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0 Einleitung

Ausgehend von den aufergewéhnlichen Eigenschaften der Korteweg-deVries
Gleichung ([110]) entwickelte sich in den letzten zwei Jahrzehnten ein at-
traktives Forschungsgebiet der mathematischen Physik, welches heute unter
dem Schlagwort ”Soliton-Theorie” bekannt ist. Dabei handelt es sich um
die Struktur- und Losungstheorie einer Klasse von partiellen (Integro-) Dif-
ferentialgleichungen, die als Flisse auf einer unendlich dimensionalen Man-
nigfaltigkeit aufgefait werden konnen. Die Analyse dieser dynamischen Sy-
steme weist faszinierende Verbindungen zu verschiedensten Teildisziplinen der
Mathematik wie zum Beispiel Differentialgeometrie, Streutheorie, Lie Alge-
bren, algebraische Geometrie oder Funktionentheorie auf. Dementsprechend
sind die Charakterisierungen der sogenannten ”Soliton-Gleichungen” so unter-
schiedlich, daB es bislang keine allgemein anerkannte Definition dieser Evolu-
tionsgleichungen gibt. Bei allen Beispielen ist aber eine ihrer spektakuliren
Eigenschaften die Existenz einer unendlich grofien Menge von kommutierenden
Symmetrien! K. Ist also die Evolutionsgleichung auf einer Mannigfaltigkeit
M durch das Vektorfeld K(u) gegeben

9
at

so gibt es eine nichttriviale Folge von Vektorfeldern K,, auf M mit

u = K(u), ueM (0.1)

[K,K., = 0 und [K,,Kn] = 0

firalle n,m € No. Hierbei bezeichne [. ,.] den Kommutator in der Lie Algebra
der Vektorfelder auf M. Dariiberhinaus findet man bei Soliton-Gleichungen
im allgemeinen eine weitere Hierarchie 7, von Vektorfeldern, die sich stets so
normieren lassen, daB sie mit einer Konstanten p > 0 fir alle n,m € N, die
folgenden Kommutatorrelationen erfiillen

(Tn 1Km] = (m + 9) Koiym [Tn mi] = (m - n) Tatm - (02)

Die durch (0.2) bestimmten Grofien werden Mastersymmetrien ({40},(23],[90])
genannt und schon seit geraumer Zeit zur rekursiven Konstruktion der Sym-
metrien K, benutzt. Allgemein kann man mit Hilfe der Mastersymmetrien
aus unter der Soliton-Gleichung (0.1) invarianten Tensorfeldern wieder inva-
riante Tensorfelder erzeugen ([84]). Mastersymmetrien sind daher ein wichti-
ges Werkzeug, um wesentliche Strukturgrdfen fiir die Gleichung (0.1) explizit
zu konstruieren. Neben der genannten Bedeutung fir die Ausgangsgleichung

!Das Wort "Symmetrie” wird hier als Kuraform fiir ”Sy triegruppeng tor” be-
nutst (vgl. Kapitel 1).



ist neuerdings auch die analytische Struktur der Mastersymmetrien wohl un-
tersucht. Diese Kenntnis macht es méglich, fiir recht allgemeine Arten von
Soliton-Gleichungen die Mastersymmetrien 7, (und damit auch die gesamten
Symmetrien K,) per Computerprogramm aufzuspiiren ([46],[106],[115}). Von
einem abstrakteren Gesichtspunkt betrachtet, 158t sich die von K, und 7, er-
zeugte Algebra von Vektorfeldern als semidirektes Produkt einer Kac-Moody-
und einer Virasoro-Algebra identifizieren ([104}).

Auch die Ausgangsfragestellung dieser Arbeit ergibt sich aus der Existe.nz
der Groen K, und 7,. Als Erganzung zu den oben zitierten Ansitzen in-
teressieren wir uns fiir die geometrische Interpretation von Symmetrien und
Mastersymmetrien bei Reduktionen auf endlich dimensionale invariante Man-
nigfaltigkeiten und die sich daraus ergebende Querverbindung zu den klassi-
schen vollstandig integrablen Systemen. Um diese Fragestellung angemessen
erlautern zu kénnen, erinnern wir kurz an die wesentlichen Definitionen und
Aussagen fiir integrable Gleichungen im klassischen, endlich dimensionalen
Fall.

Auf einer 2N-dimensionalen Mannigfaltigkeit M nennt man eine Menge
von Skalarfeldern Q;: M - R, i = 1,...,, N ein vollstindig integrables System
([2]) beziiglich eines nichtdegenerierten implektischen Operators ©, wenn

(i) die Skalarfelder in Involution sind, d.h. die Poissonklammern
{Q:i,Q}e = <gradQ; , O grad Q> = 0
verschwinden fiir alle ,3=1,..,N,
(i) die Gradienten von @1,--.,@n linear unabhangig sind.

In diesem Fall bilden die Skalarfelder Qi, ..., @n fiir eine beliebige Funktio.n
H = H(Q,...,Qn) und der ihr zugeordneten hamiltonischen Differentialglei-
chung

w = K(u) = Ograd H (0.3)

auf M einen maximalen Satz globaler ErhaltungsgroBen in Involution. Un-
ter einer topologischen Bedingung an die Energieflichen der @; garantiert
das Theorem von Arnold und Liouville ([2],[9]), daB es fiir die gewdhnliche
Diﬂ'erent.ialgleichung (0.3) linearisierende Koordinaten, sogenannte Wirkungs-
und Winkelvariablen, gibt. Hat man diese gefunden, so erhalt man die all-
gemeine Loésung von (0.3) durch einfache Quadratur, das Problem (0.3) ist
also "vollstandig integrabel”. Wihrend die Wirkungsvariablen durch die Er-
haltungsgrofien Qi gegeben sind, ist das Auffinden der Winkelvariablen P;
ein recht schwieriges Problem, welches sich von Gleichung zu Gleichung un-
terschiedlich darstellt. Die strukturellen Eigenschaften der Winkelvariablen



lassen sich aber analog zu den Wirkungsvariablen durch Poissonklammern
ausdriicken. Mit einer beliebigen Funktion v;;(Qs, ..., Qn) gilt

(@i Ple = vij(Q, Q) -

Die wichtigsten Beispiele vollstindig integrabler Gleichungen auf einer end-
lich dimensionalen Mannigfaltigkeit sind das Neumann System ([79},[77]), der
geodatische FluB auf dem Ellipsoid ([59],{105],[78]), die Calogero-Moser Sy-
steme ([76],[19],[86]) und deren relativistische Analoga ([95,(92]).

Die vollstindig integrablen gewohnlichen Differentialgleichungen bilden in
der vorliegenden Arbeit ein Modell fiir die uns interessierenden Soliton-Gleich-
ungen, welche meist durch partielle Differentialgleichungen gegeben sind.

Im klassischen Fall sind die Wirkungsvariablen @; gemaB ihrer Defini-
tion globale Erhaltungsgrofen fiir den durch (0.3) bestimmten FluS. Mit
dem Noether-Theorem korrespondieren daher die Q; zu Symmetriegruppen
von (0.3). Mit dem Lie Algebra Homomorphismus © o grad findet man also
N jeweils paarweise kommutierende Symmetrien K; = © grad Q;. Da die
in (0.1) eingefiihrten Systeme iiber eine unendlich dimensionale abelsche Lie
Algebra von Symmetrien verfiigen, werden diese Evolutionsgleichungen auch
haufig als unendlich dimensionale integrable Systeme bezeichnet, obwohl die
Ubertragung der Begriffe auf unendlich dimensionale Mannigfaltigkeiten nicht
ganz problemlos ist.

Unabhangig von der Dimension der zugrunde liegenden Mannigfaltigkeit
nennen wir einen Satz von Skalarfeldern Q;, P, : M — R nicht-kanonische
Wirkungs- und Winkelvariablen beziiglich eines implektischen Operators ©,
wenn die Poissonklammern {. ,.}¢ zwischen Q; und P, firr alle i,j € N die
folgende Form haben

{@.Qile = 0, {P,Ple = wij(QuQr,-rrPo,Pry-)
{@:, Pile v;;(Qo, @1, ) - (0.4)

Hierbei seien v;;(Qo, @1, ...) und w;;(Qo, @y, ..., Ps, Py, ...) beliebige Funktionen
der Q; und P;. Die Wirkungsvariablen Q; werden als globale GréBen vor-
ausgesetzt, wahrend die P; nur lokal definiert sein miissen. Falls die obigen
Poissonklammern die einfache Form

{inQj}e =0 = {RvPJ}Q s
{Qi,Ple = & (0.5)

haben, heiBen Q; und P; kanonische Wirkungs- und Winkelvariablen. Hierbei
ist & ; das Kroneckersymbol. Die Eigenschaften der Wirkungs- und Winkelva-
riablen richten sich nach den Randbedingungen, die an die Ausgangsgleichung
gestellt werden.

[l



Fiir hamiltonische Soliton-Gleichungen auf einer unendlich dimensionalen
Mannigfaltigkeit

u; = K(u) = ©grad H (0.6)

stellt sich heraus, daf alle Symmetrien K, hamiltonische Vektorfelder P:)zgl.
des Operators © sind. Setzen wir die zugrunde liegende Mannigfaltigkeit M
als einfach zusammenhingend voraus, so korrespondieren zu den K, Erhal-
tungsgrofen @, mit K,, = © grad Qn und

{@n.Qn}e = 0, VYn,m € Ng .

Die den K, zugeordneten Erhaltungsgrofien entsprechen also den Wirkungsva-
riablen. Um die Analogie zu den endlich dimensionalen Systemen zu vervol?—
standigen, fehlt der zweite Satz von Skalarfeldern P, nimlich die Winkelval.rl—
ablen. Deren Auffinden ist einfach, wenn auch die Mastersymmetrien 7,, hamil-
tonische Vektorfelder bzgl. © sind. In diesem Fall folgen mit 7, = © gr_ad P,
aus den Relationen (0.2) durch Zuriickziehen mit Oograd schon die Relationen:

{@i,Ple = - (i 4+ 0) Qiy; + conmst ,
{P:,P}e (j —1) Py; + const .

Hier bilden also die Skalarfelder Q. und P; einen Satz nicht-kanonischer Wir-
kungs- und Winkelvariablen auf M. Dementsprechend konnen in diesem Fi:.lll
die Mastersymmetrien 7, geometrisch als zu Winkelvariablen gehdrige hamil-
tonische Vektorfelder interpretiert werden.

Leider tritt dieser einfache Fall eher selten auf, in vielen Beispielen von
Soliton-Gleichungen sind die Mastersymmetrien nicht hamiltonisch. Somit
kann in diesen Fallen die obige geometrische Interpretation der Mastersymme-
trien nicht aufrecht erhalten werden. Auf Grund der Kommutatorrelationen
(0.2) liegt allerdings auch in diesen Fillen die Vermutung nahe, daB es einen
Zusammenhang zwischen Mastersymmetrien und Winkelvariablen gibt. Di&sf.!
Beziehung zu finden ist das Ausgangsproblem der vorliegenden Arbeit, wobei
wir uns auf Evolutionsgleichungen mit einer unabhingigen "Raum”-Variablen
beschranken.

Die fundamentale Idee besteht darin, den gesuchten Zusammenhang nicht
auf der gesamten Mannigfaltigkeit zu klaren, sondern sich auf eine unter dem
FluB (0.6) invariante, endlich dimensionale Untermannigfaltigkeit zuriickzu-
ziehen. Solche Mannigfaltigkeiten sind zum Beispiel durch spezielle Losungen,
die sogenannten Multi-Soliton Losungen, gegeben. Fiir N € N wihlen wir die
Gesamtheit aller N-Soliton L3sungen von (0.6) als Untermannigfaltigkeit My .
My ist dann 2N-dimensional, und die Ausgangsgleichung auf der gesamten
Mannigfaltigkeit induziert auf My ein endlich dimensionales, vollstandig in-
tegrables System. Fir dieses System kénnen wir die Wirkungs- und Win-
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kelvariablen explizit konstruieren. Die dazugehorigen hamiltonischen Vektor-
felder sind als Linearkombinationen der urspriinglichen Symmetrien K, und
Mastersymmetrien 7, darstellbar. Damit haben wir auf der N-Soliton Mannig-
faltigkeit My sowohl eine hamiltonische Kombination der Mastersymmetrien
gefunden, als auch deren Zusammenhang mit den Winkelvariablen geklart.
Unsere Ausgangsfragestellung ist also beantwortet. Die mit diesem Endresul-
tat verbundenen Teilergebnisse werden in der folgenden Kurzbeschreibung der
einzelnen Kapitel geschildert.

In Kapitel 1 stellen wir die fiir die Arbeit notwendigen Definitionen und
Begriffe zusammen. Insbesondere wird bereits in diesem Eingangskapitel un-
terschieden, ob alle Mastersymmetrien hamiltonisch bzgl. eines implektischen
Operators sind oder nicht. Tritt die erste Alternative ein, so wird die Evolu-
tionsgleichung dem "hamiltonischen Fall” zugerechnet; die zweite Moglichkeit
nennen wir kurz den "nicht-hamiltonischen Fall”. Im zweiten Fall existiert ein
Operator @, der rekursiv die Symmetrien K, = " K, und Mastersymmetrien
T, = ®"1y erzeugt. Die Eigenschaften dieses von Olver ([87]) eingefiihrten
Operators werden in Kapitel 1 betrachtet. Wichtige Strukturgrofien von inte-
grablen Gleichungen lassen sich mit Hilfe von Lie Ableitungen charakterisieren.
Dieser fundamentale Begriff wird ebenfalls in Kapitel 1 rekapituliert und seine
Bedeutung fiir die uns interessierenden Gleichungen angegeben.

In Kapitel 2 werden die bekannten Rekursionseigenschaften der Soliton-
Gleichungen dargelegt. Mit Hilfe der Mastersymmetrien lassen sich aus we-
nigen Startfeldern Hierarchien von ErhaltungsgréBen und von implektischen
Operatoren erzeugen. Fir diese Konstruktionen werden wesentlich die Ei-
genschaften der Lie Ableitung bendtigt ([82],[101}). Die Beispiele am Schluf
des zweiten Kapitels erliutern die in den ersten beiden Kapiteln eingefithrten
Begriffe. Somit sind die Kapitel 1 und 2 als einleitende Vorbetrachtungen an-
zusehen, die die in der Literatur wohlbekannten Ergebnisse iibersichtsmiBig
zusammenfassen.

Mit den Uberblickskapiteln 3.1 und 3.2 beginnen wir das Kapitel 3, in dem
ab Kapitel 3.3 die Resultate dieser Arbeit entwickelt werden.

In Kapitel 3.1 beschiftigen wir uns ausfihrlich mit den Multi-Soliton Lo-
sungen der betrachteten Evolutionsgleichungen. Neben den physikalischen Ei-
genschaften dieser Losungsklasse interessieren uns deren mathematische Cha-
rakterisierung. Der Zusammenhang von Multi-Soliton Losungen zu der In-
versen Streumethode wird dabei noch in Kapitel 3.1 dargestellt, wihrend wir
in Kapitel 3.2 eine gruppentheoretische Definition der Multi-Soliton Losungen
vorbereiten. Diese Definition liefert uns eine strukturell einfache mathema-
tische Beschreibung der Untermannigfaltigkeit My aller N-Soliton Losungen.
Da wir Groflen auf My mit den auf der gesamten Mannigfaltigkeit M exi-



stierenden Symmetrien und Mastersymmetrien vergleichen wo!len, ben(”)utige.n
wir die explizite Einbettung von My in M. Diese Einbettung ist unal.)hanglg

ist, finden wir ejne Basis B des Tangentialraumes T,My von My an der Stelle
3 € My, die aus

Ko(s),... yKn-a(s), m(s), ... »TN-1(8)

besteht. Die Abhangigkeit der héheren Symmetrien und Ma,s.tersymr.netrien
auf My wird in der Basis B angegeben. Um die Aussager.l in Ka.plt'el 3.3
2u zeigen, benétigen wir eine Voraussetzung iiber alle in dieser Arbeit be-

tel 3.4 nachgewiesen. In Kapitel 3.5 fragen wir nach weiteren geometrischen
Eigenschaften der Untermannigfaltigkeit Mpy. Dabei stellt sich heraus, da
sich simtliche Strukturen wie implektische und symplektische Operatoren und

tigkeiten ist diese Reduktionsméglichkeit keineswegs selbstverstindlich. Sie

ergibt sich fir die N -Soliton Mannigfaltigkeit aus der Kenntnis des Tangenti-
albiindels.

i
sentliches Mittel dafiir sind die spektralen

eine N-Soliton Lésung s € My bilden die zum diskreten Spektrum gehérigen
Eigenvektoren von ®(s) eine Basis des Tangentialraumens T,My. Die Eigen-
vektoren lassen sich also in der Basis B darstellen. Mit Hilfe eines integnf-
renden Faktors finden wir so 2 hamiltonische Eigenvektoren von ®(s), die
gleichzeitig eine Linearkombinatjon der Symmetrien bzw. der Mastersymme-
trien sind. Diese Eigenvektoren lassen sich nach Konstruktion als zu Wirkungs-
und Winkelvariable gehdrige Vektorfelder interpretieren. Damit ist auf der
einen Seite das Zje] von Kapitel 4 gezeigt, auf der anderen Seite allerdings auch
die Struktur des diskreten Spektrums von ®(s) vollstindig geklart.

In Kapitel 5 behandeln wir die Ergebnisse aus Kapitel 4 unter einem ande-
ren Gesichtspunkt. D, sich die Mannigfaltigkeit My durch die asymptotischen
Daten der N_Soliton Lésungen Parametrisieren 1aBt, erhalten wir eine einfache
analytische Darstel]ung der Eigenvektoren von ®(s) als partielle Ableitung der
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N-Soliton Lésung s nach den asymptotischen Daten. Fiir 2-Soliton Lésungen
ausgewihlter Beispiele haben wir die entsprechenden Eigenvektoren in Kapitel
5.4 geplottet.

Kapitel 6 liefert die gesuchten Wirkungs- und Winkelvariablen auf My.
Dabei wird in Kapitel 6.1 der Fall nicht-hamiltonischer Mastersymmetrien be-
trachtet. Neben den Ergebnissen der Kapitel 4 und 5 bendtigen wir als ent-
scheidenes Hilfsmittel, daB die Skalierungsmastersymmetrie To eine eindeutige
hamiltonische Formulierung auf der gesamten Mannigfaltigkeit M besitzt. Der
dazugehbrige implektische Operator und die entsprechende Hamiltonfunktion
bestimmen die kanonischen Wirkungs- und Winkelvariablen. Dabei sind wir
in der Lage diese speziellen GréBen sowoh! in den asymptotischen Daten als
auch explizit in der Feldvariablen anzugeben. Die erste Darstellung stimmt
mit den Ergebnissen der Inversen Strewmethode iiberein, die Darstellung in
der physikalischen Variablen ist dagegen neu?.

Sind die Mastersymmetrien hamiltonisch, so sind auf der gesamten Man-
nigfaltigkeit bereits nicht-kanonische Wirkungs- und Winkelvariablen bekannt.
Diese Skalarfelder lassen sich auf die Untermannigfaltigkeit My reduzieren,
und mit ihrer Hilfe kdnnen wir in Kapitel 6.2 auch kanonische Wirkungs- und
Winkelvariablen auf My konstruieren. Als Ergebnis erhalten wir vollstindig
analog zum nicht-hamiltonischen Fall wiederum zwei Darstellungen dieser Gros-
sen, deren mathematische Interpretation als Wirkungs- und Winkelvariablen
bislang unbekannt waren.

Das AbschluBkapitel 7 gibt auf der einen Seite eine Ubersicht iiber in der
Literatur vergleichbare Ansitze und Ergebnisse. Auf der anderen Seite wird
die Verallgemeinerung der vorgestellten Methoden und Resultate diskutiert.

Im Anhang A wird die gruppentheoretische Definition der Multi-Soliton
Lésungen aus Kapitel 3.2 fiir den Fall hamiltonischer Mastersymmetrien be-
wiesen.

Anbang B erlautert die Existenz und Eindeutigkeit der hamiltonischen For-
mulierung der Skalierungsmastersymmetrie To-

In der gesamten Arbeit werden Kapitel, Unterkapitel, Sitze, Bemerkun-
gen, Gleichungen und dhnliches laufend durchnumeriert. Ein Verweis auf (3.4)
meint die mit der Nummer (3.4) versehende vierte Gleichung im Kapitel 3. Die
Angabe Lemma (2.5) fithrt zum mit (2.5) gekennzeichneten finften Lemma des
Kapitels 2. Verwendet werden dariiberhinaus eine Reihe feststehender Sym-
bole, die am Ende der Arbeit in einer Tabelle zusammengefaft sind.

Die Bilder in dieser Arbeit wurden mit dem von Dr. Walter Oevel ent-
wickelten Graphik-Programm 3D_GRAPH geplottet. Dabei kamen sowoh! die

*Die in dieser Arbeit hergeleiteten Resultate iiber den nicht-hamiltonischen Fall werden
in [48] und [81] publiziert.



originale Pascal-Version als auch die von Dieter Gieske geschr.iebene C-Vers'ion
zum Einsatz. Die fiir die Benjamin-Ono Gleichung benétngﬂten Input-Files
stellte mir freundlicherweise Thorsten Schulze (f100)) zur Verfligung.

Sowoh! fiir die Anregung des Themas als auch fiir die stets aufmerksame

Betreuung der vorliegenden Arbeit bedanke ich mich sehr herzlich bei Herrn
Prof. Dr. B. Fuchssteiner.



1 Grundlegende Begriffe

Die in dieser Arbeit behandelten dynamischen Systeme lassen sich als Evolu-
tionsgleichungen auf einer unendlich dimensionalen Mannigfaltigkeit M inter-
pretieren. Dabei sei im folgenden u = u(%) € M, & € R™, die Feldvariable.
T. M und T} M bezeichnen den Tangential- bzw. Kotangentialraum von M
an der Stelle u; TM und T*M seien das Tangential- bzw. Kotangentialbiindel
(vel. [2],[25],[71]). Die Elemente aus dem Tangentialraum nennen wir Vekto-
ren, die aus dem Kotangentialraum entsprechend Kovektoren. Die Klammer
<.,.> bezeichne die Anwendung eines Kovektors auf einen Vektor.

Als generelle Voraussetzung nehmen wir in dieser Arbeit an, daf die Mannig-
faltigkeit M ein linearer topologischer Raum sei, den wir mit seiner typischen
Faser T, M identifizieren kénnen, d.h. fir alle u € M gilt

.M = M.

Alle Tensorfelder A auf M werden als beliebig oft differenzierbar beziiglich der
Hadamard Ableitung vorausgesetzt. Die Hadamard Ableitung wird durch
die Richtungsableitung von A in Richtung eines Vektors X € T.M

a

= a_€|e=0

A () [X] A (u+eX (u) (1.1)

gegeben. Neben der Giiltigkeit der Kettenregel sichert dieser Differenzierbar-
keitsbegriff, daB die Ableitung A’ (u) eine lineare Abbildung ist ((107},[108]).
Wir betrachten in dieser Arbeit Tensorfelder A aus den folgenden Raumen:

Definition (1.1):

FM) == {f:M >R | fglatt 1,
X(M) {K:M - TM|K(u)eT, M;K glatt },
X(M) == {v:M > T"M|y(u) € T: M;yglatt },
TENM) = {J:M - L(T,M, T M) | J(u): Tu M — T M; J glatt },
TOYM) = {6: M 1L (T M, Ty M) | O(u) : T* M — T, M;© glatt },
TON(M) = {9:M — L(Ty M, Tyy M) | 8(u) : T. M — T, M; & glatt },
TON(M) = {9:M - L (T} M, Ty M) | ¥(u) : T: M — T> M; ¥ glatt }.

i

Hierbei sei L(.,.) der Raum der linearen Abbildungen zwischen den Fasern der
entsprechenden Biindel. Mit " A glatt” sei stets gemeint, daB das Feld A eine
C-Abbildung ist.



Jedem Skalarfeld f € F(M) wird durch die Richtungsableitung (1.1) das

Kovektorfeld grad f € X*(M), der Gradient von f, zugeordnet. Dieser
Gradient ist gegeben durch

<grad f(u), X >:= ff(u)[X] VXeT.M . (1.2)

Fiir alle Beispiele dieser Arbeit ist die zugrunde liegende Mannigfaltigkeit
M im wesentlichen der Schwartz-Raum S(R) der schnell fallenden C* - F_‘llljlk‘
tionen u : R — R™. Die oben gemachte Voraussetzung an M ist daher lediglich

technischer Art und bedeutet keine Einschrankung fir die Anwendbarkeit der
zu entwickelnden Begriffe.

Auf einer so bestimmten Mannigfaltigkeit M betrachten wir die Evolutions-
gleichung

= Ku) . (1.3)
Subskripte stehen fiir die partiellen Ableitungen nach den jeweiligen Variablen.
Das Vektorfeld K ¢ X (M) sei nicht explizit zeitabhingig und wir nehmen
an, daB das Anfangswertproblem von (1.3) sehr gut gestellt sei. Mit dem
Kommutator

[G1,Ga] = G [G] - G, [Gy) (14)

zwischen zwei Vektorfeldern G1,Gy € X (M) als Lie Klammer wird X(M) zu
einer Lie Algebra. Von besonderer Bedeutung fiir das gegebene Vektorfeld K. in
(1.3) sind Vektorfelder G, die mit K vertauschen, d.h. fiir die [K,G] = 0gilt.
Unter geeigneten Voraussetzungen an die Lasbarkeit des Anfangswertproblems
fur

u, = G(u)

0 die infinitesimale Version fiir die Vertauschbarkeit
der von G und K erzeugten Resolventengruppen R¢ und Rg. In diesem Fall
wird die von G erzeugte einparametrige Resolventengruppe R auch Symme-
triegruppe zu Ry genannt. G heiflt dann der (infinitesimale) Symmetriegrup-
pengenerator von Rg. Wie iiblich schlieflen wir uns der Terminologie an, nach
der Symmetriegruppengeneratoren kurz Symmetrien genannt werden. Mit
Hilfe von Symmetriegruppen kann man aus einer gegebenen Losung der Glei-
chung (1.3) neue Losungen derselben Gleichung konstruieren. Dariiberhinaus
dienen vorhandene Symmetriegruppen sowohl zum Klassifizieren von Evoluti-
onsgleichungen als auch 2y deren struktureller Untersuchung,

Uns interessieren die speziellen dynamischen Systeme (1.3), die eine Hier-

arcl':ie Ko, K\, K3, Ks,...c X (M) untereinander kommutierender Symmetrien
besitzen, d.h. fir alle n,meN gl

ist namlich [K,G] =

[K,K,) = 0 und (Km, Ka] = 0 .
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Als Generator der Zeittranslation kann das Vektorfeld K mit in die Hierar-
chie der Symmetrien K, eingereiht werden; in der Regel werden wir K = K,
setzen. Evolutionsgleichungen dieser Art wollen wir vollstindig integrable
Systeme (von unendlicher Dimension) nennen. Diese Definition ist angelehnt
an den Begriff der vollstindigen Integrabilitit auf einer endlich dimensiona-
len Mannigfaltigkeit (vgl. Einleitung). Es ist anzumerken, da8 diese Defi-
nition als ”Arbeitsdefinition” weit verbreitet ist. Wie wir aber noch sehen
werden, besitzen die genannten Evolutionsgleichungen eine Fille von weiteren
auBerordentlichen Merkmalen. Welche Eigenschaft letztlich die grundlegende
ist, ist in der Forschung noch umstritten. Aus diesem Grund gibt es noch
keine endgiiltige, allgemein anerkannte Definition von volistandig integrablen
Gleichungen auf unendlich dimensionalen Mannigfaltigkeiten.

Als empirische Tatsache stellen wir fest, daB man fiir alle Beispiele vollstan-
dig integrabler Systeme (unendlicher Dimension) neben der Hierarchie der
Symmetrien eine weitere Hierarchie von Vektorfeldern 7o, 7y, 72, ... konstruieren
kann. Diese sogenannten Mastersymmetrien ({40],[23],[82},{90],[48]) lassen
sich stets so normieren, daf sie fiir alle n,m € N, die folgenden Kommutator-
relationen erfiillen

[Tme} = (m+9) Koym , [Tme] = (m—n)Topm - (1.5)

Hierbei ist p > 0 eine relle Zahl. Die Struktur der Mastersymmetrien ist wohl
untersucht, einige wichtige Eigenschaften werden wir spater erwahnen.

Es stellt sich weiterhin heraus, daB sich grundlegende Begriffe dieser Arbeit
durch Lie Ableitungen charakterisieren lassen. Generell wird die Lie Ab-
leitung LA eines Feldes A in Richtung eines Vektorfeldes G € X(M) mit
Hilfe der Ableitung (1.1) definiert ([2},[101]). Dabei ist zu bemerken, daB die
Richtungsableitung (1.1) von der gewahlten Karte auf M abhingt, wahrend
Lie Ableitungen invariant unter Kartenwechseln sind ([88]).

Definition (1.2): Es sei G € X(M) und E einer der Raume aus Definition
(1.1). Als Lie Ableitung Lg : E — E erhalten wir

(a) fur fe F(M): Legf = f[G) = < gradf,G >
(b) fir K € X(M):  LoK = [G, K]
(c) fur ye X*(M): Ly = 7' [GI+G"«

grad <7,G> + (V-7 G,
J Gl + G*J + JG
oGl-e6” -Go,
VG +eG -G¢,
V(G - ¥G* + G™Y¥ .

(d) fir J € TCHM): LgJ
(e) fir @ € TON(M): LgO
) fir @€ TOY(M): Lgd
(g) fir ¥ € T*O(M): Lg¥

1



Hierbei bedeutet * die Transposition bzgl. der Dualitatsklammer < .,. >.

Fir ein gegebenes Vektorfeld G sind die unter G invarian.ten Felder Af. d.h.
Felder, fiir die LgA = ¢ gilt, von besonderer Bedeutung. Wie schon erw“ahn.t,
nennt man die unter G invarianten Vektorfelder Symmetrien (zu .G). Fir die
in Definition (1.1) und (1.2) eingefithrten GréBen haben sich dxe.folgenden
Bezeichnungen eingebiirgert. Ein unter G invariantes Tensorfeld heifit

(a) fur f e F(M): Erhaltungsgrafe zu G ,
(b) fir K ¢ X(M): Symmetrie zu G ,
(c) firye X" (M) : konservierte Kovariante zu G ,

(d) firJ e T®(M):  inverser Noetheroperator zu G ,

(e) fir®¢ TO(M) Noetheroperator zu G,

(f) fur® ¢ TN M) - Rekursionsoperator zu G ,

(g) far ¥ e (M) adjungierter Rekursionsoperator zu G .

Diese Namensgebung wollen wir an zwei Beispielen kurz erliutern:
Ist f ein unter G invariantes, nicht explizit zeitabhingiges Skalarfeld, so besagt
d
0 = Laf = f'(u) [G(u)] = 7 f(v)

fir das von G(u) erzeugte dynamische System u, = G(u) gerade, daB f auf
den Lésungsbahnen von 4: = G(u) konstant, also erhalten bleibt. .
Ein unter G invarianter Operator & € T(:1)( M) erzeugt durch rekursives An-

wenden von & auf G eine Folge von Symmetrien zu G ({87]), die allerdings
nicht untereinander kommutieren miissen.

Als weitere Einschrinkung an die Ausgangsgleichung (1.3) wol!en wir nun
noch annehmen, daf das Vektorfeld K hamiltonisch (bzgl. ©) ist, d.h. es
gibt einen implektischen Operator® (Poisson Operator) ([39],(52])

9:M—>L(TC)M, Ty M)
und ein Skalarfeld f € F(M), so da8 fir jedesue M
K(u) = ©u) grad f(u)
gilt. Dabej ist der Operator 6 folgendermafen definjert:

Definition (1.3): Ein antisymmetrisches © : M — J, (T¢) M, T() M) heifit
implektisch, wenn die Klammer

Inlle = grad < 7,09, » — =) 8n+ (h-75)6n (16

SNatiirlich iot nur 6(u) eine lineare Abbildung. Als Kursform werden wir die nicht ganz
korrekte Sprechweise auch weitethin benutzen.
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fiar alle 75,7, € X*(M) eine Lie Klammer (Poisson Klammer) auf dem Raum
der Kovektorfelder X*( M) ist.

Dariiberhinaus induziert © auch auf F(M) eine Lie Klammer (Poisson
Klammer)

{fi,fa}o :=<grad f;, O grad f1 > , f, f: € F(M) . (1.7)

Bemerkung (1.1): Mit der Definition (1.2) der Lie Ableitung eines Ska-
larfeldes ¢ € F(M) ist g genau dann eine ErhaltungsgroBe fir K(u) =

O(u) gradf(u), falls {f,g}e =0 gilt.

Die Abbildung © o grad : F(M) — X(M) bildet einen Lie Algebra
Homomorphismus, d.h. fiir alle f,, fo € F(M) gilt

O grad {1, } o = [© gradfi, © gradfo]. (18)

Damit erhalt man

Bemerkung (1.2) [Noether’s Theorem]: Durch die Abbildung © o grad laft
sich jeder Erhaltungsgréfie zu K (u) = @(u)grad f(u) eine Symmetrie zuordnen.
Umgekehrt existiert zu jeder hamiltonischen Symmetrie fiir K eine zugehdrige
Erhaltungsgrofe, da wir die Mannigfaltigkeit als sternformig vorausgesetzt ha-
ben.

Mit Hilfe der Lie Ableitung LsO eines Operators © € T®?(M) in Richtung
eines Vektorfeldes G € X(M) erhilt man die Charakterisierung:

Bemerkung (1.3): Ein antisymmetrisches © : M — L (TYy M, Ty M) ist
implektisch genau dann, wenn fiir jedes Kovektorfeld v € X*(M) gilt
Lo,©® = —O(+-7")0 . (1.9)

Aquivalent dazu ist, daB die in (1.6) definierte Klammer |[ 71,72 ]lo fur alle
",%2 € X*(M) die Jacobi-Identitat erfillt.

Fiir ein hamiltonisches Vektorfeld G = © gradf besagt (1.9) offensichtlich,
daB das Vektorfeld G die implektische Struktur © invariant 138t, d.h. © ist ein
Noetheroperator zu G. Ist © invertierbar, so gilt auch die Umkehrung, d.h.
wir erhalten:

13



. T u
Bemerkung (1.4): Ein Vektorfeld G ¢ X (M} ist hamiltonisch bzgl. © gena
dann, wenn LeO® =0 ist.

Diese Aquivalen werden wir neben den strukturellen Eigenschaften (1.6)-
(1.8) eines implektischen Operators oft benutzen.

Der Begriff implektisch ist eine Kurzform fﬁf ”inver's-sympllellit;{szl}lle, C;/ee;
weist also auf symplektische Operatoren und dam:lt auf' die sympl ef 115 o
metrie. In deren klassischer Notation ([2],[9]) wird eine Manm.g a }ghtde M
Zusammen mit einer 2-Form w symplektisch genam}t, wenn w eme"mcdmcgh
nerierte, geschlossene 2-Form ist. Fiir u € M 1aft sich w(u) darstellen

wlu) (X1, %) = < J(u) X,, X2> VX, X, €T, M,

wobeij J(u) : T.M T} M ein linearer Operator ist. .Statt mit DifferZIil(;
tialformen auf symplektischen Mannigfaltigkeiten zu a.rbel‘ten, kann rr.leu:’hét
Eigenschaften von w auf J(u) iibertragen. LaBt man die Nichtdegenerier

als Einschrinkung beiseite, so ergibt sich als Aquivalent der symplektischen
2-Form w:

Definition (1.4): Ein antisymmetrisches J ¢ TO(M) heit symplektisch,
wenn die Klammer

[X11X2yX3] =< J'(u) (X)) Xa, X3 >

far alle u € M ung X1, X2, Xs € T M die Jacobi-Identitt erfalls.

Analog der Vorgehensweise bei implektischen Operatoren erhilt man mit
Hilfe der Lie Ableitung LgJ eine

s Operators® J ¢ TEO(M) in Richtung des
Vektorfeldes G € X(M):

Bemerkung (1.5): Ein antisymmetrisches J ¢ TEO(M) ist symplektisch
genau dann, wenp fi, alle Vektorfelder 7 € X(M) gilt

LeJ = ey - oy . (1.10)
Fiir ein invers-ham;j

iltonisches Vektorfeld ¢ (bzgl. J), d.h. es existiert
0 € F(M) mit JG = grady, g qe

T Bar—————

Es gelte die gleiche Kurtsprechweise wie fir implektische Operatoren 6.
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Bemerkung (1.6): Ein Vektorfeld G ist invers-hamiltonisch bzgl. eines sym-
plektischen J € T*9(M) genau dann, wenn J invariant unter G ist, d.h. wenn
Lg J =0 gilt.

Mit Hilfe des Lemmas von Poincaré ([30],[88]) erhilt man aus (1.10):

Bemerkung (1.7): Die Lie Ableitung eines symplektischen Operators in
Richtung eines beliebigen Vektorfeldes liefert stets einen symplektischen Ope-
rator.

Nach diesem kurzen Abri iiber symplektische und implektische Operato-
ren erklart sich der Name invers-symplektisch in natiirlicher Weise:
Ist der symplektische Operator J(u) invertierbar, so ist J~' implektisch. Ist
der implektische Operator O(u) invertierbar, so ist ©~1 symplektisch.

Die generelle Voraussetzung fiir die vorliegende Arbeit 138t sich nun
folgendermaBen formulieren:
Auf einer Mannigfaltigkeit M sei die Evolutionsgleichung

uy = Ki{u) (1.11)

gegeben, wobei K ein invers-hamiltonisches Vektorfeld bzgl. des symplekti-
schen Operators J sei. Zu dem Vektorfeld K, existiere eine Hierarchie von
Symmetrien K,, n € Ny, und eine Hierarchie von Mastersymmetrien 7,,
n € Ny. Diese Vektorfelder erfiillen fiir alle n,m € Ng die folgenden Kommu-
tatorrelationen

[I‘,m[(m] =0 y [Tnvl"m] = (m+9) I(n-}-m y

[Tme] = (m"n) Tatm (112)

wobei g ER™ eine geeignete Konstante jst.

Zur expliziten Konstruktion der Hierarchien K,, und r,, d.h. zum Nachweis
ihrer Existenz, gibt es mehrere Verfahren. Zwei dieser Verfahren wollen wir
hier vorstellen. Als Startpunkt fiir das erste Verfahren miissen die Vektorfelder
Ko, 70,71 und 7, gegeben sein und die geforderten Kommutatorrelationen (1.12)
erfillen. Wir definieren

1 -
Ta4r 1= Y [r1, 7] fir n2>2,

Kn+l [T],Kn] fir n € No .

n+o

15



Gilt dann zusatzlich

[z, 73]
[T2 ' Kl]

31,

(24 9) Ky,

Ts ) [T2 ’ T5]
(I+0)Ks , [n, Ky

so folgt mit der Jacobi-Identitat fir den Kommutator [,.], daB die 'Relatlonen
(1.12) erfallt sind ([82]). Die Hierarchien K, und 7, werden also im wc.asent—
lichen durch die Mastersymmetrie 7, erzeugt. Dieser Rekursionsmechanismus
funktioniert bei allen bekannten Beispielen.

Im zweiten Verfahren ergeben sich die beiden Hierarchien durch rekursives

Anwenden eines Operators® ® ¢ TUD(M) auf die Startfelder Ko und ro, d.h.
fir alle n,m ¢ N, definieren wir

Ka(u) == on(u) Ko(u) , 7u(u) := &™(u) ro(u) .

Folgende Bedingungen ([82]) sind in diesem Fall hinreichend fiir die Giiltigkeit
der Relationen (1.12):

(i) Der Operator & ist ein Rekursionsoperator zu Ko, d.h. Li,® =0 .

(i) Es gelten die Skalierungseigenschaften:

LoKo = [ro,Ko) = oKo | (1.13)
L,® 'lr)] — o ® + b1y = @ . (1.14)

[

(i) Der Operator ®(u) ist hereditar (138],[70}), d.b. fiir alle G4, G, € X(M)
gilt

2 [G;,Gz]+[<I>Gl,<bG,] = @ [8G),Gy) + ¥ [G1, 9G] .

Die Hereditaritit von ® kann auch mit Hilfe der Lie Ableitung aus-
gedriickt werden. Dann mug fur alle Vektorfelder G € X (M)

Lec® = ®Led (1.15)
erfillt sein.

Wie schon erwihnt, garantiert

schen. Die Hereditaritit von & i

kommutieren, wahrend (i1) die
legt.

(i), daB die Vektorfelder K, mit K, vertau-
n (iii) steflt sicher, da8 alle K, untereinander
Normierung der Vektorfelder K,, und Ta fest-

SEs gelte die analoge Sprechweise wie fiir implektische und symplektische Operatoren.
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In dieser Formulierung ist das zweite Verfahren anwendbar auf fast alle Glei-
chungen in einer Raumdimension, ausgenommen sind lediglich die Benjamin-
Ono Gleichung (BO) und die Intermediate Long Wave Gleichung (ILW). Fiir
alle Gleichungen in mehr als einer Raumdimension wie z.B. die Kadomtsev-
Petviashvili Gleichung (KP) oder die Davey-Stewartson Gleichung (DS) kann
es keinen Operator mit den obigen Eigenschaften geben ([62]). Erweitert man
aber die zugrunde Liegende (physikalische) Mannigfaltigkeit um kiinstliche Va-
riablen, so lassen sich alle Begriffe auf die erweiterte Mannigfaltigkeit {ibertra-
gen. In diesem Sinne war es Fokas und Santini ([33],{97],(98]) moglich, einen he-
reditaren Rekursionsoperator fur die genannten Gleichungen zu konstruieren.
Die Symmetrien, Mastersymmetrien und den symplektischen Operator auf der
urspriinglichen Mannigfaltigkeit findet man dann durch Reduktion der analo-
gen erweiterten GroBen wieder, der Rekursionsoperator ist allerdings nicht
reduzierbar. Erweiterte Felder wollen wir in dieser Arbeit nicht betrachten,
uns interessieren hier die hereditaren Operatoren ® : M — L (T(y M, Ty M).
Die Existenz solcher Operatoren a8t sich im Zusammenhang mit der symplek-
tischen Struktur J und den Mastersymmetrien 7, interpretieren. Dabei sind
die beiden folgenden Fille zu unterscheiden :

1. Fall : Der nicht-hamiltonische Fall

In diesem Fall sind nicht alle Mastersymmetrien invers-hamiltonisch bzgl. J,
d.h. es gibt ein n € Ng mit L, J # 0. In der Regel gilt schon L, J # 0
oder L., J # 0. Dariiberhinaus liefert die Lie Ableitung von J in Richtung
der Mastersymmetrie 7, bzw. 7, in allen bekannten Beispielen einen neuen,
nicht-trivialen implektischen Operator ©,, der zusatzlich mit J kompatibel ist
(was bisher allerdings nur eine empirische Tatsache ist). Speziell fur L,, J
gilt dabei folgende Faktorisierung ([82])

L,J = aJ©;J mita€cR .
Als Konsequenz der Kompatibilitit von J und O, ergibt sich, da8 der Operator
®: M L(TyM, TyM), & = 6,J
automatisch hereditar ist ({47],[53],(69]). Wir normieren in diesem Fall
L,®=9% , L,J=1J, AeR. (1.16)

2. Fall: Der hamiltonische Fall
Alle Mastersymmetrien sind invers-hamiltonisch bzgl. J, d.h. fir allen € N,
gilt L, J = 0. Mit Hilfe der Jacobi-Identitat folgt die Aussage schon, wenn

0=1L,J=1L,J=1LnJ
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gezeigt ist. Es stellt sich weiterhin heraus, daB bei allen bekannten Beispielen
im hamiltonischen Fall der Operator J invertierbar ist. Als zusitzliche Voraus-
setzung fordern wir daher hier die Invertierbarkeit von J, d.h. das Vektorfeld
K und alle Mastersymmetrien 7, sind hamiltonisch bzgl. ¢ := J-! .

Um spater eine symmetrische Darstellung aller Ergebnisse zu erhalten, wol-
len wir im hamiltonischen Fall eine andere Normierung der Symmetrien K,
wiahlen. Ersetzt man in (1.12) K, durch (¢ + n)~'K,, so ergeben sich die

folgenden Relationen

[Ku, K] =0 (70, K] = (m+n+0) Kngm ,

[Tn:‘rm] = (m_n) Ta+m (1'17)

Mit dieser Normierung werden wir im hamiltonischen Fall arbeiten.
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2 Rekursionseigenschaften integrabler Systeme

Nachdem wir im vorherigen Kapitel die Notation bereitgestellt haben, wollen
wir nun die grundlegenden Eigenschaften integrabler Systeme angeben. Die
wesentlichen Ergebnisse findet man beispielsweise in [82] oder auch in {101].
Da die Darstellungen aber unterschiedlich sind, werden die hier benétigten
Relationen explizit bewiesen.

2.1 Der nicht-hamiltonische Fall

Wie in Kapitel 1 festgelegt, betrachten wir die invers-hamiltonische Evoluti-
onsgleichung

u, = Ki{u) (2.1)
mit J(u) K;(u) = grad f(u), wobei f € F(M) ist. Es sei ® := O J, der
hereditire Rekursionsoperator (zu Kjy), der die Vektorfelder K, := ®™ K, und
T := ®"75 mit den geforderten Kommutatorrelationen (1.12) erzeugt.

Lemma (2.1): Fiir alle n,m,r,1 € Ng gilt

@) e =J0O, , Jo = ()" J, (2:2)
(ii) <JKy,tm>=<JK,,m> fir n4m=r+l, (2.3)
(iii) <JKn Kn>=0=<Jry,mm >, (2.4)
(iv) L, & = ¢+, (2.5)

Beweis: (i): Die Antisymmetrie implektischer und symplektischer Operatoren
liefert
& = (0, J) = J'O] = JO, .
Damit folgt die Behauptung per Induktion.
(ii): Wegen (i) folgt fir alle n,m,r,] e No mit n+m =r +1

< (Q')" JKO yTm >

< JKQ ,Q'H’"‘To >
<JKoy, 1>
< J® Ky, >

< JO"Ky , Ty >
< JKy 91, >
< JKy, o >
< (") JKo, 711 >
<JK,,n>

<JKp ,Tm >

[ |
[ T
o

(i1): Wegen der Antisymmetrie von J gilt offensichtlich fiir alle p € Ny

<JK; , Ky >=0 =<Jm, 5, >
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Mit (i) und der Definition von K,, bzw. 7, folgt daher

0 <IK, Ky > = <JK, 0 Ko> = < (9°)JK,, Ke> =
<UBK, Ko > = <JK,; Ko >

nn

und analog < Jrp ,70 > = 0. Auf der anderen Seite gilt mit der gleichen
Argumentation und der Antisymmetrie von J

<IKpp1,Ko> = < JK,, My > = < JOK, K, >
<JK, Koy > = ~ <JK,pn K> =
= <JKgpyi , Ko >

0o

also < JKappr Ko > = 0 und analog < J7y,41 ,79 > = 0 . Insbesondere
folgt also fiir alle r €Ny

<JK, Kg>=0 =< Jr, 5>

Mit Hilfe von (i) ergibt sich analog zu (ii) daraus die Behauptung (iii).
{iv): Aus der Definition von Tn, der Hereditaritat (vgl. (1.13)) von ® und der
Normierung (1.16) erhalt man fiir jedes n €N,

L, & = L@nm ¢ = " L, ® =t |

Folgerung (2.1):

(i) Ist K, invers-hamiltonisch by

gl. J fiirein n € Ny , so ist K., hamilto-
nisch bzgl. ©,.

(i) Ist K, invers-hamiltonisc

h bzgl. J, so sind alle Vektorfelder K, invers-
hamiltonisch bzgl. J, d.h

- fiir alle n € Ny, git Ly J = 0.
Beweis: (i): Falls JK, = grad g, so gilt mit der Definition von ®:

Kiyy = 3K, = O JK, = ©,grad g ,

dh. K,,, ist hamiltonisch bzgl. ©,.
(i1): Nach Voraussetzung ist Ly, J

= 0. Dann folgt die Behauptung mit
vollstindiger Induktion, da
1
LK..+: J = \(n+9) L[n.K,.] J =

1
= m(LnLK.J"LK.L,,J) = 0.
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Das letzte Gleichheitszeichen folgt aus (i), der Produktregel fiir Lie Ableitun-
gen und der Tatsache, dafl laut Voraussetzung L, J = «JO,J gilt. Insbeson-
dere gilt damit gemaB (i) auch Lg, ©1 = 0 fiir jedes n € N. (o}

Mit Hilfe der Vektorfelder K, und 7, lassen sich auf folgende Weise Skalarfelder
H, auf M definieren:

Definition (2.1): Fir alle n € Ng sei
H, =< JK,,n> . (2.6)

Die Eigenschaften der H, werden im folgenden Lemma beschrieben:

Lemma (2.2): Ist Ky invers-hamiltonisch bzgl. J, so gilt fiir alle n,m € Ng:

i) Hopm =< JKp 1 >, (2.7)
(i) (n+o+A)JK, = grad H,, , (2.8)
(iii) (Lrp NN Ky = (A4+m) IKoym (2.9)
(iv) Lg, H, = 0. (2.10)

Beweis: (i): Die Relation (2.7) folgt aus der Definition von H,;., gema8 (2.6)

und der Eigenschaft (2.3).
(ii): Fir den Beweis von (2.8) bendtigen wir die Lie Ableitung eines Kovek-
torfelds v in Richtung eines Vektorfelds G, die durch

Ley =7 [G]+G"y = grad <7,G> + (¥ -+") G

gegeben ist (vgl. Definition (1.2)). Da J symplektisch ist (vgl. (1.10)), folgt
fir alle n,m € Ng

grad < Jrp \Kpn > + ((JTn) = (JTm)") K =
= —grad < JK, ,7m > + (L., J) Kn =
= —grad Hagn + (L, J) K (2.11)

Lk, (J7m)

Auf der anderen Seite gilt mit Hilfe der Produktregel fiir Lie Ableitungen

Li.(Jmm) = (LxoJ) tm + J (Ix, Tm) =
J (LKn TM) = - (n+ 9) JKn+m - (212)
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(2.11) und (2.12) zusammengefaBt ergibt fiir alle n,m € N,
grad Hpyn = (L JY K + (n+0) J Kpyon - (2.13)
Fir m = 0 erhalten wir aus (1.16)
(LnJ) K, = AJK, Yn €N, .

Die letzte Gleichung eingesetzt in (2.13) liefert die Behauptung

grad H, = (n+o+4+ N JK, .
(iii): Mit den Gleichungen (2.8) und (2.13) gilt fiir alle n,m € N,

(L ) K = (A4 m) JKpyn

(iv): Mit der Definition der Lie Ableitung eines Skalarfeldes, (2.8) und (2.4)
folgt fiir alle n,m € N,

Ly, Hn = <grad H,, K, > = (m+o+X) <JK, ,K,>= 0.
a

Bemerkung (2.1): Fir die weiteren Relationen setzen wir voraus, da8 K,
invers-hamiltonisch bzgl. J ist. Dann ist das Vektorfeld K, zusétzlich hamil-
tonisch bzgl. ©,. Weiterhin besagt die Eigenschaft (2.10) gerade, daB jedes
Skalarfeld H,, ein Erhaltungssatz zu jedem Vektorfeld K, ist.

Lemma (2.3): Fiir alle n ym €N gilt

(@) Ont1 i= ®" O, ist implektisch | (2.14)
(ii) Lg, @™ = 0, (2.15)
(i) Lk, Om = 0. (2.16)

Beweis: (i): Nach Voraussetzung sind © und ©, implektisch. Mit vollstandiger
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Induktion erhalten wir fiir alle y € X*(M)
Lo,ir Onsr + Ongy (v —7"™) Onps
= Leje,+(0:J0,) + 6,J0,(¥-v6,J0,
= (Leeny 2)On + @ (Lo,so,y Oa) — 0, J (Lo, 01) J O,
= (Loouy $) O — © 0, ((JO17) = (JO17)*) On — &" (Le,, ©1) J O,
= (Lsoy, ®) 0, — 9" 0, (Loy, J) O, — & (Lo,, ©1) J O,
= (Lono® — 9" Lo, @) 0, = 0 .

Die letzte Klammer verschwindet wegen der Hereditaritat von & (vgl. (1.15)).
(i1): Wegen
(0+A)J Ky = grad Hy

folgt
(e+A) Ky = O, grad Hy ,

d.h. es gilt
L, @ = Lk, (01J) = (Lk, ©1)J + O1 (Lk, J) = 0 .

Aus der Hereditaritat von @ erhalten wir Lx, ® = 0 fiir alle n € N; mit der
Produktregel fiir Lie Ableitungen folgt die Behauptung.
(iii): Mit Folgerung (2.1) gilt Ly, ©; = 0 fir alle n € N. Die Behauptung
ergibt sich somit aus der Produktregel

Lk, ®n1 = Lk, (27 01) = (Lg, @) 01 + O™ (Lk, ©1) = 0 .

n

Die beiden letzten Relationen offenbaren weitere wesentliche Struktureigen-
schaften integrabler Systeme mit nicht-hamiltonischen Mastersymmetrien. Es
gilt namlich offensichtlich:

Folgerung (2.2): Der Rekursionsoperator ® ist invariant unter allen Sym-
metrien K,. Jede der Symmetrien ist hamiltonisch bzgl. aller implektischen
Operatoren 6,,,.
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2.2 Der hamiltonische Fall
Wie im ersten Kapitel festgelegt, existieren in diesem Fall zu
U = Ki(u) = Op(u) grad f(u) (2.17)

eine Hierarchie von Symmetrien I, und eine Hierarchie hamiltonischer (bzgl.
6¢) Mastersymmetrien 7,, die fiir alle n,m € Ny folgende Relationen erfiillen

(Ku, K] = 0 (T, Km] = (m+n+0) Knym

[Tanm] = (m— n) Tntm - (2'18)
Der implektische Operator O sei invertierbar mit J := Sre
im nicht-hamiltonischen Fall zusatzlich voraus, daf§ K|,
ist, so erhalten wir, da8 auch in diesem Fall die K, ha

. Setzen wir wie
hamiltonisch bzgl. O
miltonisch sind:

Lemma (2.4): Alle Symmetrien K, sind hamiltonisch bzgl. @y, d.h. es gilt
Lg,© = 0 fiir allen €N, .

Beweis: Fir n = 0 gilt die Behauptung nach Voraussetzung. Mit Hilfe der
Jacobi-Identitat folgt dann fir jedes n € N

1
b ©0 = iy Lk O =

1
ity (Lr, Lk, ©0 — Lk, L, ©,) ,

und die Behauptung ergibt sich durch Induktion. o

Im Gegensatz zum nicht-hamilton
von Skalarfeldern definjeren:

Definition (2.2
bestimmt durch

ischen Fall kénnen wir hier zwei Hierarchien

): Fir jedes n € Ny seien die Skalarfelder H,,T, € F(M)

(n+o) K = ©ggrad H, , (2.19)
Ta Op grad T, . (2.20)

It

Bemerlsung_(2.2): Die durch (2.19) und (2.20) definierten Skalarfelder H,
und T, sind bis auf Konstanten, die nicht vo

: > S n den Koordinaten abhangen, fest-

;elegt. Dl.e uns mterfesslerenden Eigenschaften der Skalarfelder werden durch

:x;;al Gradienten bestimmt, deshalb spielen die Konstanten im weiteren keine
e.
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Die Eigenschaften der Skalarfelder H,, und T, werden im folgenden Lemma.
charakterisiert:

Lemma (2.5): Fiir alle n,m € N gilt

(1) {Hn aHm}Gn =0, {Tn ,Tm}e., = (m_n) Tn+m 5

{Tn ,Hn}e, = <grad Hy 7> = (m+0) Hopm (2.21)
(i) <JKi,Kpn>=0, <Jru,n>= (m—n)Tpym ,
<JK,,tm>= Hppm - (2.22)

Beweis: (i): Die beiden ersten Relationen folgen mit dem Noether-Theorem
(Bemerkung (1.2)) bis auf Konstanten sofort aus (2.18). Setzt man voraus, da8
die Skalarfelder H, und 7, polynominal von u,u,, t., ... abhdngen, so liefert
die Evaluierung in « = 0 das Verschwinden dieser Konstanten. Auf diese Weise
erhalt man ebenfalls mit dem Noether-Theorem und der Definition (2.2) fir
allen,m €Ny

{Tw,Hn}le, = <grad H,, ,0grad T, > =
grad Hy, ,7a > = (m+g) Hyprm -

1
(m + o) <————(m+g)

(i1): Die Gleichungen (2.22) ergeben sich aus (2.21), wenn man die Umformu-
lierungen

J K, grad H, und Jr, = gradT,

1
(n+o)

wahlt. u]

Wahrend im nicht-hamiltonischen Fall der Rekursionsoperator ¢ eine wich-
tige Rolle spielt, findet man im hamiltonischen Fall haufig andere Rekursi-
onsgrofien, sogenannte Mastersymmetrien hoherer Stufe ([40]).

Definition (2.3): Es sei k € N. Ein Vektorfeld G € X(M) heifit Master-
symmetrie k-ter Stufe zu einer Folge K, untereinander kommutierender
Vektorfelder, wenn fir jedes K, gilt

[Kn, [Kn, [Kny . [Kn,G] ..]]] # O und (K, [Kn, [Kn, .. [Ka,G] .]]] = 0 .
k—mal (k+1)—mal
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Da die Symmetrien K, alle untereinander vertauschen, konnen wir sie als Ma-
stersymmetrien 0-ter Stufe interpretieren. Die schon bekannten Vektorfelder.‘r,.
sind gema obiger Definition die Mastersymmetrien 1-ter Stufe. Aus schreib-
technischen Griinden nennen wir die T, weiterhin kurz Mastersymmetrien.

In fast allen Situationen, in denen die Folge der 7,, hamiltonisch ist, wurde
eine Mastersymmetrie 2-ter Stufe gefunden, die sich folgendermaBen normieren
1aBt

(S, ,Ki] = 7. (2.23)
Ob eine derartige Rekursionsgrofie im hamiltonischen Fall immer existieren
muB, ist aber noch nicht geklart.
Unter der Voraussetzung, da es ein S_1 wie in (2.23) gibt, gilt

Lemma (2.6): Definiert man S, := [S-1,7a41] fiiralle n € Ng , so sind
die folgenden Relationen giltig
(i) (5.1, Kn] = 7, ¥neNg , (2.24)
(i) [Se Kn] = (2k+3+0)7e  YhkeNg, neN .  (2.25)

Beweis: (i): Mit der Jacobi-Identitit und den Relationen (2.18) folgt

{(n+1+p) Katx = [ro 1 Kup] = [[S-1 » i) K] = [[So1, Kaga] L K4 -

Mit Induktion und der Vollstandi

gheit der Mastersymmetrien 1-ter Stufe gilt
also fiir alle n € N

[S-l 71\,n+1] = Tn .

(ii): Mit (i), der Jacobi-Identitit und den Relationen (2.18) folgt fiir alle k €
NoundneN

[Sk ) K,.]

1

[[5-1 ,"k+1] ,K,.] =

- [[K.. ,5.1] ka+1] - [[Tk+1 ,Kn] ,S-ll =
oty el + R+ k41 +0) [S. . Kngira] =
(—n+k+2)rys + (n+k+1+40) 1 =

= 2k +3+0) rps .

I

[
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Bemerkung (2.3): Ist das Vektorfeld 7_; := [S_; ,Ky] # 0 und erfilllt
es die Relationen

71,7 = 71 , [ro1,m] = 2n [ro1,72) = 3n

so folgt mit der Jacobi-Identitit

[reiom] = (n+ 1) 1y Vn € Ng .
Dann gilt (2.25) auch fiir n = 0, d.h.
[Se. Kol = (2k+3+0) 7, Yk €N, . (2.26)

Lemma (2.7): Ist S_; hamiltonisch bzgl. Q, so gilt Ls, © = 0 fir
jedes n € Ny, d.h. S, ist hamiltonisch bzgl. ©g.

Beweis: Mit der Jacobi-Identitat gilt fiir alle n € Ny

Lsn 60 = L[S—l Tnt1] 90 = LS-) (L7n+1 60) - Lfn+l (LS—I 90) =0.
o
Als empirische Tatsache halten wir zu diesem Lemma fest, daB die bislang
gefundenen RekursionsgroBen S_; tatsachlich in allen bekannten Beispielen

hamiltonisch sind. Eine Klarung der Frage, ob dies bei hamiltonischen Ma-
stersymmetrien automatisch gelten muf}, steht allerdings noch aus.

2.3 Beispiele

Anhand einiger ausgewihiter Beispiele wollen wir die eingefiihrten Begriffe
verdeutlichen. Den nicht-hamiltonischen Fall decken wir mit fiinf Beispielen
ab. Fir den hamiltonischen Fall gibt es in einer Raumdimension bisher nur
wenige Beispiele, u.a. die BO Gleichung und die ILW. Das durch BO gegebene
Beispiel wird zum SchluB des Kapitels vorgestellt.

(a) Die Korteweg-deVries Gleichung

Die wohl bekannteste unter den integrablen Gleichungen ist die Korteweg-
deVries Gleichung (KdV) ([51],[112])

U = Ug, + buu, = (2.27)
+00 1
=: D grad / (u® = 3 u?) dx
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mit u(,.) € SR) firr alle t € R. Es bezeichne D den Differentialoperator
bzgl. z und D! den inversen Operator, d.h.

(Da) (z) := a, , (D7a) (z) := /_ a(€) de Yae SR) .
Der Dualraum S$*(R ) von SR ) ist als Bildmenge von S(R ) unter D! erklirt

S'R) = {D'alaeSR)} .

S(R ) wird in diesen Dualraum eingebettet durch die Dualitatsklammer < . ,. >
+00
<(u),Gu) > = / +(u) Glu) dz

fir alle y € X*(M) und G € X(M). Sofern nichts anderes gesagt wird,
verwenden wir diese Dualitit in allen weiteren Beispielen. )
In dieser Notation erweisen sich » und J(u):= D-! alsimplektisch bzw.

symplektisch und die K4V st invers-hamiltonisch bzgl. J. Der hereditire
Rekursionsoperator (138))

®(u) = D? 4 2DuD" 4 9y -
= (D® 4 2Dy + 2uD) D' = @,(u) J(u)

erzeugt mit den Startvektorfeldern
Ko{u) :=u, und To(u) := ;u, + u

die Hierarchien K, := ®" K, und Tn = ®"75. Die Symmetrien K, und die
Mastersymmetrien r, erfiillen die folgenden Kommutatorrelationen (23D

(Ko, Kn] =0

v e Tm] = (m —n) Tpn
. 1. .
[Tﬂ ,1\,,.] = (m + 5) I‘n+m )

d.h. p=1/2. Das Vektorfeld K ist invers-hamiltonisch bzgl. J mit

- 1 fteo
J(u) Ko(u) = gra,da /_co uldz .

Weiterhin gilt

Ind =7 uwnd L,7<270,s

also A =1, Insbesondere sehen wir, da8 der nicht-hamiltonjsche Fall vorliegt.
Die Erhaltungssitze H, und die hdheren implektischen Operatoren 6., ergeben
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sich gemaB Kapitel 2.1 .

(b) Die modifizierte Korteweg-deVries Gleichung

Ebenfalls auf S(R) ist die modifizierte Korteweg-deVries Gleichung (mKdV)
Uy = Uy, + 6 UZUI = (228)
1 +00
D grad 5 /_0o (ut - u?) do

definiert und invers-hamiltonisch bzgl. J(u) := D~!. Der Rekursionsoperator

®(u) = D? 4+ 4DuD v =
(D® + 4DuD™'uD) D! = O,(u) J(u)

ist hereditar ([38]) und erzeugt die Hierarchien

(u) Ko(u) = ®(u)u, |,
" (u) ro(u) = <I>"(u)%(:cu,+u).

Ko(u)

Ta(u)
Diese Vektorfelder erfiillen die Kommutatorrelationen ([23])

[1\’11 71\’m] =0 5 [Tn va] = (m - n) Trngn

1
[T, K] = (m+ ;) Koy -
Das Vektorfeld K ist hamiltonisch bzgl. @9 = J=! = D, denn es gilt
+0oo
Ko(u) = D grad % /_m ul dz .
Fiir die Lie Ableitungen von J in Richtung von 75 und 7y erhalten wir
LoyJ =0 ud L,J=J6,J,

insgesamt also ¢ = 1/2 und A = 0. Die Erhaltungssitze und die hoheren
implektischen Operatoren ergeben sich wieder gemaf$ Kapitel 2.1 .
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(c) Die CDGSK - Gleichung

Unser nichstes Beispiel ist die Caudrey-Dodd-Gibbon-Sawada-Kotera Glei-
chung (CDGSK), die wir ebenfalls fiir u € 5(R) betrachten ([22],[99]). Der
implektische Operator

O1(u) == D* + 2D + 2Dy
und der symplektische Operator
J(u) = 2D° 4 2D%uD' 4 ap-1yp? 4 2p-t + D7'u?
sind kompatibel und definieren den hereditaren Operator ([49],(58])
®(u) = O,(u) J(u) .

® ist invariant unter den Vektorfeldern Ko und Gy, die durch

+oo 3 1
J(u) Ko(u) = J(u)u, = grad /_oo (u?, + 3 Wi, + 3 u') dx
und ,
J(u) Go(u) = () (Uarrag + Sung,, + Uz, + 5ulu,) =
il 4
= grad /+ (. + -13—61111 —Tuu? — guz +16uu? 4 144u3u? + §u6) dr .

gegeben sind. Wir definieren K, := "/, und G, := ®"Go. Da K, und Go
miteinander kommutieren, folgt aus der Hereditiritit von ®, daB alle Vektor-
felder K, und G, untereinander vertauschen

[]\'n vl\’m] = {I\,n ma] = [Gn ’Gm] =0.

Das dem Vektorfeld Go zugeordnete dynamische System

U = Go(u)

wird die CDGSK 5.0rdnung genannt
stem wird entsprechend CDGSK 7.
ten Hierarchien von Symmetrien K
Mastersymmetrien durch

i das dem Vektorfeld i, zugeordnete Sy-
Ordnung genannt. Zu den beiden get:renn-
n und G, definieren wir eine Hierarchie von
1
T(u) = ®™u) () = ®(u) 5 (zus +2u)
Diese so definierten Mastersymmetrien T sind von der Form

™ = 2 K, + Rest .
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Es ist bisher noch nicht geklirt, ob es bei der CDGSK noch eine weitere Folge
von Mastersymmetrien #, der Form

fa = ¢ G, + Rest

gibt. Fiir die bekannten Vektorfelder K., G, und 7, gelten die folgenden Kom-
mutatoreigenschaften

[Ka K] = 0 , [Ga,Gu] = 0,

(m - n) Tm4n s

[I"n sGm] =0 J [Tn 7Tm]

[m Kn] = (m+3) Kptn [7,Gn] = (m+ 2) Gutm -

Dariiberhinaus berechnet man L, J = J und L, J = 2J 6, J
Es ist also A = 1, wihrend sich die Konstante g nicht eindeutig festlegen 138t.
Wir kommen auf dieses Phinomen in Kapitel 6.3 zuriick und werden es dort
diskutieren.

(d) Die nicht-lineare Schrédinger Gleichung

Auf dem Schwartz-Raum der komplexwertigen Funktionen z : R — € be-
trachten wir die nicht-lineare Schrddinger Gleichung (NLS) ([113])

z2 = —izy + i2)%2 (2.29)

Wir setzen z := u + v mit u,v € S(R) und erhalten als reelle Version von
(2.29) das zweikomponentige dynamische System

u Vpp — v(u2 + v2) _
(” )g B (—ua~x+u(u’+v2)) = (2.30)

0, —1 too 1 1
(l 7 0) grad /_0o (§(u:+v:)+z(u2+v2)2)dx =

=: I\'l(( : )) .

Als zugrunde liegende Mannigfaltigkeit ist betrachten wir hier M = S(R) &
S(R). Der Dualraum von M ist dann gegeben durch die direkte Summe der
vorher eingefiihrten Dualraume S*(R). Die Dualitatsklammer zwischen Vek-
torfeldern K und Kovektorfeldern -y mit

w3 )= (Kl ) e (3 )= ()
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legen wir fiir zweikomponentige Systeme folgendermaBen fest
<7, K >= / (m(e)K(z) + T2(2)Ko(2)) dx .

Fiir das System (2.30) ist der hereditire Rekursionsoperator ® gegeben
durch ({38])

a[*)y _ (D-20D"% | 2yp-1y 0, l)=
( v ) = 2uD~1y , D=2uD"1y -1 0

o)z

Mit den Start vektorfeldern

o= () w(p=(zm)

werden die Hierarchien K, :=®"K; und 7, := ®"7y erzeugt. Die Symmétrien
und Mastersymmetrien erfiillen in diesemn Beispiel die folgenden Relationen

([23)
K Kn] =0, [ry,7] = (m —n) Tyn
[Tﬂ ,1\’,,,] = (m + 1) 1"m+n 1
d.h. g ist gleich 1. Das Vektorfeld K, ist hamiltonisch bzgl. © = J-1; wir

erhalten
. , —1 1 oo
I\o((Z)) = (? i ) grad—i/_m (uv: — vu,) dz .

Fir die Lie Ableitungen von J in Richtung 74 und 7, berechnet man

Ind=J, L,J=270,J.

dh. A =1. Erhaltungssatze H,

und hohere implektische Operatoren findet
man wiederum gemiB Kapitel 2.1.

(e) Das Hirota-Satsuma System

Als letztes Beispiel zum

nicht-hamiltonischen Fall betrachten wir fiir u,v €
S(R) das gekoppelte Hir

ota-Satsuma System (HS) ([57])
u . lu.tz': + 3“!(, - var u
(” ). B ( ’ ~Vszz — uv, ) =: Go(( v )) , (2.31)
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wobei die Mannigfaltigkeit wie bei der NLS gegeben sei. Das Vektorfeld Gy ist
invers-hamiltonisch, d.h. mit dem Operator

(v _ %D--i—D“lu-G‘uD'1 , —2D
( v ) = —2vD-! -2D

L]

und dem Skalarfeld

N

+o0
- 1,2 2 5.4, 3.4 _3.22 1, 2 32 2
—/w(gu”+vu+§u + vt = sulv +zuuz+zuu,,—uvvrr—-tluvz)dz

gilt JGy = gradf . Zusitzlich ist J kompatibel mit dem implektischen
Operator ([39])

o u _ %D3+Du+uD y Dv+vD
! v ) = Dv+0vD , D*+ Du+uD

Der Operator & := 0,J ist daher hereditar ([50]) und zusitzlich invariant
unter Gy. Er erzeugt die Symmetrien G, := ®"Gj und die Mastersymmetrien

T := ®"79, wobei 1y durch
u _ 1 zu,+2u
7o( v )= 4\ v, +2v
gegeben ist. Wie bei der CDGSK Gleichung existiert auch hier ein zweites

Startvektorfeld
. u U,
2= ().

das mit (Gg kommutiert. Kj ist ebenfalls invers-hamiltonisch bzgl. J mit

+oo ] 1
J((Z)) (z:) = grad /_N (§u3—zuz—-uv2+vf)d$.
Wir erhalten also wieder zwei getrennte Hierarchien G, und K, := ®"*K,

untereinander kommutierender Vektorfelder. Sie erfiillen die folgenden Rela-

tionen

[Kn Kn] = 0 , [Gn,Gn] = 0,
[Kn me} =0 3 [Tu ’Tm] = (m - fl) Tmtn
[Tn 1I(m] = (m + %) 1"n+m 1 [Tn 7Gm] = (m + %) Gn+m -
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Wie bei der CDGSK ist auch in diesem Beispiel die Frage nach der Existenz

einer zweiten Folge von Mastersymmetrien #, bisher nicht geklart. Man be-

rechnet
L,J=1J |, L,J=2J6,J,

dh. A=1.

(f) Die Benjamin-Ono Gleichung

Als Beispiel fiir den hamiltonischen Fall wahlen wir die Benjamin-Ono Glei-

chung (BO) ([11],{89])
u = Hu,, + 2uu, . (2.32)

Hier ist u wiederum ein Element von S(R) und K ist die Hilbert Transforma-

tion
(Hu) (z) = L /+°° 2 g,

T Je z—z
wobei das Integral als Hauptwertintegral zu verstehen ist.
Die wichtigsten Eigenschaften der Hilbert Transformation sind

H? = _ ]

’

= -H , HD - DH ,

(Hu)-(Hv) = wy 4 H(uHv) + H(vHu)

He W) = = [ ugydy — y () .

Hier steht * fiir die Transposition bzgl. der Dualititsklammer. Mit dem im-

plektischen Operator Oo(x) := D besitzt die BO Gleichung eine Hamiltonfor-
mulierung in der folgenden Form

oo
Hu,, + 2un, = D grad / m (—% u, Hu, + %us) dr .

Wir definieren (32

1 +
Go(u) = - U = Dgrad ! = uldz |
2 4 J
To(u) := Tuztu = Dgrad 1 / zuldz |
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ni(u) = 2(z (Hugp + 2uu,) + u? + gHu,) =
+oo ] 1 3
= DgradZ/ (;ruHu,+§zu)dz R
(u) = 2z (2v®+3Huu, + 3uHu, — 2uzs)s +

+ 2 (—4us. + SHuu, + uHu, + 2u° + u, Hu) =

fl

+oo 1
D grad 2 / (z (iu4 + 3uHuu, + u?) + uHu?) dz .
—ou
Diese Vektorfelder erfiillen die folgenden Relationen
[r0,Go] = Go , [ro,mi] =7, [ro,72] =27,

d.h. insbesondere p = 1. Definiert man nun

(n+1)Goyy = [n,G)] Yn2>90
und
(n=1)Tay1 = [n,7} Yn > 2
so folgt ([23],[32]) fiir alle n,m € N,

[G'l 9Gm] =0, [Tn 7Tm] = (m—n)7n+m y

[T,, ma] = (m+1)Gnym -
Das der BO Gleichung zugeordnete Vektorfeld erhalt man durch

Huzr + 2uu, = Gi(u) = [n,Go] .

Da Gy, Gy, 7o, 7 und 7, hamiltonisch bzgl. ©g sind, folgt mit Kapitel 2.2 , da8
alle Vektorfelder G,,, 7, hamiltonisch bzgl. ©, sind.
Um die Normierung (1.17) zu erhalten, setzen wir

Ka(u) := -':Tl‘_—lG,.(u)

und finden folgende Relationen
[Kn VA'm] =0 ’ [Tn sTm] = (m——n) Tn4m

[Ta s Kn] = (m+n+1) Knym -
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In diesem Fall ist also

Ko(u) = Go(u) = tu,

Ki(w) = 1G(u)

1l

% (Hug, + 2uu,)
Ka(u) = 1Gyu) = 3 (2¢® + 3Huu, + 3uHu, — Quzy)s -

Wir definieren die Skalarfelder H, und T,, die die Relationen (2.21) und (2.22)
erfillen, durch

O grad H, = r+1) K, = G, ,
Qo grad T, := 1, .
Fiir die BO Gleichun

g existiert eine hamiltonische Mastersymmetrie 2-ter Stufe

([40])
1 ptoo
S :=x=Dgrad;/ zudz .

Man berechnet

[S_] ,1\’0] = = T_1

B [5—1 ,1\'1] = To

o) —

und
r1,m) = s ) = 25 s e m) = 3n
Definieren wir zusatzlich far alle n Ng
Sﬂ = [S—l an+l] Y
so folgt mit Lemma (2.6) und Bemerkung {2.3)
[So1 Kl = 7y | (S, ) = 2(k+2) 1,

fir alle n, k ¢ No. Mit Lemma (2.7)

und dem Noether-Theorem erhalten wir
daraus fiir k = ¢ und J = ;!

<JSo,[\),,> = —4r, . (2.33)
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3 Das Tangentialbiindel der Multi-Soliton Man-
nigfaltigkeit

Fiir integrable Gleichungen existiert eine Klasse aufergewohnlicher Lésungen,
die sogenannten Multi-Soliton Losungen. Deren physikalische Eigenschaften
und die entsprechenden mathematischen Charakterisierungen werden in den
Kapiteln 3.1 und 3.2 diskutiert. Insbesondere sollen die heuristischen Be-
trachtungen in Kapitel 3.2 zur Motivation der in [80] eingefiihrten gruppen-
theoretischen Definition von Multi-Soliton Losungen dienen. Weiterhin wird
rekapituliert, da8 die Gesamtheit aller N-Soliton Lésungen eine beziglich der
Evolutionsgleichung (1.11) invariante, haufig endlich dimensionale Unterman-
nigfaltigkeit My der Ausgangsmannigfaltigkeit M bildet. Da wir an einem
Vergleich zwischen GréBen auf My und den wohlbekannten Feldern auf der
gesamten Mannigfaltigkeit M interessiert sind, konstruieren wir in Kapitel 3.3
explizit das Tangentialbiindel von My mit Hilfe der Symmetrien und Master-
symmetrien der Ausgangsgleichung (1.11). Dabei stellt sich heraus, daB alle
Symmetrien und alle Mastersymmetrien tangential an die Untermannigfaltig-
keit My sind. Als wesentliches Ergebnis von Kapitel 3 erhalten wir also die
explizite Beschreibung des Tangentialbiindels TMy von My in extrinsischen
Grofen. Damit konnen in 3.5 weitere Eigenschaften von TMy hergeleitet
werden. Mit Hilfe dieser Charakterisierungen zeigen wir dann, daB die bloBe
Eischrinkung aller wichtigen Operatoren auf die Untermannigfaltigkeit My
bereits die Reduktion dieser Operatoren auf My liefert.

3.1 Physikalische Eigenschaften von Multi-Soliton Lo-
sungen

Beobachtet wurde die Existenz einer ungewGhnlichen Solitirwelle, die wir
heute Soliton Losung nennen, von John Scott Russell schon 1834. Seine Be-
schreibung ([96]) gibt auch heute noch Aufschlu8 iiber die wesentliche Eigen-
schaft dieser Wasserwellen :

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat suddenly
stopped-not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well defined heap of water, which continued
its course along the channel apparently without change of form or
diminution of speed.
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Eine Soliton Lésung ist also eine lokalisierte Welle, die mit kor'lstanter G]f(f-
schwindigkeit reist und dabei ihre Gestalt nicht andert. Nach sel'ner Efltde_-
kung der "great wave of translation” beschiftigte sich Russell intensiv mit

asymptotischen Zerfall recht allgemeiner Anfangsbedingungen in Solitirwellen

(96]):

If such a heap be by any means forced into existence, it .will
rapidly fall into pieces and become disintegrated and resolved into
a series of different Wwaves, which do not move forward in compa.ny
with each other, but move separately, each with a velocity of its
own, and each of course continuing to depart from the other.

Die Differentialgleichung, die das von Russell beobachtete Phinomen beschreibt,
wurde 1895 von Korteweg und deVries aufgestellt ([63]) und ihnen zu Ehren
KdV (vgl (2.27)) genannt. Breiteres Interesse erregte diese Gleichung erst
wieder in den 60-er Jahren unseres Jahrhunderts, als sie zur Beschreibung

g mehrerer Soliton Losungen fand man
némlich eine aufergewShnliche Struktur ([110]). Letztlich war diese Entdek-
kung der Entstehungspunkt fiar ein Forschungsfel, Rl
sik, das unter dem Schlagwort "Soliton-Theorie” bekannt ist. Bevor wir die
Ergebnisse der numerischen Experimente in ([110]) schildern, wollen wir noch
anmerken, dafl es sich hierbei selbstverstandlich i

welches nicht nur auf die Kdv, sondern auf alle in dj
den Gleichungen zutrifft.

d der mathematischen Phy-

Gegeben sei also eine Losung der nichtlinearen partiellen Differentialglei-
chung (1.11), die asymptotisch zum Zeitpunkt ¢ &~ —oo aus zwei lokalisiertefl
Wellen besteht, Angenommen, dje beiden Wellen reisen mit unterschiedli-
chen, aber jeweils konstanten Ceschwindigkeiten, wobei die "hintere” Welle

die schnellere sei. 7, einem gewissen Zeitpunkt holt die schnellere Welle die



Fig. 1
2-Soliton Ldsung der KdV

Die Phasenverschiebung findet bei allen Soliton Lésungen im nicht-hamilto-
nischen Fall statt. Bei den durch rationale Funktionen gegebenen Soliton
Lésungen der Benjamin-Ono Gleichung existiert dagegen keine Phasenverschie-
bung ([72}).

Startet man mit einer Anfangshedingung von N einzelnen Soliton Wellen, so
beobachtet man die gleiche Art von Wechselwirkungen so lange, bis die schnell-
ste Welle alle anderen iiberholt, die nachstschnellere die restlichen tiberholt
hat, usw. Der Endzustand einer beliebigen Anfangsbedingung von ¥ einzelnen
lokalisierten Wellen mit jeweils konstanten Geschwindigkeiten ist also immer
die Dekomposition in N lokalisierte Lésungen ohne weitere Wechselwirkun-
gen. Da die geschilderten Wechselwirkungsphinomene dieser Wellen eher den
Eigenschaften von (identifizierbaren) Teilchen beim elastischen StoB als einem
typischen Wellenverhalten entsprechen, nannte man diese speziellen Wellen So-
litone. Findet man fiir groBe Zeiten eine asymptotische Dekomposition in N
einzelne Soliton Lésungen vor, so spricht man kurz von einer N-Soliton Losung.
Als letzte bemerkenswerte Eigenschaft von N-Soliton Lésungen halten wir fest,
da8 die Amplituden der einzelnen Wellen von den jeweiligen Geschwindigkeiten
abhangen, worin sich die nichtlineare Natur der Ausgangsgleichung offenbart.
Dariiberhinaus bestimmen die Geschwindigkeiten der beteiligten Ein-Soliton
Lésungen ebenfalls den Wert der Phasenverschiebung.
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Die bisher vorgestellten Lésungen betreffen Evolutionsgleichungen. ml.t fiir
t — too verschwindenden Randbedingungen. Aber auch fiir periodische
Randbedingungen findet man zum Beispiel Lésungen mit Soliton-Verhalten.
Diese heiBen ”Finite Gap Solutions” und lassen sich mit Hilfe von 'I.‘hetav
Funktionen beschreiben ([27]). Im weiteren beschrinken wir die heuristischen
Betrachtungen, die als Motivation firr die einzufiihrenden Begriffe gelten sol-
len, allerdings auf solche Soliton Ldsungen, die fiir  — 400 verschwinden.

Explizit lassen sich N-Soliton Ldsungen z.B. mit der Hirota-Methode ( [55],
[56]) oder auch durch Auto-Backlund Transformationen ([8),[74]) konstrm'eren.
Uns interessieren in dieser Arbeit aber hauptsachlich die strukturellen Eigen-
schaften der N-Soliton Losungen. Aus diesem Grund wollen wir im folgenden
Kapitel verschiedene Definitionsméglichkeiten von N-Soliton Lésungen ange-
ben. Dabei set allerdings noch angemerkt, daB es in der Literatur bisher keine
einheitliche Definition dessen gibt, was man unter einer Soliton Lésung zu ver-
stehen hat. Man vergleiche zum Beispiel die gruppentheoretische Definition in
[48] mit der bei Physikern iiblichen Definition in [91], die keinen Zusammen-
hang mit den strukturellen Eigenschaften der Ausgangsgleichung aufweist.

3.2 Charakterisierungen der Multi-Soliton Losungen

Im Mittelpunkt dieses Ka,
Multi-Soliton Lésun
gleichung

pitels steht der gerade erwahnte Zusammenhang von
gen mit den strukturellen Eigenschaften der Evolutions-

w o= Ki(u) .
Unsere spezielle Aufmerksamkeit richie

t sich auf die in [80] eingefiihrte grup-
pentheoretische Definition der Muiti-Sol

iton Losungen. Diese Definition ist der

Eine erste, physikalisch motivierte, Definition einer Soliton Lésung haben
wir bereits kennengelernt.
Defintion (3.1): Eine Losun
N-Soliton Lésung, we;
zerfallt. Wir schreiben d

g s € SR) der Evolutionsgleichung (1.11) heiBt
nn sie fir { — +oo jn N Ein-Soliton Losungen s;
ann asymptotisch

N
s(z,t) =~ Z si {ci, T+el+d;) =: iv: si(e, z+4q) . (3.1)

=1 i=1
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Hierbei sind ¢; und d; die asymptotisch auftretenden Geschwindigkeiten
und Phasen der entsprechenden Ein-Soliton Losungen s;. Wir setzen auerdem
voraus, dafl die Gesamtenergie des Systems von den asymptotisch auftreten-
den Ein-Solitonen getragen wird. Mathematisch bedeutet dieses, daB es ein
zeitinvariantes, positiv definites Skalarfeld gibt, welches auf der Summe der
asymptotischen Ein-Solitone denselben Wert wie auf der Anfangsbedingung
annimmt.

Unter dieser Voraussetzung ist ¢; konstant, wahrend sich die Phasen d; fiir
t & —oo und ¢ & +o0 auf Grund der Wechselwirkungen unterscheiden. Da sich
die Phasenverschiebungen aus den Geschwindigkeiten berechnen lassen ([26]),
folgt

Bemerkung (3.1): Unter den oben gemachten Voraussetzungen ist eine N-
Soliton Lésung zu jedem Zeitpunkt ¢ durch die Angabe ihrer asymptotischen
Daten ¢; und d; (bzw. durch c; und g;) fiir ¢ & +oo (oder ¢ ~ —o0) vollstandig
bestimmt.

Eine weitere Charakterisierung von Soliton Lésungen erhilt man mit Hilfe
der Inversen Streumethode (IST), deren Grundidee ([75]) wir im nicht-hamil-
tonischen Fall kurz schildern wollen.

Ein von u abhangiger Operator L(u) heiBt Lax Operator ([68]) zu einer
gegebenen Evolutionsgleichung
u = Ky(u) , (3.2)

wenn die Gleichung (3.2) einen isospektralen Flu8 fir L{u) darstellt, d.h. fiir
eine Losung u(., ) der Gleichung (3.2) dndert sich das Spektrum von L(u(.,))
nicht mit der Zeit t. Natiirlich findet man nur fiir spezielle Gleichungen eine sol-
che Lax-Darstellung. Im Fall der KdV ist L gerade der Schrédinger-Operator
L{u(z,t)) = D* + u(z,t) .
Aus der Anfangshedingung ug = u(z, 0) lassen sich die Streudaten 5(0) von L
zum Zeitpunkt ¢ = 0 bestimmen. Diese Streudaten ergeben sich im wesentli-
chen aus den spektralen Eigenschaften von L. Wenn die zeitliche Entwicklung
von u gemaf (3.2) erfolgt, so erhalten wir i.a. fiir Potentiale u, die fiir £ — +o0
verschwinden, eine lineare Abhangigkeit fiir S(¢) von der Zeit. Damit ist S(1}
durch die Angabe von S(0) leicht bestimmbar. Sofern man nun die Urmrech-
nung vom Potential u auf Streudaten S wieder riickgangig machen kann, 138t
sich aus S(t) das Potential u(.,t) zu jedem Zeitpunkt zuriickgewinnen ({21]).
Fir die KdV erhalt man mit Hilfe der Inversen Streumethode die folgende
interessante Charakterisierung einer wie in Definition (3.1) definierten Multi-
Soliton Losung (]1]).
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Bemerkung (3.2): Genau fiir die reflektionsfreien Potentiale u sind die Streu-
daten von L nur durch das diskrete Spektrum von L festgelegt.

Mit anderen Worten: Ist eine reflektionsfreie Losung u von (3.2).211 e.insm
Zeitpunkt t = 0 vorgegeben, so findet man die allgemeine Lésung allein mit der

, denn die reflektionsfreien Potentiale

Bemerkung (3-3): Bei ciner N-Soliton Anfangsbedingung mit paarweise
verschiedenen Geschwindigkeiten -, ¢y der einzelnen lokalisierten Wellen
besteht das diskrete Spektrum von [ aus N paarweise verschiedenen Eigen-

werten Ay, .., Ay. Die Geschwindigkeit ¢i eines einzelnen Solitons ist eindeutig
durch den entsprechenden Eigenwert ); bestimmt.

die Phasenverschmbungen bei Wechse]wirkungen fest, d.h. bei einer vorgege-
benen N-Soliton Anfangsbedingung von (3.2) ist die zeitliche Entwicklung dc?r
Lésung tatsichlich durch das diskrete Spektrum von I, gegeben. Fragel} wir
umgekehrt in diesern Fal] nach der zeitlichen Entwicklung der diskreten Eigen-
werte A; von L, so bleiben sie nach Definition des Lax Operators konstant.

s spektralen Gradienten {137),[31]) findet, man fiir eine
chung einen Zusammenhang zwischen dem Lax Ope-
itiren Rekursionsoperator @ (vgl. Kapitel 1 und 2). Im

Lgi = )¢,
fir den zu ¢ adjungierten Operator ¢+

() = 4 (¢:)? .
Dieser Zusammenhang 138t sich auch
wurde. Aus diesem Grund verwunde
mit Hilfe des Rekursionsoperators [
die weiteren Betrachtungen treffen wi

direkt verifizieren, wie in {45] gezeigt
rt es nicht, daB Soliton Lésungen auch

beschrieben werden konnen ([43]). Fir
r die

42



Vereinbarung: Im folgenden sei eine N-Soliton Lésung s immer nicht-dege-
neriert in dem Sinne, daf alle Geschwindigkeiten ¢;, ..., ey der asymptotisch
auftretenden Ein-Solitone jeweils paarweise verschieden sind.

Mit My bezeichnen wir die Gesamtheit aller nicht-degenerierten N-Soliton
Losungen s von (3.2). Im folgenden wollen wir die erwihnte gruppentheo-
retische Definition von My motivieren. Es wird sich herausstellen, daf} die
Linearkombination der Vektorfelder

N

3 an(u) Ku(w) = 0 (3.3)

n=0
unter geeigneten Rand- bzw. Zwangsbedingungen genau die Mannigfaltig-
keit aller in Definition (3.1) charakterisierten N-Soliton Losungen beschreibt.
Dieses Resultat erlaubt es uns, die Losungsmenge der Gleichung (3.3) als De-
finition fiir die N-Soliton Lésungen zu nehmen. Es handelt sich dabei dann
um eine von der Asymptotik losgeloste Definition dieser Losungsklasse, welche
durch rein gruppentheoretische Eigenschaften gegeben ist.

Wir beginnen unsere Betrachtungen mit dem nicht-hamiltonischen Fall und
betrachten Evolutionsgleichungen

u = Ki(u) (3.4)

auf M = S(R) bzw. M = S(R) x S(R). Es sei ® der hereditiire Rekursions-
operator, der mit dem Startvektorfeld

Ko(u) = u;  baw. ]\’o(< Z )) = (Z’)

die Hierarchie der kommutierenden Symmetrien K, = ®"K, erzeugt. Fir
t=1,.., N seien s; = s; (¢i, r+cit +d;) Ein-Soliton Losungen von (3.4). Dann
gilt mit der Definition von K, als K, =®K,

d)(s,-) 1\’0(8,‘) = 1\’1(.9,') = (s,-), = ¢ (si)x = ¢ 1&’0(3,‘) N
d.h. (s;), ist Eigenvektor von ®(s;) zum Eigenwert ¢; firalle i =1,...,N. Ist
s die N-Soliton Losung, die asymptotisch die Darstellung

N
s(zt) = Y sile, T+t +dy)

i=1

hat, so folgt mit asymptotischen Argumenten fiir t — +0o

N
O(s) (s1)e = @ (3s,) (i) = (si) (s)s = i (s3): -

=1
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Hierbei beachte man, dafl wegen der lokalisierten Form von (s;), und der Form
der expliziten Abhangigkeit des Rekursionsoperators von s die Anwendung
®(s)(s:i): lediglich ®(s)(si): ergibt. Insbesondere ist also (s;), fiir t —» oo
ein Eigenvektor von 9(s) zum Eigenwert ;. Asymptotisch erhalten wir daher
die Dekomposition von Sz in Eigenvektoren ¢; von ®(s)

N N
sz(z,t) & 3 (s (cy, Ttet+d)), ~ Z #i(s) . (3.5)

i=1

Mit den Methoden in [35] und [38] folgt daraus bereits, daB die Dekomposition
(3.5) von s, in Eigenvektoren ¢; von ® fir alle Zeiten gilt, d.h.

Ko(s) = 5, = ivj éi (s) . (3.6)

i=1

Insbesondere erhalten wir aus der Definition der Symmetrien K, — " K,
deren spektrale Dekomposition als

Ku(s) = )5 & dils) . (3.7)

=1

N
Durch Anwenden von H(Q —¢) auf die Gleichung (3.6) finden wir weiterhin

i=1
0 = (®(s) ~ ¢ ) (&(s) - @) (®(s) = cn ) Ko(s) =
N N
= (X onlensen) 97s) ) Ko(s) = 30 (et e ) Kn(s) -
n=0 7=0
Damit ist fir jede N-Soliton Lésung s gezei
F(My) gibt, so dab s die Charakterisierung
ergibt sich dariiberhinaus, da jedes Skalarfeld a, die symmetrische Funktion
der Ordnung n von Clheney ist. Da die G(—schwindigkeiten ci(s) wahrend
der zeitlichen Entwicklung von s konstant bletben, sind sie -interpretiert in
Abhéngigkeit von s. ErhaltungsgréBen fiir den Flufl (3.4), der die Dynamik

von s bestimmt. Die analoge Aussage triff dann auch auf die Skalarfelder
ay(s) zu.

8t, daB es Skalarfelder Qg ...,ay €
(3.3) erfiillt. Aus der Konstruktion

Ist umgekehrt eine invariante Untermannigfaltigkeit von M durch

N

¥ au(uw) K.(u) = ¢ (3.8)

n=0

gegeben, yvobei das Polynom Z,I:LO an " nur einfache Nullstellen hat, so folgt
unter geeigneten Rand- baw. Zwangsbedingungen, daB jede Lasung von (3.8)
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eine gemaB der Definition (3.1) nicht-degenerierte N-Soliton Lésung von (3.4)
ist ([43]).

Setzt man also die Existenz eines Rekursionsoperators voraus, so haben die
obigen Betrachtungen gezeigt, daf die Losungsmenge von (3.8) unter geeigne-
ten Rand- baw. Zwangsbedingungen tatsichlich die 2V-dimensionale Mannig-
faltigkeit aller nicht-degenerierten N-Soliton Lésungen beschreibt. Wir kénnen
daher im nicht-hamiltonischen Fall die Charakterisierung in (3.8) als von der
Asymptotik losgeléste Definition einer N-Soliton Losung nehmen. Als formale
Definition ist (3.8) natiirlich auch im hamiltonischen Fall anwendbar. Aller-
dings stellt sich die Frage, ob diese von der Asymptotik unabhingige Definition
ebenfalls auf die physikalisch definierten N-Soliton Lésungen fithrt. Anhand
der BO 1aBt sich eine hinreichende Bedingung fiir die Bejahung dieser Frage
im hamiltonischen Fall herauskristallisieren. Fitr die expliziten Uberlegungen
verweisen wir auf den Anhang A und halten hier als Ergebnis dieses Kapitels
fest (vgl. auch [43]):

Definition (3.2): Es sei s eine Losung der Evolutionsgleichung (3.4). Erfillt
s zusétzlich eine Relation

i ay(3) Ka(s) = 0, 3.9

wobei Z,’,V:O a, z" ein Polynom mit nur einfachen Nullstellen ist, so heiBt s
eine N-Soliton Lésung von (3.4).

Bemerkung (3.4):

(1) Unter geeigneten Rand- und Zwangsbedingungen an s beschreibt (3.9)
also die 2N-dimensionale Mannigfaltigkeit My der in Definition (3.1)
durch die Asymptotik gegebenen N-Soliton Lésungen. Im weiteren neh-
men wir diese Rand- und Zwangsbedingungen als festgelegt an und be-
trachten Definition (3.2) als Definition von My. Wie in Bemerkung (3.1)
bereits erwahnt, 148t sich My durch die asymptotischen Daten ¢, und d;
(bzw. durch ¢; und ¢;) parametrisieren.

(2) Statt in der Darstellung SN an(s) Ka(s) = 0 die Normierqu
any =1 zu verwenden, setzen wir ap := 1. Dann sind natarlich f; die
symmetrischen Funktionen der Geschwindigkeiten.

(3) Um im néachsten Kapitel eine symmetrische Schreibweise der Ergebnisse
2zu erhalten, ersetzen wir im hamiltonischen Fall noch a,, durch a, (n+g)
fiir jedes n = 0,..., N. Wir verwenden also die definierende Gleichung
(3.9) der N-Soliton Losungen in der folgenden Normierung

N
S au(s) Ky Kufs) = 0. (3.10)

n=0
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Hierbei sind fiir n = 0,..., N die Konstanten £n € N und tragen dieWer-
tigkeit &, :=1 fiir alle n = 0,..., N im nicht-hamiltonischen Fall und die
Wertigkeit «,, :=n 4 o fiir allen = 0,..., N im hamiltonischen Fall. Wie
oben festgelegt habe das Polynom )\ a,x,2™ nur einfache Nullstellen.

(4) Die Charakterisierung einer N-Soliton Lésung durch

N

Z an(s) kn Ko(s) = 0

n=0
findet man als Konsequenz der Inversen Streumethode zum ersten Mal
in ([51]). Ebenfalis 1974 wurde diese Darstellung zur Konstruktion von
Finite-Gap Solutions der KdV verwandt ([80]) und auf die analoge Repra-
sentation fiir andere Randbedingungen hingewiesen. Der Zusammen-
hang von Soliton Lésungen mit den spektralen Eigenschaften des Rekur-
sionsoperators wurde zum ersten Mal in [35] hergestellt, die Ergebnisse
und Beweise im nicht-hamiltonische Fall findet man ausfiihrlich in [43].
Fiir den hamiltonischen Fall sej auf den Anhang A verwiesen.

3.3 Das Tangentialbiindel von My

Wie wir in Bemerkung (3.4) (1) gesehen haben, 138t sich My mit Hilfe der
asymptotischen Daten von N-Soliton Lésungen parametrisieren. Diese Dar-
stellung interessiert uns im Moment noch nicht, sondern wir suchen die Be-

schreibung der Untermannigfaltigkeit My in den bekannten GroBen auf M. In

anderen Worten wir wollen herausfinden, wie sich Rekursionsoperator, sym-

, Symmetrien und Mastersymmetrien von der unendlich

beginnen wir mit der Bestimmung

der Vektorfelder V ¢ X(AD), die tangential an Ay sind, d.h. fiir die auch

Ve X(My) gilt.

Ist Ve X(My), so mu fiir jede N-Soliton Lasung s € My die Richtungs-

ableitung
N
(X auls) a Knls) ) [V(s)] = o (3.11)
n=0
verschwinden, d.h. V muf die Gleichung
N

ga an(s) V(s)] kn Ku(s) + an(s) x, Kas)' V()] = 0 (3.12)
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erfiillen. Wegen

f: au(s) £, Ku(s) = 0 Vs € My (3.13)

n=0

gilt trivialerweise

N N
0 = V(Y [ X anls) kn Kuls)] = 3 aals) m Vi) [ Kn(s)] . (3.14)
n=0 n=0
Die Gleichung (3.14) kombiniert mit (3.12) ergibt die folgende Charakterisie-
rung fiir tangentiale Vektorfelder V € X (My)
N
2 rn (< grad an(s), V(s) > Kals) + an(s) [V(s), Kals)] ) = 0 .
"= (3.15)

Da es sich hierbei im Gegensatz zu (3.11) um eine (unter Kartenwechsel) in-
variante Bedingung an die tangentialen Vektorfelder handelt, ist die Charak-
terisierung (3.15) der Formulierung (3.11) vorzuziehen. Gesucht sind also im
folgenden diejenigen Vektorfelder V ¢ X (M), die (3.15) erfillen. Um den
Term < grad a,(s), V(s) > behandeln zu kénnen, sammeln wir zunachst In-
formationen iiber die skalaren Funktionen a, : My =R, n=0,..,N. .f\us
dem vorherigen Kapitel wissen wir bereits, daff die a,, Erhaltungsgrofen su?d.
Wir stellen nun den Zusammenhang zwischen a, und den in Kapitel 2 ein-
gefithrten Erhaltungsgrofen H,, her.

Mit der Definition von H, gilt inshesondere (vel. (2.6)/(2.22))

H.(s) =< J(s)Kn(s), mo(s) >

Da jedes H, konstant ist unter dem Flub u, = Ky(u) kénnen wir H,.(“s) fiir
t — 400 auswerten und erhalten eine giltige Darstellung von Ha(s) f-ur alle
Zeiten t. Fiir t — +o00 ist K, darstellbar als (vgl. (3.5), (3.7) und Gleichung

(A4) im Anhang)
N

Ku(s) = m Y o (si)e

i=1
mit einer festen Konstanten g, # 0. Hierbei bezeichnen wie in den Vorhengf:n
Kapiteln 3; die bei der N-Soliton Losung s asymptotisch auftretenden Ein-
Solitone. Weil 7, lokal in s ist, folgt aus der lokalisierten Form von (3:)z und
der Form der expliziten Abhangigkeit des Operators J{s) von s fir t — +o00

H,(s) = EN: f < J(s) (si)e » To(si) >

i=1
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Unter der Annahme (die in Kapitel 3.4 begriindet wird) daB asymptotisch
< J(8i) (80)z 5 To(8:) > = py (3.16)
ist, wobei die Zahlen 0 4, und » von der betrachteten Evolutionsgleichung

abhingen, gilt zunachst asymptotisch fiir t —» +c0

N
Ha(s) = 8 Y v
i=1

Hierbei haben wir zur Abkiirzung 6 = pyp,

# 0 gesetzt. Da jedes H, eine
Erhaltungsgrofie ist, gilt die Darste]lung

N
Ha(s) = 6 % o+ (3.17)
i=1

fur alle Zeiten ¢.

Im weiteren setzen wir (3.16) und (3.17)
und formulieren

als giiltig voraus

Lemma (3.1):
(1) Die Matrix

ki Hy  ky Hy, L. &y Hy
A = 31 .Hz h‘z.Ha - KN I:1N+l (3.18)
Ky Hy K, éN+1 KN f}yv_l
ist auf My invertierbar.
(2) Die symmetrischen Matrizen
H.,. Ho Hyinoy
B, = H,,.,“ H,t,n H,,,.+N (3.19)
Hoinoy Hppn Ilm+.2N-2
sind auf My

fiir jedes m ¢ Ny invertierbar.

Beweis: (1): Mit der Voraussetzung

(3.17) gilt
N Hl Hz e HN
det A = (IT =) }{2 }'13 - Hyy _
i=1 : : : -

HN HN+1 HZN-I
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N1+ N 2+ N N+
i= c; v 2}71 Cf; v i1 Ic\; l"
N N T g 8 . T, i
= (I =) . ) .
i=1 : : :
N N+ N N1+ N 2N_1
1 ¢ i=1 G EERTID Dy +
at d* Lol oa & .. f!
N N v ity I ¢ & .. AR
- ()| @ . : e
=1 : : o : : : :
et T N ey L N
. N
: 1 2
= M (I s) (IT &) IT (65— )® -
i=1 =1 11=1
i<

Dad+#0,x #0und¢ #0 fir alle i = 1,..., N und die Geschwindigkeiten c;
paarweise verschieden sind, folgt die Behauptung.

(2): Analog dem Teil (1) gilt fiir jedes m € N,

N N

det B, = 6" (I[ &) I (&5 —e)? .
i=1 5,)=1
i<j

Bemerkung (3.5): Als nicht-degenerierte N-Soliton Lésungen betrachten wir
in dieser Arbeit N-Soliton Lésungen mit paarweise verschiedenen Geschwindig-
keiten ci,...,cy (vgl. Kapitel 3.1). Diese Einschrankung ist nach dem Beweis
von Lemma (3.1) dquivalent zur Invertierbarkeit der Matrix A (bzw. der Ma-
trizen B,,).

Mit Lemma (3.1) kénnen wir die Skalarfelder a,, € F(My) als Funktionen
der bekannten Erhaltungsgrofen H, darstellen.

Satz (3.1): Auf My giit firalles =1,..,N

det A;
Lo . 3.20
N T T et A (3.20)
Hierbei ist A durch (3.18) gegeben. Die Matrizen A; werden aus A erzeugt,
indem man die i-te Spalte von A durch koHo, ..., koHn_1 ersetzt:
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s Hy . ki Hi Ko Hy  kiyy Hipy .. nNHHN
£ Hy L ki1 H; Ko Hy Kip1 Hiyy . &y Hyya
A= . . . . .

ki Hy . kioy Hygico w0 Hnoy kigs Hygi . kv Hones

- _ il
Beweis: Durch Anwenden von Jr, auf YN o an Ky K, = 0 erhalten w

mit (2.7) und (2.22) auf My die fiir das weitere schr wichtigen Gleichungen

N v
> an kg Hoyr = 0 firalle r eNyg . (3.21)

n=0

Da wir a9 = 1 normiert haben, nehmen wir fiir r = 0,1,..., N — 1 die Glei-
chungen (3.21) als lineares Gleichungssystem fiir o, ..., ay, d.h.

ky H, ke Hy .. kn Hy a; kg Hy
k1 Hy  ky Hy kN Hyyq oy _ Ko Hy
k1 Hy ky Hyyr o ky Hyn_y an ko Hyvo
Mit der Cramer’schen Regel und Lemma (3.1) folgt die Behauptung. o
Bemerkung (3.6):
(1) Mit der Wahl von
N
ZﬂnNan+r = 0, r=0,1,..,N -1

n=0

zur Bestimmung von a, = an(Hy, Hy,
Normierung ag = 1 und durch (
Wahl von N aufeinanderfolgend

-y Hyn_y) sind die «, durch die
3.20) eindeutig festgelegt. Jede andere
en Gleichungen der Form

N
Z(“n’ian+r = 0 mitr:p,p-{-l,.,.,p-}—N—l
n=0

mit einer beliebigen natiirlic

hen Zahl p ergibt analog zu Satz (3.1) die
eindeutige Darstellung von

ay durch o, = an(Hy, Hpy,s,s ..o\ Hyno14p) -

50



(2) Zu einer N-Soliton Lésung s € My gibt Satz (3.1) die Skalarfelder
a,(s) = an(Ho(s), Hi(s),..., Han_1(s)) als Funktionen der H,(s) auf
Mpy. Da die Skalarfelder H, € F(M) auf der gesamten Mannigfaltigkeit
definiert sind, setzen wir fiir jedes u € M

an(u) := an(Ho(u), Hi(u), ..., Han-1(u)) (3.22)
und erhalten so Skalarfelder a,, die ebenfalls auf ganz M definiert sind.

(3) Driicken wir die Skalarfelder a,(s) auf My durch (3.20) aus, setzen dann
fiir jedes u € M a,(u) gemaB (3.22), so sind die Gleichungen

N
3> an(u) kn Hugru) = 0 (3.23)

n=0
fur r = 0,1,..., N — 1 identisch, d.h. fiir alle u € M erfiillt.
Far das weitere wahlen wir a,, auf My gemaB Satz (3.1) als
ay = ay(He, Hy, ..., HZN-]) .

Dann sind die Gradienten der a, gegeben durch

IN-1

grada, = Y. g% gad Hy , n=01,.,N, (3.24)
k=0 k

inshesondere gilt grad ap = 0.

Nach diesen Vorbetrachtungen wenden wir uns den tangentialen Vektorfel-
dern an My zu. Fiir jedes V(s) = K,(s) ist die Gleichung (3.15) fir tangentiale
Vektorfelder erfiillt, da jedes a, und jedes I, Erhaltungsgrofe bzw. Symme-
trie zu K, ist. Man beachte hierbei, daB wir auf Grund von Bemerkung (3.6)
(2) die Lie Ableitungen in (3.15) zunéchst auf der gesamten Mannigfaltigkeit
(wo sie wohl definiert sind) berechnen und die so erhaltenen Ergebnisse auf
der Untermannigfaltigkeit evaluieren. Dieses Prinzip wird im weiteren noch
mehrfach angewendet, aber nicht mehr explizit genannt.

Um die Abhingigkeiten der hoheren Symmetrien zu untersuchen, machen

wir fiir ein | € N den Ansatz

N-1
3" Buls) Kunfs) = 0. (3.25)
n=0

Durch Anwenden von J1y, Ji, ..., JTv_; auf (3.25) erhalten wir

N-1
3 Bu(s) Hustaels) = 0

n=0

51



furr = 0,1,..., N-1. Da die Matrix B, auf My invertierbar ist, folgt"ﬂo = A =
e =fn_1=0,dh. Ki(s), K131(8), ..., Kn4i_1(s) sind linear unabhangig. Wir

betrachten nun Kombinationen von (N+ 1)-aufeinanderfolgenden Symmetrien
und machen fiir ein / € N den Ansatz

f: Bals) Kngi(s) = 0 mit Gu(s) #0 .

Durch Anwenden von Jr,, Jni, ..., J7y_; erhalten wir wiederum

N
2 Bu(8) Hapigrls) = 0,  r=01,.. N-1.

n=0

Wegen Bemerkung (3.6) (1) ist dieses Gleichungssystem (bis auf ein konstantes
Skalarfeld p(s)) eindeutig 13sbar durch

Bu(s) = p(s) an(s) Ky .
Da fBn(s) # 0, folgt #(s) # 0 und insgesamt erhalten wir

Lemma (3.2): Fiir alle n € Ny ist K,(s)

tangential an My, d.h. K,(s) €
T,My. Aulerdem ist die folgende Relation

giiltig fir jedes r € N
N

2 () K Kgo(s) = 0 . (3.26)

n=0

Bemerkung (3.7): Im nicht-hamiltonisc
(3.26) sofort durch r-faches Anwenden d
Ausgangsgleichung

hen Fall erhlt man die Gleichungen
es Rekursionsoperators ®(s) auf die

M=

) Ky Kols) = 0

n=0

Um den Tangentialraum T,My vollstindig zu beschreiben, fehlen N wei-
tere, von Ko(s), Ky(s),..., Kn_1(s), unabhingige Vektoren. Im nachsten Ab-
schnitt wollen wir zeigen, daB fir jedes m € Ny auch die Mastersymmetrie
Tm(s) im Tangentialraum liegt, d.h. nachzuweisen ist

N

ZO kn ( < grad o,(s), Tm(s) > K.(s) + an(s) [ Tm(s), Kn(s)] ) = 0 .

Wie zuvor sammeln wir zue

tst Informationen fiber
Dafiir erinnern wir uns, daf

< grad an(s), 7m(s) >.
fﬁrr:(},l,...,

N -1 die Gleichungen
N

2_:0 an(u) 6y Hoyo(u) = 0 (3.27)
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fiir alle u € M gelten (vgl. Bemerkung (3.6) (3)). Die Lie Ableitung von (3.27)
in Richtung von 7,,(u) € T, M ist daher wohl definiert und ergibt

N
2 K (an(w) [Tm(w)] Hagr(u) + @n(n) Hopr (w) [rm(w)]) = 0. (3.28)
n=0
Mit der Definition der ErhaltungsgréBen H, und ihrer Gradienten (vel. (2.6)/
(2.8) und (2.19)/(2.22) ) gilt fiir alle v € M

Hop(u) frn(w)] = < grad Hop(u), To(u) > =
(n+r+o+2) <JKup(u), Ta(u) > =
(n+r+o+A) Huprim(u) ,

I

1

wobei im hamiltonischen Fall wegen L, J = 0 = 0 gesetzt wird. Gehen
wir zuriick auf die N-Soliton Mannigfaltigkeit My, so verschwindet wegen

(3.21) die Summe

N
(7‘ +o+ ’\) Z an(s) Kn Hn+r+m(s)

n=0
und wir erhalten aus (3.28) fiir alle s € My, m€Nound r =0,1,..,N ~ 1

N
37 kn (n(5) [Tm(8)] Hugr(s) + 1 0n(s) Hupram(s)) = 0 . (3.29)

n=0
Fiir den Rest des Kapitels befinden wir uns auf My und lassen daher aus
schreibtechnischen Griinden die Abhéngigkeit der auftretenden Felder von s €
My weg.
Mit der Definition der symmetrischen Matrizen B, (vgl. Lemma (3.1) (2))
gilt

Satz (3.2): Fiir jedes m € Ng ist o, ' [Tm] als eindeutige Losung des Glei-
chungssystems

Ky oy’ [T 1k

2 oy [T 2 Ky g
K2 (Vz- [ ] - - B,"l B . (3.30)
N an ' [tn] N &ny an

gegeben.
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Beweis: Wegen der Normierung op = 1ist grad ap = 0, d.h. ag’ frm] =

0
fir alle m € No. Mit der Definition von B,, lassen sich die Gleichungen (3.29)
dann schreiben als

Ky oy’ [1y] 1K1 aq
B, K2 m_’ [Tm] - B, 2 K;f g (3.31)
KN al\;'[rm] N/e;v an
und die Behauptung folgt aus der Invertierbarkeit von B;. o

Lemma (3.3): Fiir alle m € N, gilt

H, Hiym
H Hyyr

Bt1 B! :2 = 2:+ . (3.32)
Hy Hyy

Beweis: Da Z:,:o an Ky Hey, =
Erhaltungsgroe H,, in Hy, H,, .

t=1,..

0 fir jedes r € N kann man jede
-+ Hy ausdriicken. Fiir jedes m € Ny und
- IV existieren also Koeffizienten Yits Yizy -y Vi € F{My) mit

Hipm = ya(m) Hy + yo(m) Hy + ... +vin{m) Hy .

In Matrixschreibweise erhalten wir

H, Tulm)  y(m) 1in(m) H, Hiym

H, a(m)  yp(m) .. Yan(m) H; Hzim
I'(m) . = . . . . = .

Hy wilm) ya(m) .. Ywn{m) Hn Hyym

Natiirlich kann man als "Basis” auch Hy, H,, ..., Hy,, wihlen und fiir 1 =
L,....N das Skalarfeld H,, .y, in Hy Hs, .., Hnyy beschreiben. Da sich die
Abhangigkeiten wegen (3.21) nicht andern, gilt

Himer = vu(m) H, + Yio(m) Hy + .. +vin(m) H
Man erhalt also insgesamt

n+l -

H H, .. Hy Hym  Hyp

HN+m
T'(m) I{Z }{3 Hh,m

H2+m H3+m e HN+l+m

Hy Hyyo o Hony HNym Hyyprpm .. Hon 14m

54



oder aquivalent
I(m) = Bny By .

a
Satz (3.3): Jede Mastersymmetrie 7, erfiillt die Gleichung
N
S o ka(<gradan, Tw> Ko + an [T, Ka] ) = 0 (3.33)
n=0
fiilr tangentiale Vektorfelder an Afy, d.h. 7,,(s) € T,My fiir alle m € Ny,
Beweis: Da die Abhéingigkeiten der Vektorfelder K,
N
Z kna, Kppr = 0 s r €Ny (3.34)

n=0
aufl My mit den Abhingigkeiten der Skalarfelder H,., iibereinstimmen (vgl.
(3.21)), gilt mit dem Beweis von Lemma (3.3) fiir jedes m € No

Kiim Ky K,
Kogm K K

Pl e | | = Ban BT (3.35)
I"N+m ]\’N 1\'N

Mit den Kommutatorrelationen zwischen den Symmetrien und den Mastersym-
metrien (vgl. (1.12)/(1.17)) und (3.34) erhilt man aus (3.33) die Gleichung

N

37 k(o [T Ko + @nn Kogm )

n=0

N

= Z Kp ( Qy ! [Tm] 1\'n + Qan n 1\’n+m ) il (3'36)

n=1

0

deren Erfiilltsein wir nachzupriifen haben. Mit (3.35) folgt fiir jedes m € Ny

N N N ;
S kit Kngm = 3 anknn (3 ui(m) Ki) - (3.37)
n=l i=1

n=1

Aus Satz (3.2) finden wir auf Grund der Symmetrie der Matrizen B;! und B,

Ky ay ' [Tm] 1k o
K2 ay ' [1) T (m) 2Ky a2 ,
kn an ' [Tm] N ky an
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wobei I'*(m) die Transponierte von I'(m) ist. Damit folgt

n=1

N N N
S ko [T K, = ~ S Kl (Y i ki vin(m)) .
n=1 i=1

Zusammen mit (3.37) zeigt die letzte Gleichung die Giiltigkeit von (3.36). O

Da wir bereits N linear unabhangige Vektoren Ko(s), K(s), ..., Kn_1(s) in
T,My gefunden hatten, kénnen nur noch N von Ko(s), K1(s),..., Kn_1(5)
unabhangige Vektoren unter den Mastersymmetrien 7,,(s) existieren. Diese
Abhangigkeit wollen wir nun untersuchen.

Wir wihlen zwei beliebige natiirliche Zahlen l,p € Ny, beliebige Skalarfel-

der Bo, ..., BN 1, Y0+ ey TNy € F(My) und betrachten fiir s € My die Linear-
kombination

N-1
(Buls} Tnsi (3) + va(s) Knyp (s)) = 0 . (3.38)
n=0
Durch Anwenden von JRo, JK\,...,JKn_; auf (3.38) erhalten wir far r =
0,1,.,N -1
N-1
3 Buls) Hupest (5) = 0 (3.39)
n=0
Da die Matrix B; invertierbar ist, folgt o =B = ... = By_, =0, d.h. es gilt
N-1
3 mls) Kupp (s) = 0 . (3.40)
n=0
Analog ergibt das Anwenden von Jro.dry, e, TNy auf (3.40) und die Inver-
tierbarkeit von B,
=N=..=93w_ 1 =0,

d.h. die Vektoren K, (s),.

o KNo1ip ()1 (8), o Tyt (s) € T,My sind
linear unabhingig. Da die

Dimension von T, My gleich 2N ist, gilt also

Satz (3.4): Fiir jedes s € My, I,p € N, bilden die Vektoren

K, (s),..., Ky 14, (s), (8} s TN 131 (8)

eine Basis von T, M.



Da die Abhangigkeit der Symmetrien durch

N
Z O bin Ky = 0, r €Ny

n=0

bereits festgelegt ist, wollen wir nun noch die Linearkombinationen

N
D Ku Ou Tager

n=0

untersuchen.
Im nicht-hamiltonischen Fall starten wir fiir ein [ € Ny mit dem Ansatz

N N1
Y Barnt = X wkKi, (3.41)

n=0 =0

wobei o, ..., 85,90, ..., Yv_1 Skalarfelder auf My seien. Wegen Satz (3.4)
sel mindestens ein 8, # 0. Wie oben erhalten wir durch Anwenden von
I, Iy ey JTyoy auf (3.41) das Ergebnis v = 7, = ... = yv-1 = 0, d.h.
zu jedem ! € Ny existieren S, ..., By € F(My) mit mindestens einem 8, # 0
und

N
Z ﬂn Tyt = 0. (342)
=0

Um die Skalarfelder 4, zu bestimmen, wenden wir JKo, JKi, ..., JKn_y auf
(3.42) an. Dann folgt

N
S Budlupens =0 fir r=0,1,..,N -1

n=0
und wir erhalten mit Satz (3.1) aus der Eindeutigkeit der o,
B = pwr,ap fir n=0,1,..,N ,
wobei u(s) #£ 0 ein beliebiges Skalarfeld auf My ist. Insbesondere gilt also im
nicht-hamiltonischen Fall auf My fiir alle r € Nq die Relation

N
Z: Kp OOy Tpgr = 0. (343)
=0

Existiert im hamiltonischen Fall eine Mastersymmetrie 2-ter Stufe S_y (vel
Kapitel 2.2), so erhilt man mit dem Noether-Theorem (vgl. (2.33)) und durch
Anwenden von J So auf

N
Z Qn Ky I\’n+r =90, reNO

n=0
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die Relationen
N

S anwaToer =0, 7€ENg. (3.44)

n=0

Lemma (3.4): Im hamiltonischen Fall gilt unter der Voraussetzung der Exi-
stenz von S_; fiir jedes r € Ny

N
Za,.rc,,r,.+, #0 .

n=0

Beweis: Wir nehmen an, daB es ein I € N gibt mit

N
> b Ta =0 . (3.45)

n=0
Anwenden von J1y auf (3.45) liefert mit (2.22)
N
S twkaTapi(n+1) =0 .

n=0

Wegen (3.44) folgt daraus

N
Z oy ko Thy = 0. (3.46)

n=0

Da alle Symmetrien tangentiale Vektorfelder an My sind, ergibt die Lie Ab-
leitung von (3.46) in Richtung Ky, ..., Kn_,

N
0 = Y nan{an (K] Tupr + an Topt' [K4])
n=0
N
= — Z nK, 0 <JK, Ty >
n=0
N
= Z [ | S r=0,1,..N-1.
n=0

Hierbei haben wir neben der Antisymmetrie von J und (2.22) ausgenutzt,

daB die Skalarfelder o, ErhaltungsgroBen zu allen Symmetrien sind. Mit der
Eindeutigkeit der Linearkombinationen TN o kn an Hepiyr = 0 fir

r=0,1,..,N —1 (vgl. Satz (3.1)) erfolgt der Widerspruch. a

Auf .die Lix_learkomhination }:fzo Kn Qn Tpy, im hamiltonischen Fall werden
wir in Kapitel 6.2 zuriickkommen.



Bemerkung (3.8): Die sehr symmetrischen Resultate dieses Kapitels lasse.n
vermuten, daB sich hinter den Konstruktionen eine tieferliegende ma.thematl—
sche Struktur verbirgt. Tatsichlich wurde in [42] gezeigt, daB Sic,h die herge-
leiteten Relationen aus den algebraischen Eigenschaften symplektischer Ideale

ergeben.

Die Ergebnisse dieses sehr technischen Kapitels lassen sich folgendermaBen

zusammenf{assen:

Zusammenfassung:

(1) Fiir eine N-Soliton Lésung s € My mit Taog A @n Ko = 0 bildet

Ky (8)svees Kvoiap (8),71 (8)s o To1a ()
fiir beliebige I, p € N eine Basis des Tangentialraumes T, M. Insbeson-

i tial
dere sind alle Symmetrien K, und alle Mastersymmetrien 7. tangentia

an die Untermannigfaltigkeit My.
{2) Auf My gelten fir alle » € N die folgenden Relationen

N N 0
5 b u K = 0 0 2 Rwan Hosr =0

n=0 n=0

(3) Im nicht-hamiltonischen Fall erfiillen die Mastersymmetrien fiir jedesr €

Ny auf My die Gleichungen

N
Z K G Tudr = 0.

n=0

. - . e 2. -Stufe S-],
(4) Existiert im hamiltonischen Fall eine Mastersymmetrie 2-ter

so sind auf Ay die Relationen

N N
S kg Toy, = 0, Z Kn @ Tapr # 0

n=0 n=0

fiir alle r € Ny erfallt.

3.4 Beispiele
. e o entalen
In diesem Kapitel weisen wir die asymptotische Giiltigkeit der fundam

Gleichung (3.16) v (3.47)
< J(si) (8i)e 1 T0l8i) > = B2 G
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fir die in Kapitel 2.3 betrachteten Beispiele nach.

Fir die KdV ist J(u) = D', 7(u) = Zu, + u, und die N-Soliton
Losungen sind fiir ¢ — too gegeben durch ([1])
N N .. 2
s(z,t) = Y si(a,t) = Y ;‘ sech? [ 'T (z+at+d)] .
i=1 =1 “
Man berechnet
<Is) (e s mols) > = < DTMs)e, 3 (se + s >

I

+oo
[T (st + st
1

e

Fir die mKdV erhalten wir J(u) = D! und ro(u) = i (zu, + u). Die
N-Soliton Lésungen sind fiir ¢ — +oo gegeben durch ([67))

M=

s(z,t) =

i

N
sifz,t) = Y ci? sech [c:/z (z+ct+d)] ,
=1

und es gilt

< J(5i) (8i)z - To(si) >

I

<DMse, 5 (2 (e + 8) >

1 ftoo
= ~2-/ (si(si)e + 8 )dx
1

172
=z .

Bei der CDGSK lauten der symplektische Operator

J(u) = 2D° 4 2D%uD™ + 2D uD? 4 2D 4 D12

und die Mastersymmetrie To(u) = t‘—; ( #uz + 2u ). Die N-Soliton Losungen
N ud 3 1/3 CVﬁ
s(z,t) = Y s (z,t) = 56 sech2[—'2—(:c+cit+d.)] .
=1 =1 “

findet man z.B. in [61]. Die Berechnung von (3.47) liefert damit

i

<J(si) (8i)r ,To(85) > = — g /e
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Fir die reelle Version der NLS gilt

o= (208)

und
N Tu, +u
() = < o + v )
Die N-Soliton Losungen der komplexen NLS sind oszillierende Wellen, deren
Einhiillenden sich wie KdV-Soliton Lésungen verhalten ([113],[114]). Fir ¢ —
*o00 haben sie die Form

N N
s(a,t) & 3 spfa,t) = >
k=1 k=1

i

&
exp(iwy) sech | 5 ettt )] .

ey

mit s
Ck e — &
Wg = & +

i+ ¢

fir £ = 1,..,N. Im Gegensatz zu den vorherigen Beispielen hat fier relle
Rekursionsoperator & hier die komplexen Eigenwerte A, = %(ck + ¢6x) und
eine Ein-Soliton Lésung s, erfiillt die Gleichung

(®(sx) — M) (D(si) — M) Kols) = 0.

Hierbei ist A, das konjugiert Komplexe von A, In dieser Darstellung ist die
NLS mit der bisher vorgestellten Theorie nicht abgedeckt und wird deshalb
hier nicht weiterbchandelt. Ohne groBe Schwierigkeiten lassen sich dl:e Re-
sultate dieser Arbeit allerdings auf die NLS und andere komplexe ‘Glelcl.mn-
gen fiibertragen, wenn man dic hier angegebenen 4-parametrigen Em:Sohton
Losungen mit den rellen Parametern ¢, &, qx und g als 2-Soliton L.osungen
gemaB unserer Notation mit den komplexen Parametern Ag und A; interpre-
tiert.

Im Fall des HS Systems ist der Operator J(#) bestimmt durch

D4 D'utuDt , 2D

v )

und die Mastersymmetrie o(if) gegeben durch
u _ 1 [ zu, +2u
7ol v )= I\ v+
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Mit den N-Soliton Lésungen ([57])

N N 1/2 2 }/4 o d)]
. . - _ Yiti 2¢;" sech’ [ (z — it + d;
3z, t) =~ 'zz; 5i(z,t) = ( ',_\;] \/ic}n sech [cll_/a (z —cit +dy) )

erhalt man 574
<J(E) ($)e v 10(8) > = 57 .

Bei der BO berechnet man mit Hilfe von J(u) = D', 1o(u) = zu, +u und
den N-Soliton Lésungen ([60],[72])

N N o
s(z,t) =~ ; sifz,t) = g —QW
das gesuchte Integral
<Jsi) (sidevmo(si) > = ~ 7 .

Bemerkung (3.9): Wie wir in Kapitel 4.2 beweisen werden, ergibt sich der
Exponent v in (3.47) aus den Skalierungskonstanten p und A (vgl. (1.13),
(1.16) und (1.17)) zu

V=94 X,

Hierbei ist fiir die BO wegen Ly, J = 0 wiederum A = 0 zu setzen.

3.5 Reduktionen auf My

In diesem Kapitel untersuchen wir we,
nigfaltigkeit My, wobei wir im erste;
degenerierte, geschlossene 2-Form w
(3.4) gegebenen Bewegung ist. Die
lutionsgleichung

itere Eigenschaften der N-Solitonen Man-
n Schritt zeigen, daB auf My eine nicht-
(19}) existiert, die invariant unter der durch
se 2-Form w erlaubt es uns dann, die Evo-

st = Ky(s)

als hamiltonisches System auf der U

Als Standardbasis im Tangenti
(vgl. Satz (3.4)) die Menge

ntermannigfaltigkeit My zu interpretieren.
alraum T, My an der Stelle s wihlen wir

B = l\'o,l\',,...,I\'N__I,T(,,T,,...,TN_I 1. (3.48)
Als Restriktion des symplektischen O

Bemerkung (1.5)). Es sei nun
Dann existieren Skalarfelder

perators J bleibt J, y, symplektisch (vgl.
V € T,My ein Element aus dem Kern von J(s).
Bos -y BN_1:%, -y N1 € F(My) mit

No1

V = Z(ﬂnKn','"YnTn) .

n=0
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Da J(s) ein linearer Operator ist, folgt

N-1
0= J(s)W = Y (BudKn + 1udra) . (3.49)
n=0
Analog der Herleitung von Satz (3.4) liefert die Anwendung von Ky, K, e KNy
auf (3.49) zunichst v = 4 = ... = Y~v-1 = 0. Durch Anwendung von
70,715 oy T~y folgt dann By = B = ... = By_y = 0. Insgesamt ist also V = 0,
d.h. J(s) ist injektiv. Als Kotangentialraum T*My an der Stelle s definieren
wir daher den 2N-dimensionalen Raum

T:My = J(T,My) .

Nach Definition ist damit J(s): T,My — T} My bijektiv, d.h. die durch J(s)
auf My definierte 2-Form

W) (X)Y) =< J(s)X .Y > VXY eT,My

ist nicht-degeneriert. Inshesondere ist also in klassischer Notation (Mn,w) eine
symplektische Mannigfaltigkeit ([2]). Da die invers-hamiltonischen Vektorfel-
der Ky, K\, ..., Kn_y bei der Einschrinkung auf My invers-hamiltonisch bzgl.
J) My bleiben und J) a1y invertierbar ist, sind die Vektorfelder Ky, Kl., e KN
auf My hamiltonisch bzgl. Qg := JI_A]IN' Weiterhin sind die Gradlente{n dt?r
Skalarfelder Ho, Il ....Hy_; wegen Lemma (3.1) auf My linear unabhingig
und erfiillen auf Grund des Noether-Theorems die Relationen

{H,, vilm}ﬂo =0.

In Klassischer Sprechweise ist daher jeder von K, € {Ko, K1, ...y 1\'1:/-1} lfldu"
zierte FluB auf der symplektischen Mannigfaltigkeit (My,w) vollstandig inte-
grabel mit Ho, Hy. ..., Hy_, als Skalarfelder in Involution. Ffu'- die exphzn'e
B&stimmung der linearisierenden Koordinaten fiir diesen Flu8 fehlen N.wel-
tere Skalarfelder, die Winkelvariablen. Sie werden in den nachsten Kapiteln
konstruiert.

Fiir den nicht-hamiltonischen Fall wenden wir uns nun der Reduktion d.ﬁ
hereditiren Rekursionsoperator ® zu. Nach Definition erzeu.gt O(s) rekurs:v
die Symmetrien K, () und die Mastersymmetrien 7,(s). Da d@e Ve.ktor.en far
alle n ¢ Ny tangential an My sind, 1a8t ®(s) die Unterma"n’gfa_mgkelt MN
invariant. Die Einschriankung @) s, von ¢ auf My liefert daher einen endlich
dimensionalen Operator

®ary - LMy - T, My
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Da die Hereditaritat eines Operators von einer Einschrankung des Deﬁm.tl-
onsbereiches auf eine invariante Untermannigfaltigkeit nicht beeinfluBt wTrd
(vgl. (1.15)), bleibt ®; my hereditar. Die spektralen Eigenschaften de:s endllc.h
dimensionalen Operators @ ary werden bei der Konstruktion der Winkelvari-

ablen im nicht-hamiltonischen Fall eine wesentliche Rolle spielen (vgl. Kapitel
4 und 6.1).

Notationsvereinbarung: Sofern eine Verwechselung ausgeschlossen ist, ver-
wenden wir statt J| 5, und P my die Kurzschreibweise J und . Man beachte

allerdings, dafB§ diese Abbildungen per definitionem auf endlich dimensionalen
Raumen operieren.

Da im hamiltonischen Fall kein Rekursionsoperator auf der gesamten Man-
nigfaltigeit existiert, definieren wir eine lineare Abbildung ®(s) : T,My —
T, My fir alle n € Ny durch

B(s) Kufs) == Kopa(s) , D(s) Ta(s) 1= Topa(s) . (3.50}

Weil alle K,(s) und T.(s) Elemente des Tangentialraumes T, My sind, ist ®(s)
durch (3.50) wohldefinjert

Lemma (3.5): Die durch (3.50) definierte Abbildung auf T, My ist hereditar.

Beweis: Aufgrund der Kommutatorrelationen (1.17) gilt die Eigenschaft
O (G, Gyl + [0G,, 0G,) = D [®G1, Gl + B [y, BGY) (3.51)

fur alle Gy, G, € {K.lne NojU{m |ne No} . Da @ linear ist, folgt die
Giltigkeit von (3.51) auch fiir beliebige Linearkombinationen aus T,My. O
Auf Grund der Aussage von Lemma (3.5) nennt man eine Familie von Vf"k'
torfeldern K, und 7., die die Relationen (1.12) bzw. (1.17) erfiillen auch eine
hereditire Algebra ([48}).

Eine wesentliche Differenz zwischen den Operatoren & im nicht- und ha-
miltonischen Falt beschreiht das folgende

Lemma (3.6): Im nicht-hamiltonischen Fall ist J& antisymmetrisch auf My;
im hamiltonischen Fall gilt dieses nicht.

Beweis: Nach Voraussetzun
symplektisch auf A, d.h. die
tisch, insbesondere auch anti

g ist im nicht-hamiltonischen Fall J& = JO,J
Einschrinkung von Jé auf My bleibt symplek-
symmetrisch. Wire im hamiltonischen Fall J®
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antisymmetrisch auf My, so ist

<Jn,m> = <Jbry,rp> = - <JOp, 5> =
= - <Jn,>

im Widerspruch zu < Jr, , 75 >= —=T1 # 0 (vgl. (2.20), (2.22) und Satz (3.4)).
a

Charakterisiert man die Antisymmetrie von J® auf My mit Hilfe der Stan-
dardbasis B, so folgen aus (2.7), (2.10) und (2.22) die Relationen

<JK, ,K,>=0, <JKy T >= Hppm

und man erhalt

FOlgerung (3.1): J® ist auf My antisymmetrisch genau dann, wexln Jo
auf der linearen Hiille von To, ---» TN—1 antisymmetrisch ist, d.h. wenn fiir alle
nmrle{0,1, N —1)mitn+m=r+1 gilt

<Jrm ., tm>=<Jn,n>

Da J®rr,, im nicht-hamiltonischen Fall symplektisc-h ist, erhalten wir. fjﬁr
die Einschrankung des Rekursionsoperators auf My die folgende Faktorisie-
rung auf der Untermannigfaltigkeit

Ppy = By (JP)psy -

Dabej sind 04 und (J®)ar, implektisch bzw. Symplf.}ktiS(:‘h auf M{v. Héhere
implektische Operatoren auf My findet man daher im nicht-hamiltonischen
Fall analog zu Lemma (2.3) (i) durch

n 3.52
((-)n)II\IN = ¢][\[N e[) , nENO . ( )

Zum AbschluB dieses insgesamt sehr technischen Kapitels soll.noch e?mmal
betont werden, daB wir mit den Ergebnissen der Kapitel 3.3 bis 3-? m der
Lage sind, die endlich dimensionale Untermannigfaltigkeit My vollstindig zu
beschreiben. Die Kenntnis des Tangentialbiindels von My ist das Wese“t}":he
Hilfsmittel, um GréBen von der gesamten Mannigfaltigkeit auf M{" reduzieren
2u konnen. Dabei ist die Struktur von My so, daB die Einschrankung aller
Operatoren auf dje Untermannigfaltigkeit My bereits reduzierte Operatoren
ergibt.
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4 Spektrale Eigenschaften des Rekursionsope-
rators

In diesem Kapitel beschiftigen wir uns im nicht-hamiltonischen Fall mit dgr
geometrischen Interpretation von Symmetrien und Mastersymmetrien. Wie
bereits in der Einleitung geschildert, wollen wir den Zusammenhang von Ma-
stersymmetrien und Winkelvariablen auf der Untermannigfaltigkeit My klaren.
Dafiir suchen wir auf My zunichst nach hamiltonischen Linearkombinationen
der 7,,. Es stellt sich heraus, da8 bei der Konstruktion dieser Grofien die spelf-
tralen Eigenschaften des auf My reduzierten, endlich dimensionalen Rekursi-
onsoperators ® von Bedeutung sind. Aus diesem Grund beschaftigen wir uns
in Kapitel 4.1 mit den Eigenwerten und -vektoren von ®. Als Resultat erhalten
wir eine explizite Darstellung der Eigenvektoren von & mit Hilfe der K, und
Ta. Die gesuchten Linearkombinationen der Mastersymmetrien ergeben sich in
Kapitel 4.2 dann als hamiltonische Eigenvektoren des Rekursionsoperators.

Die Ergebnisse dieses Kapitels werden im wesentlichen aus den festgelegten Lie
Ableitungen und Kommutatorrelationen hergeleitet. Eine Interpretation der
Resultate mit Hilfe der asymptotischen Daten wird in Kapitel 5 vorgenommen.

Die Darstellung der Ergebnisse der Kapitel 4 und 5 folgt der Vorgehensweise
in [48].

4.1 Eigenwerte und Eigenvektoren des Rekursionsope-
rators

Wie bereits erwahnt, beschifltigen wir uns im gesamten Kapitel 4 ausschlielich
mit dem nicht-hamiltonischen Fall. Dafiir hatten wir in Kapitel 3.5 festgelegt,
daB wir unter dem Rekursionsoperator ® immer den endlich dimensionalen
Operator verstehen wollen, der durch Einschrankung des Ausgangsoperators

auf My entsteht. Wir erinnern ferner daran, dal die Nullstellen ¢, ..., cn des
Polynoms

N N
Z an K, 2% = Z ay " (4.1)
n=0 n=0
einfach sind (vgl. Definition (3.2)). Mit Hilfe des normierten Polynoms
» 1 N N
(1‘) = a—N— nzz: o, T = .I=Il (:c et C,') (42)
und der Hilfspolynome
N N-1
Qulz) = H (r—¢) = Z api " (4.3)
=1 =0
ik
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fir k = 1,..., N erhalten wir

Lemma (4.1): Fiir alle Vektoren V € T, My gilt
(i) POV =0,
(i1) Qi(®) V ist ein Eigenvektor von ® zum Eigenwert cx.

Beweis: (i): Die erste Behauptung folgt fiir alle Basisvektoren V' € 3' =
{Kos ey Kn_y, 70, . Tv_1} von T,My aus der Definition von @ (vgl. Kapitel
2.1) und der Giiltigkeit der Relationen

N N
Z Qp I"n+r =0, Z Qp Tnr = 0

n=0 n=0

auf My fiir alle r € N,
(ii): Da fur alle k = 1, ..., N und fiir alle V € T,My die Gleichung

((8—c) Qu®))V = P@)V =0

erfiillt ist, ist auch die zweite Behauptung bewiesen.

Da das Polynom P(z) nur einfache Nullstellen hat, erhalten wir durch

Partialbruchzerlegung

N
1= Y 5 Qula) s (44)
k=1
wobei die Koeffizienten fi durch die Ableitungen
(4.5)

B = (P(2)mar)”™" = @ulen)™

gegeben sind. Als spezielle Eigenvektoren zum Eigenwert cx definieren wir

N-1
v = Qu(®) Ko = 3 ans Ka (4.6)

n=0

und ot
wy = Qu(®)To = Y AnkTa - (47)

n=0

. Tn_y und ayo1E = 1

LN Mit

Aus der linearen Unabhangigkeit von Ko, ..., Kn-1, 7o, -
folgt die lineare Unabhangigkeit von v und wyi fiir jedes k = 1,.
Hilfe der Linearen Algebra erhalten wir insgesamt
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Folgerung (4.1):
(i) Die Eigenvektoren vy, ..., un, 10y, ..., wnx von ® bilden eine Basis von T My.
(i1) Jeder Eigenwert c; von ® ist zweifach entartet (k=1,..,N).

(i) P(z) ist das Minimalplynom von ®.

Bemerkung (4.1): Die obige Folgerung besagt, da8 die Einschrankung des

Ausgangsoperators auf My gerade dessen Restriktion auf die zum diskreten
Spektrum gehérigen Eigenraume ist.

Lemma (4.2): Auf der N-Soliton Mannigfaltigkeit My gilt

N N

(i) K. = Z G Brvk , T = Z kB we (4.8)
k=1 k=1

(i) L, J = (A+m)Jom™ | (4.9)

(ii1) < Jvn, v > = < Jwgwy > = 0, (4.10)
N-1

(IV) < JUp, w0, > = 6n,m Qn(cn) Z akn Hy (4]1)
k=0

wobei 8, ,, = 0 fiir n # m und bnm = 1ist.

Beweis: (i): Die Relationen (4.8) folgen sofort aus (4.4) und (4.6).

(ii): Wir miissen die Giiltigkeit von (4.9) auf der linearen Hiille der Symmetrien
Ky und der Mastersymmetrien 7, nachweisen. Da alle Produkte der Form
< Jr, Kp >, < Jr,7a > und < JK,, K, > bekannt sind (vgl. (2.3) und
(2.4)), folgt die Behauptung aus der Produktregel fiir Lie Ableitungen.

(iii): Aus der Antisymmetrie von J fol

gt die Behauptung fiir n = m. Fir
n # m erhalten wir (1.10)

aus der Antisymmetrie von Jb (vgl. Lemma (3.6))

e < Jvp, v, > = <« JOv,, v, > = — « Jbv,, v, > =

e < Jvg, v, >

Da die Eigenwerte ¢, paarweise verschieden sind, mu$ < Juv,, v, > verschwin-
den. Fir < Juw,,w,, > folgt die Behauptung analog.

{iv): Fir n # m enthalt das Produkt der Hilfspolynome Q.(®)Q,.(®) das
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Polynom P(®) als Faktor (vgl. (4.2) und (4.3)). Wegen Lemma (4.1) ist
P(®) =0 auf T,My, d.h. Qn(®)Qm(®) = 0 auf T,My. Damit folgt firn £ m

< Jvrn Wy > = < JQ,.((D)I\,() ,Qm(q))To > =
= <JKo,Qu(®)Qn(®)ro> = 0,

wobei wir wiederum die Antisymmetrie von J und J® benutzt haben.
Da nach Lemma (4.1) der Operator Qx{®) jeden Vektor aus dem Tangential-
raum T,My auf den ci-Eigenraum von @ abbildet, gilt firn = m

@n(®) Qn(®) = Qnlca) Qu(®) -

Analog den obigen Schiiissen erhalten wir daraus

<Jvgwn > = < JQ D) Ky, Q. (P >
< JKo , Qu(®)Qu(®)70 > = Qulcn) < JKgw, > =
N-1

= Qulca) <JT0,0n > = Qules) Y o He

k=0

wobei wir zusitzlich (4.6) und (2.6) benutzt haben.
Man beachte dariiberhinaus, da < Jv,,w, > nicht verschwindet, da Qn(c.) #

0 (vgl. (4.3)) und

N-1
< J’U,.,TO > = Z Qkn Hk # 0
k=0
(vel. Lemma (3.1)). o
Wir sind nun in der Lage, das Verhalten der Eigenwerte c;, ..., cy entlang

der Bahnen, die durch die Mastersymmetrien bestimmt werden, zu beschrei-
ben. In Analogie zu Lemma (2.1) (iv) folgt
Satz (4.1): Fiir die Eigenwerte ¢y, ..., cy des Rekursionsoperators gilt auf My
fir alle m € N,

et (4.12)

LTm Cn = n

Beweis: Da J® = ¢*J ist (vgl. Lemma (2.1) (i)), gilt fir jeden Eigenvektor
W, von @ mit dw, = ¢,w, auch
O (Jw,) = () wa = (JO) wa = & Jwn . (4.13)

Weil fiir jedes k € N, die Mastersymmetrie 73 ein Element des Tal.lgen'tia.lrau-
mes ist, ist die Lie Ableitung der Eigenwertgleichung ®v, = ¢xvn 1n Richtung
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7 definiert. Mit der Produktregel fiir Lie Ableitungen und (2.5) erhalten wir
auf diese Weise

(@—e) Lyva = (Ly(cn) — k), . (4.14)
Die Anwendung von Jw, auf (4.14) liefert mit (4.13)
0 =< (% —¢,)Ju, y Lo, > = (Lry(ca) = k*Yy < Ju, y Up >

Da wegen Lemma (4.2} < Juw, » Un > nicht verschwindet, ist die Behauptuan
bewiesen.

Folgerung (4.2): Auf der N-Soliton Mannigfaltigkeit My gilt fiir alle n =

3 rey

grad e, = < Ju, 1 »71 ¢, Ju, . (4.15)

Beweis: Wir weisen die Giiltigkeit der Gleichung (4.15) auf der B.a.sis .B =
{Ko,.A.,KN_l,TD, s TNt} des Tangentialraumes T,Mx nach. Da die Elgefl‘
werte ¢, Erhaltungsgrafen zu den Flissen v, = K, sind (vgl. Kapitel 3.2), gl?t
< grad ¢, K, >=  fiir jedes K, ¢ B. Wegen Ju, = T agn Ky folgt mit
(24) ebenfalls < Ju,,, K, >= 0 fa, jedes K, € B. Die Anwendung von 7, auf
die rechte Seite von (4.15) liefert, fiir alle . €B

< Jv,, 19 >1 e <Jvg, 1, > = < Jon, 10 >0 ¢, < Jun, @1 > =
= <Ju, >t g, < JO v, 1o > =
C;+1 ,
d.h. mit Satz (4.1) ist die Folgerung bewiesen. =

Um die Kommutatoren zwischen den Ej

genvektoren v, und w, zu berech-
nen, fihren wir dje folge

nden Hilfspolynome

N m+1 _  om41
To(z) = —(m+1)z~ 4 3 oo (4.16)
k=1 T —Ck

ein. Ist z = ¢ mit i € {1,..

» N}, so wird Tw(c) als Grenzwert z11_{1;_} Tn(z)
definiert. Die Eigenschaften d

er Polynome 7,,(z) charakterisiert der folgende
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Hilfssatz (4.1): Fiirallem € Nound n = 1,..., N gilt
() Lk, Qu(®) = 0,

() L, Qu(®) = Tu(cn) Qu(®) ,

() Ly, @Quled)™ = = Tu(ca) Qulca)™ .

Beweis: (i): Die Behauptung folgt aus der Invarianz von ® und ¢, unter allen

Symmetrien K,, (vgl. (2.15)).
(i1): Fiir alle m € Ngund » = 1,..., N erhalten wir aus den Definitionen der

Q.(®) und T..(®) und mit (2.5) bzw. (4.12)

N
Lin@u(®) = L ([[(®-c)) =
i
N dm+l _ omtl
= X5 =
i2n '
_ N dm+l _ c;n+1 e+t _ c:x+1
=2 ((—q)__cl_)Qn(¢)) - (TT)QA‘P) :

ii

Da durch Q.(®) alle Vektoren auf den ¢,-Eigenraum von ® abgebildet werden,
mufl der Grenzwert des letzten Summanden genommen werden. Damit gilt

L Qu®) = 3 (X297 0,8)) — (m+1)en Quie) =
= lTi.j(cn)Qn@) -‘
(iii): Analog der SchluBweise in (if) folgt fiir Qu(ca)
L., Qulen) = Tale) Qulen) -

d.h. fiir die Inversen Qn(ca)7! gilt die Behauptung.

Wir sind nun in der Lage einige wichtige Lie Ableitungen zu berechnen.

Lemma (4.3): Firr jedes m € Ng und n, k = 1,..., N gilt auf My:
(i) Die Lie Ableitungen L, Ko, Ly, U, Ly, ®, L, J und Ly c, verschwinden,

(i) Ly K, = gt (m+9)v, ,
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(iii) Lv, = (Tm(%)”'g‘::zn) Un

(iv) L, w, = {(T(en) = m ) w, .

Beweis: (i): Die erste Behauptung folgt aus der Invarianz von K, ¢,y J und
® unter allen Symmetrien.

(ii): Wegen Lx, Q.(®) = 0 erhalten wir mit (1.12)

LuKm = ~Linwa = — Lk, (Qu(®) 1) =
= Q@) Lk, 1o = (m+ ) Qu(®) K., =
(m+0) O™Q.(®) K, = (m+0) v, .
(iii): Mit Hilfssatz (4.1) (ii) und (1.12) gilt

Liwva = (L7, Qu(®)) Ko + Q.(®) L,, Ko
Tn(cn) Qn(®) Ko + ¢ Qu(®)
= (Tm(cn) +ocl)u, .

i

(iv): Die gesuchte Lie Ableitun,

g ergibt sich mit den gleichen Argumenten wie
in (ii1) zu

Liwa = (Tu(c,) —m ) w

n -

Als letzten Schritt in dies

em Kapitel fithren wir eine Umnormierung der
Eigenvektoren Uy, w0,

durch und setzen fiir n = 1,...N
Vo= Qulen)™ v, Wa iz Qulen)™ w, (4.17)

Mit den Hilfspolynomen

Qnl(®) = Qulea)Qu(®)
erhalten wir aus (1.4), Lemma (4:2), (4.6) und (4.7) firallen,m =1,..., N

Folgerung (4.3):

N -
0)  1=3 Qu9),

n=1

() Qu(®) Qu(®) = 4, Q.(9) |
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(i) Vi = Qu(®) Ko, W, = 0u(®) 7o .
N N

(iv) Ka=3Y VWV, n = W, .
k=1 k=1

Analog zu Lemma (4.3) finden wir die folgenden Lie Ableitungen:

Lemma (4.4): Fiir jedes m €ENgundn=1,..,N gilt
(i) Lw, K, = agm+9)V,
(i) L.Vi=oev,,
(i) LW, = —menw, .
(iv)  Firalle n,m = L. Ngilt: Ly,ca = 0, Lw,cn = bpm Cn -

Beweis: Die Gleichungen (i)-(iii) folgen sofort aus Lemma (4.3), den Eigen-
schaften der Lije Ableitung und Hilfssatz (4.1) (1id).

(iv): Die erste Lie Ableitung verschwindet wegen Lemma (4.3) (i). Mit Hilfe
von Folgerung (4.2) und dem Beweis von Lemma (4.2) (iv) gilt

Ly, c, = < grad ¢,, W,, > =
= <Jvg, %> ¢y Qulcn)™ < Jvg, wm > =
bnm €n Qulcm)™ Qulen) = bum cn -

Fiir die Hilfspolynome @, (®) erhalten wir damit

Hilfssatz (4:2): Fiir alle m,n = 1,..., N gelten die Lie Ableitungen
M Ly®=0, L, Q.0)=0,
W) Lw® = cnQn(®) , LivyQu(®) =0 .

Beweis: (i): Die beiden Lie Ableitungen ergeben sich aus Lemrfxa. (4.3) (i)
und der Tatsache, daB Qm(cm)™! eine ErhaltungsgroBe fiir Jedf:s K, 1st.' i
(ii): Mit Lemma (4.4) (iii) und der Produktregel fiir Lie Ableitungen gilt fiir
allem,n = 1,.,N
Lwn®)7 = Ly, 1oy — L = ((n+ 1) = neme)Wm =
= CmQAm(Q)Tn -
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Auf die gleiche Weise erhalten wir

(Lwo @)K = 'V = cnQn(®)K, .
Da die Vektorfelder 7, ..., 7N,K1, ..., Ky eine Basis des Tangentialraumes bil-
den, folgt die erste Relation.

Die zweite Relation weisen wir ebenfalls auf einer Basis von T,My nach. Mit
der Produktregel fiir Lie Ableitungen und (1.12) gilt fiir alle m, k¥ € N, und

n=1,.,N

Lon(Qu®)7) = (Lo, Qu(®))rs + Qu(®) (Leymi) =
(Lrn Qu(®N 7 + (k= m) On(®) Ty =
(LrnQu(®) 7 + (k—m) ™ W,

Auf der anderen Seite folgt Q,.(‘D))rk = ¢k W, und daraus mit Lemma (4.4)
(i) und Satz (4.1)

I

L.(W,) = k W, —m i W, =

= (k—m)ertiw, |

Also gilt LTMQ,,((D) = 0 auf der linearen Hiille der Mastersymmetrien 7. Ana-
log zeigt man

L (Qu@) Ky = 0,
fir alle m,k € Ng und n = 1,...,N und folgert daraus die Behauptung. o

Satz (4.2): Fir dic Basis von Eigenvektoren W, ..., Vn, W4, ..., Wy des Tan-
gentialraumes gelten die folgenden Kommutatorrelationen

(i) Vm. Vil =0,
()  [WaW, =0,
(]") [u/mvvn] = 6n,m gvm .

Beweis: (i): Die erste Kommutatorrelation ergibt sich aus Lemma (4.3) (i)
und der Tatsache, da$ Qnlcs)! eine Erhaltungsgrofe fiir jede Symmetrie K

ist.
(ii): Mit Lemma, (4.4) (i1} und Hilfssatz (4.2) (ii) erhalten wir fiir alle m,n =
Loy N

Wos Wl = Lw, W, = Ly (Qu(@)r) =
Qu(®)(Lw,70) = — Qu(®)L W, = 0 .

1l
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iii): Auf die gleiche Weise wie in (i) und mit Folgerung (4.3) (ii) gilt
g
WVl = Qu(®)(LwnKo) = 0Qu(®) Vi = Spn o Vim .

4.2 Hamiltonische Eigenvektoren des Rekursionsope-
rators

In diesem Kapitel wollen wir aus den Eigenvektoren V, und W, des Rekursi-
onsoperators Eigenvektoren konstruieren, die invers-hamiltonisch bzgl. J sind.
Da J auf My invertierbar ist, (vgl. Kapitel 3.5), sind die gesuchten Eigenvek-
toren automatisch hamiltonisch bzgl. @ = J1.

Mit Lemma (4.3) (i) und der Tatsache, daB V, aus v, durch Nor@erung
mit einer Erhaltungsgrafe hervorging, folgt zunichst, da die Lie Ableitungen
Ly, J verschwinden. Damit sind die Eigenvektoren V, bereits hamiltonisch
bzgl. ©, (vgl. Bemerkung (1.6)). Um aus den W, hamiltonische GroBen zu
konstruieren, bendtigen wir das folgende

Lemma (4.5): Fiir alle zulassigen Indizes n,m € Ny gilt

() <JV,, W, >= b < IV, 10>,

() L, <dViro>= (Ato) e <JIVaro>

(i) grad < JV,, 7> = (A+0) JV, |

(V) Lw, <JV, %> = 6on (A40) <IVa7o>

(v)  grad ( ;MO <« JV >y =0 .
Beweis: (i) Mit Hilfe der Projektionseigenschaft der Q,(®) aus Folgerung
(4:3) (ii) und ®*J = J& (vgl. (2.2)) folgt

<JVo W, > IV, Qu(@)70 > = < JQu(®)Wim, 10> =

<JQu(@)Qnm(®)Ko 7o > = Sa < IVimsTo >

(ii): Mit der Produktregel fiir Lie Ableitungen, (4.9), Lemma (4.4) (ii) und
(1.12) erhalten wir

L'rm<J‘/n,To> =

< (LrpydWayto> + < JL, Vi, > + <JVayLyuTo > =
Atmyer < IVm> +ocr <Van> —mep <JVam>
At+eo)er <av,,m>

o
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(iii): Analog zu (ii) gilt mit Folgerung (2.1) (ii), Lemma (4.3) (i), (1.12) und
(4.10)
Lk, <JVay1o> = <V, Lg,mo> = —(m+p) <JV,, Ky > =

(Man beachte dabei stets, daB V, aus v, durch Normierung mit einer Erhal-

tungsgrofe entsteht.) Mit (ii) ist daher die Behauptung auf der Basis B des
Tangentialraumes gezeigt.

(iv): Die Giiltigkeit der Gleichung folgt sofort aus (i) und (iii).
(v): Wegen Folgerung (4.2) und (iit) erhalten wir mit der Produktregel

grad (;™0 < JV, p>) =

= —(A+o) gttt grade, < JV,, 70> + ;M (A +9) IV, =
= 0.

Folgerung (4.4):

(i) Fiir jedes n = 1,..., N gibt es eine Konstante C'y, die nur von J abhangt,
mit

SIVam> = Cy o (4.18)
(i) Fir jedesn=1,..,N gilt

grade, = (5! cL“A‘E) JV, . (4.19)

Beweis: (i): Aus Lemma (4.5) (v) folgern wir, daB es eine Konstante Cuax
gibt, die von J und n abhangt, mit

<JVim> = Oy, e

Nach Kapitel 3.3 und 3.4 existicren aber Konstanten é,v mit

N
Hy = 63 g+
i=1

Auf der anderen Seite folgt mit (2.6) und Folgerung (4.3) (iv)

N
H, <JKam> = Y& <JVym> =
i=1
N
Z CJi c(l+:\+0
i1 L] -

i=1

I
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Insgesamt gilt also § = Cj4y dh. Cj; ist unabhangig von i, und » = A + 0
(vgl. Bemerkung (3.9)).
(ii): Die Behauptung ergibt sich aus (i) und Lemma (4.5) (iii). O

Nach diesen Vorbereitungen sind wir nun in der Lage, einen Satz von hamil-
tonischen Eigenvektoren des Rekursionsoperators anzugeben.

Satz (4.3):
(i) Fir k= 1,..., N sind die Vektorfelder

Zy = Wy (4.20)

hamiltonisch bzgl. ©, = J-!.

(i1) Die hamiltonischen Eigenvektoren Vi, ..., V.2, ..., Zy von ® bilden eine
Basis des Tangentialraumes Ty My, und sie erfillen die folgenden Kom-
mutatorrelationen

Vo Vol =0, [Zn, 2] = 0,
[Zm ’ Vn] = 6n,m gc;)‘ Vm b (421)

Beweis: (i): Wir weisen die Gilltigkeit von Lz J = 0 wiederum auf einer
Basis nach und zeigen dazu, daB die Produkte < (Lz,J)Va, Viu >,
< (Lz,J)WV;,W,, > und < (Lz, J)YW,,W,, > fur alle k,n,m = 1,..., N ver-
schwinden. .

Mit der Produktregel fiir Lie Ableitungen, Lemma (4.5) (i) und (iv}, Satz
(4.2) und Lemma (4.2) (iv) gilt

A

Lz J)Vy W, > = ,
=Lz, <JIV Wo > = <J LV, Wa> — <JV,LyyWn>=
= N L, < IV, W > — e <J LV, Wa > +
+ <grad gt V, >< JW, W, > — ¢t < IV Ly Wa > +
+ < grad c,:'\ W >< JV, Wi > =
= b L, <IVa 10> — i bui o <JIVe,Wn> +
top < IV, m><grad et Wy > =
= C;A5n,m bnk A+ 0) <JIVi 70> — ¢ 0bap bim <JIVi 70> —
=~ At bk bk < JVi To> =
0.

I
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Zur Behandlung der anderen Produkte erinnern wir uns an die Gleichungen
(4.10), aus denen die Relationen
<V Vo> = 0 = <JW, , Wp >

fiir alle n,m = 1, ..., N folgen. In Analogie zu den obigen Rechnungen erhalten
wir damit

<Lz, ) Vo V> =

= —¢* <JLwVa V> - it < IVa, bwVn > =

= —c[*&n,kg < JV, V> —c;’\ék,mg <JV, Vu> = 0.
und

<(Lz, J)W, Wy > =

—A

=~ < LwWa ,We> - <J Wy, LwWy>= 0.

(ii): Die lineare Unabhangigkeit der Eigenvektoren Vi,...,Vn, %1, ...Zy folgt
aus der linearen Unabhingigkeit von vy, ..., un, Wy, ..., wn. Die Kommutator-
relationen ergeben sich aus Satz (4.2) und Lemma (4.4) (iv) zu

[Vm ,V,.] =0,
(Zm 2 Za] = o <grad G\ Wn > W, — i <grad ;)\ W > Wi +
+et et (W, W) =
= A b W + A 6 W = 0,
- <grad M Vo> W, + c,_n’\ Wn  Vi] =
= ¢ 0bnm Vi .

(Zm V2]

Nach Satz (4.2) sind die Kovektorfelder JV,,JZ, also Gradienten von
Skalarfeldern auf My, die sich wegen (4.21) als nicht-kanonische Wirkungs-
und Winkelvariablen interpretieren lassen. Das zu JV, gehorige Skalarfeld ist
gemaB Folgerung (4.1) (ii) gegeben durch

A+
T o cte .
In den nachsten beiden Kapiteln wird es daher um das Auffinden der zu JZ.
gehorigen Winkelvariablen gehen.

Da die Eigenvektoren W, als Linearkombinationen der 7, definiert sind, ha-
ben wir mit den Vektorfeldern Z ebenfalls die gesuchten hamiltonischen Line-
arkombinationen von Mastersymmetrien auf My gefunden. Thre geometrische

Be.deutung ist damit auch im nicht-hamiltonischen Fall im Zusammenhang mit
Winkelvariablen fiir Multi-Soliton Losungen zu sehen.

Cy
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5 Asymptotische Interpretation der Eigenvek-
toren des Rekursionsoperators

In diesem Kapitel leiten wir eine besonders einfache Charakterisierung der in
Kapitel 4 konstruierten Eigenvektoren von @ her. Als Ergebnis erhalten wir,
daB die partiellen Ableitungen einer N-Soliton Losung s nach den asympto-
tischen Daten ¢; und ¢; die Eigenvektoren des Rekursionsoperators & liefery.
Wihrend diese Aussage fiir das Feld s, bekannt war ([13],[41]), ist nun auch
die Bedeutung von s, geklart.

5.1 Vorbetrachtungen

In Kapitel 3 hatten wir das asymptotische Verhalten einer N-Soliton L?’Sung
s benutzt, um eine Motivation fiir die Definition von s als Losung der Linear-

kombination
N

S an(s) ra Kals) = 0 (5.1)

n=0
zu erhalten. Fiir die explizite Konstruktion der Eigenvektoren des Rekursions-
operators (bzw. der hamiltonischen Linearkombination der 7,) im vo.rherigen
Kapitel 4 haben wir lediglich die (algebraische) Relation (5.1) beﬂatlgt.ohne
zusatzlich auf die explizite Form der N-Soliton Lésung einzugehen.. In .dlesem
Kapitel nun wollen wir die gefundenen Eigenvektoren Vo, Wn mit H‘lfe der
asymptotischen Daten ¢, und ¢, interpretieren. Dazu beschranken wir uns
wie in Kapitel 4 ausschlieBlich auf den nicht-hamiltonischen Fall und setzen
(vgl. Kapitel 3.2) als Startvektorfeld

Uz )
Ko(u) = ur bzw. ]\'g(( : )) = ( vy )) (5.2)

voraus, d.h. die zugelassenen Evolutionsgleichungen
w, = Ki(u) = ®(u)Ko(u) (5.3)

tel 2.3 und 3.4 betrachteten Bei-

sind translationsinvariant. Von den in Kapi :
rarchie der

spielen erfiillen dic KdV, die mKdV, die NLS und jew?ils ei.ne Hif? i
CDGSK und des HS Systems diese Voraussetzungen. EmeﬁEm-Sohton Ldsung
s der Evolutionsgleichung (5.3) ergibt sich mit (5.1) als Losung von

0 = Ki(s) — cKols) = 8 — €5 »
wobei ¢ ein Figenwert des Rekursionsoperators ist. Die allgemeine Form der
Ein-Soliton Lésung lautet damit

s{z,t) = s(c,x+ct+d) = s(e,z+4) -
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Wie zuvor legen wir die Rand- und Zwangsbedingungen an (5.1) fiir eine N-
Soliton Losung s(z, ) so fest, daB sie asymptotisch in N Ein-Soliton Lésungen
si zerfallt (vgl. Bemerkung (3.4) (1))

N N
s(z,t) = Y si(chztat+di) = Y sienz+a) . {54)

i=1 i=1
Hierbei seien die Geschwindigkeiten ¢; paarweise verschieden, und die Gesamt-
energie der Losung werde durch die asymptotisch auftretenden Ein-Solitone
getragen. Fiir die Normierung der asymptotischen Daten c;(s) und ¢;(s) von
(5.4) legen wir fest, daB sie sich aus der Betrachtung fiir t — +o00 ergeben
sollen (vgl. Kapitel 3.2). Mit Hilfe dieser Daten 138t sich die Mannigfaltigkeit
My aller N-Soliton Losungen parametrisieren (vgl. Bemerkung (3.1)). Daher
liegen die Vektoren aa_:, und an—’l fiir ¢ = 1,..., N im Tangentialraum T, My und
miissen sich in der Basis aus Eigenvektoren V4, ..., Vi, W,, ..., Wiy darstellen
lassen. Eine solche Charakterisierung von s, und s, ist das Ziel dieses Kapi-
tels 5. Dem genannten Ziel nihern wir uns in drei Schritten: Zunichst stellen
wir weitere Hilfsmittel zur Verfiigung, um dann in Kapitel 5.2 fiir die Man-
nigfaltigkeit der Ein-Soliton Lésungen das gewilnschte Resultat herzuleiten.
Mit Hilfe der asymptotischen Dekomposition (5.4) von N-Soliton Lésungen
in N Ein-Soliton Loésungen kénnen wir die Ergebnisse aus Kapitel 5.2 im an-
schlieBenden Kapitel 5.3 benutzen, um daraus die Darstellung von s, und s,,

fiir eine N-Soliton Losung s herzuleiten. In Kapitel 5.4 werden die Ergebnisse
anhand von Beispielen erlautert.

Ist s = s{cr,..oenuqiy .. qn) eine N-Soliton Losung von (5.3), so gilt fur
die partielle Ableitung s,

d
dt

Da auf der anderen Seite s, € T,AMx, kénnen wir Se, = s.(s,t) auch als
Vektorfeld in Abhangigkeit von s interpretieren. Dann gilt

(s.,) = Nj{s.] .

Os., ,
T + s, (K} .

Die gleiche Argumentation ist anwendbar auf sq, und wir erhalten insgesamt

d
ﬁ(sc.) =

Lemma (5.1): Fiirjedes i = 1,..., N sind die Vektorfelder s, und s, invariant
bzgl. Ky, d.h. es gilt

J
(5; + LI\'; )Sc. =0, (gt‘ + LK, )Sq.' =0 . (55)
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Fiir ein unter K, (u) invariantes Vektorfeld G(u,t) mit expliziter, analyti-
scher Zeitabhingigkeit kann man G(u,t) aus einer vorgegebenen Anfangsbe-
dingung G(u, 0) durch die folgende formale Reihe gewinnen (vgl. [40],[83]):

G(u,t) = exp(—tLy,) G(u,0) =
= > S ey s - (55)
n=0 ‘

Da die uns interessierenden Vektorfelder s.; und s, von analytischer Zeit-
abhangigkeit sind, ist die Reihe (5.6) anwendbar. Dariiberhinaus bricht die
Reihe in diesen Fallen nach endlich vielen Summanden ab, so da8 keine Kon-
vergenzprobleme auftauchen konnen. Nach diesen Vorbetrachtungen wenden
Wir uns nun der Ein-Soliton Mannigfaltigkeit zu.

5.2 Die Ein-Soliton Mannigfaltigkeit

Im folgenden sei s(z,t) eine Ein-Soliton Lésung von (5.3), die wir durch die
asymptotischen Daten ¢ und ¢ parametrisieren wollen. Wegen der Translati-
onsinvarianz von (5.3) ist eine reisende Welle s(z,t) mit der Geschwindigkeit
¢ von der Form

s = s(z,t) = s(c,x+ect+d) = s(c,z+q) - (5.7)
Damit folgt mit der Definition der héheren Symmetrien
B(s)Ko(s) = Ki(s) = st = cs, = ¢ Ko(s) ,

also

Ki(s) — ¢ Ko(s) = 0 . (5.8)
Ko(s) ist also der zum Eigenwert ¢ von ®(s) gehorige Eigenvel.(tor V (vgl. auch
Kapitel 3.2). Nach den Ergebnissen der vorherigen Kapitel gilt auch

ni{s) — cnls) = 0,

d.h. To{s) = W ist der zweite zum Eigenwert ¢ gehorige Eigenvektor von ®.
Der Tangentialraum T,M, am Punkt s ist also durch Ko = V und 70 = W auf-
gespannt. Um s, durch K, und 1o auszudriicken, betrachten wir wegen de.zr ex-
pliziten Form der Ein-Soliton Lésung s in (5.7) diese zunichst in Abhangigkeit
von

s = s(z,t,¢)

und machen zum Zeitpunkt ¢ = 0 fiir s.(z,?,c) den Ansatz

sc(2,0,c) = aV + bW = aKog + b7 - (5.9)
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Wegen der Translationsinvarianz der betrachteten Evolutionsgleichung (5.3)
ist a nicht eindeutig bestimmbar. Wir legen deshalb einen Bezugspunkt fest
und normieren
se(x,0,¢) = by .
Da s; analytisch vom Zeitparameter ¢ abhéngt, ergibt sich b durch Koeflizien-
tenvergleich aus dem zeitunabhingigen Summanden und wir erhalten
1= & = < grad ¢,s.(z,0,c) >
Jdc
Aus Satz (4.1) folgt < grad ¢, 7p >= ¢, dh. b=c1. Das, inva.rian!, untex:
K, ist (vgl. Lemma (5.1)), erhalten wir s.(z,t,¢) aus s.(x,0,c) mit Hilfe der
formalen Reihe (5.6). Mit Li,e=0, (1.12) und (5.8) gilt

Li,(¢7'm0) = ¢ 'Lgmy = — ¢! (I+e) Ky = —(1+0) Ko .

Insbesondere folgt daraus (Ly, Y(c'7) = 0, d.h.

se(z,t,¢) = ¢l + (I+p)t Ky . (5.10)

Auf Grund der expliziten Form der Ein-Soliton Lésungen s (vgl. (5.7) oder
auch Kapitel 3.4) und der Form der Mastersymmetrie ro(s) = zs, + const s
folgt, daB die Normierung 8¢(7,0,¢) = ¢!7; gerade d = 0 bedeutet. I?a das
Ein-Soliton keine Wechselwirkung erfahrt, ist damit ¢q in dieser Normierung
bestimmt durch ¢ = ct.

Parametrisieren wir nun die Mannigfaltigkeit aller Ein-Soliton Lésungen
durch z,cund g=ct + d = ¢t, 50 erhalten wir s = s(z, ¢, q) und s, ergibt sich
in den neuen unabhangigen Koordinaten zu

s{r,6,q) = ¢! {70+ 0gKy) =
= (W + gqV) . (5.11)

Da g und ¢ als unabhingig voneinander betrachtet werden, gilt mit (5.7)
Sg = 85, = Ky = V (5.12)

Damit haben wir nicht nur sc und s, in der Basis V und W ausgedriickt (also
in der Feldvariablen s dargestellt), sondern auferdem noch gezeigt, daB s, und
s, linear unabhingige Eigenvektoren des Rekursionsoperators zum Eigenwert
¢ sind.

Als nachsten Schritt in diesem Kapitel wollen wir nun noch die Gradienten
der asymptotischen Daten in der Feldvariablen s ausdriicken. D.h. gesucht
sind grad ¢ und grad ¢ als Linearkombinationen von JV und JW bazw. als
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Kombinationen bzgl. der hamiltonischen Vektorfelder V und Z.
Aus Folgerung (4.4) ist grad ¢ bereits bekannt als

gradc = Cylel=-e gy . (5.13)
Aus der Unabhangigkeit von ¢ und q folgt mit (5.11)
0 = ? =<gradq,s.>= ¢! <gradq,7+ ogKy > R
C
d.h. es gilt
Lng = —pqLg,qg . (5.14)

Auf der anderen Scite jst

@ =<gradq,s;>=<gradg,s, >= Lg,q ,

dq
d.h. es folgt
Lreg =1 wund L,q = —pq. (5.15)
AuBerdem gilt mit K, = el (vgl. (5.8))
Ll\'lq = cli,qg = ¢ . (5.16)
Insgesamt erhalten wir
Lemma (5.2):
grad (¢?q) = = C;' JZ . (5.17)

Beweis: Wir weisen die Giiltigkeit von (5.17) auf der Basis Ko und 7o nach.
Mit Satz (4.1) und (5.15) folgt
Lo(cfq) = 0qc® — pqc® = 0.

Die Anwendung von 7y auf

~C7IZ = G N IW = - O e T .
verschwindet wegen (2.4) ebenfalls. Fiir den Basisvektor K finden wir mit
(5.15)

Liy(c%q) = ¢* Liyq = ¢ .
Auf der anderen Scite folgt aus Lemma (4.5) (i) und (4.18)
—C' <JZ Ke>= —Cile <JW V>=c

a
und daraus die Behauptung.

Lemma (5.2) liefert uns zusammen mit (5.13) bzw. (5.11) die gesuchte
Darstellung von grad ¢ als

gradg = - Cj! oA+ (JW + ogdV) =

- Cit e gs, . (5.18)
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5.3 Die N-Soliton Mannigfaltigkeit

Es sei s = s(z,t) nun eine N-Soliton Losung, die fir ¢ — +oo die folgende
asymptotische Zerlegung hat

N N 19
s = s(z,t) ~ Z $; (c,-,z'+c,-t+d,«) = E si (e, z+q) . (6.19)
i=1 i=1

Analog der Vorgehensweise im Ein-Soliton Fall interpretieren wir s = s(z, ¢;, t)
zunéchst als Funktion in z,¢; und ¢ und suchen die Darstellung des Tangenti-
alvektors s, mit Hilfe der Eigenvektoren ¥, ..., Vv, W1, ..., Wy, Im Gegensatz
zum Ein-Soliton Fall legen wir die Normierung hier fiir ¢ — +oo .fest und
berechnen s (z,c;, 1) fiir beliebige Zeiten t mit Hilfe der formalen Relh.e (5.6)-

Fir t — 400 zerfillt s in N einzelne Soliton Lésungen, die voneinander
ungestort ihre Bahnen ziehen. Da wir €1y, ¢n als unabhingige Parixme_tef
interpretieren, ergibt sich s.,(z, ¢; t)fiirt — 400 durch (8i)e; (2, ciy ). Fur.Em.
Soliton Lésungen ist {8i)c. bereits bekannt und in Analogie zu (5.1 1) normieren
wir fiir ¢ — 400

Se(z, 0, t) ~ (8:)e(,e1,) = ¢ (Wi + (149) (z+ct+d) V) . (5.20)

Wegen der vorhandenen Phasenverschiebungen haben wir hierbei ¢ = ct im
Ein-Soliton Fall durch 9 = ¢t +d; im N-Soliton Fall ersetzt. Ist also N =1,
50 ist d; = 0, und wir erhalten das Ergebnis aus Kapitel 5.2, Mit Hilfe der
bekannten Lie Ableitungen aus Kapitel 4 hat man sich schnell ﬁberze}lgt, daB
sich die asymptotische Formel (5.20) durch Anwenden der formalen Reihe (5.6)
aus

al@:6.0) = ' (Wi + (14 0) dy) V; (5.21)
ergibt. Insbesondere folgt damit die Giiltigkeit von

Sel@6nt) = W+ (L4 0) (2 4 6t +dy) V) (5:22)
fir jeden Zeitpunkt ¢ (

unter der vorausgesetzten Normierung). Da fiir ¢ — 400
die N-Soliton Losung

s = s(z,q,t) die asymptotische Zerlegung
N
S(I, (‘,‘,t) ~ Z 8; (C,‘, T+ ¢t 4 d,)

=1
besitzt, gilt fir ¢ —, +o0 mit der Schreibweise % =¢t+d;
S = (8i) = Vi .

Wiederum liefert uns d

as Anwenden der formalen Rejhe (5.6) das gesuchte
Resultat fiir alle Zeiten ¢

salz,ci,t) = V; . (5.23)
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Parametrisieren wir nun die Mannigfaltigkeit aller N-Soliton Lésungen durch
T:Gisgi = ¢t + d, so erhalten wir s = s(z, ¢, ¢;) und s, ergibt sich zu
so(ycinq) = 7' (Wi + 0 Vi) . (5:24)
Fiir s, (z,c;, q;) bleibt (5.23) giiltig.
Als nachsten Schritt berechnen wir die Gradienten von ¢, ..., cy und g, ..., gv

mit Hilfe der Eigenvektoren W, ..., Vi, W4, ..., Wy durch
Mit Folgerung (4.1) ist grad ¢; fir jedes i = 1,..., N gegeben durc

grade; = C7' el gV, (5.25)
Fir die Berechnung von grad ¢: benutzen wir (5.23) und erhalten

bk = % =< grad ¢; ,s, >=<grad ¢, V} > (5.26)
' Tk

d
Wegen der Unabhéngigkeit der Parameter c,, ..., cy und g, ..., gn folgt auerdem
mit (5.24)

0 = % = <grad ¢ ,s, >= ¢! < grad ¢;, W, + o Vi >
Ck

Insgesamt finden wir

(5.27)

: . a: h
Lemma (5.3): Fiir jedes i = 1, ..., NV sind die Gradienten der ¢; gegeben durc

gradg = — C;le MO JW, + 0g: Vi) - (5.28)

( il 5.28
Beweis: Der Beweis von Lemma (5.3) ergibt sich durch Ilbefprlee‘ln vor‘lﬂ(f mit)
auf der Basis V. ..., Vi, Wi, ..., Wy, Fiir jedes k,i = 1,...., N erhalten
Lemma (4.5), (4.18) und (5.26)

=G M (W V> bog <V Ve>) =
= =07 ™M W V> = Gy = <gradg Vi

und aufierdem mit (5.27)

~C7 T (W, Wi > +pq < IV We>)
= -¢7! c-““”’gq,- <JV, ,Wi> = b0t =
= —poq <gradq; Vi > = <grad g, W, >



Folgerung (5.1): In den Vektorfeldern s,, und s,, haben die Gradienten von
¢; und ¢; fiir jedes t = 1,..., N die Darstellung

gradg = Cjlc¢ Jsg (5.29)
gradg, = —C7'c™ s, . (5.30)

Bemerkung (5.1):
(1) In Analogie zu Lemma (5.2) gilt fiir jedes ¢ = 1,..., N
grad (¢! ) = — C71 JZ; . (5.31)

(2) Wahlt man die Normierung von s,, und 34, wie die im Ein-Soliton Fall

fiir ¢ — —o0, so ergeben sich bis auf Phasenverschiebungen die gleichen
Resultate ([48]).

Als wesentliches Ergebnis dieses Kapitels halten wir fest:

Zusammenfassung:

(1) Nimmt man die partielle Ableitung einer N-Soliton Losung s bzgl. eines
asymptotischen Datums ¢; oder g, so erhilt man einen Eigenvektor des
Rekursionsoperators zum Eigenwert ¢;.

(2) Bis auf einen integrierenden Faktor ergeben sich s, und s, als die den
asymptotischen Daten ¢; und ¢; zugeordneten Vektorfelder.

Wahrend das Resultat fiir Sq, und die dazugehérige asymptotische Geschwin-
digkeit bekannt war ([13],{41}), beantworten die vorliegenden Ergebnisse die
Frage nach den diskreten Eigenvektoren des Rekursionsoperators im N-Soliton
Fall vollstandig. Sie lassen sich sowoh! als Linearkombinationen der Symme-
trien und Mastersymmetrien darstellen als auch durch die partielle Ableitung
nach den asymptotischen Daten charakterisieren. In Kapitel 6 werden wir
dariiberhinaus zeigen, da8 8, und s, die zu kanonischen Wirkungs- und Win-
kelvariablen gehdrigen Vektorfelder sind. Unser nachstes Ziel ist es daher, die
Skalarfelder ¢(s) und qi(s) explizit in der Feldvariablen s auszudriicken und
somit explizite Wirkungs- und Winkelvariablen in s zu konstruieren. Bevor

wir. d@t beginnen, wollen wir in Kapitel 5.4 die Eigenvektoren Sq; und s, an
Beispielen visualisieren.
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5.4 Beispiele

In diesem Kapitel plotten wir die Eigenvektoren s, und s, fiir einige aus-
gewdhlte Beispiele. Dazu nehmen wir der Einfachheit halber jeweils eine 2-
Soliton Lésung s und zeigen die entsprechenden partiellen Ableitungen von s
bzgl. der asymptotischen Daten. Da die Eigenvektoren s, und s, fir: = 1,2
und fiir verschiedene Beispiele das gleiche qualitative Verhalten haben, be-
schrinken wir uns auf die Losungen der KdV und des HS Systems. Die analo-
gen Bilder fiir die mKdV und die CDGSK findet man in ([100}).

Die 2-Soliton Lésung s(x,t) der KdV ist in Hirota-Form gegeben durch
)

2
s(z,t) = 2 (% log F(z,t) (5.32)

mit

Fle,t) = 1 + exp(m) + exp(m) + (%)2 exp(m + 172}

und fiir i = 1,2
o= \/C_,-(I—C,'t'*’ei) .

Far die Geschwindigkeiten ¢; = 0.8 und ¢; = 0.4 ist das e{]tSprGCh?nde z
Soliton in Figur 1 abgebildet (vgl. Kapitel 3.1). In jenem Bild Emd o allen
weiteren sind jeweils Schnitte entlang der Zeitachse geplottet. In li‘lgur List a!s
Parameterbereich fiir = das Intervall von —33 bis +33 gewihlt, wihrend ¢ zwi-
schen —33 und +30 luft. Die Koordinaten fiir den Standpunkt des Betracht?rs
sind (70,70,90) und die Blickrichtung ist in allen Bildern zum Nflllplml"t hin.
Die tatsichlichen Funktionswerte wurden aus asthetischen Gesichtspunkten
mit dem Faktor 24 multipliziert. L Yoo

Die GréBen e; — c;t sind in diesemn Fall nicht die gi, aber sie ‘Stlmmen~m1t %
bis auf einen Faktor, der von ¢y und ¢ abhéngt, fiberein. Da die .Koordmaten
€1;€2,q1 und ¢, als unabhangig vorausgesetzt werden, erhalten wir den.ersten
Eigenvektor des Rekursionsoperators zum Eigenwert ¢; = 0.8 dur?h die Patr-
tielle Ableitung von s in (5.32) nach ¢;. Als Funktion in z und ¢ l-St se,(z(;es)
in Figur 2 dargestellt. Im Vergleich mit Figur 1 sind die Koordma.tznf” X
Betrachters modifiziert worden zu (70,80, 40) und der Parameterbereich fir
beginnt bej —3p.



Fig. 2
1. Eigenvektor des Rekursionsoperators der KdV zum Eigenwert ¢; = 0.8

Ein zweiter Eigenvektor zum Eigenwert ¢, ergibt sich nach Kapitel 5.3 als
partielle Ableitung von s nach ¢,. Differenziert man die 2-Soliton Losung
(5.32) nach ¢;, so muB man den ”Phasenshiftfaktor”

(\/a_\/a 2

VAN

aufgrund unserer Normierung in Kapitel 5.3 als Konstante voraussetzen. Da-
mit ergibt sich s (z,t) wie in Figur 3.

In diesem Plot bewegt sich x zwischen —18 und +40 und ¢ im Bereich von —13
bis +35. Der Standpunkt des Betrachters ist (90, 55,20). Wegen des linearen

Anwachsens der Funktionswerte in der Zeit wurden die Funktionswerte nur
mit dem Faktor 1.5 multipliziert.
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,,“‘\\
' Fig. 3
2. Eigenvektor des Rekursionsoperators der KdV zum Eigenwert ¢; = 0.8

i Fiir das HS System sind die beiden Komponenten u und v einer 2-Soliton
Losung gegeben durch ([57)

2 G
log F , V= F B (533)

u = 2—
oz

Hierbei bezeichnen F und G die beiden folgenden Funktionen
F =1+ agy exp{2m;) + ay exp(m +m) +

a2 exp(2nz2) + az2 exp(2m +212)
exp(m) + ax exp(2m +ma) + exp(ie) + a1z exp(m +2m)

+

G

und #;, azo, agy, an, az, a1z, az stehen fir die Abkirzungen

m o= C:“ (z =it +€) firt =1,2
1

azp = »a02=802’

L
8C1

89



2 (& —/*)?

2 e ¥ B V1 17z | 172, 0 I = 40 g 7Ey, o
a+a/*2 (@ + 6" (@ +a"
1/4 1/4\4
(C}/«l_c;ﬂ)g (Cl/ _02/)
412 = dg2 » G2 = Qg2 @20

(" + ")y (@’ + ")

Fir die Eigenwerte ¢; = 1 und ¢; = 0.8 geben die Figuren 4 und 5 die bfil—
den Komponenten der Soliton Losung wieder. Als Standpunkt wurde h1§r
(15,50,30) gewahlt. In Figur 4 lauft  von —15 bis +15 und ¢ von —18 bis
+15, wahrend in Figur 5 die Parameterbereiche von z das Intervall von —14
bis +16 und fir ¢ das Intervall von —13.5 bis +14.5 ist. Die aktuellen z-
Werte wurden um den Faktor 1.5 vergroBert. In Figur 4 sind die aktuellen

Funktionswerte mit dem Faktor 4 multipliziert worden; in Figur 5 wurde der
Multiplikationsfaktor 5 gewahit.

—u =

Fig. 4
1. Komponente der 2-Soliton Lasung von HS mit ¢; = 1 und ¢, = 0.8
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Fig. 5
2. Komponente der 2-Soliton Lésung von HS mit ¢; = 1 und ¢ = 0.8

Genau wie bei der KdV ergibt die partielle Ableitung nach e; einen Eigenvel.(—
tor des Rekursionsoperators zum Eigenwert ¢;. Die Figuren 6 und 7 zeigen die
Komponenten des 1. Eigenvektors bzgl. ¢;. In diesen Bildern ist der Stand-
punkt (55,85, 40), z variiert zwischen —8 und +9 und t zwischen —6 und +5.
Die aktuellen z- und ¢-Werte wurden jeweils mit dem Faktor 2 vergrofert. I‘n
Figur 6 sind die aktuellen Funktionswerte mit 1.5 und in Figur 7 mit 2 multi-
pliziert worden.

Die partielle Ableitung der Soliton Losung nach ¢; liefert den zweiten Ei-
genvektor des Rekursionsoperators zum Eigenwert ¢;. Die Komponenten dl.&%
Eigenvektors sind in Figur 8 und Figur 9 geplottet. Der Betrachter hat in Figur
8 die Koordinaten (90, 60, 20), wihrend in Figur 9 die Koordinaten (99, 50,20)
gewahlt wurden. Der Parameterbereich von z bzw. t liegt zwischen —?0 und
+35 baw. zwischen —20 und +20. Die aktuellen z- und t-Werte sind mit dem
Faktor 0.5 reduziert worden. Die aktuellen Funktionswerte wur.dfen in Figur 8
mit dem Faktor 0.1 und in Figur 9 mit dem Faktor 0.3 multipliziert.
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Fig. 6
1. Komponente des 1. Eigenvektors zum Eigenwert ¢; = 1

s

Fig. 7
2. Komponente des 1. Eigenvektors zum Eigenwert ¢; = 1
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Fig. 8
1. Komponente des 2. Eigenvektors zum Eigenwert ¢; = 1

Fig. 9
2. Komponente des 2. Eigenvektors zum Eigenwert ¢, = 1
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6 Wirkungs- und Winkelvariablen

Wie in den Kapiteln zuvor bezeichne s eine N-Soliton Lésung, die asymptotisch

ie Form
die N

s~ ) sifa,s+q) (6.1)
=1
habe. In Kapitel 3.5 hatten wir gezeigt, daB das auf die Untermannigfaltigkeit
My eingeschrankte System
8 = K,(s) (62)

ein hamiltonisches System auf My bzgl. ©y(s) = Jlx;N(s) ist. Dartiberhinaus
besitzt das System (6.2) die N unabhangigen ErhaltungsgroBen Ho(s), HI(S.)7 .
Hy_y(s) (vgl. (2.10) und Lemma (3.1)), die zusatzlich alle in Involution sind,
d.h. fir die

{H:, H; }90 =0

gilt (vgl. (1.7), (2.4) und (2.8)). Damit ist (6.2) vollstandig integrabel ir.n
Sinn des klassischen Theorems von Arnold/Liouville ([2],{9]). Auf My exi-
stieren daher Skalarfelder Q.(s), ..., Qn(s), Py(s), ..., Pn(s), die als kanonische
Wirkungs- und Winkelvariablen interpretiert werden kénnen. Fiir deren ex-
plizite Konstruktion suchen wir gema8 der Begriffsbestimmung in der Ein-
leitung einen implektischer Operator O(s) und Skalarfelder Q,(s), ..., @n(s),
Pi(s), ..., Pn(s), H{(s) = H(Q,...,Qn) mit den folgenden Eigenschaften

(W1) K\(s) = O(s) grad H(s) ,

(W2) {Qi Qe =0 = {P,,P)e ,
{Qi Pile = &, .

Parametrisieren wir die Mannigfaltigkeit aller N-Soliton Losungen mit Hilfe
der asymptotischen Daten ¢; und ¢, so miissen sich die gesuchten Wirkungs-
und Winkelvariablen @; und P, in ¢; und ¢; ausdriicken lassen. Die Inverse
Streumethode liefert zum Beispiel diesen Zusammenhang fir den nicht-hamil-
tonischen Fall. Ohne von deren Ergebnissen Gebrauch zu machen, werden
wir mit den hier entwickelten Hilfsmitteln die Wirkungs- und Winkelvariablen
konstruieren. Dieses geschieht zunichst in den Koordinaten ¢; und gi. Um
den Zusammenhang zu den physikalisch relevanten Groflen auf der gesamten
Mannigfaltigkeit M herzustellen, suchen wir die Darstellung von @Q; und F;
beziiglich der Feldvariablen s. Mit diesem Ergebnis kdnnen dann alle in (W1)
und (W2) vorkommenden Gréfen mit bekannten Feldern auf M in Beziehung
gesetzt werden.

Die Ergebnisse der Kapitel 4 und 5 liefern uns in Kapitel 6.1 die gesuch-
ten Wirkungs- und Winkelvariablen fiir den nicht-hamiltonischen Fall (vl
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auch (81]). In Kapitel 6.2 behandeln wir den hamiltonischen Fall, wahrend im
abschlieBenden Kapitel 6.3 die Resultate an Beispielen interpretiert werden.

6.1 Der nicht-hamiltonische Fall

In Kapitel 4 hatten wir bereits hamiltonische (bzgl. ©o(s) = J~1(s)) Vektor-
felder Vi(s) und Zi(s) gefunden, die in der Lie Algebra der Vektorfelder die
folgenden Kommutatorrelationen (vgl. Lemma (4.3), Lemma (4.4) und Satz

(4.3))
Vi Vil =0, [2,2) =0, 1Z,V)) = i0e7 Vi

erfillen. Da es sich bei der Abbildung ©p o grad um einen Lie Algebren Ho-
momorphismus handelt, sind die zu V,(s) und Z(s) gehorigen Skalarfelder
(bis auf Normierung) geeignete Kandidaten fir die gesuchten Wirkungs- und
Winkelvariablen. Mit Hilfe von J(s) lassen sich Vi(s) und Z;(s) auf Kovek-
torfelder abbilden, die wiederum in Termen von grad c;(s) und grad g(s)
ausgedriickt werden kénnen. Da die Untermannigfaltigkeit My kein linearer
Raum mehr ist, gibt es keinen vorgezeichneten Weg, die zu grad ¢;(s) und
grad ¢(s) gehorigen Potentiale zu finden. Aus diesem Grund schlagen wir
einen Umweg ein und bestimmen alle relevanten Grofen zunichst in den Ko-
ordinaten c,, ..., CN,y 1, -, gn. Im zweiten Schritt werden die Ergebnisse in der
Feldvariablen s formuliert. Fiir diese Umformulierung bendtigen wir die em-
pirische Tatsache (vgl. Anhang B), daB fir A € N, die Skalierungsmaster.sym-
metrie 1o(u) auf der gesamten Mannigfaltigkeit eine eindeutige hamiltonische
Formulierung besitzt. Genauer gesagt setzen wir im Fall

grad F(u) (6.3)
(6.4)

A=0: J(w) ro(w)
AeEN: ro(u) = Oy(u) grad F(u) .

Hierbei ist )\ die in (1.16) eingefiihrte Normierungskonstante. Da alle Fel.der
J(u)’TO(u)ae,\(u) und F(u) auf die Untermannigfaltigkeit einschrankbar sind
(vel. Kapitel 3), 148t sich ro(s) auf My gemas (6.3) und (6.4) darstellen, d.h.
wir erhalten im Fall

A=0: J(s) 7o(s) = grad F{(s) (6.5)
AeN: T0(s) = ©x(s) grad F(s) . (6.6)

Nach diesen Vorbemerkungen wenden wir uns nun der Konstruktion der Wir-
kungs- und Winkelvariablen in den Koordinaten ¢y, ..., N, @1, - 4N 24

il

Weil die Mannigfaltigkeit My unter den gewéhlten Randbet'iingmigeﬂ ho-
mGomorph zu RV jst ([34]), ist die Parametrisierung der N -Soliton Losungen
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s durch die asymptotischen Daten ¢; und ¢; eine globale Karte von My. In
dieser Karte werden ¢y,...,qn, ¢, ...,cn als Koordinaten in R2V betracht.et.
Die Tangentialvektoren g—;, g—; € T,My entsprechen in dieser Karte den Ein-

heitsvektoren des R*V ([88])

0 0
1
0
o _ 1. 9 _|. , (6.7)
8¢ 0} 8¢ 0
. 1
0
0 0

und die Dualitatsklammer < ... > zwischen Tangential- und Kotangential-
raum geht iiber in das Standardskalarprodukt im R 2V.
Fiir Felder A, die wir in der Karte betrachten, schreiben wir abkiirzend A
an Stelle von Algry s qn, cr, r¢n). Fir Felder, die in der Variablen s aus-
gedriickt werden, benutzen wir A(s) ohne auf die expliziten Transformations-
gesetze fiir Tensorfelder einzugehen.

Der symplektische Operator J wird in der obigen Karte dargestellt als
antisymmetrische Matrix mit

< Jsg 58, > far ,k=1,.. N
T = < Jsq 1 8cu_y > fir i=1,.. N, k=N+1,...,2N
BT ) < sy vsy > fir t=N+1,.,2N, k=1,..,N
KISy 1 Sqy > fir i,k=N+ 1,..,2N

Dasich s, und s, mit Hilfe von V; und W; ausdriicken lassen (vgl. (5.23),(5.24)),
kann man Ji; aus < JV,, V; >, < JVi, Wi > und < JW;, W, > berechnen. Mit
Lemma (4.5) (i), (4.18) und wegen

<JV,‘,V)¢>= 0 =<JVV,',W;¢>
{vgl. (4.10)) erhalten wir

0 -A
J=CcC (o-1) ) : 6.8
s (g, e (69)
wobei als abkiirzende Schreibweise A, fiar die Diagonalmatrix

g 0 ... 0

0 -0
Ap = . . . (69)

0 - o



steht. Da die Tangentialvektoren s, und sy Eigenvektoren von & zum Eigen-
wert ¢; sind, hat @ in der gewahlten Karte Diagonalgestalt mit

A0 6.10)
o= (S a) <

Die hoheren implektischen Operatoren sind gema8 (3.52) fiir jedes n € Ng
definiert als
0 An+1-2-0) ) (6.11)
o ang-l _ angy =1 ' .
0, = o"J! = "9, = (] (“A(n+1—,\_p) 5
Fiir die in Kapitel 4 konstruierten Eigenvektoren Vi, W, und Z; finden wir mit
(5.23), (5.24) und (5.31)

1 ey (6.2
Vi = Sqi = (0,...,0,1,0,...,0)* = 6 grad (C_]mc, ), ( )

> 13
Wi = ¢ S, — 0 Gi S¢; = (0, ooy —0Gis 0,.., C{,O,...,O) ’ (6 )
Zi = (0., —0¢ 0. im0, .0 =
O grad (—Cs ¢f @) - )
Hierbei bedeute * die Transposition bzgl. < .,. >, d.h.
0

(6.14)

I

=3

—_
©
o
—
=)
=
=
*
I
O

0
ren von ® (vgl. Folgerung

Aus der Dekomposition von K, und 7, in Eigenvekto! o

. der S
(4.3) (iv)) erhalten wir mit (6.12) und (6.13) die Darstellungen cer
und Mastersymmetrien
Ko = (&, s &y 0y s O L
T™w = (0@ @ IN NG s

i den. Mit
In (2.6) sind die Erhaltungssitze Ha als < JKa, 70 > :egz]:e;tm:;r(&m
(6.8), (6.15) und (6.16) folgt daber (vgl. auch (3.17) und Folg

(6.15)
, By (6.16)

3 6.17
H = G L™ (6.17)

i=1
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In der gewahlten Karte wird die Evolutionsgleichung s, = K,(s) zu dem k-
nearen System

d . .
a (41,~~~,QN701,~-,CN) = (a1, o, N0, .., 0)* . (6.18)

Nach den Vorbemerkungen in diesem Kapitel ist fir A € N, die Mastersym-
metrie 7o(s) hamiltonisch bzgl. ©(s) := ©,(s). Hierbei beachte man, dal J
auf My invertierbar ist, und wir ©g(s) = J~!(s) gesetzt hatten (vgl. Ka-
pitel 3.5). Mit den Transformationsgesetzen fiir beliebige Tensorfelder unter
Kartenwechsel ([2]) bleibt ein Vektorfeld hamiltonisch

To = Ograd F ,
und © = O, hat die Gestalt (vgl. (6.11))

0 A
0 = C;! 0-”) . 6.19
4 ( “A(l-o) 0 ( )

Daraus erhalten wir die hamiltonischen Formulierungen von 75 und K, bzgl.

O als

N

o = Ograd(—Cy;) cfq) = Ograd F , (6.20)
=1
1 N
K, = Ograd(C; ] S ety = Ograd H . (6.21)
[

Als Konsequenz finden wir die Giiltigkeit des folgenden Satzes:
Satz (6.1):
(i) Die Koordinaten Q; := C, 1 cf und P, := C; ¢ bilden einen Satz vott
kfmonischen Wirkungs- und Winkelvariablen (bzgl. ©) auf My, d.h. es
- {Q.Q)e =0 = {P,P}o,
{Q,Ple = Cibiy . (6.22)
(ii) Das Skalarfeld H ist eine Funktion der Wirkungsvariablen Q;.

(iii) Die den kanonischen Wirkungs- und Winkelvariablen @; und P; zugeord-
neten hamiltonischen Vektorfelder sind gegeben durch

A = (0,..,1,0,...,0)* = O grad Q; , (6.23)
B; = (0,...,0,~¢}7%0,..)* = Ograd P, . (6.24)
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(iv) Fiir die Lie Ableitung von Q; und P; in Richtung 7o gilt

LnQi=0Qi, Ly Pi=—eh . (6.25)

Beweis: (i): Wir erinnern an die durch © definierte Poissonklammer (vel.

(1.7)) fir Skalarfelder f,g € F(Mn)
{f.g}e = <gradg,O grad f >

und erhalten die Behauptung durch Nachrechnen. Ebenfalls durch Nachrech-
nen ergeben sich die Aussagen (ii) und (iii).
(iv): Mit der Definition der Lie Ableitung L, f als

Lf =<grad f,70>

erhilt man die angegebenen Lie Ableitungen.

GemaB unserer Definition (W1) und (W2) von kanonischen Wirkungs- und
Winkelvariablen haben wir diese Groflen mit Satz (6.1) gefunden. Innerh.a.lb
der Karte sind diese GroBen nicht eindeutig, denn jede andere Wahl des im-

plektischen Operators hitte ebenfalls zu Skalarfeldern gefiihrt, die .die Anff)r-
derungen (W1) und (W2) erfillen. Unser spezielles Augenmerk richtet sich
hysikalischen” Variablen

aber auf solche Felder, die eine Darstellung in der "p !
s haben, d.h. wir wollen Wirkungs- und Winkelvariablen konstruieren, di.e sich
mit den bekannten Grofien der Ausgangsgleichung darstellen lassen. In diesem
Sinn sind die Wirkungs- und Winkelvariablen eindeutig, wie sich im folgenden

zeigen wird.
Lemma (6.1):

(i) Die den Wirkungs- und Winkelvariablen @ und P; zugeordneten hamil-
tonischen Vektorfelder A; und B; haben die folgende Darstellung

A,‘ = .Sq_ 3
e ds
B, = —¢ s, = —¢ b-(a'—) .

(ii) Das Skalarfeld H ergibt sich in den bekannten Skalarfeldern H, zu

1
= —— Hy_yy -
H T+e (1-1)
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Beweis: Die Darstellung von A; und B; folgt aus (6.7), (6.23), (6.24) und der
Kettenregel, wahrend die Darstellung von H sich sofort aus (6.17) und (6.21)
ergibt. u}

Lemma (6.1) liefert uns die Darstellung der Vektorfelder A; und B; in der
Feldvariablen s als

Ai(s) = O(s) grad Qi(s) = g—;(s) s (6.26)
Bi(s) = O(s)grad Ps) = —g%(s). (6.27)

Die explizite Form von Q;(s) und Pi(s) ergibt sich aus

Satz (6.2): Es sei F(s) das von 74(s) eindeutig bestimmte Skalarfeld auf My
mit
To(s) = O(s) grad F(s) .

Dann haben die Skalarfelder Q;(s) und P;(s) die folgende Darstellung in der
Feldvariablen s

Qi(s) = ==7=(s) und  Pfs) = — 5 (s) - (6.28)

Beweis: Da Lie Ableitungen unter Kartenwechseln invariant sind ([88]) folgt
mit Satz (6.1) (iv) und Lemma (6.1)

2Qi(s) = Lne) Qils) = <grad Qi(s) ,mo(s) > =

< grad Q;(s) ,0O(s) grad F(s) > =

— < grad F(s),0(s) grad Qi(s) > =
oF

- <grmF(s),%(s)> = —57(8)

I

und analog

— 0 Pys)

Lo Pi(s) =
— < grad F(s),0(s) grad Pi(s) > =

e <gradF(s),b%(3)> = 9%(3) .
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Folgerung (6.1): Weil Poissonklammern zwischen Skalarfeldern ebenfalls in-

variant unter einem Kartenwechsel sind, folgt aus Satz (6.1) (i), a8 die Ska-
larfelder
. _1OF 9F
Q'(S) = ? 5; (S) und P.‘(S) = - E)T;f_) (s) (6.29)

kanonisch sind bzgl. ©(s), d.h. sie erfilllen (W2).

Formal 148t sich das Skalarfeld H(s} mit
Ki(s) = O(s) grad H(s)

nach Satz (6.1) (ii) in den Variablen Q1(s);--s Qn/(s) ausdriicken. Im Sinne
unserer bislang verfolgten Philosophie fragen wir nun noch nach dem Zusam-
Ilr)lenha.ng von H(s) mit den aus der Reduktion bekannten Skalarfeldern Ha(s)-
a
H = ——H,
= '1_:*_—5 (1-3)
gilt, folgt
(1) Ist A = 0 oder A = 1, so stimmt H bis auf die Normierung mit Hy bzw.
H,, iiberein. Diese GrofBen stammen aus der Reduktion von der gesamten
Mannigfaltigkeit und sind explizit als Funktion der Feldvaiablen s gege-
ben. In allen hier betrachteten Beispielen tritt genau dieser Fall ein (vgl-
auch Kapitel 6.3 und Anhang B ).

(2) Ist X eine natiirliche Zahl echt grofer als 1, so kann H nur mit auf der ge-

samten Mannigfaltigkeit existierenden Skalarfeldern identifiziert werden,
H, mit n € No

wenn es aufer den hier betrachteten Erhaltungsgrofien
noch weitere gibt, die die Rekursionsformeln in Kapitel 2 mit einem
negativen Index erfiillen. Dieses trifft zum Beispiel auf einige Gittersy-
steme wie das relativistische Toda-Gitter ([85]) und auf die sogenanuten

tri-hamiltonischen Systeme wie zum Beispiel das Kaup-Broer System
({18],[66}) zu.

Man beachte hierbei, daB wir fir die E
rung von 7 bereits A € No vorausgesetat hatten (vg

xistenz einer hamiltonischen Formulie-
]. Anhang B).

Folgerung (6.2):

(i) Die Skalarfelder
aF

1 8F _ e
Qi(s) = - _é 5;’ (3) und Pi(") = 3((:") ( )

bilden einen Satz von kanonischen Wirkungs- und Winkelvariablen (bzgl.
©,(s)) auf der N-Soliton Mannigfaltigkeit Mn-
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(ii) Ist A =0 oder A =1, so ist die Evolutionsgleichung
sy = Ky(s) = O(s) grad H(s)

ein hamiltonisches System mit der in der Feldvariablen s explizit dar-
stellbaren Hamiltonfunktion H(s) = H(;_x(s).

Damit ist unser Ziel erreicht, wir haben fiir den nicht-hamiltonischen Fall die
gesuchten Wirkungs- und Winkelvariablen gefunden. Analog den Ergebnissen
der Inversen Streumethode erhalten wir in der Kartendarstellung die kanoni-
schen Koordinaten als Funktionen in ¢; und ¢;. Die zugrundeliegende Poisson-
struktur wird in unserem Zugang durch den implektischen Operator bestimmt,
der 7y zu einem hamiltonischen Vektorfeld macht (vgl. auch Kapitel 6.3).
Dariiberhinaus haben wir im Gegensatz zu der Inversen Streumethode eine
explizite Darstellung der Wirkungs- und Winkelvariablen in der Feldvariablen
s gefunden. Auch hierbei spielte die eindeutige hamiltonische Formulierung
von To(u) bzw. die Existenz des globalen Skalarfeldes F(u) die wesentliche

Rolle.

Wegen (6.26) und (6.27) sind die im vorherigen Kapitel geplotteten Eigen-
vektoren des Rekursionsoperators bis auf Konstanten die zu den kanonischen
Variablen gehorigen hamiltonischen Vektorfelder. Insbesondere folgt

Js

3;(3) = Vi(s) ,

f (Wis) + eq Vils))

I

ds
1-¢ 77
< e (s)

d.h. die Symmetrien K, bestimmen die zu den Wirkungsvariablen gehorigen
Vektorfelder. Die zu den Winkelvariablen gehorigen Vektorfelder sind dagegen
bis auf die Normierung in Kapitel 5.3 strukturell durch die Mastersymmetrien
7. festgelegt (vgl. Einleitung).

6.2 Der hamiltonische Fall

Auch im hamiltonischen Fall suchen wir kanonische Wirkungs- und Winkelva-
riablen fiir die auf die N-Soliton Mannigfaltigkeit eingeschrinkte Gleichung

se = (14 p) Ky(s) (6.30)

(vgl. die Normierung in Kapitel 1) in Termen der Feldvariablen s. Da die
Methoden und die Ergebnisse der Kapitel 4 und 5 nur auf den nicht-hamilto-
nischen Fall zutreffen, miissen wir hier andere Hilfsmittel als in Kapitel 6.1
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benutzen. Wir wollen deshalb kurz resiimieren, welche Informationen uns aus
den ersten drei Kapiteln bereits zur Verfiigung stehen.

Wie im nicht-hamiltonischen Fall lassen sich der implektische Operator
Oo(u), die Vektorfelder I, (u) und 7,(u) und die Skalarfelder Hq(u) und Tu(u)
auf die Untermannigfaltigkeit einschrinken, so daB fir s € My gilt (vgl. (2~19)
und (2.20))

Oo(s) grad Ha(s) ,
B(s) grad T.(s) -

(n + 0) Ka(s)

T.(8)

Die Skalarfelder H,(s) und T,(s) erfillen auf My fir jedes n,m € N, die
folgenden Poissonklammern (vgl. Lemma (2.5) i)

I

{H,,Hn}e, = 0 , {T",Tm}eu = (m——n) Tatm >

{Ta ,Hn}e, = < grad Hp ;7 >= (m+ 0) Hutm - (631)

I?a die Vektorfelder Ko(s), ..., Kn—-1(s),70(8)s -+ x-1(8) eine Basis des Tangen-
tialraumes T, M bilden (vgl. Kapitel 3.3) und auferdem ©(s) invertierbar
ist, sind die Gradienten der Skalarfelder Ho(s), - Hy-1(8)To(s)r-- Tn-1(s)
linear unabhingig. Die Struktur der Poissonklammern (6.31) ermoglicht es da-
her, diese Skalarfelder als Koordinaten auf My zu interpretieren. Wie in der
Einleitung bereits erwahnt, liefert diese Wahl einen Satz von nicht-kanonischen
Wirkungs- und Winkelvariablen. Da wir aber auf der Suche nach kanonischen
GroBen sind, miissen wir eine andere Parametrisierung voil My, d.h. eine
entsprechende Koordinatentransformation auf My finden.

Wie im nicht-hamiltonischen Fall kénnen wir die Mannigfaltigkeit der N-
Soliton Lésungen natiirlich auch mit Hilfe der asymptotischen Daten €1, .- CN»
@1, ..., qn parametrisieren. Weil diese Parametrisierung von My nicht von den
Eigenschaften der Mastersymmetrien abhangt, ist sie in den beiden hxer' be-
trachteten Fallen eine globale Karte von My (vgl. Kapitel 6.1). In dieser
Karte suchen wir zunichst die Darstellung der Skalarfelder H, und T,

Lemma (8.2): Die Darstellung von H,, T, und O ist in der gewahlten Karte

gegeben durch

N
H, = § Z Cn+n Tn P 1 E c:.‘+'q (6.32)
n §=1 * =1
und A
; 0 Ap-o ) (6.33)
—_— l -
6o = § ("'A(l-t)

Hierbei ist § # 0 eine skalare Konstante.
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Beweis: Mit

grad H, = §(0,...,0,(n+0) &t ..., (n+ 0) oY)
grad T,

_ -1
— & (Tt e (n+ o) T g, (n+ o) SN gw)

weist man die Relationen (6.31) in der Karte nach. o

Nach Definition erhalten wir die Darstellung der Symmetrien durch

1 T %]
K, = meogradH,, = (¢f,en €}, 0,...,0)

und die der Mastersymmetrien durch
T = Gograd T, = (—(n+g) ctqy,..., —(n+0) cpgn, G, Y

die fiir alle K, und fiir 7o mit den entsprechenden GréBen im nicht-hamiltonischen
Fall @ibereinstimmen (vgl. {6.15) und (6.16)). Wir definieren wiederum © :=

60 und erhalten mit der gleichen Argumentation wie in Kapitel 6.1 (vgl. (6.19)
und (6.20))

N
To=600(-6) cfq) = Ograd T .
i=1
Beachtet man die Gleichsetzung C; = 6, so lassen sich die Sitze (6.1) und
(6.2), Lemma (6.1) und die Folgerungen (6.1} und (6.2) wortgleich auf den
hamiltonischen Fall iibertragen. Wir erhalten also in Analogie zum nicht-
hamiltonischen Fall (vgl. (6.26), (6.27) und Folgerung (6.2)):

Satz (6.3):

(i) Die Skalarfelder

1 87, T,
Qi(s) = T2 Bg (8) und P(s) = - 3 )

bilden einen Satz von kanonischen Wirkungs- und Winkelvariablen (bzgl.
64o(s)) auf der N-Soliton Mannigfaltigkeit My. Die Evolutionsgleichung
hat die folgende Form

st = (1+¢) Ku(s) = Oo(s) grad Hy(s) .

104



(ii) Die den kanonischen Wirkungs- und Winkelvariablen zugeordneten Vek-
torfelder sind

Ai(s) = Bo(s) grad Qi(s) = g—;(s), (6.34)
Bi(s) = Os)grad Pi(s) = —gg(%(s). (6.35)

ZusammengefaBt kann man sagen, dafi die kanonischen Wirkungs- und
Winkelvariablen in den von uns unterschiedenen Fallen die gleiche Struktur
haben. Sie werden im wesentlichen durch die Skalierungseigenschaften der Evo-
lutionsgleichung bestimmt und lassen sich darstellen als die partielle Ableitung
eines Skalarfeldes nach den asymptotischen Daten. Trotz dieser Gemeinsam-
keiten gibt es fundamentale Unterschiede zwischen dem hamiltonischen und
dem nicht-hamiltonischen Fall. Diese Unterschiede (vgl- auch Kapitel 1 bis
3) lassen sich in der von uns gewahlten Kartendarstellung besonders einfach
charakterisieren. Aus diesem Grund wollen wir auf diesen Aspekt zum Schluf
des Kapitels eingehen.

Im nicht-hamiltonischen Fall waren ¢, ..
SN 0 QnZ,, wahrend im hamiltonischen Fall N
Nach Definition verschwindet also die Linearkombination Troon(nte ) Kn =
0 im hamiltonischen Fall. Fiir die gleiche Linearkombination der Mastersym-
metrien 7, hatten wir in Kapitel 3.3 bereits herausgefunden, daB sie auf My
nicht verschwindet. Tatsichlich findet man in der Karte, die durch die asymp-
totischen Daten gegeben ist

., cn die Nullstellen des Polynoms
san(n+e)z” gewahlt wurde.

N N
Y a(nto)me = - Z an (n+0)* (a1, LN, 0,5 ) =
n=0 n=0
ud . Os
= —;‘_;‘an("+9)"qq¢5‘-}:,

steht (vgl. Kapitel 6.1).

wobei s,, fir den Einheitsvektor (0, .-,1,0,...,0) :
blen ausdriicken

Damit la8t sich E,‘Lo an(n+0)7, auf My auch in der Feldvarial
und man erhalt

N N a
n2=:0 a, (n+9)m(s) = - "§l a, (nt+e)n g ;?7:: (s) -

An dieser Stelle vernachlissigen wir unseren Standpunkt der p?mtellbu-
en den hereditaren Ope-

keit in der physikalischen Variablen s und untersuch redit e
rator ®(s) : .My — T.Mn, der in Kapitel 3.5 fur den hamiltonischen

folgendermaSien definiert wurde
QI(n = Kn-H * DT, = Tatt -
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Weil die Darstellung der Vektorfelder K, und T, in den Koordinaten ¢; und ¢;
bereits bekannt ist, erhalten wir ® in der folgenden Form

(A -l
‘I’*(o Al)

Hierbei ist A, wie in (6.9) definiert und I, bezeichne die Diagonalmatrix

¢ 0 .. 0
0 R
m, = ; q2 . ;
0 -+ - gy

Obwohl ® eine Hierarchie untereinander kommutierender Symmetrien erzeugt,
ist ® im Gegensatz zum nicht-hamiltonischen Fall (vgl. (2.15)) kein invariantes
Tensorfeld unter K,, und daher kein Rekursionsoperator im Sinne von Kapitel
1. Dariiberhinaus besitzt ® auch keine Faktorisierung der Form (vgl. (2.2))

¢ = 0, 67!

mit einem implektischen Operator ©,. Die Annahme der Existenz einer solche.n
Faktorisierung liefert namlich, daf O nicht antisymmetrisch ist. In Analogie
zum nicht-hamiltonischen Fall findet man dagegen (vgl. (2.5) und Folgerung
(4.1)

(i) L,® = o,
() ¢,....c, sind die jeweils zweifach auftretenden Eigenwerte von ®.

Wahrend im nicht-hamiltonischen Fall der Eigenraum zum Eigenwert ¢; von @
zwei-dimensional ist und von 8, und s, aufgespannt wird (vgl. Kapitel 5.3),
ist im hamiltonischen Fall nur Sq. ein Eigenvektor von ® zum Eigenwert ;.
Der Vektor s, ist dagegen ein Element des Kerns von (® —cil)?, d.h. @ laBt
sich nicht diagonalisieren. Dementsprechend ist im nicht-hamiltonischen Fall
P(z) = N\ (z - ¢;) das Minimalpolynom von & (vgl. Folgerung (4.1)) und
P?*(z) das Minimalpolynom von ® jm hamiltonischen Fall.

Zusammenfassend kann man sagen, dafl der formal definierte Operator @ im
bamiltonischen Fall wesentlich andere Eigenschaften hat als der in der physika-
lischen Variablen s existierende Operator ® im nicht-hamiltonischen Fall. Viel-
leicht ist umgekehrt diese prinzipiell andere Struktur auch ein Grund, warum
® im hamiltonischen Fall keine explizite Darstellung in der Feldvariablen be-
sitzt. In diesem Zusammenhang stellt sich eine weitere interessante Frage.
Wie bereits erwihnt (vgl. Kapitel 1) gelang es Fokas und Santini hereditire
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Rekursionsoperatoren fiir Gleichungen mit hamiltonischen Mastersymmetrien
zu konstruieren. In ihrem bilokalen Zugang haben sie die Ausgangsmannigfal-
tigkeit erweitert und dort die entsprechenden GroBen gefunden. Der Zusam-
menhang zwischen den Rekursionsoperatoren von Fokas und Santini und den
hier betrachteten Operatoren ist noch ganzlich ungeklart.

6.3 Beispiele
Fir die KdV ist A = 1, d.h. o(u) ist hamiltonisch bzgl. ©1(x)

400
To(u) = (D + 2Du + 2uD) grad i/ zudr = O,(u) grad F(u).

Die Einschrankung von F auf die Untermannigfaltigkeit My ergibt F(s) und
die Einschrinkung von ©,(u) auf My ist definiert durch 8(s) = Ou(s) =
®(s)J~1(s), so daB auf My gilt

To(s) = O(s) grad F(s) .

Da g = 1/2 ist, liefert Folgerung (6.2) die kanonischen Wirkungs- und Win-
kelvariablen Q;(s) und Pi(s) als

Qi(s) = -2‘;—:(3) = _.;- :m,, dz | (6.36)
is) = ___3£_ s} = —l ; +°°.’t.9 dzr . 6.37
Pls) = ~ g () = Ve[ w (6.37)

Man beachte, daB die angemessene Poissonstruktur bei uns durch c.ien zweiten
implektischen Operator der KdV gegeben ist. In den frithen Arbeiten der In-

versen Streumethode zu den Wirkungs- und Winkelvariablen wurde immer die

erste Poissonstruktur verwandt ([112},[1]), bis Faddeev und Takhtajan da.fa.uf
Ergebnis Liefert. Meines

hinwiesen ([29]), da8l dieser Ansatz kein konsistentes

Wissens hat bis auf Ruijsenaars niemand versucht, iber die Inverse Streume-

thode eine angemessene Poissonstruktur fir die Interpretation von Wirkungs-

und Winkelvariablen der KV zu finden. Sein Resultat ((94]), dﬂ-B' die streu-
matrix kanonisch bzgl. der zweiten Poissonstruktur 61 ist, deckt sich mit den
hier hergeleiteten Ergebnissen.

Pir die mKdV gilt A =0, d.h.

7o(u) = D grad % 27wt ds = Oofu) grad Fle)
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und ¢ = 1/2. Die kanonischen Wirkungs- und Winkelvariablen Q:(s) und P(s)
erhalt man in Analogie zur KdV als

oF +00

Qi(s) = -2 E (s) = — /_w z8s,, dz (6.38)
oOF +0o0

P(s) = - m (s) = — \/c_.[_w zss., dz . (6.39)

Dieses Ergebnis stimmt mit den bekannten Resultaten iiber KdV und mKdV
iberein. Diese bejden Gleichungen stehen namlich iiber eine Bécklund-Trans-
formation, die sogenannte Miura-Transformation ({73]), in Beziehung. Uber-
tragt man mit Hilfe dieser Transformation die implektischen Operatoren ([47])
der mKdV, so wird aus @y(u) = D der Operator ©,(u) = D® + 2Du + 2uD
fir die KdV.

Fir die Hierarchie der CDGSK, die aus Ko(u) = u, hervorgeht, gilt o =
1/6. Da X = 1 ist, hat die Mastersymmetrie 7o(u) die Form

1 ftoeo
7o) = (D® + 2Du + 2uD) grad ﬁ/ sudzs = ©,(u) grad F(u) .
Die kanonischen Wirkungs- und Winkelvariablen Qi(s) und Pi(s) ergeben sich
wiederum mit Folgerung (6.2) zu

aF 1 rto
(s) = —6—(s) = —= 6.40
Qi(s) 6 o (s) 2/_00 zs,, dz (6.40)
oF 1 +o00
R(S) = - m (s) = — 5 cf/‘s/_(>° zs,, dzr . (641)

Zum Abrunden der bisherigen Ergebnisse wollen wir die zweite Hierarchie
G.(u) von Symmetrien in die entwickelte Struktur von My einordnen. Da
die Vektorfelder G,, mit den K, vertauschen und zusatzlich auch hamiltonisch
bzgl. des gleichen implektischen Operators sind, sind die Skalarfelder a., die
die Mannigfaltigkeit My durch

N

Y oa. Ky = 0

n=0
definieren (vgl. Definition (3.2)), ebenfalls Erhaltungsgrofien zu den G,,. Daher
folgt, daB die Vektorfelder G, ebenfalls tangential an My sind. Insbesondere
miissen sie sich in der Karte, die durch die asymptotischen Daten definiert ist,
darstellen lassen. Weil die Darstellung von K, und 7, bereits bekannt ist, folgt
aus den Kommutatorrelationen (vgl. Kapitel 2.3)

[Kn YG"I] =0 B [Tn 1Gm] = (m + g) Gn+m
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2 2 2
schon G, = (c;'+3,c;+5,...,c:,+3,0 , ..., 0)*. Damit ist auch die folgende

Relation giiltig auf My
N
S auGa= 0

n=0
Wie bei der CDGSK existieren auch bei dem HS System zwei Hierarchien
von Symmetrien. Betrachten wir als Startvektorfeld

- u Uy
I\o((v)) = (Ux> )
so ergeben sich die Konstanten g und A zu

o = und A=1.

-

7o ist damit hamiltonisch bzgl. ©,, und wir erhalten
u 1 e u u
7'0(( v )) = 91(( :‘) ))grad n /_w zudr = 91(( v ))grad F(( v )) .

1
Es bezeichne 5= : die N-Soliton Losung des HS Systems. Mit Folgerung
2

(6.2) sind die kanonischen Wirkungs- und Winkelvariablen Qi(3) und P{3)
bestimmt durch

Qi(3) = —4 %F: H = - /_:o zs,, dz (6.42)
BF 400
P(3) = - 5@-‘—)(5) = - c?/‘/_w 2sl dz . (6.43)

Interessanterweise sind in diesem Fall die Skalarfelder Qi(3) und P;(3) nur von
der ersten Komponente s der N-Soliton Losung abhingig-

Wie bei der CDGSK ist jedes Vektorfeld G, der sweiten Hierarchie von Sym-
metrien ebenfalls tangential an My und 1aBt sich in der Karte darstellen als

Gu = C;H-;., G’z‘+%,---, c,':,ﬂ,() r 0)* °

chien K, und G, durch die

Man sieht, daB in diesem Fall die beiden Hierar ;
bunden sind, denn es gilt

formale Quadratwurzel des Rekursionsoperators ver

_(Mp O _ (M O )K..- .
Ka = ( 0 Al/?) Gu—l baw. Gn = ( 0 A1/2 1
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Dariiberhinaus erfiillen die Vektorfelder G, auf My auch die Relation

N
ZanG,,:O.

n=0
Fiir die BO ist ¢ = 1 und 7o(u) ist hamiltonisch bzgl. Go(u) = D mit

+0o
To(u) = Dgrad% / zul dz =: Op(u) grad Ty(u) -

Die kanonischen Wirkungs- und Winkelvariablen ergeben sich auf My mit Satz
(6.3) zu

Qi(s) = —%(s) = - /_:o:rssq, dz (6.44)
Pys) = —%—:Z)(s) = - /_:Q:tssc' dz . (6.45)

Da die Standardtechniken der Inversen Streumethode bei der BO nicht an-
wendbar sind, gab es bislang in diesemn Fall keine mathematische Interpreta-
tion von ¢; und ¢; als Wirkungs- und Winkelvariablen ([109]). Mit den hier
entwickelten Methoden ist diese Liicke geschlossen.

Zum Ende dieses Kapitels wollen wir fiir eine 2-Soliton Lésung der BO die
den Wirkungs- und Winkelvariablen entsprechenden Vektorfelder s, und s,
plotten (vgl. Kapitel 5.4). Dazu nehmen wir eine 2-Soliton Lésung s in der
folgenden Form ([72])

() = 55 (g (1)),

wobei f die komplexe Funktion

4Amn,

fzt)y =1 - mnp + m

+ i(m+n)

ist. f ist das konjugiert Komplexe von f und 7% steht als Abkiirzung fir

rn,:ck(z—ckt+d,,), k=1,2
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f’gzr 11(; zeigt d.le 2-Soliton Lasung s mit den Geschwindigkeiten ¢ = 0.6 und
2t— .2. In Figur 11 und 12 sind die den Wirkungs- und Winkelvariablen
en:l]')rec:henden Vektorfelder s,, und s, geplottet. Man beachte das gleiche
%‘ull lta.tlve Verl}alten dieser Grofen mit denjenigen im nicht-hamiltonischen
draei gill‘jle Kapitel 5.4). Die I.(oordinaten des Betrachters betragen in allen
bis 430 erilh(—m, :—60, 40). Die Variable z durchlauft das Intervall von —30
D a,kt’ Wila rend fir ¢ der Pa.ra..met,erbereich von —28 bis +28 gewahlt wurde.
Figure ufoen I-Wel:te wguden jeweils um den Faktor 1.5 vergrofert. In den
F'g n _llnd 11 sind die aktuellen Funktionswerte mit dem Faktor 6 und in
igur 12 mit dem Faktor 0.3 multipliziert worden.

Fig. 10
2-Soliton Losung der BO mit &1

=0.6und & = 1.2

111



AR
¥
<
S
,

.
=

Fig. 11
g, der BO mit ¢; = 0.6 und ¢; = 1.2

Fig. 12
8¢, der BO mit ¢; = 0.6 und c2=1.2
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7 Literaturvergleich und Ausblick

Im ersten Teil dieses AbschluBkapitels wollen wir gunachst die Resultate und
Met{loden dieser Arbeit kurz mit in der Literatur vorhandenen &hnlichen
Ansitzen vergleichen. Im zweiten Teil werden einige mbgliche Verallgemei-
nerungen diskutiert.

Die prinzipielle Struktur eines hereditaren Rekursionsoperators auf einer
en.dlich dimensionalen Mannigfaltigkeit wurde von TenEikelder untersucht. In
seiner Arbeit ([102]) startet er auf einer 2N dimensionalen Mannigfaltigkeit
mit einem hereditiren Operator ®, der neben einer Faktorisierung in einen
implektischen und einen symplektischen Operator auch N verschiedene Ei-
genwerte mit jeweils zweidimensionalen Eigenraumen besitzt. Unter dieser
Vorraussetzung beweist TenEikelder die Existenz von hamiltonischen Eigen-
vektoren von ®, deren Potentiale als Wirkungs- und Winkelvariablen inter-
pretiert werden konnen. Im Unterschied dazu haben wir gezeigt, daf sich ein
bei TenEikelder als existent vorausgesetzter Operator aus der Reduktion eines
ll.ﬂendlich—dimensionalen integrablen Systems auf die Multi-Soliton Mannigfal-
tigkeit ergibt. Die entsprechenden Eigenvektoren haben wir explizit mit Hilfe
der Symmetrien und Mastersymmetrien konstruiert.

Mit der Struktur von Rekursionsoperatoren fir endlich dimensionale Sy-
steme beschiftigen sich auch Adams, Anderson und Varley in [3]. Als spezielle
Beispiele werden dort die Ein- und Zwei- Soliton Mannigfaltigkeiten der KdV
mit einem entsprechend eingeschrankten Rekursionsoperator betrachtet. Als
Koordinaten auf M; bzw. M; wurden die von uns als ¢; und ¢; benannten
GroBen (vgl. Kapitel 5.4) genommen und mit Hilfe von Computeralgebra
die Zerlegung der Symmetrien K. und der Mastersymmetrie To in s, und s,
gezeigt. Da wir die asymptotischen Daten ¢; und ¢; als Koordinaten gewahlt
haben, stimmen die fiir die KdV im Ein- und Zwei-Soliton Fall abgeleiteten Er-
gebnisse in [3] mit den unseren bis auf eine Koordinatentransformation iiberein.
Dariiberhinaus ist zu bemerken, daB sich die hier bewiesenen Resultate aus
strukturellen Argumenten ergeben und deshalb fiir N-Soliton Losungen belie-

biger integrabler Systeme in einer Raumdimension gelten.

Im Zusammenhang mit den Soliton Losungen von integrablen Gleichungen
taucht die Frage auf, ob es moglich ist, das Verhalten von Soliton Losungen
durch ein Teilchensystem zu modellieren. Das in Kapitel 6 eingefihrte lineare
System (6.18) wurde zum Beispiel benutzt, um Soliton Losungen als freie Teil-

chen zu interpretieren, deren Massen Erhaltungsgrofien wihrend der zeitlichen
explizite Konstruktion von

Entwicklung sind ([5},16}{7],[12}[14}15]). Fr die
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endlich dimensionalen Systemen, die zu jedem Zeitpunkt in Relation zu Soli-
ton Losungen stehen, d.h. die auch die Interaktion von Solitonen darstellen,
sei auf die Arbeiten [65],[103],[4],[16],[20],[24],[64],[17],[95],[92],[93] verwiesen.
Dort werden die Pole von Soliton-Gleichungen mit Teilchensystemen identifi-
ziert. Da sich die Pole wie die Trajektorien der "interacting solitons” bewegen
([44]), liefert die einfache Darstellung der "interacting solitons” mit Hilfe der
partiellen Ableitungen s, und s, ([48]) einen weiteren Zugang zu den Teil-
chensystemen.

Dariiberhinaus sind die Arbeiten von Ruijsenaars ([95],[92],[93]) firr uns
von besonderem Interesse, weil in ihnen die Transformation dieser endlich di-
mensionalen Teilchensysteme auf Wirkungs- und Winkelvariablen untersucht
wird. Die dort gefundenen Variablen stimmen mit den aus der Inversen Streu-
methode bekannten (und damit mit den in dieser Arbeit konstruierten) Gréfen
bis auf eine kanonische Transformation iberein.

Zum AbschluB kommen wir zu der Diskussion, ob die hier vorgestellten
Methoden und Ergebnisse auch auf andere Soliton- Gleichungen ausgeweitet
werden konnen. Wie bereits erwahnt (vgl. Kapitel 3.4), lassen sich die Me-
thoden ohne gréBere Modifikationen auf komplexe Gleichungen und Gittersy-
steme in einer "Raum”dimension und mit verschwindenden Randbedingungen
iibertragen.

Wahit man statt verschwindender Randbedingungen periodische Randbe-
dingungen, so zeigt die Arbeit von Grinevich und Orlov ([54]), daB die Ma-
stersymmetrien im Fall der KdV analog den hier vorgestellten Ergebnissen
interpretiert werden kénmnen. Damit stellt sich die Frage, ob diese Interpre-
tation auch mit den hier angewandten Methoden gezeigt werden kann. Aus
folgenden Griinden ist meiner Meinung nach eine solche Frage zu bejahen:

¢ Auch fiir periodische Randbedingungen beschreibt

N
Z Qay, I{n =

n=0
die N-Soliton Lésungen ({8o]).

* Die hier benutzten algebraischen Relationen wie zum Beispiel Kommu-
tatoreigenschaften und Lie Ableitungen reflektieren von den Randbedin-
gungen unabhingige algebraische Eigenschaften integrabler Systeme.

Natiirlich mu8 fiir periodische Randbedingungen der Integrationsoperator D~}
entsprechend modifiziert werden, aber prinzipielle Schwierigkeiten erwarte ich
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in diesem Fall nicht.

Dafiir ist es fast unmaglich, eine Prognose fiir Gleichungen in t.nehr als ei-
ner Raumdimension zu stellen. Die Struktur der bislang beka.nntfan n?tegrabl.en
Systeme in zwei Raumndimensionen unterscheidet sich nimhc.h in \.nelen Din-
gen von den Gleichungen in einer Raumdimension. Im Vergleich mit l:i!:;rgm
Zugang ergibt sich eine wesentliche Schwierigkeit aus fier T.atsache,l : l.tel‘
Zusammenhang einer Linearkombination von Symmetrien mxt dex} als So % 0;
nen bezeichneten Lésungen bislang nicht geklart ist.. Dabei ist dies zgr”eln
ein recht schwieriges Problem, da die strukturellen Elgenschafter‘l :’ion olito.
Lbsungen in mehr als einer Raumdimension nahezu unbekannt sind.
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A Soliton-Lésungen der BO

In diesem Kapitel weisen wir nach, daB die gruppentheoretische Definition
(3.2) einer N-Soliton Lésung der BO unter geeigneten Rand- und Zwangsbe-
dingungen aquivalent zur asymptotischen Definition (3.1) ist. Dariiberhinaus
wird aus der folgenden Konstruktion der allgemeine Zusammenhang der Defi-
nitionen (3.1) und (3.2) im hamiltonischen Fall deutlich.

Aus der expliziten Form der Ein-Soliton Losung der BO

c

- Al
Hr—ct+d)?2+1 (A1)

s(z,t) = —2

folgt sofort, daB im Ein-Soliton Fall die Gleichung (vgl. Kapitel 2.3 (f))
2Ki(s) = s, = —cs, = —c2 Ky(s) (A.2)
schon
Ki(s) + ¢Kg(s) = 0 (A.3)
impliziert. Die ErhaltungsgréBe ¢ 138t sich auf ganz M durch das Skalarfeld
1 +00
folu) = — u? dr

21 Jio

fortsetzen, da fo(s) = ¢ gilt. Damit ist

Ky(u) — Jo(u) Ko(u)

auf ganz M wohl definiert, und wir kénnen die Richtungsableitung dieses Vek-
torfeldes in Richtung der Mastersymmetrie 2-ter Stufe So (vgl. Kapitel 2.2)

So :=[S.1,m] =42%u, + S8z

betrachten. Die Evaluierung dieser Richtungsableitung auf der Ein-Soliton
Mannigfaltigkeit M, liefert eine 0, so daB So(s) tangential an diese Mannigfal-
tigkeit ist. Da mit dem gleichen Argument alle Symmetrien K, (s) tangentiale
Vektorfelder sind und der Kommutator zwischen Vektorfeldern den Tangenti-
alraum invariant 1aBt ([88]), sind auch alle Mastersymmetrien ,(s) tangential
an M, (vgl. (2.25)). AuBerdem gilt (vgl. (2.19))

folw) = 2 Hofu) .

Die Lie Ableitungen von Hy in Richtung der 7,, sind bekannt (vgl. (2.21)),d.h.
insbesondere folgt auf M

LrofO = fO .
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Dit.a Evaluierung dieser Grofen auf der Untermannigfaltigkeit My ist wohl de-
finiert, da sowohl o(s) als auch fo(s) auf M; eingeschrinkt werden konnen.
Somit erhalten wir
Lﬂ)c = CI[TO] =¢c

und mit analogen Argumenten

Lyc=c'[n] = -
Mit ‘vollétindiger Induktion finden wir dann auf M; aus Ki = —cKo die
Giltigkeit von K, = (—¢)* Ko, denn es gilt (vgl. (2.18))

(n +2) I"TH-I = [Tl 11\'7:] = [1'1 7(_0)" I\’o] =
((=e)")'[n] Ko + (=9)" [n, Kdl
n(—c)* 'Ky + (—o)" 2 K1 =
(n+2) (=" Ko .

Im Ein-Soliton Fall erhalten wir also fiir die BO (vgl. auch die entsprechende
Charakterisierung im nicht-hamiltonischen Fall in (3.7))

K.(s) = (—¢)" Ko(s) -

.Als nichsten Schritt betrachten wir eine N-Soliton Losung s, die asymptotisch
in N Ein-Soliton Losungen s; zerfallt

I
il

I

N N G
sot) @ Y sl@t) = X -2 g ot ar el
= i=1 ' ) '

Fiir das Vektorfeld Ko erhalten wir far ¢ — oo daraus die asymptotische
Zerlegung
. 1 1 X
Fols) = 2o m 2 3 (s (20))e -
2 23
ls aus einem polynominalen An-
Ibert Transformation H auf ein

on Ko, K1 und

Die hoheren Symmetrien K, (s) bestehen jewei
teil in s, s, ... und einem Anteil, in dem die Hi
Polynom in s, s,, ... wirkt. Dies folgt aus der expliziten Form v
7; und der Definition (vgl. (2.18))

(n + 2) I(n+l = [Tl ,Kn] -

Fir t — +oo gilt daher auf Grund der asymptotischen Dekomposition von $
und der Linearitat von H

N N
Ka(s) = Ka(} %) = Y Kals) =
N =1 i= 1 N
- S(carkls) = g Ll ek . A9

i=1
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Damit stimmt asymptotisch die Darstellung der K,(s) fiir die BO (bis auf
den Faktor 1/2) mit der Darstellung der Symmetrien (vgl. (3.7)) im nicht-
hamiltonischen Fall iiberein. Asymptotisch existieren also Skalarfelder aq, ..., ay
mit ay, als symmetrische Funktion der Ordnung n der Geschwindigkeiten ¢y, ..., e
(vgl. Kapitel 3.2), so da8 die Gleichung

N

> aau(s) Ku(s) = 0

n=0
asymptotisch erfiillt ist. Weil die ¢y,...,cx zu jedem Zeitpunkt ¢ definiert sind,
konnen wir auch deren symmetrische Funktionen ay, ..., ay zu jedem Zeitpunkt
definieren. Daher ist nach Konstruktion das Vektorfeld

N

Y(s) = 3 au(s) Knls)

n=0

zu jedem Zeitpunkt auf My definiert und invariant unter
s = Ki(s)

da mit ¢, ...,cy auch aq, ...,an ErhaltungsgroBen fiir die BO sind. Also gilt
2 Y(s) = 0, dh. Y(s) ist unabhingig von der Zeit. Damit ist fiir eine
N-Soliton Losung s der BO die Gleichung

N

Y au(s) Ka(s) = 0 (A.5)

n=0
fur alle Zeiten giiltig. Es ist also gezeigt, daB sich jede N-Soliton Losung
s der BO durch (A.5) charakterisieren 1aBt. Beschreibt umgekehrt die Glei-
chung (A.5) eine invariante Untermannigfaltigkeit von My, so lassen sich wie
im nicht-hamiltonischen Fall Rand- und Zwangsbedingungen an die Losungen
von (A.5) so festsetzen, daB (A.5) die N-Soliton Losungen gemaB Definition
(3.1) beschreibt. Insgesamt haben wir also gezeigt, daB unter geeigneten Bedin-
gungen die gruppentheoretische Definition (3.2) auch die N-Soliton Losungen
der BO eindeutig charakterisiert.

An der Konstruktion der Ergebnisse fiir die BO sieht man deutlich, daf
der wesentliche Punkt die Existenz des Skalarfeldes fo ist. Alle anderen Fol-
gerungen ergeben sich dann bereits aus den in Kapitel 2 hergeleiteten Re-
kursionseigenschaften der Gleichung. Sofern man also ein Skalarfeld So mit
den bendtigten Eigenschaften findet, lassen sich die Gedankenginge auch auf
andere Gleichungen im hamiltonischen Fall dibertragen.
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B Hamiltonische Formulierung von 7y
Wir erinnern an die Normierungen (vgl. (1.16))
LyJ =X, L,d=0¢, & =0 (B.1)
und halten als empirische Tatsache fest, daB fiir alle bekannten Beispiele gilt
L,©; = (1-X)61 . (B:2)

Ist A =0, so folgt L,,J =0, d.h. 7o ist invers-hamiltonisch bzgl. J. Ist AeN,
so gilt mit der Definition von ©; = ®*~10; (vgl. (2.14))

L,0, = L, (®¥'0,) =
(k—1)8*10, + (1-))®*'6 =
(k—2) 6% ,

d.h. L, ©; = 0 genau dann, wenn k = A.

Insgesamt erhalten wir also
Satz (B.1): Ist A € Ny, so ist 7o(u) (invers-) hamiltonisch bzgl. genau emnes
Operators aus der Familie

{J(w)} U {On(u)[n€EN} .

Wir setzen im Fall
A=0: J(u) ro(u) = grad F(u) ,
AEN: ro(u) = ©x(u)grad F(u) .

.. - =0
Bemerkung (B.1): In allen bisher bekannten Beispielen gilt entweder A

oder A = 1.
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Verzeichnis feststehender Symbole

Ta € X(M)

J € TO)(pr)
0, € TOA(p)
® € TaN(p)
My

s € My

Sn

&n

c"

A 0,6

5

(5

Mannigfaltigkeit

Feldvariable

Tangentialbiindel von M

Kotangentialbiindel von M

Tangentialraum von M an der Stelle u

Kotangentialraum von M an der Stelle u

Raum aller Skalarfelder auf M

Raum aller Vektorfelder auf M

Raum aller Kovektorfelder auf M

Raum aller p-fach kovarianten und g-fach kontravarianten
Tensorfelder auf M

Verkniipfung von Vektoren und Kovektoren

Kommutator

Poissonklammer

Erhaltungsgroge

Symmetrie

Mastersymmetrie (1. Stufe)

symplektischer Operator

implektischer Operator

Rekursionsoperator

Untermannigfaltigkeit aller N-Soliton Lésungen
N-Soliton Lésung

asymptotisch auftretende Ein-Solitone der N-Soliton Losung s
Eigenvektor des Rekursionsoperators

Eigenwert der Rekursionsoperators, Geschwindigkeit von s,
Skalierungskonstanten

Kroneckersymbol
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