keinen Unterschied zwischen .41 und t,pg.

- Es gibt keine Unsicherheitsintervalle.

- Es ist nur nach spatestern Eintreffen von Wertanderungen zu uberpriifen.

Abbildung 54 zeigt nun ein vierstufiges kombinatorisches Schaltnetz mit den Verzoge-
rungszeiten pro Knoten, dem angenommenen Zeitpunkt 0 fiir den Beginn der Ana-
lyse und an den Ausgingen des Schaltnetzes den geforderten maximal erlaubten

Ankunftszeitpunken von Wertanderungen relativ zu diesem angenommenen Start-
zeitpunkt.

pit po1
—a -o—B c —e+o |
2 4 1 3 10
pi2 po2
E F G H
3 1 1 o5 10
pi3 T
po3
.] Jd K 1L
pia 1 1 4 . 10
o pos
M N 0 1P
2 3 5 1 12

\Jropagation delay of block N

Abb. 54: Schaltnetz fiir Laufzeitanalyse

265

Abbildung 55 zeigt die berechneten Zeitpunkte von Signalwechseln pro Knoten des
Schaltwerks und damit auch an den Ausgangen. Man beobachtet an den Ausgiangen
Pol und Po2 einen negativen Schlupf von 1 bzw. 3 Zeiteinheiten, d.h. eine Verlet-
zung um diesen Betrag. An den Ausgingen Po3 und Pod liegt positiver Schlupf vor,
d.h. noch eventuelle Freiheitsgrade.

po1
ptgA | =&—B 8" C —8—-0-> D
2 |2 4 |7 1 s [T
pi2 po2
E F —1 G 1
3 0
pia 1 T__._, 1 ol 5 1
0 p03
l J —1 K 8 L] ,10

pi4

g e
A
z ey
F-N
}
v
s g
FY

0
2 3 5 8 1

ropagation delay of block N
Abb. 55: Schaltnetz mit berechneten Laufzeiten

A_bbildung 56 schlieBlich zeigt, wie die Information iber den Schlupf ricckwarts durch
die schaltung gerechnet wird, wobei immer der maximale negative oder der minimale
p?sltive Schlupf im Falle interner Verzweigungen weiter beriicksichtigt wird.

Dies so skizzierte Verfahren kann nun so erweitert werden, da sowohl Setup- wie
auch Hold-Zeiten beriicksichtigt werden konnen. Weiterhin konnen unterschiedliche
Verzagemngszeiten fir Aufwirts- und Abwartstransitionen bearbeitet werden, doch
n}uﬁ dann pro Gatter bekannt sein, ob es eine invertierende Charakteristik hat oder
nicht. Unsicherheitsintervalle konnen ebenfalls in die Verarbeitung mit eingehen. In
dem Beispiel wurde davon abstrahiert, daf Verzogerungszeiten von der von einem
Gatter 2y treibenden Last, d.h. vom Verzweigungsgrad des Netzes am Gatteraus-
gang, abhangen. Dies 1afit sich jedoch ebenso in die Verarbeitung mit aufnehmen.
Algorithmen zur statischen Laufzeitanalyse gewinnen in jingster Zeit enorm an Be-
qe“tullg. Mit ihrer Hilfe ist es moglich, die Laufzeitanalyse von der funktionalen
Uberpr fung vollstandig zu entkoppeln. Neben dem Vorteil, daB man beziglich der
LE}“fzeitﬁberprﬁfung Ergebnisse erhalt, die genereller Natur sind, d.h. nicht von be-
sFlrnrnten Testmustern abhingen, erlaubt dieses Vorgehen im Falle einer Simulation,
einen erheblich einfacheren und damit erheblich schnelleren Simu_lationsalgorithmus
2u benutzen. Da die Simulation nun nur noch der funktionellen Uberpriifung dient,
kann hierfir eine Einheitsverzogerungsannahme gemacht werden, fur einen Simula-

tor der ideale Fall.

1
pit = 4 P
A =
0 2]2 3 | 10

-3

pi2 3 ;.1';{—-3 po2
0 ES 3 5 —1_3_’10

pi3 3
0 5 | P03
. { o N E |

P': 113 1 {9 10

2
2 - 3 pod
Mol2 1 912

ropagation delay of block N

Abb. 56: Schaltnetz mit riickwarts verfolgtem Schlupf

5.2 Simulation

Grundsitzlich bedeutet Simulation, ein System zu konstruieren, das sich wie en
anderes verhalt. In unserem Kontext bedeutet es, ein Modell des betrachtete'n En_t—
wurfsobjekts auszufithren. D. h. durch Simulation sorgt man dafiir, da8 sml} emn
Gastrechner wie das zu simulierende Objekt verhalt. Es ist weit verbreitet, Slm}l‘
lation als Verifikationswerkzeug zu betrachten. Jedoch ist die Simulation nur em
Datenproduzent fir eine Verifikation. Die eigentliche Verifikation wird durc}'l Un-
tersuchung der durch den Simulator produzierten Daten durchgefiihrt. Dabei ist zu
beachten, dafi, wenn nicht autonome Systeme simuliert werden, die Simulationser-
gebnisse nicht nur von dem auszufithrenden Modell abhingen, sondern auch von den
Daten, die diesem Modell von der Umgebung angeboten werden.

Somit bedeutet Verifikation auf der Basis von Simulation letztendlich, zu aﬂal}f'
sieren, ob das Paar (Modell des Entwurfsobjekts, Daten von der Umgebung? die
korrekten Ergebnisdaten produziert. Demnach besteht ein komplettes Verifikations:
system auf der Basis von Simulation aus vier Hauptkomponenten:

o Ein Generator fur ausfithrbare Modelle von Objektumgebungen,

ein Generator fir ausfihrbare Modelle der zu simulierenden Objekte,

e ein Laufzeitsystem fir das Modell zusammen mit seiner Umgebung und

o ein Ergebnisanalysator

In verfugbaren Simulationssystemen existieren nicht alle diese Komponenten. Es
ist dabei der Trend zu beobachten, den Generator fiir Objektumgebungen durch

267

d?n Generator fiir Modelle zu ersetzen. Dies erscheint sehr natiirlich, da dadurch
file Umgebung selbst als ein diese darstellendes Modul angesehen wird. AuBerdem
ist es bei diesem Ansatz sehr einfach, Umgebungen zu modellieren, die auf Ausga-
ben des zu simulierenden Objekts (object under simulation, OUS) reagieren. Dies
k:.inn essentiell sein, z.B wenn man verfizieren méchte, da das OUS ein Kommu-
nikationsprotokoll korrekt bedient. Ein Problem bei diesem Ansatz ist, dafi die
Modellierungssprache michtig genug sein mu8, um mit ihr Verhaltensmodelle der
Umgebung bilden zu kénnen. Ein weiteres Problem liegt darin, daB man Werte in
I?atenobjekte injizieren mochte, die tief in der Beschreibung des OUS geschachtelt
sind. Derartige Objekte sind in wohlstrukturierten Sprachen von aufien nicht zu-
greifbar, sodaB gewisse Techniken, die Schutzmechanismen strukturierter Sprachen
zu iiberschreiben, notwendig sein konnen.
Hat man im Fall des Umgebungsgenerators den Trend, daB er durch den Modellge-
nerator mit tiberdeckt wird, so gibt es traditionell einen Mangel an Ergebnisanaly-
satoren. In den meisten Fallen wird die Analyse der produzierten Daten vollstandig
dem Benutzer des Simulationssystems uberlassen. In jiingster Zeit wurden einige
wenige Ansitze gemacht, diesen Mangel zu beheben.

Die Glaubwiirdigkeit einer Verifikation, die auf der Basis von Simulation durch-
gefithrt wird, hangt von allen beteiligten Komponenten und Modellen ab: Zunachst
ist das OUS ein Modell eines Objekts. Alle Verifikationsaussagen, die durch das
Simulationssystem gewonnen werden, sind Aussagen uber dieses Modell. Modelliert
es das reale System schlecht, haben die Aussagen wenig mit diesem zu tun. Hier ha-
ben die Modellierungsmoglichkeiten der benutzten Hardwarebeschreibungssprachen
zwar einen gewissen EinfluB (man kann nie praziser modellieren, als es das benutzte
Modellierungswerkzeug zulaBt), aber sumindest die Qualitat des initialen Modells
Innerhalb eines Entwurfsprozesses hangt weitgehend vom Modellierungsgeschick des
Entwerfers ab.
Da ein Simulationslauf nur Ergebnisse in Bezug auf die Eingabe, mit der er konfron-
tiert wird, produziert, hangt die Aussagekraft einer Verifikationsaussage wesentlich
von diesen Eingabemustern ab. Somit ist ein Modell der Umgebung, das so prazise
und vollstindig wie moglich ist, wesentlich. Aus dieser Tatsache 1a8t sich ableiten,
daB Simulation ein Werkzeug exponentieller Komplexitat ist. Das ausfihrbare kom-
binierte Modell des OUS und seiner Umgebung mu8 nun durch ein Laufzeitsystem
ausgefithrt werden, das das Modell auf Ablaufe auf einem Gastrechner abb?ldet.
Diese Abbildung kann von sehr unterschiedlicher Qualitat sein, mit der ublichen
Balance zwischen Geschwindigkeit und Prazision.
Endlich sind die produzierten Daten nicht mehr wert, als die darauf angestellte Ana-
lyse. Hier ist das kritischste Problem zu suchen. Da in den meisten Fallen die Ana-
lyse manuell auf einer enormen Datenmenge, die zudem oft in » anti-ergonomischer”
Weise dargestellt wird, ausgefithrt werden muB, ist die Wahrscheinlichkeit inkorrek-
ter SchluBfolgerungen relativ hoch. Dies ist besonders gefahrlich, da der Entwer.fer
ein gutes Gefiihl hat, weil er das Entwurfsobjekt sorgfaltig simuliert hat und keine

weiteren Fehler entdeckt hat.

268

5.2.1 Generierung ausfiihrbarer Objektmodelle und deren Ausfiihrung

Die Generierung ausfithrbarer Objektmodelle zusammen mit deren Ausfihrung ist
der komplexeste Teil eines Simulationssystems. Daher soll dies zuerst b&sprocht?n
werden. Dieser Bereich wird mit einer Vielzah! von Modellierungskonzepten in
unterschiedlichen Hardwarebeschreibungssprachen auf verschiedenen Abstraktions-
ebenen konfrontiert. Sie konnen zwar direkt in geeignete, dedizierte ausfiihrbare
Aquwalente abgebildet werden (und dies geschieht naturlich bei den verschiedenen
Simulationssystemen), doch werden wir hier ein internes Modellierungskonzept ent-
wickeln, auf das alle externen einfach abgebildet werden konnen. Dann soll bescl?ne-
ben werden, wie das interne Modell unter Benutzung unterschiedlicher Techniken
ausgefiihrt werden kann. Dadurch werden die Prinzipien evident.

5.2.1.1 Interne Modellierungskonzepte

Im Abschnitt 2.1.2.1 wurden zeitbehaftete Interpretierte Petri-Netze als Mod.ellie-
rungskonzept der imperativen Sicht eingefithrt. Hier soll nun das Konzept der zeitbe-
hafteten Interpretierten Petri-Netze erweitert werden, um als einheitliches internes
Modell zu dienen, das alle externen iiberdeckt.

Im Abschnitt 2.1.2.1 wurde nur eine Schaltregel (das a-Schalten) definiert und an-
genommen, daf alle Transitionen eines Netzes dieser Regel folgen. Nun soll ein
heterogener Satz von Schaltregeln eingefiihrt werden.

Def. 5.2.1.1 (a-schaltbar und a-Schalten wiederholt, AND-Transition)

Sei PN = ((P,T, E),m,, R) ein Petri-Netz , t € T..
Bezeichne 't = {p € P|(p,t) € E} die Eingangsstellen von t,

t = {p € P|(t,p) € E} ihre Ausgangsstellen.
Die Transition ¢ heifit a-schaltbar unter der Markierung m : &
Vp€ t:m(p) > 0.
fi: M — M heift a-Schalten der Transition ¢ :&

S m(p)) ==m(p) - 1:@ pet

fm(p)) :=m(p)+1:& pet

fm(p)) := m(p) sonst.

il

Eine Transition heiBt AND-Transition, falls sie a-schaltbar ist und ein a-Schalten
durchfihrt,

Es bezeichne A(PN) die Menge aller AND-Transitionen eines Petri-Netzes.
<

Die AND-Transition ist genau die ubliche Transition normaler Petri-Netze. Sie iﬁf't
schaltbar, wenn alle ihre Eingangsstellen markiert sind. Beim Schalten entfernt si€

269

ei'ne Marke von jeder Eingangsstelle und legt eine auf jede Ausgangsstelle. Graphisch
wird eine AND-Transition wie in Abb. 57 gezeigt dargestellt.

Abb. 57: AND-Transition

Def. 5.2.1.2 (o-schaltbar und o-Schalten, OR-Transition)

Sei }?N = (AT, E),m,, R) ein Petri-Netz , t € T
BEZelchne 't = {p € P|(p,) € E} die Eingangsstellen von t,
={pe Pl(t,p) € E} ihre Ausgangsstellen.

Die Transition ¢ heifit o-schaltbar unter der Markierung m : &
et m(p) > 0.
fo: M - M heist o-Schalten der Transition t :<>

f(m(p)) := m(p)~1:pet

fim(p)) := mp)+1:&pet

f(m(p)) .= m(p) sonst.

Eine Transition heift OR-Transition, falls sie o-schaltbar ist und ein o-Schalten

durchfiihrt,
Es bezeichne O(PN) die Menge aller OR-Transitionen eines Petri-Netzes.

o

Die OR-Transition ersetzt den Riickwartskonflikt in @blichen Petri Netzen, wo mehr
als eine Transition in eine gemeinsame Ausgangsstelle schalten. Wir werden diese
Transition nur in sicheren Netzen benutzen. Dies sind solche, die durch ihre To-
Pologie und initiale Markierung sicherstellen, da8 zu keiner Zeit eine Stelle mehr
als eine Marke trigt. Aus dieser Forderung kann abgeleitet werden, daf bei einer
OR-Transition niemals mehr als eine Eingangsstelle markiert ist, weshalb dieser Fall

in der Definition auch nicht berticksichtigt wurde.
Graphisch wird eine OR-Transition wie in Abb. 58 angegeben dargestellt.

270

Abb. 58: OR-Transition

Def. 5.2.1.3 (d-schaltbar, d-Schalten, DECIDER-Transition)

Sei IPN = (((P,T, E),m,, R), I, D) ein Interpretiertes Petri-Netz , t € T. _
Sei 't = {p;} die (einzige) Eingangsstelle von t,t" = {Pirues Psatse} seien die Aus-
gangsstellen.
Sei i(t) : d—d , i(2)(d) = d,value(d) € {true, false}
Die Transition ¢ heifit d-schaltbar unter der Markierung m :¢ m(p;) > 0.
fe: M — M heifit d-Schalten der Transition {:&
Fm(pi)) = m(p:) — 1
fem(Prrue)) = Mm(Prrue) + 1 16> d = true
fz(m(pfalse)) = m(pfalse) +1:& d= false
fdm(p)) =mi(p) sonst.

Eine Transition ¢ heift DECIDER-Transition, falls sie d-schaltbar ist und ein d-
Schalten durchfthrt.

Bezeichne I(IPN) die Menge der DECIDER-Transitionen von IPN.
<

Die DECIDER-Transition ersetzt den Vorwirtskonflikt in uiblichen Petri Netzen-
Dabei haben mehrere Transitionen eine Eingangsstelle gemeinsam. Da wir hier (dle
Entscheidung auf der Basis einer Bedingung, die vom Datenbereich abgeleitet wird,
treffen wollen, wird zu interpretierten Petri Netzen iibergegangen. Dabel wird als
Interpretation eine Identititsabbildung mit Booleschem Wertebereich benutzt, nur
um eine Boolesche Variable, deren Wert getestet werden kann, anzubieten.
Graphisch wird eine DECIDER-Transition wie in Abb. 59 angegeben dargestellt.

Def. 5.2.1.4 (b-schaltbar, b-Schalten, BLKHEAD-Transition)

Sei IPN = (((P,T, E),m,, R), I, D) ein Interpretiertes Petri-Netz , t € T-
Sei 't = {enable,reqli = 0 : n} die Menge der Eingangsstellen von t,
t = {run,ret;li = 0 : n} die der Ausgangsstellen.

271

pfalse ptrue

Abb. 59: DECIDER-Transition

Sei (1) : d — d, i()(d) = d, value(d) € {{reqili =0:n} = [0:n]C INo}
Die Transition ¢ heifit b-schaltbar unter der Markierung m :&
m(enable) > 0 A Ip € {regili = 0 : n} : m(p) > 0.
ft: M — M heiBit b-Schalten der Transition ¢ :&
film(enable)) := m(enable) — 1
flm(run)) := m(run) + 1
fi(m reg;)) := m(reg;) — 1
' value(d)(regq;) = maz{value(d)(req.')lm(’”elh) > 0}
film(ret;)) == m(reti) + 1
‘& value(d)(req;) = maz{value(d)(req.‘)Im(req-‘) > 0}
film(p)) := m(p) sonst.
Eine Transition ¢ heift BLKHEAD-Transition, falls sie b-schaltbar ist und ein b-

Schalten durchfiihrt.
Bezeichne H(IPN) die Menge der BLKHEAD-Transitionen von IPN.

o

Eine BLKHEAD-Transition dient als Arbiter, um nebenlaufige Aufrufe an das Netz,
fias sie verwaltet, zu behandeln. Die Stelle enable zeigt an, ob dieses gerade verfugbar
1§t_ Anfragen werden tber die Stellen reg; gestellt. Die Interpretation dieser Tran-
sition ist eine feste Prioritatsfunktion, die die Eingangsstellen reg: auf ein Intervall
ganzer Zahlen abbildet. Diese feste Prioritatsfunktion kann durch eine dynami-
sche ersetzt werden, falls erforderlich. Die BLKHEAD-Transition ist schaltbar, falls
eT‘able markiert ist (d.h. das zu verwaltende Netz ist verfugbar) und mindeste?ns
€0 reg; markiert ist (d.h. es gibt mindestens einen Aufruf). Beim Schalten wird
die Marke von enable (das zu verwaltende Netz ist nicht mehr verfugbar) und von
dem reg; mit hachster Prioritat entfernt. Sie markiert run (initiiere das zu verwal-
tende Netz) und das ret; mit demselben Index wie das reg;, von dem eine Marke
entfernt wurde, Damit wird die Information, welcher Aufruf gerade bedient wird,
gespeichert. Graphisch wird eine BLKHEAD-Transition wie in Abb. 60 angegeben

272

dargestellt.

req

50 Z

run ret enable

Abb. 60: BLKHEAD-Transition

Def. 5.2.1.5 (n-schaltbar, n-Schalten, BLKEND-Transition)

Sei IPN = (((P,T, E),m,, R), I, D) ein Interpretiertes Petri-Netz , t € T.
Sei 't = {finished, ret;li = 0 : n} die Menge der Eingangsstellen von ¢,
t = {enable,back;|i = 0 : n} die der Ausgangsstellen.
Sei i(t) : d — d,i(t)(d) = d,value(d)B{{regli = 0:n} — [0 :n] C No}
Die Transition ¢ heit n-schaltbar unter der Markierung m :¢&

m(finished) > 0.
fi: M — M heit n-Schalten der Transition ¢ :¢

film(finished)) := m(finished) — 1

f{m(enable)) := m(enable) + 1

fi{m{ret))) := m(ret;) — 1:& m(ret;) >0

fdm(back))) :== m(back) + 1 :& miret;) > 0

film(p)) :=m(p) sonst.

Eine Transition ¢ heift BLKEND-Transition, falls sie n-schaltbar ist und ein n-

Schalten durchfiihrt.
Bezeichne N(IPN) die Menge der BLKEND-Transitionen von IPN.

<

Die BLKEND-Transition ist genau das Komplement der BLKHEAD-Transition. Si'e
ist schaltbar, falls die Stelle finished markiert ist (d.h. das zu verwaltende Netz term-
niert hat). Durch die Netzstruktur wird sichergestellt, daB zu diesem Zeitpunkt stets
genau ein ret; markiert ist. Beim Schalten entfernt es von seinen markierten Eil}‘
gangsstellen eine Marke und markiert enable und das back; mit demselben Index wie
dasjenige ret;, das markiert war. Dadurch wird das zu verwaltende Netz wieder zur

273

Vt.%rfﬁgung gestellt und die Instanz, die den soeben bedienten Aufruf ausgelost hat,
Wfrd' itber die Abarbeitung informiert. Graphisch wird eine BLKEND-Transition
wie in Abb. 61 angegeben dargestellt.

finished ret enable

back
Abb. 61: BLKEND-Transition

BLKHEAD- und BLKEND-Transitionen diirfen nur paarweise benutzt werden. In

einem solchen Paar werden die Stellen ret; und enable identifiziert. Zwischen die

Stellen run und finished wird ein beliebiges Netz mit je genau einer Eingangs- und
Ausgangsstelle eingefiigt. Die dadurch erhaltene Situation ist in Abb. 62 dargestellt.

Abb. 62: Paarweises Auftreten von BLKHEAD- und BLKEND-Transitionen

Def. 5.2.1.6 (y-schaltbar, y-Schalten, AT-Transition)

Sei IPN = (((P,T, E), mo, R), T, D) in Interpretiertes Petri-Netz, t €T -
S.el 't = {synch, ord} die Menge der Eingangsstellen von £,
t = {out} die (einzige) Ausgangsstelle.

274

Die Transition ¢ heiBt y-schaltbar unter der Markierung m : &
m(synch) > 0.
f, M — M heifit y-Schalten der Transition { :&
fi(m(synch)) := m(synch) — 1
film(ord)) := m(ord) — 1 :& m(ord)) >0
(out)) := m(out) + 1 :& m{ord)) > 0
fi(m(p)) :== m(p) sonst.

(

Eine Transition ¢ heiBt AT-Transition, falls sie y-schaltbar ist und ein y-Schalten
durchfiihrt.

Bezeichne Y(IPN) die Menge aller AT-Transitionen von IPN.

o

Eine AT-Transition ist schaltbar, wenn die Eingangsstelle synch markiert ist. Ist dies
die einzige markierte Eingangsstelle, wird die Marke entfernt, um das Schalten der
Transition durchzufiihren. Ist jedoch zur selben Zeit die Eingangsstelle ord ebenfalls

markiert, dann werden beide Eingangsstellen demarkiert und eine Marke wird in die
Ausgangsstelle out gelegt.

Graphisch wird die AT-Transition wie in Abb. 63 angegeben dargestellt.

synch ord

out

Abb. 63: AT-Transition

Def. 5.2.1.7 (Safe Restricted CAP Net)

Sei TIPN = ((((P, T, E),m,,R),I,D),A) ein zeitbehaftetes Interpretiertes Petri
Netz.

TIPN heifit SRCN (Safe Restricted CAP Net) : ¢

1T = A(IPN)U O(IPN)U D(IPN)U H(IPN)U N(IPN)UY(IPN)
2)Vpe P:lpl=|p|=1

3)Vpe P:Vme M : m(p) € {0,1}

275

HYVte T :
(t¢ D(TIPN)Vt ¢ B(TIPN)V
t¢ (ATIPN)N{teT| pl=IpI=1}) = i(t)=2A

o

§RCNS haben die Machtigkeit, alle Modellierungsebenen, die von DACAPO III
iiberdeckt werden, abzudecken. Betrachtet man die Beschreibungsmachtigkeit von
D_ACAPO I1I, ergibt sich daraus, daB SRCNs als einheitliches internes Modell fiir
dl_e gesamte Bandbreite von der Systemebene hinab bis zur Schalterebene dienen
kénnen. Um dies zu zeigen, mufl gezeigt werden, da8 sich alle Sprachkonstrukte von
DACAPO III auf SRCNs abbilden lassen.

g;él\}l Abbildung Algorithmischer Konstrukte von DACAPO III auf
s

a) s:Legin_ Si; Sa;...; S end wird modelliert durch das in Abb. 64 gezeigte Netz-
muster:

o-@ % -0

Abb. 64: Netzmuster fir seqbegin...end

b c:nb& Sy; Sg;...; S, end wird modelliert durch das in Abb. 65 gezeigte Netz-
muster:

Abb. 65: Netzmuster fur conbegin...end

276

c) if c then S; else S2 wird modelliert durch das in Abb. 66 gezeigte Netzmu-

ster:
t i {

Abb. 66: Netzmuster fiir if...then...else

d) while c do S wird modelliert durch das in Abb. 67 gezeigte Netzmuster.

@

Abb. 67: Netzmuster fiir while...do

€) at ¢ do S wird modelliert durch das in Abb. 68 gezeigte Netzmuster.

4

Abb. 68: Netzmuster fiir at...do
f) Ein Prozeduraufruf wird modelliert durch das in Abb. 69 gezeigte Netzmuster.

277

Abb. 69: Netzmuster fur Prozeduraufruf

when-Anweisung wurden im

iir die‘ repeat S until c - Anweisung und fir die
schnitt 2.3.2 Quellsprachiquivalente angegeben. Die case ¢ of - Anweisung

kann durch eine Kaskade von if ... then ... 1se ersetzt werden. Funktions-
fdefenzen in Ausdriicken werden auf Prozeduraufrufe durch das folgende Prinzip
zurickgefithrt:

ung, die einen Ausdruck, bestehend aus

Seia := . . .
€la := e op f(x) eine Zuwelsungsanweis
tor op und einer Funktionsreferenz £

ir i .
sendelnem Unterausdruck e, einem Opera
mi . .

it Argument x an a zuweist. Dies kann ersetzt werden durch:

Seqbegin
Proc_f(x, f_res) ;
2 i= e op fres

end.

rfflierbei bezeichnet proc_f eine Prozedur, die denselben Rumpf wie £ hat, auBer der
atsache, daB sie ihr Ergebnis dem out-Parameter f.res zuweist.

5.2.1.1.2 Abbildung von DACAPO III-Konstrukten der Systemebene auf

SRCNs

Eine Prozedur wird auf das in Abb. 70 angegebene Netzmuster abgebildet.

Fir jede Prozeduraufrufanweisung im Quelltext, die diese Prozedur aufruft, muf
genau ein Tripel (reg;, ret;, back;) eingerichtet werden. Eine Export-Prozedur kann

durch das folgende Prinzip auf eine gewohnliche reduziert werden:

Sei
export (o, ...,0,) procedure a ;

278

Abb. 70; Netzmuster fir Prozedur

procedure o; ... procedure o, ...
end

eine Export-Prozedur. Dies kann substituiert werden durch:

procedure a.sub (... ; in operator : (o1,..,0.)) ;

case operator of
0 :

01
end
end.

Ein Aufruf der Form a.op;(...) muB dann ersetzt werden durch einen der Form
a_sub(...,op;).

Die Abbildung des Interrupt-Konzepts ist schwieriger. Der Grund liegt darin, daB
Petri-Netze einem lokalem Konzept folgen, wahrend Interrupts von globaler Natur
sind. Die Grundidee der Abbildung ist, jeder Transition, die von einem Interrupt
beeinfluBt werden kann, ein Netzmuster hinzuzufugen, das die Reaktion auf den

Interrupt modelliert. Somit muf eine beliebige Transition durch das in Abb. 71
dargestellte Netz ersetzt werden.

209

ol on

Abb. T1: Unterbrechbare Transition

i,, die normalen Eingangsstéllen der transformierten Tran-
ellen. Die Transition t ersetzt die
Interpretation. Solange die Be-
wirkung auf diese Transition

Hier bezeichnen i, .,
sition und oy, ..., 0, ihre normalen Ausgangsst
“_Tsprﬁngliche Transition mitsamt der zugeordneten
dingung I (mit Bedeutung "es ist ein Interrupt mit Aus
a_“fgetreten”) den Wert ”false” hat, bleibt das urspriingliche Verhalten der Transi-
Flon unverandert: Das Schalten von t_aux fithrt zu Marken in Z3 und z;. Die Marke
in z, zusammen mit der » wartenden” Marke in der Stelle w resultiert darin, daB
nach Schalten der AT-Transition Zs3 markiert wird. Da zu diesem Zeitpunkt kein
Interrupt anliegt, fihrt das Schalten der DECIDER-Transition zu einer Markierung
von z5. Damit aber kann t schalten. Als Ergebnis werden die Stellen o1, .., 0m
markiert. Falls ein Interrupt anliegt, wenn die Transition initiiert wird, wird die
auf Stelle w " wartende” Marke auf die Stelle serve_interrupt ” geleitet”, nachdem
t.aux geschaltet hat. Ist die Interrupt-Behandlungs-Routine beendet, so markiert
sie die Stelle interrupt_served. Da nun die Variable I wieder den Wert ”false”
hat, wird endlich die Transition ¢ geschaltet. Tritt ein Interrupt auf, wahrend die

Transition t aktiv ist, so hat dies auf t keine Wirkung. Somit wird ihre Interpreta-

tion, die laut DACAPO-Semantik nicht unterbrechbar ist, abgeschlossen. Allerdings
werden die Transitionen, die durch die Markierung von 01, -+, om schaltbar werden,
verzogert, bis die Interrupt-BehandlungS-Routine beendet ist, da sie natiirlich in
derselben Weise wie t erweitert werden. :

280

Alle Anweisungen, die zur Implementierung des Modul-Konzepts dienen, haben
keine Auswirkung auf das interne Modellierungskonzept, da sie auf Quellsprach-
niveau behandelt werden.

5.2.1.1.3 Abbildung von DACAPO-Konstrukten auf der Registertransfe-
rebene auf SRCNs

Auf dieser Ebene miissen nur die ”Guarded Commands” betrachtet werden. Wie in
Abschnitt 2.3.4 erklart wurde, ist ein impdef-Teil der Form:

impdef
at up (event;) do action; ;
at up (eventy) do actiong ;

at up (event,) do action, ;
vollstandig aquivalent (d.h. nur eine Kurzschreibweise) zu:

conbegin
while true do
at up (event,) do action; ;
while true do
at up (event;) do action, ;

while true do
at up (event,) do action, ;
end ;

Fiir diese Struktur jedoch wurde das SRCN-Aquivalent bereits eingefithrt. Da in die-
sem Fall jedoch der grofite Teil des Netzes ohne Bedeutung ist, wird ein impdef-Teil
einfach durch eine Menge isolierter Subnetze modelliert, je eines fir jedes ” Guarded
Command™. Jedes Subnetz hat die in Abb. 72 dargestellte Form.

5.2.1.1.4 Abbildung von DACAPO-Konstrukten auf der Gatter/Schalter-
ebene auf SRCNs

Die kontinuierliche Zuweisung eines Ausdrucks an eine implicit-Variable ist das letzte
noch zu untersuchende Sprachkonstrukt. Es sei eine Zuweisung eines Ausdrucks uber

281

Abb. 72: Petri Netz fiir ”Guarded Command”
Variablen z,, ..., z, an eine Variable y angenommen:

Y= exp (z,, ey Tp)

Dies ist aquivalent zu einem " Guarded Command” der Form:

N change (z4]...|z,) do y := ezp (21 ery Tn)-

D_ieSRCN-DarsteHung davon ist bereits diskutiert worden. Der Verzbgerungsmecha-
Ill?mus von DACAPO ist genau der Zeitmechanismus, der in Abschnitt 2.1.2.1 fir
Zeitbehaftete Interpretierte Petri-Netze eingefiihrt worden ist. Einfachere Zeitmo-
dellierungsmethoden, wie sie in anderen Hardwarebeschreibungssprachen benutzt
Wwerden, kénnen leicht auf dieses allgemeine Modell abgebildet werden.

5.2.1.2 Simulationstechniken

Es ist Aufgabe eines Simulationsalgorithmus, ein internes Modellierungskonzept des
MOdeHierungssystems, das er zu unterstutzen hat, auf die Architektur des Gast-
techners abzubilden. Die effizienteste Simulation liegt vor, wenn die Architektur
des Gastrechners identisch mit dem internen Modellierungskonzept oder zumindest
ahnlich js¢, Dies ist die Grundidee einer Klasse von dedizierten Simulationsma-
Sc.hinen (Hardwareakzeleratoren). Eine andere Klasse derartiger Maschinen benutzt
Pip elining, um sequentielle Algorithmen zu beschleunigen.

In den meisten Fallen muB ein konventioneller v.Neumann-Rechner als Gastarchi-
tektur dienen. Daher wird in diesem Abschnitt dieser Fall behandelt. Das Haupt-
Problem der Abbildung auf eine strikt sequentielle Maschine ist der hohe Grad an
P arallelismus, der fiblicherweise in den Modellierungskonzepten zu finden ist.

Es gibt drei Haupttechniken, dieses Problem zu losen:

* Streamline Code Simulation (SCS),

282

o Equitemporal Iteration (EI) und
e Critical Event Scheduling (CES).

Alle drei Ansitze werden in diesem Abschnitt behandelt werden.

5.2.1.2.1 Streamline Code Simulation (SCS)

Diese Klasse von Simulatoren ist auch unter der Bezeichnung ” Compiled Mode”-
Simulator bekannt. Die Idee ist, unmittelbar ausfiihrbaren Code des Gastrechners
aus der Schaltungsbeschreibung zu generieren. SCS kann nur unter gewissen Be-
schrinkungen angewandt werden:

- Das Modellierungskonzept ist kontinuierliche Auswertung,
- das zu simulierende Objekt ist entweder kombinatorisch oder strikt synchron und
- es besteht kein Bedarf an Zeitinformation.

Die klassische Anwendung ist Simulation auf der Gatterebene fiir kombinatorische
Schaltungen. Daher wird dieses Beispiel zuerst behandelt. Ein kombinatorisches
Schaltnetz kann als "Directed Acyclic Graph” (dag) dargestellt werden. Dabei
werden die Gatter als die Knoten des dag dargestellt, und jede Verbindung eines
Gattereingangs mit einem Ausgang eines anderen wird zu einer Kante im dag.

Beispiel
Abb. 73 zeigt ein kombinatorisches Schaltnetz und seine Darstellung als dag.

pi-1
pi-1
7] — P o
Pi-g| [\] POl i3
)
o /LN o
}._ 2

Abb. 73: Ein kombinatorisches Schaltnetz und seine Darstellung als dag

283

Die K.nofen eines dag konnen sehr einfach beziiglich des langsten Pfades von Knoten
zu Pr.lmareingélngen halbgeordet werden. Diese Technik wird ”Levelizing” genannt.
Dalzex erhilt ein Primireingang in; level(in;) = 0 und jeder andere Knoten nj
erhalt level(n,) = (1 + maz{level(n;)| Es gibt eine Kante von ng zun;}). Abb. 74
zeigt das obige Beispiel nach dem ”Levelizing”,

levelol level 1 ' level 2 | level 3

pi-1
pi-2 |
' I po-1
pi-3
|
| ! I
pi-4 [
1 i po-2
pi-8 I ‘
|

Abb. 74: Leveling angewandt auf ein dag

Die Ebenen kénnen nun wie folgt interpretiert werden:

* (i) Kein Knoten auf einer hdheren Ebene kann einen solchen auf einer niedri-

geren beeinflussen,
* (ii) Knoten auf derselben Ebene beeinflussen sich gegenseitig nicht,

¢ (ili) Ein Knoten auf einer niedrigeren Ebene kann jeden Knoten auf einer

héheren beeinflussen.

S.omit wird durch das "Levelizing” eine Abhingigkeitsrelation auf der Schaltung
eingefihrt. Dies ist eine weitere Abstraktion der Abhangigkeitsstruktur, wie sie
d_“TCh den dag dargestellt wird. Diese Abhangigkeitsrelation ist prazise genug, um
€ine Sequenz von Berechnungen der einzelnen Knoten aufzustellen. Der Code fiir
dl_e Knoten mu8 lediglich in Bezug auf aufsteigende Ebenen angeordnet werden.
Die Sequenz der Codesegmente fiir Knoten gleicher Ebene ist beliebig, da sie sich
8egenseitig nicht beeinflussen.

Im Fall der Simulation auf der Gatterebene besteht der Code, der fiir ein Gatter
ben(')tigt wird, aus sehr wenigen Instruktionen der Zielmaschine. Die Netze der
Schaltung werden als Variable dargestellt (Speicherzellen im virtuellen Speicher des
GaStrechners). Das obige Beispiel kann zu folgendem Code fihren:

284

var pi_1, pi_2, pi_3, pi_4, pi.5 : word ;

in_i, in_2, in_3 : word ;
pe.i, po_2 : word

begin
in_.1 := pi_2 & pi_.3 ; { level 1 computation }
in.2 := pi_4 & pi 5 ; { level 1 computation }
in_3 := in_1 | in.2 ; { level 2 computation }
po.l :=pi_1 & in 3 ; { level 3 computation }

po..2
end ;

in_2 & in.3 ; { level 3 computation }

Hier wurde DACAPO als Zielcode benutzt. Dies kann einfach durch den Maschi-
nencode eines beliebigen Rechners ersetzt werden, wobei die Variablendeklarationen
als Speicheradressen und die Zuweisungsanweisungen als ausfiithrbare Instruktionen
des Rechners anzusehen sind. Dieses rudimentare Programm beschreibt die Berech-
nung auf der Basis eines einzelnen Eingabemusters. Es kann jedoch sehr einfach so
erweitert werden, daB es eine beliebige Sequenz von Mustern verarbeitet:

var pi_1, pi_2, pi_3, pi_4, pi_5 : word ;

in_1, in_2, in_ 3 . word
po_1, po.2 : word
last_pattern : bit
repeat
begin

read (pi_1, pi_2, pi_3, pi_4, pi_5, last_pattern);
in.1 := pi_2 & pi.3 ; { level 1 computation }
in.2 := pi_4 & pi_5 ; { level 1 computation }
in.3 :=in 1 | in_2 ; { level 2 computation }
po.l := pi_1l &£in 3 ; { level 3 computation }

pe-2 := in_2 & in_ 3 ; { level 3 computation }
end

until last_pattern ;

Hier wurde angenommen, daB jedes Eingabemuster die Information enthalt, ob es
das letzte ist, oder nicht. Alle Variable, die Netze des Schaltnetzes reprasentieren,
wurden vom Typ vord deklariert. Dies steht fir die Wortlange des Zielcomputers.
Die meisten Rechner fithren logische Operationen auf ganzen Worten fiir jedes Bit
des Wortes individuell aus. Zwei Haupttechniken nutzen dies aus:

- Im Fall der Fehlersimulation (siehe Abschnitt 6.2) konnen n verschiedene Ein-
fachfebler gleichzeitig eingefugt werden, falls n die Wortlange ist,

- in jedem Fall konnen n Eingabemuster gleichzeitig verarbeitet werden.

285

Bei einem typischen Rechner mit Wortlinge 32 bedeutet dies jeweils einen ”Speedup”-
Faktor von 32. Das Verfahren kann auch auf strikt synchrone sequentielle Schalt-
werke angewandt werden. Solche Schaltwerke konnen normalisiert in der Huffman-
Form dargestellt werden, wie in Abb. 75 dargestellt.

‘ﬂput % RIS e
X : [/ Y := lambda(X,S)

| new state

gld state
S’ : = delta(X,S)

elements

memory

clock

Abb. 75: Schaltwerk in Huffmann-Normalform

Damit wird sichtbar, daB8 zwei Funktionen berechnet werden miissen:

- A(X, S), um die aktuellen Werte der Primarausginge zu berechnen (Mealy-
Modell),

- 6(X, S) um den Folgezustand zu bestimmen.

Dabei wird angenommen, dafl dieses sequentielle Schaltwerk im "fundamental mode”
betrieben wird. D. h. ein neues Eingabemuster wird erst eingegeben, nachdem das
Vorausgegangene verarbeitet ist. Nimmt man weiterhin an, daB das Zustandsregister
<¥urch einen Takt fester F; requenz getaktet wird, so ist der einzige essentielle zu simu-
lierende Teil des Schaltwerks der kombinatorische. Somit erhalt man das geeignete
Sequentielle Simulationsteil durch Identifikation der primiren Ein- und Ausgange
des kombinatorischen Teils, die die Zustandsvariablen darstellen.

Beispiel:

Es sei angenommen, daf in der obigen Schaltung po_2 den neuen Zustand und pi_5
den bisherigen Zustand reprisentieren. Somit erhalt man ein Schaltwerk wie in Abb.
76 dargestellt. il :

Dieses Schaltwerk kann durch das folgende Modell simuliert werden:

286

pi-1

p‘_2 — _—
po-1
pi-3 T |

~
}
_/

e

p1-5 = previous state /

po-2 = new state

clock

Abb. 76: Sequentielles Schaltwerk durch Riickkopplung

var pi_1, pi_2, pi_3, pi_4 : word ;

in_1, in_2, in_3 : word

po_1 : word ;

state . word := "X" ;

last_pattern : bit ;

repeat

read (pi.1, pi_2, pi.3, pi_4, last_pattern)
in_1 := pi_2 & pi.3 ; { level 1 computation }
in_2 := pi_4 & state ; { level 1 computation }
in.3 :=1in.1 | in_.2 ; { level 2 computation }

po_1
state :

end
until last_pattern ;

pi_1 & in.3 ; { level 3 computation }
in.2 & in_3 ; { level 3 computation }

Das Zeitverhalten wird durch SCS nur sehr grob dargestellt. Man kann nur an-
nehmen, daB man die Zykluszeit des zu simulierenden Schaltwerks den Simulati-
onszyklen gleichsetzen kann. SCS wurde in jingster Zeit fir die Fehlersimulation
untersucht, wo es ein sehr sinnvolles Verfahren ist, und fur Richtigsimulation auf
der Gatterebene. In letzterem Fall werden zwar extrem schnelle Simulationszeiten
erreicht, doch bleibt zu fragen, fir welche Anwendungen eine derartige Simulation
tatsachlich bendtigt wird. Dies scheint ein recht eigentiimlicher Entwurfsstil zu sein,
bei dem nicht bekannt ist, welch eine Funktion zu implementieren ist. Denn falls die

287

Funktion bekannt ist, kann durch einfache algebraische Methoden tiberpriift werden,
ob eine gegebene Implementierung tatsichlich diese Funktion realisiert, oder nicht.

5.2.1.2.2 Aquitemporale Iteration (EI)

Aquitemporale Iteration ist eine einfache tafelgetriebene Simulationstechnik. Wie
bei SCS findet iterativ ein Uberstreichen des gesamten zu simulierenden Systems
statt. Nach jedem Uberstreichen wird die globale Zeit um eine Schrittweite erhoht.
Diese Schrittweite kann von Iteration zu Iteration variieren, ist aber stets fir alle
besuchten Komponenten gleich (daher der Begriff ” Aquitemporal”). EI nimmt an,
daf das zu simulierende System durch eine Menge von Komponenten beschrieben
ist. Jede Komponente i wird durch ein Tripel (¢;, a;, d;) modelliert. Hier bedeutet c;
die Ausfﬁhrbarkeitsbedingung der Komponente, a; ihre Aktion und d; die Zieldaten-
objekte, die durch diese Aktion beeinflut werden. Da Ausfihrbarkeitsbedingungen
vorgesehen sind, kann EI auch einfach "triggered evaluation” behandeln.

Es sei nun angenommen, dafi die Bedingung ¢; einer bestimmten Komponente i
wihrend einer Iteration wahr ist. Als Konsequenz wird die Aktion a; ausgefihrt.
Diese Aktion kann von gewissen Argumenten abhingen. Es wird angenommen, da8
diese Argumente in einem globalen Speicher residieren. Als Auswirkung der Aus-
fihrung von q; erhalten einige Zielvariable d; neue Werte. Doch wird diese Wertzu-
weisung nicht direkt auf die Zielvariable ausgefiihrt, sondern auf dedizierte Puffer.
Dadurch werden die Komponenten, die beim aktuellen Durchgang nachfolgend be-
sucht werden, von diesen Wertanderungen nicht berihrt. Somit hat die Sequenz, in
der Komponenten besucht werden, keinen Einflu$ auf das Verhalten des Simulators.
NaCh einem vollstindigen Durchgang werden alle Puffer in die Zielvariablen, die
Im globalen Zustand gespeichert sind (gemeinsamer Speicher), kopiert. Ein Geriist
eines derartigen Algorithmus sieht wie folgt aus:

begin
==
time ;= 0 ;

final_time := stop_time ; {stop_time to be supplied externally }
while time <= final_time do

begin
for i := 1 to component_number do
if c(i) then d_buffer[i] := a(i) ;
time := time + increment ;

for i := 1 to component_number do
d[i] := d_buffer[i]

end
end .

Beispiel:
Es sei angenommen, daB dieselbe kleine sequentielle Schaltung wie im letzten SCS-
Beispiel simuliert werden soll. Nun soll aber eine individuelle Verzogerung von 3

288

Zeiteinheiten bei jedem AND-Gatter, von 4 Zeiteinheiten bei jedem OR-Gatter_ und
7 Zeiteinheiten zum Speichern des neuen Zustands angenommen werden. Die so
erhaltene Schaltung wird in Abb. 77 angedeutet.

pi-1
pi-2 & & £ 2
pi-3 N
&N
L |5 e iz
pi-4 8§25 ool HA®
3 Na 9
N D
6\0 A

Abb. 77: Schaltwerk mit individuellen Verzogerungswerten

Im Fall von EI ist nun der Simulationsalgorithmus fest, sodaB nur die Struktur der

Schaltung durch eine geeignete Datenstruktur dargestellt werden muB. Diese mag
wie folgt aussehen:

definition module circuit ;
const component_number = 12 H
type word = bit(32)
var d : array [1 : 12] of word ;
increment, stop_time : inteser;
function c(in_.i : integer) : bit
function a(in_i : integer) : word
end circuit ;

’

implementation module circuit -
const component_number = 12 &
type word = bit(32);
var d : array [1 : 12] of word;

gate_time : array [1 : 12] of integer ;

increment, stop_time : integer ;

clock : bit ; {assumed to be set externally,
value "1" only for 1 time unit}

function delayer (in index : integer ;

in value : word) : word ;
var shifter array {1 : 6] of array [0 : 4] of word ;
begin
case index of
1: begin
delayer := shifter [1, 0] ;
shifter {1, 0] := value
end ;
3 : begin
delayer := shifter [2, 0] ;
shifter [2, 0] := value
end ;
5 : begin
delayer := shifter [3, 1] ;
shifter [3, 1] := shifter [3, 0] ;
shifter [3, 0] := value
end ;
7 : begin
delayer := shifter [4, 0] ;
shifter [4, 0] := value
end ;
9 : begin
delayer := shifter [5, 0] ;
shifter (5, 0] := value
end ;
11 : begin
delayer := shifter [6, 4] ;
shifter [6, 4] := shifter [6, 3] ;
shifter [6, 3] := shifter [6, 2] ;
shifter [6, 2] := shifter [6, 1] ;
shifter [6, 1] := shifter [6, 0] ;
shifter [6, 0] := value
end ;
end ;

function ¢ (in i : integer) : bit;

begin
¢ := if i = 11 then clock
21_s£ Illll
end ;

function a(in i : integer) : word ;

289

290

a 1= pi_ 2 & pi 3

a := delayer (1, d4[1})

a := pi_4 & 4 [12] ;

-
o
)

‘m
.
=]

a := delayer (3, d[3])

a :=d {21 | 4 [4] ;

a := delayer (5, d4[5])

a := pi_1 & d[6] ;

a := delayer (7, d[7])

a := d{4] & 4a[6] ;

10 : begin
a := delayer (9, 4[9])

11 : begin
a := 4[10]

12 : begin
a := delayer (11, d[11])
end ;
end ;

end circuit ;

Das Gerust des Simulationsalgorithmus sieht nun wie folgt aus:

module main ;

291

from circut import component_number, word, increment,
stop_time, d, c, a ;
var time, final_time : integer ;

d_buffer : array [1 : component_number] of word ;
begin
time := 0 ;

final_time := stop_time ; {stop time to be supplied externally }
while time <= final_time do
begin
for i := 1 to component_number do
if c(i) then d_buffer[i] := a(i) else ;
time := time + increment ;
for i := 1 to component_number do
dli] := d_buffer[i]

¢

end

end
end main .

Einige Kommentare:
In diesem Beispiel ist ein Modul fiir jedes Gatter in der beschreibenden Daten-

struktur vorgesehen worden. Zusatzlich wurde fiir jedes Gatter ein weiteres Mo-
dul eingefiihrt, um die dem Gatter zugewiesene Verzogerung zu beschreiben. Die
Ausfiihrbarkeitsbedingung fir alle Komponenten aufler dem Zustands-Flipflop ist
Immer erfullt, da das zugrundeliegende Modell fiir Gatter kontinuierliche Auswer-
tung ist. Die Ausfiihrbarkeitsbedingung fiir das Flipflop ist, daB das Signal clock
(das extern vorzusehen ist) den Wert 71" wahrend eines Zyklus des Simulationsalgo-
tithmus hat. Die auszufiihrenden Aktionen sind die einfachen Gatterfunktionen, falls
Gatter zu modellieren sind. Far die Verzogerungselemente wird ein Shifter-Modell
benutzt. Neu berechnete Werte flieBen durch eine "Rohre”, wobei die Linge der
Réhre die zu modellierende Verzogerung bestimmt. In diesem Fall wurde ein lokaler
Ansatz verfolgt, bei dem die "Rohren” fiir die verschiedenen Verzogerungselemente
individuell verwaltet werden. Eine Alternative stellt eine globale Verwaltung der
"Rohren” als Teil des Puffer-Kopier-Prozesses dar. Abbildung 78 skizziert diesen
Algorithmus.
Es wird angenommen, daf es einen weiteren Proze8 gibt, der die Eingabemuster fur
die primaren Eingange der Schaltung liefert. Diese Eingabestimuli konnen zu k?e—
liebigen Zeitpunkten anliegen. Die technische Implementierung dieses Beispiels ist
natirlich nicht typisch. Ublicherweise werden (passive) Datenstrukturen benu?zt,
um die zu simulierende Schaltung zu modellieren, anstelle des mehr objektorientier-
ten Ansatzes, wie er hier verfolgt wurde. In jedem Fall ist der eigentliche Simula-
tionsalgorithmus fest und unabhangig von der jeweilig zu simulierenden Schaltung.
eren Beschreibung wird in eine geeignete Datenstruktur iibersetzt, die dann zu
dem Simulationsalgorithmus dazu gebunden wird.

292

increase copy |
L _time buffers

cl ci = i-th condition
4 ai = i-th action
1 bi = i-th buffer

common memory

Abb. 78: EI-Algorithmus

293

Der EI-Simulationsalgorithmus ist sehr einfach und leicht zu implementieren. Da-
her war er lange Zeit zur Gattersimulation sehr beliebt und wird immer noch haufig
zur Simulation auf der RT-Ebene benutzt. Leider ist er in den meisten Fallen sehr
ineffizient, weil typischerweise zu einem bestimmten Zeitpunkt mehr als 95% aller
Komponenten stabil sind. Dies bedeutet, dafi Operationen ungleich der Berechnung
der Identitatsfunktion mit Wahrscheinlichkeit unter 0,05 ausgefiihrt werden. Somit
e‘rscheint EI nur dann sinnvoll, wenn hochgradig instabile Systeme zu simulieren
sind. Offensichtlich nimmt die Stabilitat bei groSer werdendem Wertebereich der
Datenvariablen ab. Damit neigen analoge Modelle zu extremer Instabilitit und EI
scheint hierfiir eine besonders geeignete Methode zu sein. Tatsdchlich benutzen fast
alle Analogsimulatoren diese Technik.

5.2.1.2.3 Critical Event Scheduling (CES)

[').iese Simulationstechnik ist ein Versuch, die Effizienzprobleme von EI dadurch zu
16sen, daB man sich auf nichttriviale Berechnungen beschrankt. Critical Event Sche-
d.uling (CES) ist auf Modellierungskonzepte anwendbar, die den folgenden Restrik-
tionen geniigen:

(i) Der Zeitpunkt des nachsten Auftretens eines Ereignisses ist vorhersagbar,

(i) Falls der Zeitpunkt des nachsten Auftretens eines bestimmten Ereignisses nicht
vorhersagbar ist, findet dieses Ereignis nicht statt, bevor es nicht durch das
Stattfinden anderer Ereignisse vorhersagbar geworden ist.

Dies.e Restriktionen werden durch das in diesem Abschnitt betrachtete interne Mo-
dellierungskonzept erfillt:

(1) Angenommen, daB n >= 1 zeitbehaftete interpretierte Transitionen zu einem
Zeitpunkt aktiviert sind, dann ist zu diesem Zeitpunkt bekannt, wann sie
schalten werden und der nichste Schaltzeitpunkt kann bestimmt werden.

(1) Ein interpretiertes Schalten kann nur stattfinden, nachdem diese Transition
aktiviert wurde. Damit eine Transition aktiviert wird, mu8 zuvor eine Mar-
kierungsanderung auf den Eingangsstellen stattgefunden haben. Diese Mar-
kierungsinderung jedoch kann nur durch das Schalten von Transitionen statt-

finden, also durch ein Ereignis.

Damit ist CES in unserem Kontext ein universeller Algorithmus. Der CES-Algorith-
Mus nimmt an, da$ das zu simulierende System zur Compile-Zeit in Komponenten
zerteilt wird und eine Abhangigkeitsbeziehung auf diesen Komponenten bestimmt
wird. Ist Komponente B direkt abhangig von Komponente A (in dieser Abhangig-
keitsbeziehung), so wird A BeeinfluBer von B und B Beeinfluiter von A genannt.
Im Fall von zeitbehafteten IPN wird diese Abhangigkeitsbeziehung

294

direkt durch die Netztopologie und Referenzen auf gemeinsame Datenobjekte ge-
geben. Auf der Basis dieser Abhangigkeitsbeziehung kann der CES—Algorithml.ls
bestimmen, welche Komponenten durch die Zuweisung eines neuen Wertes an ein
Datenobjekt beeinfluBt werden. Und mit der entsprechenden Zeitinformation kann
der Algorithmus auch prazise vorhersagen, wann dies stattfinden wird. Nur diese
Teile der Schaltung werden nun weiter verfolgt. Somit ist CES im Gegensatz zu EI
und SCS ein lokaler Ansatz. Das folgende Geriist illustriert den Algorithmus:

module main ;
from circuit import
circuit_size, word, data, influenee_nr, influencee,

executable, action, elapses ;
const empty = 0 ;

type event = record
T component_id : integer;
event_time ¢ integer;
new_value ¢ word
end;

var current_event, new_event : event ;
current_time, queue_fill : intese H
changed : bit H
export (insert, remove, test) procedure event_queue ;
const queue_length = ...

>

var queue : array [0 : queue_length] of event ;
top_of_queue : integer := 0 ;
procedure insert (in item : event) ;
begin -

sort_in (item) ;
{assume that sort_in (item) inserts item properly
keeping queue sorted in ascending order with

respect to event_time ¥

top_of_queue := top_of_queue + 1
end ;
function remove : event ;
begin
remove := queueltop_of_queue] ;
top_of_queue := top_of_queue - 1
end ;
function test : integer ;
begin
test := top_of_queue
end ;

end ; {event queue}

295

begin

" time := 0 ;
final_time := stop.time ; {stop_time to be supplied externally }
while time <= final_ time & queue_fill <> empty do

beEin
current_event := event_queue . remove
current_time := current_event . event_time ;
changed = data [current_event . component_id] <>

current_event . new_value ;
data [current_event . component_id] :=
current_event . new_value ;
if changed & influencee_nr [current_event . component_id] > 0
then begin
for i := 1 to influencee_nr[current_event . component_id]
do
begin
component :=
influencee [current_event . component_id,i];
if executable (component) then
begin
new_event . component_id := component ;
new_event . new_value := action (component) H
new_event . event_time :=
current_time + elapses (compoment) ;
event_queue . insert (new_event)

end
else
end
end
else;
queue_fill := event_queue . test
end
end ;

end main .

Abbildung 79 illustriert den Warteschlangenansatz.

Einige Kommentare:

Dieser Algorithmus beinhaltet die Verwaltung einer Ereignisschlange (event_queue),
diein aufsteigender Reihenfolge beziiglich der Ereigniszeitpunkte (event_time) sor-
tiert ist. Diese Verwaltung wird durch die Exportprozedur event_queue durch-
gefihrt. Der Hauptalgorithmus setzt zunachst die initialen Werte der Zeitsteue-
Tungsvariablen

296

event-queue influencees
time laction

At <t (AL,

Abb. 79: Dynamische Datenstruktur des CES-Algorithmus

(time := 0 ;
final_time := stop_time ;)

und startet dann mit der Hauptschleife

(while time <= final time & queue fill <> empty do).

Man beachte, da die Simulation beendet wird, wenn es keine Ereignisse mehr gibt,
d.h. die Schaltung stabil geworden ist. Zunichst wird das Ereignis am Anfang der
Ereignisschlange behandelt

(current_event := event_queue . remove 3

current_time := current_event . event_time ;

changed := data [current_event . component_id] <>
current_event.new_value;

data [current_event . component_id] := current_event . new_value ;).

Man beachte, daB es kein festes Zeitinkrement gibt, sondern da8 die Zeit zu dem
Zeitpunkt, an dem das nachste Ereignis stattfindet, fortgeschaltet wird. Es wird
nun Gberpriift, ob es eine Wertinderung als Effekt des Ereignisses gibt. Falls nicht,

mussen die Beeinfluiten nicht bearbeitet werden. Diese Technik wird "selective
trace” genannt. Falls es eine Wertinderung gibt und es existieren BeeinfluBte der

297

gerade bearbeiteten Komponente, dann miissen alle diese Beeinfluiten bearbeitet
werden.

(if changed & influencee_nr [current_event . component_id] > 0 then

begin
for i := 1 to influencee_nr [current_event . component_id] do)

Falls die Beeinflubte unter der neuen Situation ausfithrbar ist, muB ein Ereignis mit
der entsprechenden Identifikation, Aktion und Ereigniszeit erzeugt werden und in
die Ereignisschlange eingefiigt werden.

(if executable (component) then
begin
hew_event . component_id := component ;
new_event . new_value := action (component) ;
new_event . event_time :=
current_time + elapses (component, new_event . new_value) ;
event_queue . insert (new event)
end
else)

Wie im Falle von EI mu8 dieser Algorithmus mit einer Schaltungsbeschreibung kom-
biniert werden, die in eine geeignete Datenstruktur {ibersetzt wurde. Diese Informa-
tion ist fiir die zu simulierende Schaltung spezifisch, wahrend der oben angegebene
Algorithmus fest bleibt.

Beispiel:

Es sei angenommen, daf die gleiche Schaltung wie im EI-Beispiel simuliert werden
soll, wobei in diesem Fall die Verzogerung der AND- Gatter (up 3, down 4) und
das vop OR-Gattern (up 5, down 4) betragt. Hier ist es nun nicht‘mehr notwen-
dig, die Verz6gerung durch spezieile Verzdgerungselemente zu modelhueren, da.defen
Wifkung standardmafig im CES-Algorithmus enthalten ist. Daher konnen wir eine
Datenstruktur auf der Basis des in Abb. 80 angegebenen Schaltungsmodells benut-
zen.

Die Datenstruktur kann beispielsweise wie folgt aussehen:

definition module circuit ;

const circuit_size =6 ;

E&e word = m(a:‘)) ;

var data :arrax[i:s]_o_{vord;
influencee nr : array [1 : 6] of integer ; ' .
influencee :array [1 : 6] of array [1 : 2] of integer ;

function executable (in component : integer) : bit ;
function action (in component : integer) : word ;
—_— =

298

pi-1
pi-2 data[1] data[4]
pi-3
37 data[3]
pi-4 : data[2] - - data[5]

data[i][

Abb. 80: Schaltungsmodell fiir CES-Algorithmus

function elapses (in component : integer
in new_value : word) : integer ;
end circuit ;

implementation module circuit ;
const circuit_size = 6 :
type word = bit(32) ' ;
v—;ar—data:array[l:ﬁ]_o_fword;
Pi_il;pi O Pi_3, pi_4 : word g

influencee_ nr : array [1 : 6] of integer :='{ 2 '2°0, 1, 1 ;
influencee tarray' ['1 6] of array [1 : 2] of integer
1= 3, 0,
3,95,
4, 5,
0,0,
6,0,
2,0 ;

function executable (in component : integer) : bit ;
begin
executable := if component = 6 then clock else "1"

299
end ;

function action (in component : integer) : word ;

begin
action := case component of
1:pi2 &pi3;
2 : pi_4 & data [6] ;
3 : data [1] | data [2] ;
4 : pi_l & data [3] ;
5 : data [3] | data [2] ;
6 : data [5]
end
end ;

function elapses (in component : integer
in new_value : word) : integer ;

begin
elapses := case component of
—~IT§,4,5 : if new_value then 3 else 4 ;
3 : if new_value then 5 else 4 ;
6 : 7
end
end ;

end circuit ;

Wie EI nimmt auch der CES-Algorithmus an, daB es einen weiteren Proze gibt, der
Eingabemuster an die Primareingange liefert. Wieder konnen diese Eingabestimuli
2u beliebigen Zeitpunkten auftreten. Der CES-Algorithmus ist auch relativ einfach.
In den meisten Fallen ist er recht effizient, da er keine Zeit mit unnotigen Aktionen
verschwendet. Doch mufi man damit bezahlen, da8 die Ereignisschlange stets sortiert
gehalten werden mu8. Sortieren ist ein Algorithmus der Komplexitit =0(n*log(n))
wobei n die Anzahl der zu sortierenden Elemente angibt. Dies ist nicht zu iibel,
besonders wenn man beachtet, daB die Ereignisschlange typischerweise recht kurz
ist, weil immer nur sehr wenige Komponenten zu einem Zeitpunkt instabil sind, ty-
pische Komponenten nicht sehr viele BeeinfluBte haben und die Verzégerungszeiten
nicht zu sehr variieren.

Will man dennoch die Sortierzeit weiter verringern, so kann die oben beschriebene
Ereignisschlangenverwaltung durch einen Zeitscheibenalgorithmus ersetzt werden.
Die Idee hinter diesem Ansatz ist die Existenz einer zirkularen Datenstruktur mit
einer festen Anzahl n von Plitzen. Jeder solche Platz i enthalt alle zukiinftigen

Ereignisse, die zu den Zeitpunkten

(Startzeit des aktuellen Zyklus + i) mod n

300
stattfinden.

Jedem dort eingetragenen Ereignis wird ein Zyklenzahler zugeordnet, der angibt,
wieviele Zyklen vergehen missen, bis dieses Ereignis bearbeitet werden muf. Al-
lerdings miissen die Ereignisse innerhalb eines Platzes in aufsteigender Rethenfolge
bezuglich ihres Zyklenzahlers sortiert gehalten werden. Der Sortieraufwand dafiir
ist jedoch extrem niedrig, da in den meisten Fillen nur ein Ereignis pro Platz ein-
getragen ist. Ist die GroBe der Zeitscheibe eine Zweierpotenz, n = 2%xi, so konnen
sowohl der jeweils richtige Platz wie auch der Zyklenzihler durch sehr einfache Mas-
kierungsoperationen berechnet werden:

Angenommen, ein Ereignis soll eingefiigt werden, das nach del Zeiteinheiten statt-
finden soll. Dann definieren die i rechtesten Bits von del den Platz in der Zeit-
scheibe und die restlichen den Zyklenzahler. Obiger Algorithmus kann sehr einfach

zu einem Zeitscheibenalgorithmus umgeschrieben werden. Nur die Exportprozedur
event_gueue muf geandert werden:

export (insert, remove, test) procedure event_queue ;
@ queue_length = ... ;
var time_wheel : array [0 : 2#*time_vheel_size] of
T array [0 : queue_length] of

record
component_id : integer ;
new_value : word H
cycle_count : integer
end ;

empty : bit := "1 ;
procedure insert (in item : event) ;
var position, cycle_count : integer ;

b—egin

position := item . event_time mod 2**time_wheel_size ;
cycle_count := item ., event_time / 2**time_wheel_size ;
sort_in

(position, item . component_id, item.new_value, cycle_count) ;
{assume that sort_in inserts properly into queue for slot at

position keeping queue sorted in ascending order with respect
to event_time }

end ;

function remove : event ;

var found, no_event : bit ;
position, position_advance, base_time : integer = 0,
begin

repeat

bagin

301

found := "0"
position :=
(position + position_advance) mod 2+*time_wheel_size ;
if position = 0O then
begin
if no_event then empty := "
else ;
no_event := "1"
base_time := base_time + 2**time_wheel_size
end
else ;
if time_wheel [positionm, 0] <> 0
then
begin
no_event := "0" ;
if cycle_count <> 0
then cycle_count := cycle_count - 1
else
begin
remove . component_id :=
time_wheel [position, 0] . compoment_id ;
remove . new_value 1=
time_wheel [position, 0] . new_value ;
remove . event_time :=
base_time + position ;
shift_down (position) ;
{assume that shift_down shifts down queue
for slot at position properly so that
closest event becomes event with index 0}
found := "1" ;
position_advance := 0
end
end
else position_advance := 1
end
until found or empty
end ;
function test : integer ;
begin
test := if empty then 0 else 1

end ;

302

end ; {event queue}

Abbildung 81 illustriert den Zeitscheibenansatz.

nil

nil

sl7zlelsTalal2l;
iteration- nter

Abb. 81: Zeitscheibenmethode

Einige Kommentare:

Betrachtet man die insert-Operation, so ist die Zeitscheibenmethode nichts ande-
res als ein Warteschlangenverfahren mit mehr als einer Warteschlange. Nachdem
also der richtige Platz und die Anzahl der bis zur Bearbeitung zu verstreichenden
Zyklen berechnet sind, findet eine normale Einsortieroperation statt.

Die remove-Operation ist vollstindig anders. Anstatt zum nachsten Zeitpunkt eines

Ereignisses zu springen, wird hier in einer bestimmten Auflosung jeder Zeitpunkt
besucht.

position := (position +1) mod 2**time wheel size ;

Immer wenn der Platz 0 besucht wird, mufl die Basiszeit des neuen Zyklus gesetzt

werden. Zusatzlich wird iiberpriift, ob wihrend des gesamten verstrichenen Zyklus
mindestens ein Ereignis entdeckt worden ist.

if position = 0 then

begin

303

if no_event then empty := "i"
else ;
no_event := "{i" ;
base_time := base_time + 2**time_wheel_size
end

Ein inspizierter Platz kann leer sein. Dann findet keine Aktion statt. Ist er nicht
leer, 50 kann es geschehen, daf die notwendige Basiszeit fiir dieses Ereignis noch
nicht erreicht ist. In diesem Fall wird der Zyklenzahler dieses Eintrags einfach um
eins verringert.

if cycle_count <> 0
then cycle count := cycle_count - 1

Ist der Zyklenzahler bereits 0, so muf das Ereignis bearbeitet werden. D.h. es mu8
aus der Zeitscheibe entfernt werden und die Schlange dieses Platzes muB nachge-
schoben werden.

Tremove . component_id := time_wheel [position, 0] . component_id ;
Temove . new_value 1= time_wheel [position, 0] . new_value ;
base_time + position ;

Tremove , event_time
shift_down (position) ;

Die Variable position_advance wird in diesem Fall auf 0 gesetzt, um sicherzustel-
len, dafl derselbe Platz nach moglicherweise weiteren Ereignissen fiir denselben Zeit-
punkt durchsucht wird. Nach Besuch eines leeren Platzes wird position_advance
auf 1 gesetzt.

Eine typische GroBe einer Zeitscheibe ist 1024. In diesem Fall ist die Wahrscheinlich-
keit, daB ein Platz mehr als ein Ereignis enthilt, sehr gering. Somit findet defacto
ﬁberhaupt kein Sortieren statt. Man bezahlt dafiir dadurch, dal man gezwungen
ist, die Zeitscheibe fiir jeden Zeitpunkt zu inspizieren, statt direkt zum nachsten
essentiellen vorzuriicken. Dies ist jedoch immer noch besser als im EI-Fall, wo man
jede Komponente zu jedem Zeitpunkt inspizieren mu8.

5.2.2 Simulationsszenarios

Ein alleinstehender Simulator macht wenig Sinn. In den meisten Fallen gilt es nicht,
ein autonomes System zu simulieren, sondern eines, das mit seiner Umwelt mfera—
giert. Auf der anderen Seite miissen die von einem Simulationslauf erzeugten S.unu—
lationsergebnisse in jedem Fall analysiert werden. Daher enthilt ein Sin?ulatxons-
System auBer den Kernbestandteilen (d.h. dem eigentlichen Simulator). mindestens
Komponenten, die es erlauben, die Umgebung des zu simulierenden Ob)_ekts zu mo-
dellieren und die Ergebnisse auszuwerten. Dies zusammen wird Simulationsszenario

genannt.

304

5.2.2.1 Modellierung der Umgebung

Im einfachsten Fall kann die Interaktion des Simulationsobjekts (OUS) mit seiner
Umgebung durch einen unidirektionalen Datenflufl von der Umgebung des OUS zum
OUS modelliert werden. Dies ist der Ansatz, der von den Simulationssystemen,
die eine spezielle Stimulisprache anbieten, verfolgt wird. Derartige Stimulisprachen
unterstiitzen tiblicherweise zwei Hauptklassen von Stimulispezifikationen:

¢ Periodische,

o nicht periodische.
Eine nichtperiodische Spezifikation kann wie folgt aussehen:
Zielvariable := Wert at Zeitpunkt ;

Dabei kdénnen auch verschiedene Kurzschreibweisen erlaubt sein, z.B. um Folgen von
Werten tber einen gewissen Zeitraum hinweg an eine Variable zuzuweisen oder um
einen identischen Wert einer Menge von Variablen zuzuweisen. In jedem Fall ist die
Semantik, daB die Zielvariable den zugewiesenen Wert solange behalt, bis er durch
eine weitere Zuweisung zu einem spateren Zeitpunkt iiberschrieben wird. Eine pe-
riodische Spezifikation mag folgende Form haben:

Zielvariable := from Startzeit to Stopzeit :
Wert at Zeitpunktl ;

Wert at Zeitpunktn periodically ;

Wieder sind verschiedene Kurzschreibweisen moglich. Die Bedeutung ist hier, da8
periodisch die angegebene Folge von Wertzuweisungen auszufithren ist. In jeder Ite-
ration ist der effektive Zeitpunkt, zu dem die Zuweisung auszufithren ist, der in der
Anweisung angegebene plus einer Basiszeit. Diese ist bei der ersten Iteration die
Startzeit, wihrend es in der i-ten Iteration der letzte effektive Zeitpunkt der i-1-ten
Iteration ist. Die Iteration wird solange durchgefiihrt, bis der effektive Zeitpunkt
einer Zuweisung einen angegebenen Endzeitpunkt iberschreitet.

Fir Taktsignale wird meist eine etwas modifizierte Notation angeboten. Diese Art
der Stimulispezifikation wird in fast allen existierenden Simulationssystemen be-
nutzt. Sie hat jedoch eine Reihe schwerwiegender Nachteile:

Zunachst ist es ein unidirektionaler Ansatz. Der Entwerfer eines Experiments muf
eine feste Folge von Eingabemustern planen, womit er das OUS konfrontieren will.
Dies mag im Fall von kombinatorischen Schaltnetzen , falls Prozessoren auf der In-
struktionssatzebene simuliert werden sollen, adaquat sein. Es wird jedoch duflerst

305

schwierig, die Eingabemuster vorherzusagen, wenn das OUS ein bestimmtes Korr.x-
munikationsprotokoll zu bedienen hat. In diesem Fall sind die Eingabemuster typi-
scherweise teilweise eine Reaktion auf das Verhalten des OUS. Das zweite Problem
liegt darin, daB ein OUS im Laufe des Tests mit verschiedenen Stimulis?quenzen
konfrontiert werden soll. Daher miissen diese Beschreibungen getrennt uberset.zt
werden. Dies wiederum macht eine relativ komplizierte Kreuzpriiffung notwendig,
um sicherzustellen, daB nur solche Variablen stimuliert werden sollen, die im Modell
auch vorhanden sind, und daB dabei Typkompatibilitit vorliegt.

Soll eine Hard warebeschreibungssprache unterstiitzt werden, die ein Modul-Konzept
beinhaltet (wie DACAPO III), so erscheint es viel sinnvoller, die Umgel.)un-g des OUS
durch ein weiteres Modul, beschrieben in derselben Sprache, zu 'spemﬁzxeren. Das
normale Compilationssystem priift dann, ob diese Umgebung mit dem ous kon}-
patibel ist oder nicht. Somit wird durch einen einfachen Trick das P.rob.lem.auf die
Simulation autonomer Systeme zuriickgefiihrt, und ein weiterer SCh.I‘ltt in Rlchtur.lg
Vereinheitlichung ist erreicht. Das einzige verbleibende. Problem 1s.t, daB man in
vielen Fillen nicht gewillt ist, die zu stimulierenden Variablen auf die der. Sc%lm_tt-
stellenbeschreibung des auBersten Moduls zu beschranken. .Um Werte‘tlef in in-
nere Module des OUS unter Ignorierung aller Gﬁltigkeitsb?relf:hsregeln eingeben zu
kénnen, miissen fiir die Spezifikation von Stimuli einige zusatzliche Sprfxchr'eg?ln ein-
gefiihrt werden. Im DACAPO III-System wird dieses Problem durch d.le. Einfiihrung
spezieller Stimuli-Module gelost. Sie haben keine zugeordneten D.eﬁmtl(‘)ns—Modulttz
und diirfen Objekte von beliebigen Implementations- Modulen importieren, stat
auf Definitions-Module beschrinkt zu sein.

Beispiel:) '
Man betrachte das CPU-Beispiel aus dem Absch.nltt ?.3.3.6. Dlmzs Modell mag
durch die folgenden beiden Stimuli-Module mit Stimuli versorgt werden:

stimuli module set_memory ;
from inout import mm ;

begin
inout . mm [0] := “(4) o010",
v(4) 1010",
"(4) 1110" ;
end

end set_memory .

stimuli module init_pc ;
from cpu import pc ;
begin
cpu . pc := "(4) 1110

306

end
end init_pc .

Beide Stimuli-Module beziehen sich auf Objekte, die nicht durch die entsprechenden
Definitions-Module exportiert werden, sondern intern in den dazugehorigen Imple-
mentationsmodulen sind.

5.2.2.2 Ergebnisanalyse

Typischerweise produziert ein Simulationslauf eine sehr grofe Datenmenge. Diese
Simulationsergebnisse miissen nun in jedem Fall analysiert werden. Wird die Ana-
lyse "manuell” durch den Entwurfsingenieur durchgefiihrt, ist es essentiell, daff das
Ergebnis in wohlstrukturierter ergonomischer Weise dargestellt wird. Da es keine
alleinige Losung hierfiir gibt, erscheint ein Ansatz, der dem Benutzer die Moglichkeit
bietet, den von ihm bevorzugten Darstellungsstil zu wihlen, am geeignetsten zu sein.
Simulatoren werden entweder (selten) interaktiv benutzt, wobei der Benutzer Teil
der Umgebung des OUS wird, oder in einer batch-artigen Weise, wobei der Simula-
tor einen Packen von Simulationsergebnissen produziert, die dann, auch interaktiv,
inspiziert werden kdnnen. Bei einer interaktiven Simulation ist es sinnvoll, die Si-
mulationsergebnisse direkt in der Quellbeschreibung des Modells (textuell oder gra-
phisch) darzustellen. Das Simulationssystem arbeitet dann wie ein Debugger, wobei
der Entwurfsingenieur Schritt fir Schritt bestimmte Variable stimulieren und die
Resultate analysieren kann. Ein derartiges System ist ein nettes Spielzeug, dessen
Benutzung auBer im Fall punktueller Fehlersuche aber nicht zu empfehlen ist.

Die typische Anwendung eines Simulationssystems ist ein wohlgeplanter Simulati-
onslauf mit einer sorgfaltig entworfenen Umgebung des OUS. In diesem Fall mussen
die produzierten Ergebnisse nach Beendigung der Simulation analysiert werden.
Hierbei sind sowohl Darstellungen in Form von Kurvenverlaufen wie auch in tex-
tueller Form moglich. Es bleibt dem Geschmack des Benutzers iiberlassen, was-er
bevorzugt. Typischerweise scheinen Ergebnisse auf niedrigen Abstraktionsebenen
(hoch bis zur Gatterebene) leichter als Kurvenverlaufe lesbar zu sein, wahrend auf
hoheren Ebenen textuelle Darstellungen schnellen Zugang zu den relevanten Infor-
mationen erlauben. Obwohl die Simulation vollstandig abgeschlossen ist, erlauben
es fortschrittliche Ergebnisdarstellungssysteme dem Benutzer dennoch, die Simula-
tionsergebnisse in gewissem Rahmen interaktiv zu manipulieren. Er kann Zeitin-
tervalle auswahlen, an denen er besonders interessiert ist, und die Gruppierung von
Variablen in der Darstellung verandern. Zeitbereiche konnen ausgewahlt werden,
indem beliebige Wertekombinationen als "Trigger” benutzt werden. Natiirlich bie-
tet das Ergebnisdarstellungssystem diese Unterstiitzung nur durch reine Inspektion
der Simulationsergebnisse, wie sie der Simulator geliefert hat, und durch Transfor-
mation einer geeigneten Teilmenge daraus in der vom Benutzer gewiinschten Weise.

Die manuelle Analyse von Simulationsergebnissen ist eine ermiidende und fehlertrach-
tige Tatigkeit. Daher werden Versuche unternommen, diesen Proze zumindest

307

teilweise zu automatisieren. Eine erste Losung ergibt sich durch ”assertions” inner-
halb der Modellbeschreibungen. Dieser Ansatz wird beispielsweise durch CONLAN,
DACAPO und VHDL unterstiitzt. Da ein Benutzer wissen sollte, wonach er ein
Simulationsergebnis untersuchen will, kann er diese Eigenschaften auch formulieren
und dem Simulator diese Suche iiberlassen.

Beispiel:

Statt das Simulationsergebnis sorgfaltig nach Verletzungen von setup- Bedingungen
an einer bestimmten Speicherzelle zu untersuchen, kann der Benutzer die folgende
assertion (DACAPO-Notation) formulieren. Daraufhin wird der Simulator die
angegebene Fehlermeldung zusammen mit der Identifikation des Zeitpunktes des

Fehlverhaltens produzieren:

¢lock = "1" g (uptime(clock) - changetime(data_in) < setup_time)
-> error(‘setup time violation at memory cell blabla’) ;

Die eingebauten Funktionen uptime, downtime und changetime liefern zu jedem
Zeitpunkt den letzten, zu dem sich die angegebene Wertanderung ereignet hat. Der
assertions-Mechanismus (im Falle von DACAPO machtig genug, um eine allge-
meine Ausnahmebehandlung zu unterstiitzen, da beliebige DACAPO- Aktivititen
durch Bedingungen angestofien werden konnen) ist nur ein erster Schritt in Richtung
auf eine automatische Analyse. Das Problem ist, dal nur globale Invarianten auf
statischen Bedingungen formuliert werden konnen. Weiterhin erscheint es erstre-
benswert zu sein, die Analysespezifikation von der Schaltungsbeschreibung getrennt
2u halten. Somit erscheinen separate Analysemodule, wobei die zu iberpriffenden
Eigenschaften in temporaler Logik formuliert werden, der richtige Ansatz zu sein.

Die Situation ist etwas einfacher, wenn es bereits ein "golden device” gibt. Dies ist
ein Modell des Entwurfsobjekts, das als korrekt angesehen wird. In einem wohlorga-
nisierten EntwurfsprozeB mit schrittweiser Verfeinerung existieren derartige ”golden
devices” in vielen Fillen einfach als die bereits abgenommenen Modelle auf hoheren
Abstraktionsebenen, die gerade ersetzt werden. In diesem Fall 138t sich die Frage,
ob das OUS eine korrekte Ersetzung des "golden device” ist, dadurch beantworten,
daB man die beiden Modelle mit denselben Stimuli simuliert und die Ergebnisse
vergleicht. Allerdings ist eine einfache Vergleichsoperation auf den Ergebnisdateien
kaum sinnvoll, da sie in den meisten Fallen verschieden sein werden, obwoh! die
Ersetzung korrekt ist. Daher muf der Benutzer die essentiellen Eigenschaften ei-
nes Entwurfsobjekts, die erhalten bleiben miissen, und auf der anderen Seite die
erlaubten Toleranzen spezifizieren. Basierend auf dieser Spezifikation kann nun der
Vergleich, eingeschrankt auf Objekte, die in beiden Modellen enthalten sind, aus-
gefihrt werden. Eine weitere durchzufithrende Analyse betrifft die Frage, ob dl:e
Menge der Eingabestimuli adaquat ist, oder nicht. Dieses Problem ist verwandt mit
dem, vollstindige Testmengen fir fabrizierte Hardware zu finden. Hierfur wird von

308

heutigen Simulationssystemen sehr wenig Unterstiitzung geboten. Die DACAPO-
Option TESEV mag ein Schritt in diese Richtung sein. TESEV erlaubt dem Be-
nutzer innnerhalb seines Modells, Cluster von Beschreibungsteilen zu spezifizieren,
die in einer bestimmten, vom Benutzer angebbaren Weise durch einen gegebenen
Stimulisatz aktiviert werden miissen. Der Simulator priift nun, ob diese Aktivie-
rung stattgefunden hat, oder nicht. Der Ansatz ist mit Fehlersimulation verwandt,
allerdings mit vom Benutzer formulierten Fehlermodellen.

5.2.3 Mehrebenensimulation

Der traditionelle Ansatz, fiir jede Abstraktionsebene einen dedizierten Simulator
anzubieten, ist problematisch, falls komplexe Systeme zu behandeln sind. Das erste
Problem ist, daB wihrend des Entwurfsprozesses verschiedene Simulatoren zu benut-
zen sind. Somit muB der Benutzer mit einer Reihe recht komplexer Softwaresysteme
vertraut sein und die Entwurfsdaten miissen mehrfach transformiert werden.

Der wesentliche Nachteil jedoch ist, daB stets das gesamte Entwurfsobjekt auf einer
Abstraktionsebene modelliert und simuliert werden muf. Der typische Entwurfs-
stil der stiickweisen Verfeinerung wird dadurch {iberhaupt nicht unterstiitzt. Fur
einen derartigen Entwurfsstil mu8 es mdglich sein, ein Modul in einem Simulati-
onsmodell durch eine andere Beschreibung desselben Moduls auf einer niedrigeren
Abstraktionsebene zu ersetzen und das gesamte System zu simulieren, d.h. das Mo-
dul auf niedrigerer Ebene, das gerade von Interesse ist, zusammen mit seiner auf
hdheren Ebenen formulierten Umgebung. Daher rithrt die Forderung nach Vielebe-
nensimulatoren. Dabei versteht man unter "Multi Level”-Simulation ein Simulati-
onssystem, das mehr als eine Abstraktionsebene iiberdeckt. Derartige Systeme un-
terstiitzen nicht notwendigerweise Beschreibungen, die gleichzeitig mehrere Ebenen
tiberdecken. Falls auch solche Beschreibungen unterstiitzt werden, spricht man von
"Mixed Level”-Simulation. Es gibt zwei Hauptansatze fir die "Multi Level/Mixed
Level”-Simulation:

Entweder wird ein Satz von dedizierten Simulatoren zu einem mehr oder weniger

integrierten System gekoppelt (Multisimulatoransatz), oder ein Breitbandsimulator
wird angeboten.

5.2.3.1 Multisimulatoransatz

Der einfachste Ansatz einer Mehrebenensimulation scheint die Kopplung existieren-

der dedizierter Simulatoren zu sein. In diesem Fall sind drei Hauptprobleme zu
16sen:

(i) Der Datenaustausch zwischen den beteiligten Simulatoren,
(ii) die Synchronisation der Aktivititen der verschiedenen Simulatoren,

(i) Eine Benutzerschnittstelle, die eine uniforme Kommunikation mit dem gesam-
ten Simulationssystem erlaubt.

309

5.2.3.1.1 Datenaustausch

Aus Einfachheitsgriinden soll angenommen werden, daB nur zwei Simulatoren zu
koppeln sind. Somit existieren zwei Modelle:

Mf)delll auf Ebene, und Modell, auf Ebene,.

Sei Pa die Menge der Primareingange von Modelly und p;; die von M odelly. Ahnlich
be‘zelchnet po1 die Menge der Primarausgange von M odell; und p, die von M odelly.
Mit Po.l—'ln'z = poy N piy sei die Menge der Verbindungen von Modell; zu Modell,
und mit po,—pi; = po,Npiy die der Verbindungen von Modell; zu M odell, bezeich-
net. I:Ieben diesen Verbindungsleitungen konnen beide Module Primareingange und
PTI{Ilafausginge haben, die direkt mit der Gimulationsumgebung verbunden sind
(Primérein- und -ausgange des Gesamtmodells). Die Situation wird in Abb. 82
dargestellt.

pi1 - po2

Abb. 82: Zwei gekoppelte Modelle

Bezeichne connect € (poyi—piz U poz—->pi1) eine interne Verbindungsleitung. Die

einfachste Situation ist im Fall identischer Wertebereiche und identischer Datendar-

stellungen gegeben. Diese Situation tritt im gegebenen Kontext jedoch selten auf,
benen verschiedene Wertebereiche

da typischerweise auf verschiedenen Abstraktionse

fiir die Variablen benutzt werden und auBerdem unterschiedliche Simulatoren oft

auch unterschiedliche Datendarstellungen benutzen. Falls sich nur die Darstellung

unterscheidet, muf bei jedem Datenaustausch eine einfache Konversion vorgenom-
men werden.
In .den meisten Fallen jedoch liegen verschiedene Wertebereiche vor. Typischer-
owe werden auf niedrigeren Abstraktionsebenen Wertebereiche hoherer Kardina-
litit benutzt. Gewisse Teilmengen dieser Wertebereiche werden dann auf hoheren
Ebenen als gewisse Werte interpretiert. Die Situation ist relativ einfach, falls es

eine Partition auf dem Wertebereich der niedrigeren Ebene derart gibt, daB die
Wertebereich auf der hoheren

Reprisentanten der verschiedenen Klassen gerade den
Ebene bilden. ; i

310

Beispiel:

Man betrachte den 7-wertigen Wertebereich

seven = {0, 1, X, L, H, Y, Z} auf der niedrigeren Ebene und einen 3-wertigen
three = {0, 1, X} auf der hoheren. Falls es legal ist, seven in die drei folgenden
Teilmengen zu partitionieren:

logical one = {1, H} C seven ,

logical zero = {0, L} C seven ,

logical unknown = {X, Y, 2} C seven

so erhalt man durch die einfach Codekonvertierung

(logical one — 1, logical zero — 0, logical_unknown — X)

den Ziel-Wertebereich.

Dies zeigt, daB es relativ einfach ist, Daten von einem Simulator auf niedrigem Ab-
straktionsniveau zu einem auf hohem zu iibergeben. In den meisten Fallen kann die
Partitionierung durch eine einfache Schwellwertfunktion definiert werden.

Die umgekehrte Richtung ist erheblich schwieriger. Hier wird vom Sender nur die
Information geliefert, in welche Klasse moglicher Werte auf der niedrigeren Ebene
der gelieferte Wert gehért. Die Identifikation des vorn Simulator auf niedriger Ebe-
nen zu selektierenden individuellen Wertes muf entweder global oder individuell fir
jede solche Verbindungsleitung angegeben werden.

Beispiel:

Man betrachte die beiden im obigen Beispiel benutzten Wertebereiche, seven um auf
Schalterebene, three um auf Gatterebene benutzt zu werden. Es sei angenommen,

daB connect eine unidirektionale Leitung von einem Modell (Simulator) auf Gatter-

ebene zu einem auf Schalterebene ist. Eine allgemeine Annahme wie ” Es werden

nur Gatter mit Ausgangstreibern benutzt” resultiert in einer Abbildung three —

sevenmit1 € three — 1 € seven, 0 € three — 0 € seven, X € three —
X € seven. Eine individuelle Annahme iiber diese Leitung wie ”connect ist der

Ausgang einer Speicherzelle ohne Lesepuffer” mag die folgende Abbildung three
— seven implizieren:

1 € three —+ H € seven,
0 € three — L € seven,
X € three — Y € seven.

Die Situation ist besonders kompliziert, falls diskrete Wertebereiche in kontinuier-
liche, wie sie bei der elektrischen Simulation benutzt werden, abgebildet werden
miissen. In diesem Fall muf ein Modell des Treibers, dessen Existenz angenommen
werden kann (obwohl er auf der hoheren Ebene nicht explizit genannt wird), durch
das Kopplungssystem angegeben werden. Hier scheint es sinnvoller zu sein, fur die
verschiedenen vorkommenden Leitungen individuelle Abbildungen vorzusehen.

311

5.2.3.1.2 Synchronisation

Die verschiedenen Simulatoren eines Multisimulatorsystems zusammen modellieren
dfxs Gesamtsystem. Daher miissen sie synchron gehalten werden. Allerdings ist es
nicht notwendig, sie vollstindig synchron zu halten, sodaB zu jeder Zeit jeder Simu-
lator den Zustand seines Teils zu genau demselben simulierten Zeitpunkt darstellt.
Doch miissen die Simulatoren mindestens so weit synchronisiert werden, daf jeder
Datenaustausch zur korrekten Zeit fiir den Sender wie auch den Empfanger statt-
findet. Es gibt zwei Hauptansitze, die beteiligten Simulatoren zu synchronisieren.
Entweder wird ein zentraler Supervisor iiber den beteiligten Simulatoren angeordnet,
oder die Synchronisation wird verteilt zwischen relativ frei laufenden Simulatoren
durchgefiithrt. Beide Ansitze resultieren in einer geringfiigigen Modifikation der in-
volvierten Simulatoren.

Im Fall eines zentralisierten Supervisors muB jeder Simulator die Kontrolle an den
S.upfarvisor abgeben, bevor er eine Zeitfortschaltung vornimmt. Der Supervisor iden-
tifiziert nun den Simulator, der die am wenigsten entfernte Zukunft behandeln will,
ux}d iibergibt die Kontrolle an diesen Simulator. Jeder Simulator kann nun als zy-
klischer ProzeB folgender Form gesehen werden:

procedure simulator (in permission : implicit bit;

out next_time : implicit integer) ;
while true do -
segbegin
next_time := advance_time ;
at up (permission) do simulate
end ;

Der Supervisor hat folgende allgemeine Form:

Procedure supervisor
(in next_time : array [1 : no_of_simulators] of integer ;

out permission : array [1 : no_of_simulators] of bit);
while true do
seqbegin
event := event_queue . remove ;
simulator_id := event . component_id ;

permission [simulator_id] := "1" ;

at change(next_time [simulator_id]) do
seqbegin
parbegin
event . component_id
event . event_time

:= gimulator_id ;
:= next_time [simulator_id]

end ;
event_queue . insert (event) ;

312

permission [simulator_id] := "0"
end
end ;

Event Scheduling scheint durch seine Flexibilitat die am besten geeignete Methode
fiir den Supervisor zu sein. Die einzelnen Simulatoren jedoch sind nicht auf die-
sen Typ eingeschrankt. Es wird nur gefordert, daB der, wie immer auch geartete,
Hauptzyklus fiir eine Kommunikation mit dem Supervisor aufgeschnitten werden
kann. Der geeignete Aufschneidepunkt liegt im Falle von Event Scheduling unmittel-
bar hinter dem Ort, an dem das nichste Ereignis aus der Ereignisschlange extrahiert
wurde. In den Fallen SCS und EI sollte der Zyklus unmittelbar vor Start eines neuen
Zyklus aufgeschnitten werden. Der Supervisor-Ansatz ”iibersynchronisiert” die Si-
mulatoren, da kein gegenseitiges Uberholen der Simulatoren moglich ist, selbst dann
nicht, wenn in der f}berlappungsperiode keine Kommunikation stattfinden wiirde.
Ein weiterer Nachteil ist, daB stets nur ein Simulator zu einem Zeitpunkt aktiv sein
kann. Somit ist diese Methode fir Multiprozessorsysteme weniger geeignet.

Ist der Supervisor-Ansatz das iibersynchronisierende Extrem, so ist der ”Time-
warp”- Ansatz das untersynchronisierende. In diesem Fall werden vollstandig frei
laufende Simulatoren ohne jegliche Synchronisation angenommen. Allerdings mu$
nun ein Simulator, der eine Nachricht beziglich eines Zeitpunkts erhilt, der vor
seinem aktuellen liegt, auf diesen fritheren Zeitpunkt zuriickgesetzt werden.

Es sei angenommen, es existieren die Simulatoren Sj, derzeit an dem lokalen simu-
lierten Zeitpunkt {LST) ts; und S; an LST ts,. Es sei weiter angenommen, daff 5;
eine Nachricht m = (data,t,,) an S, sendet, wobei t,, den simulierten Zeitpunkt

der Nachricht angibt. In jedem Fall wird gelten: t, > ts;. Es gibt nun zwei
Maoglichkeiten:

(l)tm > sy,
(ii)tm < tss.

Im Fall (i) wird m wie ein normaler Eingabestimulus behandelt. Ist der emp-
fangende Simulator 5, ein CES-Algorithmus, so wird dieses Ereignis einfach in die
Ereignisschlange von S, einsortiert.

Im Fall (i1) ist der Fall komplizierter. Wir milssen nun annehmen, daf S; in
einen Zustand vollstandig vor t,, restauriert (zuriickgerollt) werden kann. Eine
Maglichkeit dafiir ist im Fall eines CES-Algorithmus, periodisch den aktuellen Zu-
stand der Simulation, einschliefilich der Ereignisschlange, zu speichern. Zusatzlich
missen alle Nachrichten, die von einem Stimuligenerator oder von anderen Simulato-
ren kommen, gespeichert werden, und ein gespeicherter Zustand muf eine Referenz
auf diese Information beinhalten. Damit kdnnen alle einlaufenden Nachrichten nach
einem derartigen "Checkpoint” identifiziert werden.

In der ersten Phase der Behandlung von Fall (ii), genannt "Riickroll-Phase”, wird
der am nachsten liegende gespeicherte Zustand von S, zu LST ¢, < t,, geladen. Nun

313

kann jedoch S, im Zeitraum zwischen t. und ts, Nachrichten zu anderen Simulatoren
gesandt haben. Diese Nachrichten sind nun aber illegal. In der zweiten Phase, ge-
nannt "Riicknahme-Phase”, werden all diese Nachrichten zuriickgenommen, einfach
dadurch, daff man sie nochmals sendet, jedoch mit einem ” Rucknahme-Marker” ver-
sehen. Der Erhalt einer solchen Nachricht bewirkt beim empfangenden Simulator,
daB die entsprechende Nachricht aus der Nachrichtenschlange geldscht wird und da8
ansonsten auf diese Nachricht wie auf eine normale Nachricht reagiert wird. D.h.,
falls seine LST bereits den Zeitpukt der zuriickzunehmenden Nachricht passiert hat,
muB er Fall (ii) ebenfalls durchfithren. Dadurch kann sich der Riicknahmeprozef§
fir eine gewisse Zeit durch das gesamte Multiprozessorsystem fortsetzen. Weil aber
durch den Riicknahmeproze$ Eintrige in Schlangen endlicher Lange geloscht werden
und keine neuen Eintrage entstehen, ist der Prozef endlich. In der letzten Phase,
genannt ” Vorriick-Phase”, muf S, bis zum LST ¢,, simulieren.

Die ”Time-warp”-Methode ist sehr allgemein. Sie macht keinerlei Annahmen uber
die zu simulierenden Systeme iber solche hinaus, die fiir jede Simulation notwen-
dig sind. Alle Typen von Simulationsalgorithmen konnen so modifiziert werden,
daB sie in ejner "Time-warp”-Umgebung funktionieren. Die involvierten Simulato-
ren kénnen nebenliufig laufen, soda8 die Methode fiir Multiprozessor-Umgebungen
ideal geeignet ist. Der Nachteil der Methode rithrt von der optimistischen Annahme
her, da die beteiligten Simulatoren zu keiner Zeit durch ”verzogerte” Nachrichten
gestort werden. Dies ist mit der optimistischen Annahme in "Demand paging”-
Systemen, daB ein referenziertes Datenobjekt im lokalen Speicher liegt, vergleichbar.
Solange der Optimismus bestatigt wird, sind derartige Ansatze sehr effizient. Falls
nicht, muB eine gewisse ”Strafe” bezahlt werden (Nachladen einer Seite im ”Demand
paging”-Fall, Zuriickrollen im ” Time-warp”-Fall). Ein System wird wohlverhaltend
genannt, wenn die Summe der Strafen geringer ist als die Summe der Vorteile. In
Systemen, die nicht wohlverhaltend sind, konnen fble Situationen auftreten. Dies
Ist in unserem Beispiel der Fall, falls Simulatoren sehr unterschiedlicher Geschwin-
digkeit beteiligt sind und die Konnektivitit der auf verschiedenen Simulatoren zu
simulierenden Modellen sehr hoch ist. Natiirlich ist die Situation nicht ganz so ubel,
wenn die Sender von Nachrichten tendenziell schneller als die Empfanger sind.

5.2.3.1.3 Benutzerschnittstelle

Wenn verschiedene Simulatoren zu koppeln sind, haben diese iiblicherweise jeweils
eine eigene vollstandige Benutzerschnittstelle. Dies beinhaltet:

- Beschreibung des zu simulierenden Objekts,

- Beschreibung von Stimuli,

- Simulationssteuerung,

- Parstellung der Simulationsergebnisse.))
Diese Benutzerschnittstellen tendieren dazu, vollstindig inkompatibel zu sein. Da

314

aber Multisimulatorsysteme dazu gedacht sind, von Entwurfsingenieuren benutzt
zu werden, die mit einem bestimmten Simulationsystem vertraut sind, ist es nicht
ratsam, einfach eine neue Benutzeroberfliche zu konstruieren, die die vorhandenen
verdeckt. Die unmittelbare Kommunikation mit einem dedizierten Simulator muf
eine mogliche Option einer gemeinsamen Benutzerschnittstelle sein.

Betrachtet man die Modellbeschreibung, so scheint ein Modulkonzept wie das von
MODULA II oder DACAPO 111 eine gute Losung zu sein. Benutzt man "defini-
tion modules”, um die Kommunikation zwischen den verschiedenen Komponenten
zu beschreiben, so kénnen innerhalb der dazugehdrigen ”implementation modules”
verschiedene dedizierte Hardwarebeschreibungssprachen benutzt werden. Die Sti-
mulibeschreibung kann auf die gleiche Art und Weise behandelt werden. Die Simu-
lationssteuerung ist kein Problem, da nur relativ wenige Steueranweisungen zu den
individuellen Simulatoren gefiihrt werden miissen. Beziiglich der Ergebnisdarstel-
lung scheint die eleganteste Losung zu sein, die Ergebnisdarstellung aller Simulatoren
fiir jeden Simulator anzubieten. Da diese Formate in der Regel nur unterschiedliche
Darstellungen derselben Information sind, sind die notwendigen Transformationen
nicht zu kompliziert.

5.2.3.2 Breitbandsimulatoren

Hat man eine Breitbandsprache wie DACAPO oder VHDL, so scheint der natiirlichste
Ansatz ein Breitbandsimulator zu sein, um eine derartige Sprache unmittelbar zu
unterstiitzen. Dieser Ansatz hat eine Rethe von Vorteilen. Zunachst wird die ge-
samte Simulation durch eine einzige Umgebung durchgefithrt. Das zu simulierende
Objekt kann, wie es beschrieben ist, behandelt werden, ohne es zu transformieren
oder auf verschiedene Simulatoren zu verteilen. Es werden auch keine trickreichen
Beschreibungen notwendig, um Restriktionen bestimmter Simulatoren zu umschif-
fen. Stlickweise Verfeinerung ist hier auch kein Problem, da man stets innerhalb
einer Umgebung bleibt.

Natiirlich gibt es auch bei diesem Ansatz Nachteile. Zunachst ist die von Sprachen
wie DACAPO iberdeckte Bandbreite sehr grofi (VHDL, welches die algorithmische
Ebene nicht {iberdeckt, ist etwas einfacher zu behandeln). Somit muB ein recht
komplizierter Simulationsalgorithmus, der eine Reihe von Modellierungskonzepten
in einer heterogenen Menge von Wertebereichen unterstiitzt, implementiert werden.
Derartige allgemeine Algorithmen tendieren dazu, weniger effizient zu sein, als de-
dizierte. Dies liegt daran, da8 dedizierte Algorithmen bekannte Restriktionen des
Bereichs, den sie abdecken mussen, ausnutzen konnen, wahrend Breitbandalgorith-
men mit einer Reihe moglicher Situationen rechnen miissen. Im Fall von DACAPO
HI wurde dieses allgemeine Problem durch zwei Hauptansitze gelost:

Zunichst gibt es, wie in Abschuitt 5.2.1 dargestellt, ein einziges internes Modellie-
rungskonzept fiir die gesamte Bandbreite von DACAPO. Somit kann ein DACAPO-
Breitbandsimulator als Simulator fiir zeitbehaftete Interpretierte Petri-Netze ent-
worfen werden, ein Konzept, das sich auf die CES-Methode sehr effizient abbilden

315

laft. Dies ist die konzeptionelle Methode, die in der Praxis natiirlich etwas verletzt
wird, um eine weitere Leistungssteigerung zu erreichen. Da zeitbehaftete Interpre-
tierte Petri-Netze ein sehr allgemeines Konzept darstellen, sollten sich Simulatoren
fiir andere Breitbandsprachen auf der gleichen Basis implementieren lassen.

Der zweite verfolgte Ansatz ist, so viel wie moglich in unmittelbar ausfiihrbaren
Code zu iibersetzen. Nur der elementarste Scheduling- Algorithmus existiert als
hochoptimierter Interpretationsalgorithmus. Die restlichen Teile werden fitr jedes zu
simulierende Modell individuell in ausfithrbaren Code des Gastrechners {ibersetzt.
Somit wird im Vergleich zu dedizierten Simulatoren nahezu kein Overhead produ-
ziert. Dieser Ansatz wurde durch die modernen Compilergeneriermethoden méglich,
die es erlauben, automatisch hochoptimierende Codegeneratoren relativ einfach und
portabel zyu generieren.

Da8 bei der heutigen Technologie Breitbandsimulatoren den zu bevorzugenden An-
satz darstellen, bedeutet nicht, daB Multisimulatorsysteme iiberhaupt keinen Sinn
mehr haben. Es gibt sehr wohl Situationen, in denen diese Methode vorzuziehen ist.
Eine typische solche Situation ist gegeben, falls ein Halbleiterhersteller nur Simula-
tionsergebnisse eines bestimmten Herstellers akzeptiert. Eine dhnliche Situation ist
gegeben, falls es Modelle von Komponenten, die in einem Entwurf benutzt werden
sollen, nur in einer bestimmten Sprache gibt. SchlieBlich scheint dieser Ansatz am
besten geeignet zu sein, um gemischte Digital/ Analog-Simulatoren zu bauen.

5.3 Literatur

Auf dem Gebiet der formalen Verifikation von Hardware wird aktuell recht in-
tensiv gearbeitet. Als Uberblick ist [05] hervorragend geeignet. Eine der erstf?n
Ver'o'ffentlichungen ist die von Wagner [36]. Ein Schwerpunkt der Forschung liegt in
Groﬁbritannien, wo aus der Tradition formaler Verfahren zur Software-Verifikation
heraus eine Reihe von Arbeiten entstanden sind [12], {14], [25]. Hier finden so-
wohl hohere Logiken [14] wie auch Derivate von CCS {12], [25] A‘nwe_r.ldugg. In [31]
wird ein induktiver Ansatz beschrieben, wahrend [26] als Beispiel fiir die zal.llr'el—
chen Ansitze auf der Basis temporaler Logik dienen soll. Es gibt bereits lauffahige
Systeme, z.B. (03], und in {17] wird die Verifikation eines vollstandigen Prf)zess'ors
beschrieben. In verschiedenen Ansitzen wird auf eine Kooperation von Verifikation
und Simulation gesetzt [09], [25]. _ 3

Auf dem Gebiet der Timing-Analyse sind die Arbeiten von HltCl:\COCk [-10]7 (16]
richtungsweisend. In [32] findet sich eine Weiterentwicklung, die hlerf'uchlsch vor-
geht. Ein vergleichbarer Ansatz wird in [08] verfolgt. Weite V.erl‘)rentur.lg tianden
auch simulationsorientierte Ansatze zur Timing-Analyse, wie beispielsweise in [37]
beschrieben. Als Einfihrung in das Gebiet der Simulation sind besonders {10] und
(38] zu empfehlen. Das Problem der Vielebenensimulation wird in [11], [24] und [28]
behandelt, wihrend [35] (elektrische Ebene), [04], [21] und [23] (Schalterebene), [19]
(Gatterebene) dedizierte Simulationssysteme beschreiben. Die parallele Fehlersimu-
lation geht auf Szygenda zuriick [33], die deduktive Methode auf Armstrong [02] und

316

die "concurrent” Methode auf Ulrich {34]. In [18] und [22] werden Beispiele fiir den
SCS-Ansatz vorgestellt. Um den enormen Zeitbedarf von Simulatoren zu mindern,
wurden zahlreiche Simulationsmaschinen vorgeschlagen [01], [07] und [13]. In [29]
wird ein derartiger Ansatz fiir einen Mehrebenensimulator vorgestellt. Eine Vertei-

lung auf verschiedene Prozessoren (Multisimulatoransatz) beschreiben [06], [20] und
[271.

[01] M. Abramovici et al. :
A Logic Simulation Machine
IEEE T o CAD of Integrated Circuits and Systems, Vol. CAD-2, No. 2

[02] D. B. Armstrong:
A Deductive Method for Simulating Faults in Logic Circuits
IEEE ToC, Vol. C-21, No.5, 1972

(03] H. G. Barrow :

VERIFY: a program for proving correctness of digital hardware designs
Artificial Intelligence, Vol. 24, 1984

[04] R.E. Bryant :
MOSSIM : A Switch Level Simulator for MOS- LSI
in : Proceedings of 18th DAC, 1981

[05] P. Camurati, P. Prinetto :

Formal Vertfication of Hardware Correctness: An Introduction in Proceedings
IFIP CHDL’87, North Holland, 1987

[06] K.M. Chandy, J. Misra :

Asynchronous Distributed Simulation via a Sequence of Parallel Computations
Comm. ACM 24, 11, Apr. 1981

[07] M.M. Dennau :

The Yorktown Simulation Engine : Architecture and Hardware Description
in : Proceedings of 19th DAC, 1982

[08] H. Eveking :
VERTICO: An Expert System for the Verification of Timing Conditions
TH Darmstadt, Institut fur Datentechnik, Bericht RO 84/6, 1984

{09] H. Eveking :

Verification, Synthesis and Correctness-preserving Transformations - Cooperative
Approaches to Correct Hardware Design

in: Proceedings IFIP 10.2 Working Conference "From HDL Descriptions to Gua-

317

ranteed Correct Circuit Designs”,
North Holland, 1986

[10] G.S. Fishman :
Principles of Discrete Event Simulation
John Wiley & Sons, 1978

{11] M. Gonauser, F. Egger, D. Frantz :
SMILE - A Multilevel Simulation System
in: Proceedings of ICCD’84, 1984

[12] M. Gordon :
Proving a Computer Correct
University of Cambridge(UK), Computer Laboratory, TR n.42, 1983

[13] W. Hahn, K. Fischer : o .
High Performance Computing for Digital Design Simulation
in : Proceedings IFIP VLSI'85, North Holland, 1985

[14] F. K. Hanna, N. Daeche : .
Specification and Verification Using Higher Order Logic
in: Proceedings IFIP CHDL’85, North Holland, 1985

[15] R. B. Hitchkock, G. L. Smith, D. D. Cheng :
Timing Analysis of Computer Hardware
IBM Journal of R&D, Vol.26, No.1, 1982

(16] R. B. Hitchcock: .
Timing Verification and the Timing Analysis Program
in: Proceedings 19th DAC, 1982

[17] W. A. Hunt :

FM8501: A Verified Microprocessor Ot Gua-
in: Proceedings IFIP 102 Working Conference »From HDL Descriptions to Gua
ranteed Correct Circuit Designs”,

North Holland, 1986

[18] N. Ishiura et al. :
High-Speed Logic Simulation Using a Vector Processor
in: Proceedings IFIP VLSI'85, North Holland, 1985

[19] U. Jaeger :

Logik- und Fehlersimulation in dem Programmsystem DISIM

318

in ; Seminarunterlagen Praxis der Grossintegration,
FB Elektrotechnik, Univ. Dortmund, 1983

[20] D. Jefferson, H. Sowizral :

Fast Concurrent Simulation Using the Time Warp Mechanism, Part I : Local Con-
trol

Rand Corporation, Rand Note N-1906-AF, 1982

[21]) M. Kawai, J.P. Hayes :
An Experimental MOS Fault Simulation Program CSASIM
in : Proceedings of 21th DAC, 1984

[22] S. Koepper, C. Starke :
Logiksimulation komplexer Schaltungen fuer sehr grosse Testlaengen
in: NTG Fachberichte, Band 87, 1985

[23] K.D. Lewke, F.J. Rammig :
Description and Simulation of MOS Devices in Register Transfer Languages
in : Proceedings IFIP VLSI’83, North Holland, 1983

[24] J. Mermet :
The CASCADE Hierarchical Multilevel Mixed Mode (HM3) Simulator
in : Proceedings EUROMICRO’85, 1985

[(25] G. J. Milne :
Simulation and Verification: Related Techniques for Hardware Analysis
in: Proceedings IFIP CHDL’85, North Holland, 1985

[26] B. Moszkowski :

A Temporal Logic for Multi-level Reasoning about Hardware
IEEE Computer, Vol.18, No.2, 1985

[27] 1. K. Paecock, E.G. Manning, J.W. Wong :

Synchronization of Distributd Simulation Using Broadcast Algorithms
Computer Networks 4, 1, Feb. 1980

{28] F.J. Rammig :
Multilevel Simulation Techniques
in : Proceedings COMPEUROQ’87, 1987

(29] F. J. Rammig, M. Schrewe, G. Vorloeper :
A Transputer-Based Accelerator for Multilevel Digital Simulation
in: Proceedings EUROMICRO’88, North Holland, 1988

319

[30] W. Reisig :
Petri Nets : An Introduction
Springer, 1985

[31] R. E. Shostak :
Formal Verification of Circuit Designs
in: Proceedings IFIP CHDL’83, North Holland, 1983

(32] J. Strathaus :
Laufzeitanalyse digitaler Schaltkreise
Diplomarbeit Universitat-GH Paderborn, FB17, 1986

(33] S. A. Szygenda : . .

TEGAS 2 - Anatomy of a general purpose test generation and simulation system
for digital logic

in: Proceedings ACM Design Automation Workshop, 1972

[34] E. G. Ulrich, T. Baker :
The Concurrent Simulation of Nearly Identical Digital Networks

in: Proceedings 10th DAC, 1973

[35] A. Vladimirescu, S. Liu :
The Simulation of MOS Integrated Circuits Using SPICE 2
Memo VBC/ERLM 80/7, Univ. of Calif. Berkeley, 1980

(36] T. J. Wagner :

Verification of Hardware Designs thru Symbolic Manipulation
Int. Symposium on Design Automation and Microprocessors,
Palo Alto CA (USA), 1977

[37] T. M. McWilliams : ..
Verification of Timing Constraints on Large Digital Systems

in: Proceedings 17th DAC, 1980

(38] B. Zeigler :
Theory of Modelling and Simulation
John Wiley & Sons, 1976

320

6. Testmethoden

6.1 Begriffsbestimmungen

Grundsatzlich ist unter Testen stets ein experimentelles Verfahren zu verstehen,
mit dem sichergestellt werden soll, dafi ein Objekt nicht von seiner Spezifikation
abweicht. Im vorliegenden Umfeld sind zunichst zwel Hauptklassen an Tests zu
unterscheiden: Entwurfstests und Fertigungstests. Mit Hilfe von Entwurfstests soll
sichergestellt werden, daB Entwurfsdokumente korrekt sind. Darunter kann sowohl
Korrektheit in sich (interne Konsistenz) als auch Korrektheit in Bezug auf andere
Dokumente (externe Konsistenz) verstanden werden. Testen als experimentelles
Verfahren versucht diese Konsistenz nicht durch statische Analyse sicherzustellen,
sondern durch Durchfithrung hinreichend vieler Experimente und deren Auswertung.
Als Experimentierumgebung dient hierbei ein Simulator.

Der Fertigungstest dient dazu, sicherzustellen, daB ein Objekt, von dem unterstellt
wird, daB es korrekt entworfen ist, auch korrekt gefertigt wurde. Gibt es beim
Entwurfstest noch Alternativen zum Testen (insb. die an Bedeutung zunehmende
formale Verifikation), so ist man beim Fertigungstest fast ausschlieBlich auf Experi-
mente, d.h. das Testen, angewiesen. '

In diesem Abschnitt soll unter Testen nur der Fertigungstest verstanden werden.
Der naheliegendste Ansatz fiir das Testen scheint zunachst zu sein, die Funktions-
weise des zu testenden Objekts komplett durchzuspielen und mit der intendierten zu
vergleichen. Vom Prinzip her ist dies auch die einzige "korrekte” Testmethode, da
genau das sichergestellt wird, was von Interesse ist, nimlich ob das gefertigte Ob-
jekt korrekt funktioniert. Man nennt dieses Verfahren funktionales Testen. Leider
ist funktionales Testen in der Praxis meist nicht anwendbar. Bereits bei kombinato-
rischen Schaltnetzen, wo nur fiir jede mogliche Wertekombination an den primaren
Eingingen uberpriift werden muf}, ob der korrekte Wert an den primaren Ausgangen
vorliegt, erreicht man eine nicht zu bewaltigende Komplexitiat. So waren fiir einen
simplen 32-Bit-Addierer 2**64 verschiedene Testmuster anzulegen, wofiir selbst un-
ter Annahme einer Testmusterfrequenz von 100 MHZ 2**35 sec notwendig waren,
was der zu erwartenden Lebensdauer des Priflings bereits nahekommt. Man ver-
zichtet daher in der Praxis meist auf einen funktionalen Test und beschrankt sich
darauf, sicherzustellen, daB kein Fehler aus einer vorher festgelegten Menge von als
vorstellbar angesehenen Fehlern vorliegt. Um diese Menge sinnvoll definieren zu
konnen, muB die interne Struktur des zu testenden Objekts vorliegen. Man spricht
in diesem Fall daher von strukturorientiertem Testen. Die Menge der als moglich
angesehenen Fehler wird als Fehlermodell bezeichnet.

Die Qualitdt des Tests hangt somit bei diesem Verfahren weitgehend von der Qua-
litét des Fehlermodells ab. Es lieBen sich aber Fehlermodelle finden, von denen es
empirisch erwiesen ist, daBl eine sehr hohe Korrelation zwischen der Abwesenheit
eines Fehlers dieses Modells und der Korrektheit des Objekts besteht. Funktio-
nale Testverfahren werden in abgeanderter Form ebenfalls in der Praxis eingesetzt.

321

Entweder ist die Anzahl an Primareingingen bei kombinatorischen Schaltnetzen
hinreichend klein, oder man versucht durch verschiedene Methoden aus einer rela-
tiv kleinen Anzahl von Stichproben dennoch eine Korrektheitsaussage hoher Wahr-
scheinlichkeit abzuleiten.

6.2 Strukturorientierte Testverfahren

6.2.1 Fehlermodelle

In diesem Zusammenhang sollen nur permanente Fehler betrachtet werden. Inter-
mittierende Fehler (Wackelkontakte) stellen zwar ein erhebliches Problem dar, sind
systematisch aber nur sehr schwer zu fassen. Hat man nun ein Strukturmodell einer
Schaltung vor Augen, so kann man Fehler sowohl in den Knoten (Schaltelementen)
wie auf den Kanten (Verbindungsleitungen) annehmen. Beschrankt man sich weiter
auf Fehler auf Verbindungsleitungen, so erscheinen Leitungsbriiche und Kurzschlisse
am wahrscheinlichsten. Ein Leitungsbruch hat zur Folge, daB "hinter” der Unter-
brechungsstelle je nach Technologie entweder standig ein Wert "1” oder ein Wert
"0” angenommen wird. Von allen Kurzschliissen ist ein Kurzschluf mit der Strom-
versorgung am wahrscheinlichsten. Ein solcher Kurzschlufl aber wirkt sich ebenfalls
50 aus, daB auf dem entsprechenden Netz standig ein Wert "1” oder ein Wert ”0”
anliegt. Beschrankt man sich auf diese Falle, hat man das Haftfehlermodell (stuck-
at) erhalten. Dieses Fehlermodell ist auf der Gatterebene weit verbreitet und zeigt
eine sehr hohe Korrelation mit der Funktionsfahigkeit von Objekten.

Geht man der Einfachheit halber weiterhin davon aus, da8 bei einem zu testenden

Objekt hochstens ein Fehler vorliegt, so liegt die Einzelfehlerannahme vor. Gibt man

diese Annahme auf, spricht man von der Mehrfachfehlerannahme. Letztere erscheint
der erheblich hoheren Komplexitat

zwar realistischer, ist in der Praxis aber wegen

meist nicht einsetzbar. Dies wird am Beispiel eines beliebigen logischen Gatters mit
n Eingingen und einem Ausgang deutlich. Hier sind 2(n+1) Einzelhaftfehler aber
(3**n+1)-1 verschiedene Mehrfachhaftfehler moglich. Die Mehrfachfehlerannahme
mag zwar realistischer sein, doch fithrt die Einfachfehlerannahme neben der besseren
Praktikabilitit meist auch zu guten Ergebnissen, da von wenigen Ausnahmen abge-
sehen von den Testmustern zur Aufdeckung von Einfachfehlern die einzelnen Fehler,
die einen Mehrfachfehler konstituieren, ebenfalls aufgedeckt werden oder zumindest
die Existenz eines (moglicherweise falsch lokalisierten) Fehlers angezeigt wird.
Beim Kurzschlufifehlermodell wird die Einschrankung, da8 Kurzschliisse nur zwi-
schen der Stromversorgung und anderen Leitungen vorkommen, aufgegeben. Al-
lerdings kann der triviale Fall, dafl ein KurzschluB zwischen den beiden Polen der
Stromversorgung vorliegt, auch hier ignoriert werden, da dieser Fall durch einfach
zu beobachtende Phinomene aufgedeckt wird. Das Haftfehlermodell ist somit ein
Spezialfall des KurzschluBfehlermodells. Ein beliebiger KurzschluB kann auf Gatter-
ebene einfach dadurch modelliert werden, da8 an der KurzschluBstelle ein Gatter
angenommen wird, und zwar ein Oder-Gatter, falls in der unterliegenden Techno-
logie der Wert "1” dominant ist, und ein Und-Gatter, falls der Wert 73" dominant

322

ist. Fehlen dominante Werte, kann dieser einfache Trick nicht angewandt werden.
Wichtig bei der allgemeinen KurzschluBannahme ist eine Beschrankung auf mogliche
oder gar wahrscheinliche Kurzschliisse, da sonst eine zu hohe Anzahl moglicher Kurz-
schliisse angenommen wiirde. Derartige Aussagen sind jedoch nur mit Kenntnis des
endgiltigen Layouts moglich. Wieder beschrankt man sich hier meist auf die Ein-
fachfehlerannahme. Doch auch damit kdnnen sehr iible Effekte auftreten, da sich
durch Kurzschliisse Riickkopplungen bilden konnen, was zur Bildung asynchroner
Automaten fithren kann.

Auf der Schalterebene sind diese Fehlermodelle nicht mehr ausreichend. Hier sind
insbesondere zusitzlich die Fehler ”stets leitend” (stuck-closed) und "stets sper-
rend” (stuck-open) zu betrachten. In der CMOS-Technologie fithrt besonders der
stuck-open zu Effekten, die mit dem klassischen Haftfehlermodell nicht zu beschrei-

ben sind. Als Beispiel diene die in Abb. 83 dargestellte CMQOS-Schaltung fiir ein
NOR-Gatter.

vdd

GND

Abb. 83: CMOS-Realisierung eines NOR-Gatters

Es sei nun angenommen, da der Transistor A stets sperrend sei. Das korrekte und
das fehlerhafte Verhalten ergeben sich dann aus der folgenden Tabelle:

x y | z(fehlerfrei) z(fehlerhaft)
”0” k2] 0” ” 1” » 1”

”0” ” 1” ”077 710”

”1” HO” 7’0” z(t-l)

» 1” kd l” ”0” ”0”

Bei der Eingabe x = 1" und y = 0" sind weder das Pullup-Netzwerk (p-Kanal-

323

Transistoren) noch das Pulldown-Netzwerk (n-Kanal~Transisto'ren) leitend. Am
Ausgang z bleibt daher der Wert bestehen (fiir eine gewisge Zeit), der zuvor dort
angelegen hat, allerdings nur als gespeicherte Ladung (high impedance). Der stu(i}(—
open-Fehler an Transistor A ist also nur durch die Testmusterseque‘nz (roo","10")
aufdeckbar. Analog bendtigt man die Sequenz ("00","01") um einen stuck-open-
Fehler an Transistor B aufzudecken. .
Grundsitzlich becbachtet man, daf sich durch stuck-open-Fehler sequentielle Schalt-
werke ergeben konnen.

6.2.2 Testmustererzeugung fiir das Haftfehlermodell
Bezeichnung 6.2.2.1

Die Fehler 'Leitung x stets auf 1’ bzw. ’Leitung x stets auf 0’ we.rden mit x@1 bz?v.
xQ0 bezeichnet. T(xQi) bezeichnet die Menge der T&stmustfer, die den Fehler x@l.,
i € {0,1} aufdecken, d.h. beim Vorliegen des Fehlers zu einem anderen Ergebnis
des Schaltnetzes fithren als im korrekten Fall.

Beispiel: .
Sei gegeben ein Und-Gatter mit zwei Eingingen x und y. Dann gilt: T(x@0)

{||11u}
Definition 6.2.2.2

Zwei Fehler x0i und y@j, i,j €{0,1} heifen testiquivalent (x@i < y@j)
H
t € T(xQi) & t € T(yej).

Ein Fehler x@i dominiert einen Fehler y8j (x@i — y®j)
H
t e T(x0i) = t € T(y8j).

o

Beispiel:

Gegepben ein NAND-Gatter mit drei Eingangen A,B,C und Ausgang D. Dann gelten
folgende Aquivalenzen:

AQ@0 ~ B@0 « C@0 « D@1

AQ1 « D@o

B@1 « Dao

Ca1 » D@o

Man erhilt also folgende Tabelle von Fehlerklassen:

324

A B C|D Fehlerklasse
1 1 10 [A@o, B@o, C@o, D@1
0 1 11 A@1, D@0
1 0 111 B@1, D@0
11 11 C@1, D@o

Man beobachtet, daB mit nur vier Testvektoren (statt aller 8 moglichen) alle Fehler
entdeckt werden konnen.

Allgemein gilt fiir ein NAND-Gatter mit n Eingangen z;,4 = 0 : n — 1 und einem
Ausgang z:

Vi:z;Q0 o @1

Vi: T(2;Q0) = T(2Q@1) = ("1 Vi sz = 1)

Vi:z;@Q1 — @0

t <> j = T(z01)NT(zjQ1) = 9

Vi T(z,@1) = {"tho1.tite”|t; = 0 und t; =1 far j <> i}

T(2@0) = {"t,_y...20" [T, : ¢; = 0}

Ahnliche Beziehungen lassen sich fiir alle anderen Gatter auch aufstellen. Damit
lassen sich dann fiir die einzelnen Gatter eines Schaltnetzes die notwendigen Test-
vektoren bestimmen.

Def. 6.2.2.3

Der Fehler x@i iiberdeckt den Fehler ¥y0j (x@i [— yej)

=

X0 « yQj oder x@i — y@j

Gilt x@i [— y@j so muB nur noch ein Testvektor fiir x@i konstruiert werden, da

dieser dann den Fehler y@j ebenfalls aufdeckt. Man kann somit den folgenden Fal-
tungsoperator definieren:

x@i ([—) y0j := xQi falls x@i [— ¥@j, undef. sonst

o
Natirlich ist ([—) assoziativ.

Def. 6.2.2.4

Eine Menge M von Testvektoren heifit vollstandig firr eine Menge F von Fehlern
4

VfeF:3te M:teT(f).

Sei F(G) die Menge aller Haftfehler eines kombinatorischen Schaltnetzes G.

325

Eine Menge F von Fehlern heifit ausreichend fiir F(G)
B4
M vollstandig fiir F = M vollstindig fir F(G).

<O

Man wird nun versuchen, fiir ein gegebenes Schaltnetz eine minimale Fehlermenge
F zu finden, die ausreichend ist. Hierzu werden zunichst zwei Klassen von Schalt-
netzen betrachtet: Rekonvergente und nicht rekonvergente.

Def. 6.2.2.5

Gegeben ein Schaltnetz G und seine Darstellung als dag D(G). G heifit rekonvergent
(RFO)

&

in D(G) gibt es mindestens zwei Knoten g1 und g1 mit es gibt mehr als einen Weg
von g1 nach g2.

G heiBt nicht rekonvergent (NRFO) sonst.

G heifit redundant

14

Es gibt eine Leitung S in G und es gibt weder einen Testvektor t, der S@1 noch einen
Testvektor t’, der SQ0 aufdeckt.

o

In der obigen Definition nimmt man in der Regel an, dafB sich Primareingange be-
liebig vervielfachen lassen, sodaB Verzweigungen an Eingangsknoten (d.h. Kno.ten
mit Eingangsgrad 0) im Sinne der Definition nicht betrachtet werde.zn. Man sieht
sofort, daB nicht rekonvergente Schaltnetze mit nur einem Ausgang einen Baum als
dag haben.

Satz 6.2.2.6

Sei G ein NRFO-Schaltnetz, F(G) die Menge aller Fehler von G und P(G) die Menge
aller Fehler an Eingangen von G. Dann gilt:

(i) P(G) ist ausreichend fiir F(G),

(i1) (£ € P(@) und ¥V £’ € P(G), £’ <> £ : micht £ =) =

P(G) N {£} nicht ausreichend fir F(G).

<

Der vollstandige Test von NRFO-Schaltnetzen reduziert sich also darauf, eine mini-
male Menge von Klassen von Fehlern an den Eingangen zu finden, sodaB alle Fehler

326
an Eingingen iiberdeckt werden, und hierfiir Testmuster anzugeben.
Satz 6.2.2.7

Sei G ein irredundantes RFO-Schaltnetz, F(G) die Menge aller Fehler von G,

P(G) die Menge aller Fehler an Eingingen von G und V(G) die Menge aller Fehler
an Verzweigungen von G. Dann gilt:

P(G) U V(G) ist ausreichend fiir F(G).

<

Damit 148t sich nun zwar eine ausreichende Menge von Fehlern finden, doch wird
damit zunédchst weder die Frage beantwortet, ob das Schaltnetz irredundant ist (Vor-
raussetzung!), noch sind die notwendigen Testmuster konstrujert. Hierfiir werden
zwei grundsatzlich unterschiedliche Verfahren benutzt:

¢ Entweder man versucht, die erforderlichen Testmuster konstruktiv zu gewin-
nen. Hierzu dienen Testmustergeneratoren (TPG), die in der Regel Pfadsen-
sitivierungen vorzunehmen versuchen.

o Oder man erzeugt Testmuster zufallig und iberprift, ob sie die als ausreichend
erkannte Fehlermenge aufdecken. Ist dies der Fall, ist man fertig, wenn nicht,
mufl man eben weitere Muster erzeugen und iberprifen.

Dieses Verfahren wird Fehlersimulation genannt.

Hier soll zunachst das Verfahren der konstruktiven Testmustererzeugung verfolgt
werden. Die Fehlersimulation wird in Abschnitt 6.2.3 behandelt werden.
Zunichst stellt sich die Frage, wie man in einem Testmuster-Generierungs- Algo-
rithmus Fehler geschickt darstellen kann, Besonders elegant geschieht dies durch
den sogenannten D-Kalkiil. Darin werden Fehler wie folgt reprasentiert:

tehlerfreier fehlerhafter beschrieben

Fall Fall durch
(] 0 0

0 1 D

1 0 D

1 1 1

Durch vier Werte ist also sowohl der Wert im Normalfall wie auch die Abweichung
im Fehlerfall dargestellt. Alle Fehlerklasseq an Booleschen Gattern lassen sich nun
einfach durch Zuweisung der Werte D und D an die Gatterausgange darstellen.

327

Beispiel:
Fehlerklassen an NAND-Gatter mit 2 Eingangen x,y und Ausgang z
X|{y| z|% Fehleran x y 2
0{1|D @ - @o
1j0{D - @ @o
1|1|D @ @o @1

Will man nun ein Testmuster fiir einen Fehler irgendwo in einem Schaltnetz kon-
struleren, so geschieht dies in drei Hauptschritten:

1) Lokales Aufdecken des Fehlers,
2) Sichtbarmachen an Schaltnetzausgangen,)
3) Erzeugen eines Testmusters, das den Restriktionen aus 1) und 2)genigt.

Schritt 1 ist sehr einfach. Es sei unterstellt, daB fur jeden Gattertyp, der in der
Schaltung vorkommt, eine Tabelle, wie im obigen Beispiel fur das NAND angege-
ben, vorhanden ist. In dieser Tabelle kann nachgeschlagen werden, wodurch die
Fehlerklasse, zu der der zu entdeckende Fehler gehort, dargestellt wird. Dies muf
nicht eindeutig sein, ist es aber im Falle eines NAND-Gatters. So wird im obigen
Beispiel x@1 eindeutig durch D am Ausgang dargestellt. Fir die Schritte 2) und 3)
miissen nun Pfade sensitiviert werden. Es miissen also Werte oder Wertedifferenzen
gezielt iiber Pfade weitergeschaltet werden. Dazu bendtigt man fur die benutz-
ten Gattertypen eine weitere Tabelle, die jeweils angibt, wie Werte weitergegebe.n
werden. Fiir die Weiterschaltung der "normalen” Werte ist dies bereits durch die
normale Funktionstabelle gegeben. Diese wird nun so erweitert, dafl auch abzulesen
ist, wie Werte D und D weitergeschaltet werden.

Beispiel:
Nimmt man wieder das 2-stellige NAND, so hat man die Funktionstabelle:

| v |

hier steht b fir einen beliebigen Wert aus {0,1}

g O X
— o o=
[T A

Fir eine gezielte Fehlerfortschaltung kommt offensichtlich nur die Situationz =y =
1 im fehlerfreien Fall in Frage. Hier erhalt man nun:

328

Schritt 2 wird nun so durchgefithrt, da8 man vom Fehlerort vorwirts durch das
Schaltnetz geht, bis man einen Ausgang des Schaltnetzes erreicht hat. Bei jedem
Knoten wird in der zugehdrigen Tabelle nachgeschlagen, wie die restlichen Eingange
zu beschalten sind, damit am Gatterausgang ein Wert D oder D erscheint. Diese
Werte werden fiir diese Gattereingange notiert.

Diese ”Restbeschaltung” ist nicht notwendigerweise eindeutig. Ist sie es nicht, so
werden alle Alternativen notiert. Am Ende von Schritt 2) weiB man fiir jedes Gat-
ter auf dem Pfad vom Fehlerort zum Schaltnetzausgang, wie die jeweils anderen
Gattereingange zu beschalten sind, damit der Fehler am Schaltnetzausgang sichtbar
wird. Gibt es mehrere Pfade vom Fehlerort zu Schaltnetzausgingen, so wird diese
Information fiir alle diese Pfade gespeichert.

In Schritt 3) muB nun ein Testmuster an den Eingingen des Schaltnetzes gefunden
werden, das all die in Schritt 2) gefundenen Beschaltungen zur Folge hat. Hierzu
verfolgt man nun von den Beschaltungspunkten Pfade riickwarts zu den Schaltnetz-
eingingen und wahlt bei jedem Gatter auf diesen Pfaden an den Gattereingingen
solche Werte, da der geforderte Ausgangswert berechnet wird. Auch hier kann es
eine Reihe von Freiheitsgraden geben, die dann ausgenutzt werden missen, wenn
widerspriichliche Anforderungen an Eingabewerte berechnet werden. In solch einem
Fall muB ein Backtracking durchgefithrt und versucht werden, mit einer anderen
Alternative eine widerspruchsfreie Belegung zu finden. LaBt sich iberhaupt keine
widerspruchsfreie Belegung finden, handelt es sich um einen nicht aufdeckbaren Feh-
ler in einem redundanten Schaltnetz.

Beispiel:
Gegeben sei das in Abb. 84 gezeigte Schaltnetz. Es sei ein Testmuster fiir den Fehler
Q1 zu generieren.

a |
b NAND | ¢
SE— B
c NAND |
NAND | |
d 1N
e NAND

Abb. 84: Schaltnetz, fir das Testmuster zu generieren sind

Schritt 1)

329

In der Tabelle fir ein NAND-Gatter mit zwei Eingangen liest man ab, daff dieser
Fehler durch den Wert D am Gatterausgang dargestellt wird. Weiterhin entnimmt
man der Tabelle, daB hierfiir der Gatter-Eingang f mit dem Wert 0 und der Gat-
tereingang ¢ mit dem Wert 1 zu belegen ist.

Schritt 2)

Um den Wert D auf Leitung g am Schaltnetzausgang i sichtbar zu machen, muf}, wie
in der Tabelle fiir ein NAND-Gatter mit zwei Eingangen abzulesen ist, am Eingang
h dieses Gatters der Wert 1 anliegen. Der Schaltnetzausgang tragt dann den Wert
b, zeigt also im Fehlerfall den Wert 1 und im fehlerfreien Fall den Wert 0.

Schritt 3)

Nun sind die in Schritt 1) und 2) festgelegten Werte riickwarts zu verfolgen. Ein
Wert, 0 auf der Leitung £ 1aBt sich laut Funktionstabelle eines NAND-Gatters mit 2
Eingingen nur dadurch erzeugen, daB die Schaltnetz- Eingange a und b beide den
Wert 1 haben.

Fur den Schaltnetzeingang c liegt der Wert 1 bereits fest. Fiir die Leitung h wurde in
Schritt 2) der Wert 1 notiert. Um diesen Wert zu erzeugen, gibt es drei Alternativen
an den Schaltnetzeingingen d und e: 1,0 oder 0,1 oder 0,0. In diesem Fall kann man
frei wihlen. Ware aber beispielsweise der Schaltnetzeingang d mit ¢ identifiziert,
s0 wire nur die erste Alternative moglich. Abb. 85 zeigt das Schaltnetz mit der

gefundenen Wertebelegung.

I Q—
b NAND | ¢
1 ' o
1 ¢ NAND |D 4
1 NAND| |
100 l
d h
010

Abb. 85: Schaltnetz mit Testmuster

Es gibt eine Anzahl geringfiigig unterschiedlicher Auspragungen des D-Algorithmus.
Die Unterschiede beziehen sich insbesondere darauf, in welcher Reihenfolge Alter-
nativen verfolgt werden und welche Backtracking- Strategie gewahlt wird. In jedem
Fall ist der D-Algorithmus in der Lage, bei kombinatorischen Schaltnetzen fir alle
aufzeigbaren Fehler ein Testmuster zu generieren und gleichzeitig nicht aufdeckbare

330

Fehler anzuzeigen. Er 1i8t sich durch einen einfachen Trick auch auf sequentielle
Schaltwerke anwenden. Jedes synchrone sequentielle Schaltwerk kann bekanntlich
nach der Huffman-Normalform aus einem kombinatorischen Schaltnetz und einem
Zustandsregister bestehend dargestellt werden (Abb. 75). Diese Darstellung kann
man sich nun aufgerollt vorstellen, wobei man ebensoviele Kopien der Kombinatorik
hintereinanderschalten muB, wie das Zustandsregister Werte annehmen kann. Far
die Testmustergenerierung kann das jeweils dazwischengeschaltete Zustandsregister
im wesentlichen ignoriert werden. Man mu8 sich lediglich merken, da$ jeder Werte-
transfer durch dieses Register einer Taktung entspricht. Somit hat man wieder die
alte, bereits geloste Aufgabe vor sich, fiir ein kombinatorisches Schaltnetz Testmu-
ster fiir alle Einfachhaftfehler zu konstruieren. Abb. 86 zeigt ein Schaltwerk mit
einem 2-Bit-Zustandsregister und Abb. 87 die aufgerolite Form.

n m

X -7L—> E v ——74-> Y
—| combinational
logic

S

Abb. 86: Schaltwerk mit 2-Bit-Zustandsregistern

XO Y0 X1 Y1 X2 Y2 X3 Y3
- -]
- 0|y 1|e

Abb. 87: Aufgerollte Version von Abb. 86

331

6.2.3 Fehlersimulation

Im Gegensatz zur konstruktiven Testmustergenerierung stellt die Testmustergenerie-
rung iiber Fehlersimulation ein " Rate-und-Teste”-Verfahren dar. Das Grundprinzip
ist wie folgt (dargestellt zunichst am Beispiel kombinatorischer Schaltnetze):

Man erzeugt zwei Simulationsmodelle des Schaltnetzes, eines ohne Fehler und ei-
nes mit einem Fehler. Dann konfrontiere man beide Modelle mit einem zufallig
gewihlten Testmuster. Unterscheiden sich die Werte an den Ausgéangen der beiden
Modelle, so hat man ein Testmuster fiir den eingebauten Fehler gefunden, falls nicht,
so versucht man es mit anderen zufillig gewahlten Mustern, bis man einen Werteun-
terschied erreicht. Im Falle nicht aufdeckbarer Fehler in redundanten Schaltnetzen
bricht das Verfahren allerdings erst ab, wenn man alle Muster ausprobiert hat und
immer noch keinen Wertunterschied beobachten konnte. Man ist in der Praxis daher
gezwungen, nach einer vorher festgelegten Anzahl von Versuchen abzubrechen. Hat
man bereits Testmuster fiir Fehler gefunden und fiigt einen weiteren Fehler ein, so ist
es angebracht, zunichst mit den bereits gefundenen Testmustern zu versuchen, den
neu eingefiigten Fehler aufzudecken. Dies liegt darin begriindet, dafi aufdeckende
Testmuster nicht gleichverteilt {iber der Menge aller mdglichen Testmuster sind und
daB man eine méglichst kleine Menge von Testmustern erhalten will. Es ist dabei
allerdings zu bedenken, da durch diese Strategie die Fehlerdiagnosemdglichkeiten
eingeschrankt werden.

Fehlersimulation ist mit allen in Abschnitt 5.2 beschriebenen Simulationsalgorith-
men moglich. Da nun aber keine Entwurfsverifikation mehr erforderlich ist, da
bereits sichergestellt ist, daB alle zeitlichen Zusammenhinge korrekt sind, kann auf
eine prazise Zeitmodellierung verzichtet werden. Andererseits muB besonderer Wert
auf die Geschwindigkeit gelegt werden, da die zu betrachtende Schaltung nun sehr
oft durchgerechnet werden mus.

6.2.3.1 Fehlersimulation mit dem SCS-Algorithmus

Der SCS-Algorithmus erscheint zunachst in idealer Weise fur die Fehlersimulation
geeignet, da die ihm unterliegenden Restriktionen im Falle der Fehlersimulation alle
erfallt sind und er beim Vorliegen dieser Restriktionen auBerordentlich leistungsfahig
ist. Die einzige Schwierigkeit liegt darin, daB es sich bei diesem Verfahren um
eine compilierende Methode handelt, d.h. aus der Schaltungsbeschreibung wird in
ausfithrbaren Code fest iibersetzt. Zum Zwecke der Fehlersimulation muB die Schal-
tung jedoch dynamisch verindert werden. Nichts anderes bedeutet das Einfugen
von Fehlern. Hierzu gibt es nun eine Reihe von Lésungen:

Die naheliegendste Losung scheint zu sein, innerhalb des Paradigmas der Gattersi-
mulation zu bleiben und in jede Leitung des Schaltnetzes in Serie je ein Und- und ein
Oder-Gatter mit je zwei Eingangen einzufigen (siehe Abb. 88). Wenn ae den freien
Eingang des Und-Gatters und oe den des Oder-Gatters bezeichnet, so modelliert
man die verschiedenen Fehlerfille auf dieser Leitung wie folgt:

332

A
0=@0

signal
in —®1 OR

r

= @1

L AND signal
— —out

Abb. 88: Programmierbare Fehlerinjektoren

ae | oe | Bedeutung

”0” ”0” @0
770” » 177 @O
”1” | 70” | kein Fehler
" 1 ” ” 1 ” @1

Der Nachteil dieses Verfahrens ist offensichtlich: Die zu simulierende Schaltung wird
rund gerechnet verdreifacht. Dieser Aufwand kann verringert werden, wenn man
dasselbe Verfahren nicht auf der Ebene der Gatterschaltungen, sondern auf der des
Programmcodes durchfithrt. Bei vielen Prozessoren macht es keinen Unterschied, ob
man in ein Zuweisungsziel einfach zuweist oder ”hineinundet” bzw. "hineinodert”.
Ist dies der Fall, so kann man die Zuweisungsziele einfach It. obiger Tabelle vor-
besetzen und erweitert damit das Simulationsmodell nur um eine Instruktion pro
Leitung. Man kann auch zwei Modellvarianten bei der Ubersetzung erzeugen, eine
fir @0-Fehler (Und—ZuweisungeP) und eine fiir @1-Fehler (Oder- Zuweisungen). In
diesem Fall hat man erhohten Ubersetzungsaufwand und zusatzlichen Speicherbe-
darf (auf dem Hintergrundspeicher), aber keinerlei Modellerweiterung mehr. Das
Verfahren ist, um die volle Effizienz zu erreichen, allerdings nur durchfithrbar, falls
man direkt in den Maschinencode eines geeigneten Rechners iibersetzt. Bedauer-
licherweise sind gerade "Load/Store”- Architekturen (RISC-Architekturen) hierfir
nicht so gut geeignet.

Eine dritte Mdglichkeit ist es, fiir jede Leitung einen bedingten Sprung vorzusehen,
der im Fehlerfall durchgefiihrt wird. Am Sprungziel wird der fehlerhafte konstante
Wert eingesetzt und unbedingt zur danach durchzufithrende Instruktion gesprungen.
Hier kann man nun das Wissen ausnutzen, daB pro Durchlauf genau einmal der be-
dingte Sprung ausgefithrt wird. Bei einer Reihe von Pipeline-Architekturen wird
namlich die Pipeline unter der Fiktion, da (nicht) gesprungen wird, weitergefuhrt,
so dafl bei geschickter Ausnutzung die Pipeline fast nie unterbrochen wird. Aller-
dings erhoht sich die Anzahl der Instruktionen. Bei diesem Verfahren empfiehlt es
sich auch, die Schachtelung der beiden Hauptschleifen der Fehlersimulation umzu-

333

kehren und pro Testmuster alle einzustreuenden Fehler durchzuprobieren. Da man
in der Regel wortorientiert arbeitet (d.h. meist 32-bit-weise), bedeutet dies ein Aus-
probieren aller einzustreuenden Fehler pro 32-bit-Paket. Die Fehler wird man auch
streng nach Codesequenz geordnet entweder von hinten oder von vorn einstreuen,
um bereits ausgerechnete Teile mitbenutzen zu kdnnen.

6.2.3.2 Fehlersimulation mit dem CES-Algorithmus
6.2.3.2.1 Parallele Fehlersimulation

Fir diesen Ansatz muB gelten, daB ein Einheitsverzégerungsmodell vorliegt und daf
der Gastrechner alle Instruktionen, die den Zustand der Variablen, die die zu simu-
lierende Schaltung darstellen, verindern, wortweise, aber bit-individuell ausfihrt.
Dies ist natiirlich auch eine Voraussetzung fir ein wortorientiertes Arbeiten beim
SCS-Algorithmus. Sie wird bei dedizierten Simulatoren auf der Gatterebene meist
erfiillt. Nun kann man dhnlich wie unter 6.2.3.1 beschrieben arbeiten, nur dafl hier
nicht n Testmuster, sondern n Fehler parallel bearbeitet werden. Die Fehler wer-
den wieder dadurch dargestellt, daB in die Zuweisungsziele nicht einfach zugewiesen
wird, sondern ”geundet” und "geodert”, wobei im Fehlerfall eine Wertvorbesetzung
vorgenommen wird. Parallele Fehlersimulatoren konnen sehr einfach implementiert
werden, weshalb sie auch relativ weit verbreitet sind.

6.2.3.2.2 Deduktive und Concurrent-Fehlersimulation

Die parallele Fehlersimulation erlaubt es, n-1 Fehler gleichzeitig zu simulieren, wenn
n die Wortbreite des Gastrechners ist. Liegen mehr als n-1 mbgliche Fehler vor
{was natiirlich die Regel ist, wenn man beachtet, daB8 n selten groBer als 32 ist), so
mufl dennoch iteriert werden. Die Idee der deduktiven Fehlersimulation ist nun, alle
moéglichen Fehler auf einmal mit einem Testmuster zu konfrontieren und simulativ
zu berechnen, welche dieser Fehler sich an Primarausgangen bei diesem Testmu-
ster bemerkbar machen. Hierzu ist es ndtig, fir Leitungen nicht nur den logischen
Wert unter dem aktuellen Testmuster im fehlerfreien Fall zu halten, sondern auch
die Liste aller F ehler, die diesen Wert invertieren. Weiterhin muB jedem Gattertyp
neben der Berechnung eines logischen Wertes auch die Berechnung einer Fehlerli-
ste am Ausgang zugeordnet werden. Hierzu sei zunachst angenommen, dafl an den
Eingingen eines Gatters noch leere Fehlerlisten anliegen (z.B. weil die Eingange
Primireinginge der Schaltung sind). Dann wird gepriift, welche Fehler an diesem
Gatter den Ausgangswert des Gatters invertieren wiirden. Diese Fehler werden
mit ihrer Identifikation (z.B. fortlaufender Nummer) als Fehlerliste dem Ausgang
des Gatters zugeordnet, wobei dies zu lesen ist als: ”Liegt einer dieser Fehler vor,
80 weicht der beobachtbare Wert vom Wert im Richtigfall ab”. Nimmt man nun
an, daf den Eingingen eines Gatters bereits Fehlerlisten zugeordnet sind, dann mu8
zusatzlich zum oben skizzierten Vorgehen noch berechnet werden, welche dieser Feh-
ler sich unter der aufgrund des anliegenden Testmusters im Richtigfall vorliegenden

334

Wertebeschaltung auf den Gatterausgang auswirken (durch einen vom Richtigwert
verschiedenen Wert). Diese Fehler sind ebenfalls in die Fehlerliste dieser Leitung
aufzunehmen. Die Menge aller Fehler, die unter einem gegebenen Testmuster einen
primiaren Schaltungsausgang erreichen, ist dann die von diesem Muster aufdeckbare
Fehlermenge. Sie kann aus der Menge aller moglichen Fehler gestrichen werden,
bevor das nachste Testmuster angelegt wird. Dieses Grundprinzip gilt sowohl fiir
die deduktive wie auch fir die Concurrent-Fehlersimulation. Der wesentliche Unter-
schied besteht in der Berechnung der Fehlerlisten. In der deduktiven Methode wird
eine spezielle Fehlerlistenalgebra entwickelt. Dies ist eine einfache Mengenalgebra.
So lautet die Fehlerfortschaltungsregel fur ein Oder-Gatter:

(i) Sind alle Eingange des Gatters im Richtigfall mit 0 belegt, so werden alle
Fehler durchgeschaltet, die in einer der Fehlerlisten an den Eingangen des
Gatters enthalten sind.

(1) Sind ein oder mehrere Einginge des Gatters im Richtigfall mit 1 belegt, so
werden all die Fehler durchgeschaltet, die in den Fehlerlisten aller mit 1 beleg-
ten Eingange und in keiner Fehlerliste eines mit 0 belegten Eingangs enthalten
sind.

Diese Ausdriicke lassen sich als mengenalgebraische Ausdricke darstellen, die sich
aus den Booleschen Wertetabellen der Gatter einfach ableiten lassen.

Beispiel:

Gegeben ein Oder-Gatter mit vier Eingangen a,b,c,d mit folgender Belegung:

a: Wert im Richtgfall : 1, Fehlerliste : L(a) = {1,2,3,5}

b: Wert im Richtigfall: 1, Fehlerliste : L(b) = {1,2,4}

c: Wert im Richtigfall: 0, Fehlerliste : L{c} = {2,3}

d: Wert im Richtigfall: 0, Feblerliste : L(d) = {4,6}

Am Ausgang wird damit der Wert im Richtigfall 1 und die Fehlerliste L{o) berech-
net. Diese enthidlt alle originiren im vorliegenden Fall aufdeckbaren Fehler (z.b.
o@0) vereinigt mit L'(0) = L(a) N L(b) N L{c) N L(d) = {1}.

Bei der Concurrent Methode wird auf eine gesonderte Fehlerfortpflanzungsalgebra
verzichtet. Stattdessen wird fiir jeden Fehler eine Kopie des auslosenden oder fort-
pflanzenden Gatters angelegt, die den abweichenden Wert als Haftfehler eingetragen
bekommt. Wieder wird an den Leitungen neben dem Wert im Richtigfall die Liste
der Fehler eingetragen. Alle Fehler, die in einer Kopie eines Gatters, dessen Ausgang
ein primérer Schaltungsausgang ist, resultieren, sind dann unter dem vorliegenden
Testmuster beobachtbar.

Es sollte noch bemerkt werden, da8 sich alle Fehlersimulationsverfahren einfach auf
sequentielle Schaltwerke fortsetzen lassen.

335

6.3 Funktionsorientierte Testverfahren

Bei aller eingangs skizzierten Problematik sind funktionsorientierte Testverfahren
dennoch von Bedeutung. Da es sich um die zunachst korrektere Art des Testens han-
delt, Testmuster sich zudem extrem einfach erzeugen lassen, bietet sich ein Durchte-
sten aller moglichen Testmuster immer dann an, wenn diese Anzahl tolerabel ist. Da-
von kann ausgegangen werden, solange der Wert eines Schaltungsausgangs von nicht
mehr als etwa 16 Eingéingen abhingt. Dies kann sehr wohl auch dann der Fall sein,
wenn eine Schaltung insgesamt mehr Eingange hat, jedoch alle Ausginge jeweils nur
von einer nicht zu groflen Teilmenge der Einginge funktional abhingig sind. Das ein-
gangs benutzte Beispiel eines Addierwerkes ist ein besonders unginstiger Fall. Hier
héingen zwar weiter rechts stehende Ausginge nur von weniger Eingangen funktional
ab, der am weitesten links stehende aber eben von allen. Neben dem Anlegen der
Testmuster ist die Auswertung des Ergebnisses ein weiteres Problem. Man mochte
natirlich nicht 2**n Ausgabemuster mit dem Sollwert vergleichen. Eine relativ ein-
fache Losung fiir dieses Problem stellt der Syndromtest dar. Unter dem Syndrom
einer Booleschen Funktion versteht man den Quotienten ”Anzahl ihrer Minterme
durch Anzahl aller mglichen Eingabemuster.” Nimmt man nun das Syndrom als
Indiz fiir die Korrektheit einer Schaltung, so muf man beim Anlegen aller Eingangs-
muster nur zahlen, wie oft der Wert 1 an einem Ausgang erscheint. Ergibt sich aus
dieser Anzahl das Syndrom, so gilt die Schaltung als korrekt. Zu beachten ist hier
natitrlich, da8 sich eventuelle Mehrfachfehler maskierend auswirken kénnen. Ist die
Anzahl der notwendigen Testmuster fiir einen vollstindigen funktionalen Test zu
groB, so kann man funktional nur fiber Stichproben testen. Hierfiir sind Testverfah-
Ten mit Hilfe linear riickgekoppelter Schieberegister(LFSR) am weitesten verbreitet.
Unter einem LFSR versteht man ein Schieberegister, in das eine lineare Funktion
des externen Eingabewerts und der im Schieberegister gespeicherten Werte einge-
geben wird. Derartige Schaltwerke lassen sich auf verschiedene Weise realisieren,
die Abbildungen 89 und 90 sind zwei Beispiele dafiir. Betrachtet man nun solch
ein LFSR ohne Eingabe, also ein autonomes LFSR (ALSFR), so hat man relativ
Preisgiinstig einen relativ guten Zufallsgenerator gebaut. Diese Schaltung 1aBt sich
als Testmustergenerator benutzen. Man beachte, dafl dabei stets dieselbe Folge von
Werten erzeugt wird, falls man vom selben Initialwert des ALFSR ausgeht. Dies
ist fiir die Auswertung essentiell. Legt man nun an eine zu testende Schaltung die
so erzeugten Testmuster an, so ergibt sich eine Folge von Ergebnismustern. Diese
miiBte man mit abgespeicherten korrekten Mustern vergleichen, um zu entscheiden,
ob die Schaltung korrekt ist, oder nicht. Um dies zu vermeiden, kann man wieder
mit Hilfe eines LFSR eine Datenreduktion vornehmen, indem man die Ergebnis-
werte in ein LFSR eingibt und den so erhaltenen Wert mit dem ebenso berechneten
Sollwert vergleicht. Hier ist natirlich zu beachten, daB sich nicht nur verschiedene
Fehler gegenseitig maskieren kénnen, sondern sogar verschiedene Ergebnisfolgen. Es
ist eine notwendige Eigenschaft der Datenkompression, da verschiedene Ergebnis-
folgen auf denselben gleichen Wert des LFSR abgebildet werden (” Aliasing”). Alle

336

Folgen, die einen Fehlerwert beinhalten, aber auf denselben Wert abgebildet werden
wie die korrekte Ergebnisfolge, machen dann den Fehler nicht sichtbar.

O___, xor - »Exor

Lnd&n...n

Abb. 89: Realisierung eines LFSR

O e

wfexorly | lexor || . o dplox0r L

Abb. 90: Alternative Realisierung eines LFSR

6.4 Testfreundlicher Entwurf

Die Testkosten stellen sich mehr und mehr als die dominierenden Kosten im Bereich
der Digitaltechnik heraus. Damit werden sie aber auch der bestimmende Optimie-
rungsparameter, d.h. eine Schaltungsvariante ist i.d.R. dann am ”billigsten”, wenn
sie mit den geringsten Kosten zu testen ist, auch wenn sich andere Kosten dadurch
erhdhen. Einfach zu testende Schaltungen erhilt man entweder dadurch, daf8 es
einfach ist, die Schaltung extern zu testen, oder dadurch, da8 sich die Schaltung
selbst testet. Beide Verfahren finden in der Praxis Anwendung.

6.4.1 Strukturelle Mailnahmen zur Erhdhung der Testbarkeit

Die bisherige Diskussion hat gezeigt, daB der Testbarkeit hauptsachlich sequentielle
Schaltwerke und Schaltnetze mit zu vielen Eingingen oder rekonvergierenden in-
ternen Verzweigungen entgegenstehen. Da derartige Strukturen nicht vollstindig zu
vermeiden sind (insb. sequentielle Schaltwerke nicht), sehen strukturelle MaBnahmen

337

zur Erhdhung der Testbarkeit i.d.R. zwei verschiedene Modi vor: Einen Normal-
modus und einen Testmodus. Im Normalmodus liegt das unverinderte Verhalten
zusammen mit moglichen testfeindlichen Eigenschaften vor. Im Testmodus wird
weiterhin die gesamte Schaltung aktiviert, und zwar unter dem Gesichtspunkt der
Testfreundlichkeit; die in diesern Modus erbrachte Leistung kann von der im Nor-
malmodus erbrachten verschieden sein, ist aber unerheblich. Die einfachste Methode
zur strukturellen Erhohung der Testbarkeit ist das Einfiigen von Testmultiplexern.
Ubera%l dort, wo man im Testmodus eine interne Leitung von auflen direkt set-
Zen"méchte, figt man einen Multiplexer ein, dessen zusatzlicher Eingang zu einem
Z\}sa.tzlichen Primareingang der Schaltung gefuhrt wird. Mit dem Selektionseingang
Wfrd nun ausgewahlt, ob im Normalmodus die substituierte Leitung durchgeschaltet
wird oder im Testmodus der Primareingang einen Wert liefert (siehe Abbildung 91).

—

Module

Test/Normal-Mode 1

Module
e

- A\ 7/

Test/Normal-Mode 2
Abb. 91: Einsatz eines Testmultikomplexers

Testmultiplexer konnen in sequentielle Schaltungen eingefigt werden, um die se-
quentielle Tiefe zu verringern, oder in kombinatorische, um die Komplexitat funk-
tionaler Abhangigkeiten zu vermindern. Es handelt sich um eine relativ wenig struk-
turierte Ad-hoc-Mafnahme, die dennoch zu sehr guten Ergebnissen fihren kann.
Eine Spezialform stellt der ”Boundary Scan” dar. Auch hier handelt es sich im
wesentlichen um einzufiigende Multiplexer, die nun aber an den Anschlufipunkten
von integrierten Schaltkreisen eingefiigt werden. Sie erlauben, evtl. zusammen mit
einem seriell Jadbaren Register, das auf einer Platine montierte IC unabhangig von
den Werten, die an den normalen AnschluBpunkien anliegen, mit Werten zu versor-
gen. An den IC- Ausgingen wird es durch weitere spezielle Bauteile moglich, im
Testmodus die Werte dieser IC-Ausgange nicht auf die angeschlossenen Leitungen

338

der Platine zu legen, sondern wieder in ein internes, seriell lesbares Register zu spei-
chern. Man kann also logisch das IC von der Platine trennen und separat testen,
obwohl es montiert bleibt. Durch das eingefiigte Testregister hat dieses Verfahren
groBe Ahnlichkeit mit dem ”Scan Path”-Verfahren (s.u.), woher auch die Bezeich-
nung herrithrt (siehe Abbildung 92).

Scan- .

n -— Scan-Register
Test- : s .
mode - - - . — - :

module to be isolated

Scan-

out 4.__.! Scan-register
v v

Abb. 92: Boundary-Scan

Das Hauptproblem beim Testen aber stellen sequentielle Schaltwerke dar. Hier
setzen nun die wichtigsten Verfahren zur Erh6hung der Testbarkeit an. Nach dem
bekannten Huffman-Modell (siehe Abbildung 75) 158t sich ein beliebiges Schaltwerk
in einen kombinatorischen Teil und ein Register zerlegen. Sorgt man nun dafr,
daf im Testmodus dieses Register extern gesetzt und gelesen werden kann, so hat
man das Testproblem auf das Testen von Kombinatorik reduziert. Da integrierte
Schaltkreise beziiglich der AnschluBstifte limitiert sind, wird man nicht pro Flipflop
des Registers ein eigenes Eingangs-/Ausgangspaar vorsehen konnen. Sorgt man nun
aber dafiir, daB das Register im Testmodus als Schieberegister wirken kann, so kann
man die Eingabetestmuster iiber einen einzigen zusatzlichen AnschluBstift eingeben
und das Testergebnis Giber einen einzigen weiteren AnschluBstift auslesen. Damit
aber hat man auch schon das Grundprinzip des Scan-Path-Ansatzes. Abbildung 93
zeigt ein Scan-Path-geeignetes Flipflop (es ist ein gewohnliches flankengesteuertes
Flipflop, vor dessen D-Eingang ein Multiplexer geschaltet ist) und Abbildung 94
zeigt die prinzipielle Verschaltung.

Werden als Speicherbausteine pegelgesteuerte Latches benutzt, so mufi man den

339

Test-
mode

Scanin

Scanout

Datin
or

clock Datout
Abb. 93: Scan-Path-geeignetes Flipflop
-y
S1
> Y Scanout
FF1 N\
r—’ L e
| combinational S2 oI u
e FF2 s
e
o o __FFR

Scanin

Abb. 94: Verschaltung von Flipflops zu Scan-Path

340

Ansatz etwas sorgfaltiger durchplanen. Als Beispiel mag hier der ”Level Sensitive
Scan Design”(LSSD) - Ansatz dienen. Will man nun eine Schiebemoglichkeit im
Testmodus einfithren, so bendtigt man (siehe Abschnitt 3.2.1) alternative Folgen
komplementar getakteter Latches (siehe Abbildung 95).

SRL1 SRL2 SALn
Scanin
| H
L1 L2 L1 L2 L1 L2
clock-1
clock-2

Abb. 95: LSSD-Scan-Path

Diese Anordnung wird aber fiir einen sicheren Entwurf mit Latches sowieso gefordert,
sodafl neben den Multiplexern keine testspezifischen Mehrkosten entstehen (siehe
Abbildung 96).

Wie in Abschnitt 3.2.1 bereits erlautert, 128t sich meist der kombinatorische Teil der-
art auftrennen, daf sich zwischen je zwel komplementar getakteten Latch-Banken
gleich grofie Schaltnetze befinden. In diesem Fall treten wieder neben den Multiple-
xern keine testspezifischen Mehrkosten auf, doch kann das Layout der Scan-Leitung,
die nun durch die Latch-Banke maandriert, Schwierigkeiten bereiten (siehe Abbil-
dung 97).

Die LSSD-Methode ist industriell weit verbreitet. Die Mehrkosten werden bei sehr
groBlen Schaltungen mit weniger als 5 % angegeben.

Natiirlich gibt es keinen Zwang, mit nur einem Schieberegister im Testmodus zu
arbeiten. Kann man zusatzliche AnschluBpunkte verkraften, so kann man mehrere
Scan-Paths einfithren, was zu einer Beschleunigung des Testvorgangs fuhrt. Alterna-
tiv kann man auch den gesamten Speicherbereich als Array adressierbarer Register
auffassen. Diese Register lassen sich dann durch geeignete Vorkehrungen im Test-
modus extern adressieren, laden und auslesen. Dieses Verfahren, das sich besonders

fir das Operationswerk anbietet, wird "Random Scan” genannt (siehe Abbildung
Abb. 98).

6.4.2 Selbsttest

Mit der Methode des Scan-Path erreicht man bereits eine recht gute Testbarkeit, d.h.
die Moglichkeit, Schaltungen mit relativ wenig Aufwand zu testen. Wenig Aufwand
bedeutet hier, daff relativ wenige Testmuster anzulegen sind und daB hierfiir rela-
tiv wenige zusatzliche AnschluBpunkte erforderlich sind. Ein wesentlicher Nachteil
bleibt dennoch bestehen: Die Schaltung mu8 von einer externen Testschaltung mit

341

AN
Sl
combi- -
national
logic s
| - - >___
X — L2
/ I £
Clock_1
Scanmode Scan_out
Scan_in ‘ ~
clock_2 —

Abb. 96: LSSD-Verschaltungsschema

342

S1 s Tt 1
> : . o S21
oorpbm. . . Lin 82
logic
|
X1 ;
—_—]
clock_1
S2 2
combin. .
logic .
2 S1
X2
—
clock_2
A_shift Scan_out
Scan_in -
B_shift

Abb. 97: LSSD mit geteiltem kombinatorischen Teil

343

Abb. 98: Random Scan-Verfahren

344

Testmustern versehen und die Resultate miissen ebenfalls von einer externen Schal-
tung ausgewertet werden. Da hierfir meist recht aufwendige Testautomaten notwen-
dig sind, ist diese Art des Tests nur als Eingangs- oder Abnahmetest moglich. Hat
eine Schaltung diesen Test bestanden, so wird sie ohne weiteren Test betrieben, bis
ein offensichtlicher Fehler auftritt. Anpstelle eines universellen Testautomaten kann
das Hardwaresystem, in das die zu testende Schaltung eingebaut ist, naturlich auch
ein dediziertes Subsystem enthalten, das die einzelnen Schaltungen in bestimmten
Abstinden oder durch bestimmte Ereignisse angestoflen mit Testmustern versorgt
und die Ergebnisse auswertet. Solche Subsysteme werden oft Diagnoseprozesso-
ren genannt und sind in allen neueren nicht zu kleinen Rechnersystemen enthalten.
Diese Diagnoseprozessoren bedienen weiterhin eine Reihe verschiedener Schaltun-
gen, miissen also ebenfalls in einem gewissen Umfang universell sein. Weiterhin
ist es notwendig, Datenwege zwischen dem Diagnoseprozessor und den zu testen-
den Schaltungen vorzusehen. Diese Wege konnen zwar bei Nutzung von Scan-Path-
Methoden relativ schmal sein, doch bedeuten sie wie alle Datenwege Kosten und
sind Quellen moglicher Fehler. Es stellt sich somit ganz naturlich die Frage, ob es
nicht ginstiger ist, pro Schaltung (d.h. z.B. pro integriertem Baustein) einen ei-
genen hochspezialisierten Diagnoseprozessor vorzusehen. Dieses Verfahren wird als
Selbsttest im engeren Sinne bezeichnet.

Ein Selbsttestsystem mufl zwei Hauptkomponenten enthalten: Eine Komponente
zum Generieren von Testmustern und eine zur Auswertung der Ergebnisse. Im ein-
fachsten Fall kann man sich vorstellen, da8 man die anzulegenden Testmuster zu-
sammen mit den korrekten Antworten in einem ROM speichert. Dann benotigt man
neben einer kleinen Steuerung zum Umschalten auf den Testmodus nur noch einen
Zahler, der dieses TestROM adressiert, und einen Komparator, um das Testergebnis
mit dem gespeicherten Richtigwert zu vergleichen. Ein derartiges Selbsttestsystem
ist zwar strukturell sehr einfach, in den meisten Fillen jedoch wegen einer zu grofen
Anzah] von Testmustern zu umfangreich.

Nahezu alle Selbsttestsysteme benutzen daher zur Ergebnisauswertung eine Signa-
turanalyse mit Hilfe von LFSRs. Damit muB far eine (festgelegte) Testmuster-
sequenz nur noch ein einziger Signaturwert abgespeichert und mit ihm verglichen
werden. Wegen des Problems des " Aliasing” (siehe 6.3) erfolgt hier zwar keine Aus-
sage mit 100-prozentiger Sicherheit, doch ist die erzielbare Sicherheit immer noch so
hoch, daB die Reduzierung des Aufwandes schwerer wiegt. Zur Generierung der Test-
muster werden unterschiedliche Methoden eingesetzt. Neben der bereits erwahnten
Methode, Testmuster in ROMs abzuspeichern und mit Hilfe eines Zahlers abzuru-
fen, werden verschiedene Generatoren benutzt. In Abschnitt 6.4.1 wurde bereits
dargestellt, daB sich ein ALFSR sehr gut dazu eignet, pseudozufallige Muster zu
erzeugen, wobei bei festliegendem Startwert die Sequenz festliegt. Dariiber hinaus
128 sich ein ALFSR sehr einfach implementieren. Man kann nun ein ALFSR solcher-
art bestimmen, dafl die erzeugten Testmuster fiir die zu testende Schaltung einen
sehr hohen Fehleriberdeckungsgrad aufweisen (dieser 128t sich beispielsweise durch
Fehlersimulation bestimmen). Gleichzeitig kann man dann auch die Signatur far

345

diese Sequenz unter Benutzung eines bestimmten analysierenden LSFR bestimmen
und hat somit alle Komponenten zum Aufbau eines Selbsttestsystems, das bei sehr
niedrigen Kosten zum Testen von Schaltungen in krauser Logik auBerordentlich gut
geeignet ist. Im Extremfall kann man die Testmustererzeugung durch das ALSFR
bis zum ”Exhaustive Test” ausdehnen, d.h. bis zur Erzeugung aller Eingangsmuster.
Hierfiir ist natiirlich bei vergleichbaren Kosten ein Zahler ebenso gut geeignet, da
es auf die Rethenfolge der Sequenz nicht ankommt.

Fiir Array-Logik wie PLAs kann es gunstiger sein, die Testsequenz in wohldefinierter
Reihenfolge zu erzeugen. Dies 1a8t sich durch ein ANSFR erreichen. Der einzige
Unterschied zum ALSFR besteht darin, da nicht Lineare Riickkopplungsfunktionen
(2.B. UND) benutzt werden. Zum Test eines ROM miissen alle Speicherzellen ge-
lesen werden. Hier ist ein Zahler die wohl giinstigste Alternative zur Testmuster-
generierung, wenn auch ein ALFSR, das alle Adressen erzeugt, bei vergleichbaren
Kosten gleichwertig ist. Zum Test von RAMs schlieBlich werden meist spezielle Ge-
neratoren eingesetzt, die nicht nur alle Speicherzellen einmal ansprechen, sondern
auch in bestimmter Weise beschreiben. Aber auch in diesem Fall ist ein Zahler das
wesentliche Bauteil des Testmustergenerators. Abbildung 99 faft die verschiedenen
Alternativen zum Aufbau eines Selbsttestsystems zusammen.

Stimuli- - N\ 7 N\ I S l—
Gener- Adress

genera-

) LFSR NFSR ROM ator Zaehler

or J I\ J |\ J J e

Schal- (i N N NI 3
. krause Array- krause ROM

tungs Logik Logik Logik RAM

typ \ i\ <1\ — |\ —

Testant-

wortaus- Signaturanalyse MISR

werter

Abb. 99: Alternative Selbsttestverfahren

Ein multifunktionaler Baustein, der sich sowohl als ALFSR wie auch als LFSR zur
Signaturanalyse benutzen 1afit, ist BILBO (Built-In-Logic-Block- Observer). Jedes
BILBO-Modul besteht aus einer Flipflop-Reihe und einigen zusatzlichen Gattern
und Leitungen (siehe Abbildung 100). Gesteuert von zwei Eingangen zur Steuerung
des Modus konnen vier verschiedene Betriebsmodi ausgewahlt werden:

1) Latch-Modus (B, =1,B; = 1)

Qi = Z; fur alle i

346

) R
Sl 1 Eout
o

At A2 A3 A4
Abb. 100: Aufbau eines BILBO-Moduls

Dies ist der Modus im Normalbetrieb. BILBO arbeitet hier wie ein normales paral-
leles Latch-Register.

2) Shift-Modus (B, = 0, B, = 0)

Qi :=Qipr furallei <n—1,Q,_; := Sin

In diesem Modus arbeitet BILBO als serielles Rechts-Schieberegister. Dabei ist das
Register paralle] lesbar. Diese Arbeitsweise kann sowohl im Normalbetrieb wie auch
im Testbetrieb z.B. als Scan-Path-Register benutzt werden.

3) Feedback-Modus (B, = 1, B, = 0)

Qi:=Z;exor Qiyy firallsi <n—1,Q,; := SQ;

t=0:n—1

In diesem Modus kann BILBO entweder als LFSR zur Signaturanalyse eingesetzt
werden, indem an den Z; die zu analysierenden Muster angelegt werden, oder durch
Anlegen einer Konstante (z.B. 0) an den Z; als AFLSR mit maximaler Periode.

4) Reset-Modus (B, =0,B;, = 1)
Q; := 0 fir alle ¢
Hier wird das BILBO-Register auf den Wert 0 zuriickgesetzt.

Nimmt man die bereits friher eingefithrte modifizierte Normalform eines Schalt-
werks an, bei der der kombinatorische Teil in zwei Halften geteilt wird, zwischen
die jeweils ein Latch-Register geschaltet wird, so kann man diese beiden Register
jeweils durch BILBOs ersetzen (siche Abbildung 101). Im Normalmodus ergibt
sich dann kein Unterschied. Setzt man BILBO, und BILBO, in den Feedback-
Modus, so lassen sich die beiden kombinatorischen Teile nacheinander testen, wobei
BILBO; als ALFSR zur Testmustererzeugung und BILBO, als LFSR zur Signa-

347

turanalyse eingesetzt wird, um das Schaltnetz; zu testen und umgekehrt zum Test
von Schaltwerks,.

combinational combinattona! "
s e

Abb. 101: Das BILBO-Verfahren

6.5 Literatur

Als Einfithrung in das Gebiet des Testens ist das Buch von Gorke [14] gut geeignet.
Einen kurzen Uberblick bieten auch [07] und [19]. Auf Probleme des funktionalen
Testens gehen besonders die Arbeiten [16], [17], [21] und [25] ein. Uber Fehler-
modelle, die Grundlage des strukturorientierten Testens, geben [02] und [15] eine
gute Ubersicht. Die Arbeit von Roth et.al [20] ist als grundlegende Arbeit iber
den D-Algorithmus bereits klassisch zu nennen. Fiur bestimmte Schaltungen las-
sen sich spezielle Testmethoden finden, beispielsweise fir RAMS [01], PLAS [03],
[11] und [13], aber auch fir beliebige Bit-Slice-Schaltungen [22]. Zur Fehlersimu-
lation gibt es eine Reihe von Arbeiten. Die Arbeit [23] ist eine gute Einfilhrung
in die parallele Fehlersimulation, wiahrend [24] als grundlegende Arbeit iiber die
”concurrent”-Methode angesehen werden kann. Die grundlegende Verdffentlichung
zur deduktiven Methode ist [04], wahrend in [08] ein wertender Vergleich versucht
wird.

Der testfreundliche Entwurf ist heute von zentraler Bedeutung. Die Arbeit von
Eichelberger [12] kann dabei als Ausgangspunkt gesehen werden. Darauf bauen an-
dere Arbeiten auf, beispielsweise [10]. In [06] und [26] erhalt man einen Uberblick

348

iber diesen Bereich, wahrend in [05] eine Methode vorgestellt wird, wie Testbarkeit
aberpriift werden kann.

Einen Uberblick iiber Selbsttestverfahren gibt [09]. In (21] und {25} werden Aspekte
der dabei nétigen Informationsreduktion behandelt. Das besonders wichtige BILBO-
Verfahren wird z.b. in [18] beschrieben.

[01] M.S. Abadir, H.K. Reghbati :
Functional Testing of Semiconductor Random Access Memories
ACM Computing Surveys, Vol. 15, No. 3, Sept. 1983, pp.175-198

[02] J. Abraham :
Fault Modelling in VLSI
in T.W. Williams (Ed.): VLSI-Testing, North Holland, 1986

[03] V.K. Agerwal :
Easily Testable PLA Design
in T.W. Williams (Ed.): VLSI-Testing, North Holland, 1986

{04] D.B. Armstrong :
A Deductive Method for Simulating Faults in Logic Circuits
IEEE ToC, Vol. C-21, No. 5, May 1972, pp. 464-471

[05] D.K. Bhavsar :
Design for Test Calculus: An Algorithm for DFT Rules Checking
Proc. 20th Design Automation Conference, 1983

[06] R.G. Bennets :
Design of Testable Logic Circuits
Addison-Wesley, 1984

[07] P.S. Bottorf :
Test Generation and Fault Simulation
in T.W. Williams (Ed.): VLSI-Testing, North Holland, 1986

[08] H.Y. Chang, S.G. Chappell, C.H. Elmendorf, L.D. Schmidt :
Comparison of Parallel and Deductive Fault Simulation Methods
IEEE ToC, Vol. C-23, No. 11, Nov. 1974, pp. 1132-1138

[09] E.J. McCluskey :
Built-in Self-Test Structures
IEEE Design&Test, April 1985, pp 28-37

349

[10] S. DasGupta, P. Goel, R.G. Walther, T.W. Williams :

A Variation of LSSD and Its Implications on Design and Test Pattern Generation
in VLSI

Proc. International Test Conference, 1982, pp. 63-66

[11] W. Daehn, J.Mucha :
A Hardware Approach to Self-Testing of Large PLAs
IEEE ToC, Vol. C-30, No. 11, Nov. 1981

[12] E.B. Eichelberger, T.W. Williams :
A Logic Design Structure for LSI-Testability
Proc. 14th Design Automation Conference, 1977, pp. 462-468

[13] H. Fujiwara, K. Kinoshita :
A Design of Programmable Logic Arrays with Universal Tests
IEEE ToC, Vol. C-30, No. 11, Nov. 1981

[14] W. Gbrke:
Fehlerdiagnose digitaler Schaltungen
Teubner, 1973

[15] J.P. Hayes
Fault Modelling for Digital MOS Integrated Circuits
IEEE ToCAD, Vol. 3, No. 3, 1984, pp. 200-207

[16] F.C. Hennie :

Fault Detection Experiments for Sequential Circuits

5th Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, N.J., Nov. 1964, pp. 95-110

[17] E.P. Hsieh :
Checking Experiments for Sequential Machines
IEEE ToC, Vol. C-20, Oct. 1971, pp. 1152-1166

[18] B. Kiinemann, J. Mucha, G. Zwiehoff :
Built-In Logic Block Observation Techniques
IEEE Test Conference, Oct. 1979, pp 37-41

[19] E.L Muehldorf, A.D. Savkar :
LSI Logic Tersting - An Overview
IEEE ToC, Vol. C-30, No. 1, Jan. 1981, pp 1-16

350

[20] 3.P. Roth, W.G. Bouricius, P.R. Schneider :

Programmed Algorithms to Compute Tests to Detect and Distinguish
between Failures in Logic Circuits

IEEE ToEC, Vol. EC-16, No. 5, Oct. 1967, pp. 567-580

{21] J. Savier :
Syndrom Testable Design of Combinational Circuits
IEEE ToC, Vol. C-29, No. 6, June 1980, pp.442-451

[22] T. Sridhar, J.P. Hayes :
Design of Easily Testable Bit-Slice Systems
IEEE ToC, Vol. C-30, No. 11, Nov. 1981, pp. 842-854

[23] E.W. Thompson, S.A. Szygenda
Parallel Fault Simulation
IEEE Computer, March 1975, pp. 38-44

[24] E.G. Ulrich, T. Baker :
The Concurrent Simulation of Nearly Identical Digital Networks
Proc. Design Automation Workshop, 1973, pp 145-150

{25] T.W. Williams, W. Daehn, M. Gruetzner, C.W. Starke
Comparison of Aliasing Errors for Primitive and Non-Primitive Polinomials
IEEE International Test Conference, 1986, pp 282-288

[26] T.W. Williams, K.P. Parker :
Design for Testability - A Survey
IEEE ToC, Vol. C-31, No. 1, Jan. 1982

Index

Ableitungsbaum 73
Ableitungskonzept 259
Ableitungsmechanismus 73
Abnahmetest 344
Absorption 236
Abstraktionsebenen 13
Abstraktionsebene 32, 33, 35
Abstraktion 13
Abwirtstransitionen 265
Acyclic 282
Aktivierungsfolge 35
Aliasing 335, 344, 350
Arbiter 271
Arbitrierung 65
assertion 85-86, 307
asynchrone 120, 200
Attributierung 49
Ausdrucksysteme 184
Ausfihrbarkeitsbedingung 47, 287,
291,
Aussagenlogik 260
Auswertungsmodell 59
Automat 143, 159, 180, 183, 187
Axiom 260

BILBO 345-348
BONSAI 32
Backtracking 328-329
Baummethode 241
Beeinflusser 293

Beeinflufiter 293
Benutzeroberflache 37, 314
Benutzerschnittstelle 308, 313-314
Bindungsalgorithmen 149
Boundary Scan 337
Breitbandsimulator 308, 314, 315
Breitbandsprache 21, 24, 26, 29, 61,
74, 75, 314, 315

Coroutinenkonzept 62

DOMOS 30, 32, 70
DatenfluBanalyse 200, 206, 208
Datenflu8graph 176
Datenkompression 335
Datenkonflikt 164, 217
Datenpfadentwurf 199
deduktive 259, 315, 333-334, 347
denotionale 259

dining philosophers 55
Durchlaufverzogerung 25

Einfachfehlerannahme,
Einzelfehlerannahme 321, 322
Einheitsverzogerung 125, 265, 333
Entscheidungsproblem 260
Entwurfsergebnis 11
Entwurfsumgebung 35, 37
Equilibrium 12
Equitemporal 282

351

352

Ereignisschlange 295, 296, 297, 299,
312

ESPRESSO 252

Expertensystemen 200

Fehleriberdeckungsgrad 257, 344

Fehlerfortpflanzung 334

Feblerfortschaltung 327, 334

Fehlerinjektoren 332

Fehlerklasse 323, 324, 326, 327

Fehlerlistenalgebra 334

Fehlermodell 14, 25, 27, 308, 320 -
322, 347

Fehlersimulation 284, 286, 308, 315,
317, 326, 331-334, 344, 347

Fehlertoleranz 256

Floorplanning 16, 22, 24

Funktionenbiindel 125, 250, 252

Gleichungssystem 59, 184

HILO 26, 135, 137

Haftfehlermodell 321-323

Haftfehler 25, 321-324, 334

Hardwareakzeleratoren 281

Hardwarebeschreibungssprache 33,
47, 64, 72-75 267, 268, 281,
305, 314

Hazardfreiheit 257

Inferenzregel 260

Kausalitatsstruktur 159

Kommunikationsflu$35

Kommunikationsprotokoll 16, 17, 486,
62, 267, 305,

Konsensus 244-246

Koppelterm 250

Krauser Logik 184
KurzschluBfehler 25, 27, 321

Leitungsbriiche 321
Leitungsbruch 321
Levelizing 283
Logiksimulation 318

MOSSIM 29, 316
Maxterm 239
Mehrebenensimulation 308
Mehrfachfehler 321, 335
Mehrfachhaftfehler 321
Mikroprogrammiereinheit 181, 198
Mikroprogrammierung 20, 57, 135,
180, 181, 195, 198, 199,
Mimola 204
Minterm 185-186, 239-240, 241, 244-
245, 247-248, 335
Multisimulatoransatz 308, 316
Multisimulatorsysteme 314-315

PMS 61-62, 135-136

Personalisierungsmatritzen 192-193

Pfadsensitivierungen 326

Pipelining 20, 176, 281

Pradikatenlogik 260

Prifbus 22

Primimplikantenmenge 250

Programmable Logic Arrays 184, 192,
349

Protokoll 17, 19, 114, 116, 118, 135,
141

Prozekommunikation 64, 65, 176

Rendezvous 53, 65, 114, 116
Richtigsimulation 286

SPICE 32, 319

Selbsttest 257, 340, 344, 345, 348
Signalbiindel 67

Signatur 43-44, 344-347
Syndrom 335, 350

Schaltwerktheorie 254
Scheduling 201, 203, 252, 253, 282,
293, 312, 315

TEGAS 26, 319

temporale 260-261, 287, 307, 315
Testmultiplexer 337
Testmustergenerierung 330-331, 345
.Time-warp 312-313

Uberdeckungsfunktion 248-249

Verzogerung 25-26, 46, 77, 120-121,
124-126, 133, 160, 261-263,
265, 281, 287-288, 291, 297,
299

Vielebenensimulator 308

Zeitmodell 16, 19-21, 24-26, 29, 73,
281, 331
Zeitscheibe 299-300, 302-303

353

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31
	Seite 32
	Seite 33
	Seite 34
	Seite 35
	Seite 36
	Seite 37
	Seite 38
	Seite 39
	Seite 40
	Seite 41
	Seite 42
	Seite 43
	Seite 44
	Seite 45
	Seite 46
	Seite 47
	Seite 48
	Seite 49
	Seite 50
	Seite 51
	Seite 52
	Seite 53
	Seite 54
	Seite 55
	Seite 56
	Seite 57
	Seite 58
	Seite 59
	Seite 60
	Seite 61
	Seite 62
	Seite 63
	Seite 64
	Seite 65
	Seite 66
	Seite 67
	Seite 68
	Seite 69
	Seite 70
	Seite 71
	Seite 72
	Seite 73
	Seite 74
	Seite 75
	Seite 76
	Seite 77
	Seite 78
	Seite 79
	Seite 80
	Seite 81
	Seite 82
	Seite 83
	Seite 84
	Seite 85
	Seite 86
	Seite 87
	Seite 88
	Seite 89
	Seite 90
	Seite 91
	Seite 92
	Seite 93
	Seite 94
	Seite 95
	Seite 96
	Seite 97
	Seite 98
	Seite 99
	Seite 100
	Seite 101
	Seite 102
	Seite 103
	Seite 104
	Seite 105
	Seite 106
	Seite 107
	Seite 108
	Seite 109
	Seite 110
	Seite 111
	Seite 112
	Seite 113
	Seite 114
	Seite 115
	Seite 116
	Seite 117
	Seite 118
	Seite 119
	Seite 120
	Seite 121
	Seite 122
	Seite 123
	Seite 124
	Seite 125
	Seite 126
	Seite 127
	Seite 128
	Seite 129
	Seite 130
	Seite 131
	Seite 132
	Seite 133
	Seite 134
	Seite 135
	Seite 136
	Seite 137
	Seite 138
	Seite 139
	Seite 140
	Seite 141
	Seite 142
	Seite 143
	Seite 144
	Seite 145
	Seite 146
	Seite 147
	Seite 148
	Seite 149
	Seite 150
	Seite 151
	Seite 152
	Seite 153
	Seite 154
	Seite 155
	Seite 156
	Seite 157
	Seite 158
	Seite 159
	Seite 160
	Seite 161
	Seite 162
	Seite 163
	Seite 164
	Seite 165
	Seite 166
	Seite 167
	Seite 168
	Seite 169
	Seite 170
	Seite 171
	Seite 172
	Seite 173
	Seite 174
	Seite 175
	Seite 176
	Seite 177
	Seite 178
	Seite 179
	Seite 180
	Seite 181
	Seite 182
	Seite 183
	Seite 184
	Seite 185
	Seite 186
	Seite 187
	Seite 188
	Seite 189
	Seite 190
	Seite 191
	Seite 192
	Seite 193
	Seite 194
	Seite 195
	Seite 196
	Seite 197
	Seite 198
	Seite 199
	Seite 200
	Seite 201
	Seite 202
	Seite 203
	Seite 204
	Seite 205
	Seite 206
	Seite 207
	Seite 208
	Seite 209
	Seite 210
	Seite 211
	Seite 212
	Seite 213
	Seite 214
	Seite 215
	Seite 216
	Seite 217
	Seite 218
	Seite 219
	Seite 220
	Seite 221
	Seite 222
	Seite 223
	Seite 224
	Seite 225
	Seite 226
	Seite 227
	Seite 228
	Seite 229
	Seite 230
	Seite 231
	Seite 232
	Seite 233
	Seite 234
	Seite 235
	Seite 236
	Seite 237
	Seite 238
	Seite 239
	Seite 240
	Seite 241
	Seite 242
	Seite 243
	Seite 244
	Seite 245
	Seite 246
	Seite 247
	Seite 248
	Seite 249
	Seite 250
	Seite 251
	Seite 252
	Seite 253
	Seite 254
	Seite 255
	Seite 256
	Seite 257
	Seite 258
	Seite 259
	Seite 260
	Seite 261
	Seite 262
	Seite 263
	Seite 264
	Seite 265
	Seite 266
	Seite 267
	Seite 268
	Seite 269
	Seite 270
	Seite 271
	Seite 272
	Seite 273
	Seite 274
	Seite 275
	Seite 276
	Seite 277
	Seite 278
	Seite 279
	Seite 280
	Seite 281
	Seite 282
	Seite 283
	Seite 284
	Seite 285
	Seite 286
	Seite 287
	Seite 288
	Seite 289
	Seite 290
	Seite 291
	Seite 292
	Seite 293
	Seite 294
	Seite 295
	Seite 296
	Seite 297
	Seite 298
	Seite 299
	Seite 300
	Seite 301
	Seite 302
	Seite 303
	Seite 304
	Seite 305
	Seite 306
	Seite 307
	Seite 308
	Seite 309
	Seite 310
	Seite 311
	Seite 312
	Seite 313
	Seite 314
	Seite 315
	Seite 316
	Seite 317
	Seite 318
	Seite 319
	Seite 320
	Seite 321
	Seite 322
	Seite 323
	Seite 324
	Seite 325
	Seite 326
	Seite 327
	Seite 328
	Seite 329
	Seite 330
	Seite 331
	Seite 332
	Seite 333
	Seite 334
	Seite 335
	Seite 336
	Seite 337
	Seite 338
	Seite 339
	Seite 340
	Seite 341
	Seite 342
	Seite 343
	Seite 344
	Seite 345
	Seite 346
	Seite 347
	Seite 348
	Seite 349
	Seite 350
	Seite 351
	Seite 352

