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Abstract

Computer-based systems change our everyday life. For instance, mobile applications
offer location-based services that allow us to find friends or restaurants nearby. Such
services are often based on complex distributed systems. The involved devices have
to cooperate in order to realize the desired functionality and, thus, they have to
coordinate their actions depending on the current situation. From a developer’s point
of view, it is hardly possible to foresee every scenario and to elaborate appropriate
strategies in advance. Hence, one way to reach the desired service quality levels are
intelligent systems, whose components are able to learn strategies on their own.

This thesis deals with learning in such large and distributed systems. We focus on
settings that show an interesting and frequently observable structure. Namely, devices
(agents, hereafter) are often confronted with a sequence of different—probably, but
not necessarily comparable—situations. The agents have to solve a common task
and, thus, have to learn a good coordinated behavior for each situation. When a new
setting occurs, old strategies might either become useless or establish a good basis for
further adaption, depending on the similarity of the previous and the new situation.

Models for these problems quickly become complex and introduce research ques-
tions on their own. Hence, to focus on the learning process, we will deal with simple
sequences of stateless games. Each game is played repeatedly for a certain number
of iterations, which the agents do not know in advance, before a new game occurs.
We develop a model, called sequential stage games (SSG), that formalizes such
problems, and establish some required foundations. Then, we propose Distributed
Stateless Learning (DSL), which is a multiagent reinforcement learning approach for
cooperative SSGs. To speed up learning in systems with thousands of agents, we also
develop several coordination strategies. These strategies coordinate the agents’ action
choices, e.g., using communication or by storing learned knowledge on so-called
storage media in the environment.

We provide a careful theoretical analysis of our approach and prove its conver-
gence to (near-)optimal solutions, if each game is played sufficiently long. Further-
more, we show that DSL enables learning under agent-individual noised reward
perceptions. Our theoretical results are supported by empirical analyses, which are
mainly conducted in a variant of the Iterative Agent Partitioning Problem (IAPP). The
IAPP is a multi-objective optimization problem that requests a repeated partitioning
of agents onto targets according to some global performance goals. In addition, we
investigate several aspects that are related to the general problem setting.

To summarize, we provided first insights into learning and coordination in se-
quences of games and developed efficient approaches for the considered scenarios.






Zusammentassung

Unser Alltag wird immer stiarker durch Computer-gestiitzte Systeme beeinflusst.
Hinter vielen mobilen Diensten verbergen sich beispielsweise komplexe verteilte
Systeme, die sich aus einer Vielzahl kooperierender Komponenten zusammensetzen.
Aus Entwicklersicht ist es kaum moglich, alle Komponenten mit Verhaltensstrate-
gien fiir alle erdenklichen Situationen auszustatten. Eine Moglichkeit trotzdem ein
vorgegebenes Mal} an Service Qualitit zu erreichen, besteht in der Entwicklung von
intelligenten Systemen, die selbststindig und kontinuierlich lernen, sich moglichst
gut an die jeweiligen Situationen anzupassen.

In dieser Arbeit beschiftigen wir uns damit, wie Geréte (oder Agenten) in groflen
verteilen Systemen autonom lernen konnen, ihre Aktionen so zu koordinieren, dass
eine gemeinsame Aufgabe moglichst gut gelost wird. Insbesondere konzentrieren wir
uns auf Probleme, die aus einer Abfolge verschiedener Situationen bestehen. Wir neh-
men an, dass eine Problemldsung (Strategie) wihrend des Betriebs gelernt wird und
nur solange relevant ist, wie die aktuelle Situation andauert. In der folgenden Situati-
on konnen gelernte Strategien im einfachsten Fall angepasst und weiter verwendet
werden, oder sie miissen wegen zu groBen Unterschieden verworfen werden.

Wir stellen ein Modell auf, mit dessen Hilfe solche Probleme formal modelliert
werden konnen und entwickeln darauf aufbauend einen verteilten Lernansatz, der von
jedem Agenten im System ausgefiihrt wird. Dieses sogenannte Distributed Stateless
Learning (DSL) Verfahren lernt mittels Reinforcement Learning, d.h. es lernt welche
individuelle Aktion im Zusammenspiel mit dem Verhalten der anderen Agenten
aktuell sinnvoll ist, indem Aktionen ausgefiihrt und numerische Riickmeldungen
iiber die Aktionsgiite in den Lernprozess einbezogen werden. Um das Lernen in
sehr groBBen Systemen zu beschleunigen, prasentieren wir zusitzlich verschiedene
Koordinationsstrategien, die beispielsweise Wissen in der Umgebung ablegen oder
bei denen Agenten lokal Informationen austauschen.

Der entwickelte Ansatz wird theoretisch und empirisch untersucht, und wir zeigen,
dass DSL in der Lage ist, optimale oder beinahe optimale Losungen zu lernen.
Als Testumgebung wird ein generisches Aufteilungsproblem betrachtet, in dem
sich Agenten auf eine Menge von Zielen in der Umgebung verteilen miissen, so
dass mehrere gegensitzliche Ziele optimiert werden. Neben diesen Ergebnissen
stellen wir weitere Verfahren und Konzepte vor und geben Einblicke in relevante
Fragestellungen, wie bspw. das Lernen mit verrauschten Wahrnehmungen.

Am Ende bleibt festzuhalten, dass diese Arbeit erste Einsichten in das betrachtete
Problemszenario bietet und dass effizientes Lernen in diesem Umfeld mittels DSL
moglich ist.
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Chapter

Introduction

Computer-based systems become more and more ubiquitous and useful in everyday
life. For the acceptance and success of such systems simplicity is a key requirement.
That is, the end-users do not want to deal with technical details. Instead, they expect
their devices to work correctly, out of the box, and with a seamless integration into
an already existing technical environment.

This demand for simplicity quickly leads to conflicting situations, in particular,
because applications nowadays show a steadily increasing complexity. For instance,
complexity can arise if application services involve many interacting devices in
loosely coupled networks, or if multiple distributed components have to agree on
a coordinated joint behavior. One approach to deal with this complexity, while
ensuring simplicity, is to build intelligent systems that autonomously decide how to
best behave so as to reduce the need for human intervention.

Therefore, it is a promising approach to equip devices with the ability to learn.
This enables the systems to find strategies not just for fixed problem settings but also
for sudden and unexpected changes in dynamic and complex environments. However,
the goal is not to find some strategy but an optimal—or at least near optimal—one.
Accordingly, learning is also closely related to optimization. Since a device usually
has to operate in an environment that contains other devices and because individual
actions might influence the behavior of others, coordinated (joint) actions become a
particularly important issue. Furthermore, a completely decentralized approach is
desirable because usually there is no central instance and the devices have to base
their decisions solely on local information.

A simple navigation example clarifies these points. Assume that you want to
visit some friends in another city. Then you might drive on highways and, all of a
sudden, an accident blocks your route. Your in-car navigation system then has to
determine the “best” detour. However, all other cars around you are faced with the
same situation. If all systems decide to take the same detour via a smaller road, then
this road might quickly be congested, resulting in further delay for all cars. Instead, it
would be better if the devices coordinate their route planning to optimize the global
traffic flow, e.g. by equally distributing the cars to alternative detours. Since not all
possible conditions, including current traffic, construction sites or weather, can be
foreseen, the behavior of each system should be subject to constant learning so as
to enable the devices to adapt to these dynamic settings. Also, there is no central
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instance that allows the devices to coordinate their actions. Thus they have to deal
with the situation in a decentralized way using only local information.

In this thesis, we focus on developing learning approaches for such large and
decentralized systems involving hundreds or thousands of devices (also called agents)
that have to cooperate in order to reach a common global goal with the best possible
result. Since this is a very general setting for which a universal solution is hardly
achievable, we will focus on problems that exhibit a special structure. Namely, in our
setting, agents will be confronted with a particular situation only for some unknown
but limited time before a new situation occurs. Hence, the agents will deal with a
sequence of different problems, whereas they have to learn how to best solve each
problem during the available unknown timespan.

This sequential structure also occurs in the above car navigation example: after you
have arrived at your destination city, you are confronted with the problem of finding
a free parking lot close to your final destination. However, other people will search
for a free space, too. Hence, your navigation system has to deal with a different and
new situation, in which, again, a behavior that is coordinated with other participants
is highly desirable, e.g. to equally distribute all cars on the possible parking areas.
Such parking problems will frequently reoccur in different cities, whereas in each
city only the current scenario is of interest (cf. Fig. 1.1). Accordingly, there is also
a sequence of such problems that have to be solved one after the other, probably
re-using knowledge from previous situations. Using learning mechanisms to adjust
strategies for such kinds of sequential problems under dynamic and unforeseeable
conditions again can lead to better solutions.

-'EE’ ¥ 4 s' ’
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Fig. 1.1 Sequence of similar partitioning problems in the car parking example.

In both situations of the simplified and exemplary car navigation problem, we
are able to identify that a distribution or partitioning of some objects (cars) to
another set of objects (detours; parking areas) has to be found such that some
global criteria are optimized (equal distribution on detours and minimization of
the delay; equal distribution to parking areas and minimization of the distance to
a final destination). Since we focus on systems with a sequence of problems, a
sequence of such distributed and repeated partitioning problems establishes a nice
challenge for the developed approaches, in particular if it additionally includes a
multi-objective optimization component. One such problem is the Iferative Agent
Fartitioning Problem (IAPP). It describes a multi-objective optimization problem
in the form of a Multiagent System (MAS) that demands a repeated partitioning of
mobile agents onto a special set of targets located in an environment. Since the IAPP
considers only stateless settings, i.e. the solution qualities in a particular situation
do only depend on the joint action, the problem is well suited as a first testbed to
investigate learning in game sequences.
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In summary, this thesis introduces and investigates sequential stage games (SSG)
which are a structured game class for learning in the described settings. The goal is
to develop an efficient distributed learning approach for cooperative SSGs. Given
that specific structure, one question is how well agents can reuse learned knowledge
such that they are able to benefit from solutions of previous situations. We consider a
particular cooperative SSG that is a variant of the general Iterative Agent Partitioning
Problem (IAPP) as testbed for the presented approaches.

1.1 Background

One seminal contribution in the area of learning is the development of the ()-Learning
algorithm [Wat89], which is a reinforcement learning (RL) approach. In RL, an agent
learns a policy, that returns the best action to execute in every state, by executing
actions, observing reactions, and getting numerical feedback in the form of rewards
(or punishments). It is proven to converge to optimal policies in single-agent Markov
Decision Processes under some assumptions [WD92] [JJS94].

In general, learning in systems composed of many autonomous entities is con-
ducted in multiagent systems (MAS). Such system consists of a set of autonomous
units called agents that are located in an environment which can also contain further
objects. Agents are able to perceive and modify the environment by performing
actions. MAS are frequently used by researchers [Wei99] [Fer99] [Woo09] due to
their flexibility and generality. According to e.g. [Wei99], they have for instance been
applied in areas as diverse as electronic commerce, telecommunication networks,
transportation systems, traffic scenarios, or social systems, to name a few.

Based on the idea of reinforcement learning, and often inspired by ()-Learning,
many algorithms for Multiagent Reinforcement Learning (MARL) have been devel-
oped since the late 1990s, e.g. [CB98] [LRO0O] [Lit01] [KK02] [WS03] [GLP02]
[Bow04] [ALOS]. A common framework, which is a generalization of single agent
Markov Decision Processes, is known as stochastic games (SG). Games of this class
can have arbitrary probabilistic state transitions and thus generally show no particular
structure. Nevertheless, there are algorithms for special subclasses of stochastic
games, e.g. also for cooperative stochastic games [LR0O0] [KK02] [WSO03]. Further-
more, there are also algorithms that try to exploit special problem properties, e.g.
[GLPO2] use problem structures to identify relevant joint actions instead of learning
values for all possible joint actions.

However, most of the existing MARL approaches deal with rather small MAS,
frequently involving only two agents [CB98] [LROO] [KKO02]. Also, algorithms
that exploit the aforementioned sequential problem structure, to the best of our
knowledge, have not yet been investigated. Hence, efficient learning algorithms that
provably converge to optimal joint behaviors in large problems that have the structure
highlighted before are a challenging topic that is covered in this work.

1.2 Structure

Figure 1.2 illustrates the overall structure of this thesis. As one can see from the
figure, we organized the text into five separate parts:
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Part I General Background: The first part deals with the background of this
thesis. Chapter 2 introduces existing general concepts and research areas that
are related to our research. Then, a more specific and detailed introduction to
reinforcement learning in single and multiagent systems is presented in Chapter 3.

Part II Foundations: Whereas the first part describes existing work, the second
part introduces the particular foundations developed for this thesis. Chapter 4
introduces a novel game class, called sequential stage games (SSG), and a con-
ceptual model that will be used for learning in the proposed game class. Chapter
5 presents the Iterative Agent Partitioning Problem (IAPP), an exemplary multi-
objective optimization problem that can be modeled using the novel game class.
We motivate, define, and analyze that problem in detail as it will be used as
testbed throughout this work. Since the agents need to coordinate their actions to
successfully (and fast) learn in the considered games, we introduce a coordination
concept in Chapter 6. The concept defines external storage media as a means for
coordination and discusses some relevant aspects. Later, it will be combined with
the proposed MARL approach.

Part III Algorithms: The main part of this work develops, describes, and evalu-
ates several (learning) algorithms for the considered problem domain. We begin
in Chapter 7, where we investigate learning in deterministic single agent systems
with noised rewards. Then, Chapter 8 presents and analyzes the main learning
approach, called Distributed Stateless Learning (DSL). DSL is made for learning
in cooperative SSGs with potentially many agents and will be shown to be able to
converge to optimal solutions. Based on the insights of learning under noisy re-
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wards from Chapter 7, we also investigate the influence of noise on DSL. In order
to speed up learning in large systems composed of hundreds or even thousands of
agents, Chapter 9 introduces several coordination strategies that can be used in
DSL. Thereafter, Chapter 10 empirically analyses DSL and these strategies in
various settings of the IAPP testbed. The last two chapters of this part deal with
the concept of storage media as means for coordination. In Chapter 11 we com-
bine it with DSL to allow environment-mediated knowledge transfer during the
learning process. Finally, Chapter 12 presents a combination of a state-of-the-art
communicative approach for the IAPP with storage media.

Part IV Conclusions: This part contains Chapter 13, which summarizes this the-
sis and presents an outlook on possible future work.

Part V Appendix: The last part contains a geometric proof for the best placement
of storage media with respect to obstacles and communication, as well as details
on some simulation results.






Part I
General Background







Chapter

Background and Related Work

The purpose of this section is two-fold. First, we introduce some general background
knowledge concerning algorithms and concepts that will re-appear later in this
thesis. At the same time, we present different research areas and some representative
approaches and relate them to the context of this work.

In detail, Sect. 2.1 introduces the reader to agents and multiagent systems. Then,
Sect. 2.2 provides a detailed overview on the Online Partitioning Problem which
inspired the agents-to-targets assignment problem considered throughout the thesis.
We approach this problem from the perspective of multirobot research in Sect. 2.3.
Since we deal with large numbers of agents, Sect. 2.4 thereafter introduces the
reader to swarm intelligence. Sect. 2.5 presents the idea of learning in complex tasks
based on knowledge acquired in related tasks. Finally, Sect. 2.6 shortly discusses
optimization from a general perspective.

2.1 Multiagent Systems

Roughly speaking, a multiagent system (MAS) consists of autonomous agents that are
situated in some environment. Situated agents are able to observe and to modify their
environment. Accordingly, there is a tight connection between both entities which
is often considered as “agent/environment duality” [Fer99], i.e. the environment is
everything outside of the agent, everything beyond the control of the agent. One can
already conclude from this abstract description that multiagent systems can be used
as model in a broad number of applications areas including robotics, software design,
simulation of artificial social societies, or distributed problem solving to name a
few (see e.g. [Fer99] [Wei99] [Woo09] [RN10]). As a result, also a wide variety of
definitions can be found in the literature. We do not intend to discuss all of them
in detail. Instead, we refer the reader to [LBEK11], where we provide a survey on
the most important models. In that work, we consider existing models and present a
universal formal model whose description is beyond the scope of this thesis.

Given this abstract notion of a MAS, we now want to develop an understanding
of what is considered to be an agent in this work. Therefore, consider the definitions
of Wooldridge [Woo09] and Ferber [Fer99]:
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Definition 1 (Wooldridge’s Agent). An agent is a computer system that is situated
in some environment, and that is capable of autonomous action in this environment
in order to meet its delegated objectives.

Definition 2 (Ferber’s Agent). An agent is a physical or virtual entity

which is capable of acting in an environment,

which can communicate directly with other agents,

which is driven by a set of tendencies (in the form of individual objectives or of a
satisfaction/survival function which it tries to optimize),

which possesses resources of its own,

which is capable of perceiving its environment (but to a limited extent),

which has only a partial representation of this environment (and perhaps none at
all),

which possesses skills and can offer services,

which may be able to reproduce itself,

whose behavior tends towards satisfying its objectives, taking account of the
resources and skills available to it and depending on its perception, its representa-
tions and the communications it receives.

While the definition of Wooldridge is still rather vague—but already captures the
most relevant properties mentioned above—Ferber’s definition describes an agent in
much more detail. One remarkable consensus in both definitions is autonomy, which
is also a general property attributed to agents in literature'. Further commonalities
include that an agent is situated in an environment, the ability to interact with the
environment, and the notion of an agent’s objective.

Based on these insights, we provide the following definition:

Definition 3 (Agent). Let A be a set of agents. Then, an agent ¢ € A is an au-
tonomous entity that is located in an environment and which tries to meet some given
objectives. Agents possess sensors and actuators to perceive their environment resp.
to act in their environment and to possibly modify it. Both, sensors and actuators may
have limited ranges. Furthermore, communicative agents can communicate within a
certain radius r; from their position.

This definition should be understood as a minimal agent definition. It is supposed to be
a flexible and expandable definition that only captures our understanding of an agent
rather than being a strict formal definition. The best way to think of agents in this
thesis hence may be to treat them as tiny robots that work in a (physical) environment
and which have limited abilities, sensors, actuators, and internal resources. In this
way, a concrete “realization” and implementation of a robot finally describes an
instance of a particular agent in a given problem context.

Due to the agent/environment duality, an environment hence contains at least one
agent in a single agent system or more agents in a multiagent system. According to
Russel and Norvig [RN10], an environment generally can be categorized according
to the following dimensions:

! However, one might discuss whether agents are really autonomous since they follow some sort of
algorithm that “dictates” which actions to execute. From our point of view, autonomy hence is only
possible within the boundaries established by the agent’s designer. We will not pursue this issue any
further as its discussion quickly becomes philosophical.
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Fully observable vs. partially observable: If the sensors of an agent are always
able to exactly observe all relevant properties of an environment with respect to the
intended objectives, then the environment is said to be fully observable. Otherwise,
it is only partially observable which includes noised or limited perceptions.

Single agent vs. multiagent: The number of agents basically determines this di-
mension. However, one could argue what an agent from its own local perspective
considers to be an object or to be part of the environment and what it considers
to be an agent. For instance, if agents decide to ignore all other agents then their
ignored actions could be seen as part of the environment’s dynamics. Multia-
gent environments further can be divided into cooperative, competitive, or mixed
environments depending on the behavior and goals of the agents.

Deterministic vs. stochastic: ~ While the outcome of an action in a particular state
of a stochastic environment depends on some probability distribution, it is fixed
in a deterministic environment. From an agent’s perspective, a partially observ-
able and deterministic environment could appear to be stochastic due to limited
observations.

Episodic vs. sequential: In an episodic environment, agent decisions depend only
on current perceptions and only influence the current episode. Given a sequential
environment, agent decisions are likely to have an impact on future behaviors.

Static vs. dynamic: An environment that can change its behavior or properties
over time is considered to be dynamic. Static environments do not change in the
course of time.

Discrete vs. continuous:  This dimension refers to the state of the environment, to
the way of dealing with time, as well as to observations and actions of agents. For
instance a state can be described with continuous or discrete variables.

Known vs. unknown: From an agent’s perspective an environment is said to be
known if the agent has knowledge about the way how the environment “works”,
i.e. how it would respond to certain actions, and unknown otherwise.

Based on these properties, one can easily imagine that the environment has a
strong influence on agents, e.g. with respect to what agents are able to learn and
to achieve. A multiagent system, however, is more than just a set of agents and an
environment. This becomes clear in Ferber’s definition (quote from [Fer99], with
renamed identifiers to match the notations used in this work):

Definition 4 (Ferber’s Multiagent System). The term multiagent system (or MAS)
is applied to a system comprising the following elements:

1. An environment, &, that is, a space which generally has a volume.

2. A set of objects, O. These objects are situated, that is to say, it is possible at a
given moment to associate any object with a position in E. These objects are
passive, that is, they can be perceived, created, destroyed and modified by the
agents.

3. An assembly of agents, .A, which are specific objects (A C O), representing the
active entities of the system.

4. An assembly of relations, Rel, which link objects (and thus agents) to each other.

5. An assembly of operations, A, making it possible for the agents of A to perceive,
produce, consume, transform and manipulate objects from O.

6. Operators with the task of representing the application of these operations and the
reaction of the world to this attempt at modification, which we shall call the laws
of the universe.
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We will basically follow Ferber’s understanding of a multiagent system since it
fits well to the considered problem context. However, in the context of the MAS
treated in this work, we will later incorporate some adjustments and extensions
to that definition, including concrete sets of objects, objectives, or models of the
environment.

2.2 The Online Partitioning Problem

The Iterative Agent Partitioning Problem (IAPP) that is examined in this work to
evaluate the proposed algorithms is based on the Online Partitioning Problem (OPP)
[GKBPWO05] [Goe07]. The basic description of the problem reads as follows: Given a
set of agents and targets (e.g. tasks) that are distributed in some Euclidean space. The
goal of the agents is to find an assignment to the targets that satisfies the following
three objectives:

1. create a uniform distribution, i.e. assign the same number of agents to each target
2. minimize the overall sum of distances between each agent and its assigned target
3. use simple agents with minimal abilities

Accordingly, in [Goe07], Goebels introduces the OPP as

a multi-objective optimisation problem [...] for the coordination of large groups of agents.
There, he also provides the following formal definition:

Definition 5 (Online Partitioning Problem [Goe07]). An instance of the OPP with
OPP = (A, T,p) consisting of the agent set A = {aj;,...,a,}, the target set
T = {T\,..., T}, and a position function p is an instance to an optimisation
problem. The question is whether there exists a partition {57, S3,...,S,,} of A
with S; € A (¢ € {1,...,m}) such that A = {S; g S21... S}, which
simultaneously maximises

I11s:l

i=1

and minimises
m
> > e
i=1 a€S;

This can be combined in the following equation. There, b; denotes the number of
agents that have chosen the target 7; in the current partitioning decision and o; the
number of agents that would have chosen target 7; in an optimal partitioning. 7(a;)
denotes the target currently chosen by agent a;.

n

[ 1o > min (8(ai, T3))
i=1 + B . i=1 (21)

Hoi 25(%7 7(a;))
i=1 i=1

under the constraints « + § = 1 and «, 8 > 0 for the weights « and .
The higher the value f (f € [0;1]), the better is the solution found.

f=a-
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For this mathematical description we use the fact that a product of m numbers is
maximal if the numbers are identical.

By examination of the evaluation function (2.1), it is obvious that the third objective
concerning the agent’s abilities is not formally captured. Instead Goebels usually
considers it only indirectly while comparing different algorithms, i.e. agents with
different abilities. One exception is a setting in which communication costs are taken
into account [Goe07].

In later works, the OPP was extended to include a simple obstacle [Weh08], or a set
of different obstacle types that influence e.g. distance calculations or communications
[Kem10]. The latter work also contains an attempt to formally capture the abilities of
agents. Therefore, agents are considered to be robots such that each action, including
calculations, movement, sensing or the like, is assumed to consume energy. Hence,
the more complex the agents’ abilities, the more energy is required.

A large number of different approaches for the OPP [Goe07] and for OPP-based
problems [Weh08] [KemO8] [Kem10] [Kall0] [SwalO] have been presented and
discussed. In [KemOS], a detailed description of known approaches at that time is
given. Next, we abstract this overview and extend it to include recent developments.
The following list indicates that one can mainly distinguish between six different
categories (note that, if not stated otherwise, detailed descriptions of the algorithms
can be found in [Goe(07]):

1. Central instance approaches, as the name already suggests, use a central instance
that has complete knowledge about the system. Goebels [Goe07] describes three
such algorithms. The first is an exact algorithm that finds optimal solutions by
examining all m™ possible assignments, where m is the number of targets and n
the number of agents. The second is an exact approach for settings with just two
targets that requires time in O(n?). We will present some more details later in
this work. A third algorithm uses a heuristic to quickly generate good solutions
for arbitrary many targets by sorting agents in lists for each target and then
stepwise iterates over these lists and assigns the closest unassigned agent to the
corresponding target.

2. Non-communicative methods use either only agent internal properties or local
information that can be obtained without communication. The simplest one selects
targets randomly; another approach assumes consecutively numbered agents and
selects a target by a modulo-operation on the agents’ identification numbers. In a
third approach, each agent just selects the nearest target. Clearly, one can easily
generate settings in which these methods fail.

3. Communicative approaches are most common and many different algorithms
exist. They range from very simple ones with only local information exchange and
simple assignment operations to more complex approaches that collect information
about the current system state and apply sophisticated solution methods (e.g.
[Weh08]).

One remarkably powerful communicative strategy is the Exchange Target Strategy
(ETS). In fact, this strategy can be considered as the state-of-the-art approach for
the OPP. We will come back to ETS in a moment.

4. The organization-based methods create groups of agents (organizations) either
by learning which groups are beneficial with respect to partitioning qualities and
communication costs, or by using an election message protocol. The groups or
group heads are assumed to be able to calculate an optimal partitioning for each

group.
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5. Biologically inspired approaches use techniques like cellular automatons and evo-
lutionary algorithms [GWPO5], or rules that are evolved using genetic algorithms
[Kal10], and techniques that are inspired from insect-behaviors, like ants or wasps
[KemO8].

6. Learning: A first step towards the application of multiagent reinforcement learning
in the context of the OPP has been made in a master thesis under our supervision
[Swal0]. The OPP is modeled with the help of a decentralized partially observable
model and a rather small state-space abstraction is presented. The main idea of the
learning approach is to adjust the number of possible agent actions dynamically
during runtime. The global reward function that gives feedback to the learners is
based on some assumptions, e.g. it allows only one agent to change its action at a
time in order to rate the influence of a single agent’s action.

Since two approaches will reoccur during this thesis, we cover them in more detail
in the following paragraphs.

The first approach is the aforementioned state-of-the-art Exchange Target Strategy
(ETS) [GKBPWO5] [Goe07]. In ETS, initially all agents are randomly distributed
to targets and swap assignments if the local distance sum would improve. Agents
only exchange targets under mutual agreement. Accordingly, the initial distribution
objective value is maintained during execution. By the law of large numbers and given
many agents that chose an initial target uniformly at random, one can further expect
that the initial assignment leads to a roughly equal number of agents per target and
thus also to a nearly optimal distribution objective value. Other initialization methods,
e.g. depending on agent IDs, are possible under assumptions like consecutively
numbered agents. Given that one part of the objective function is already optimized
in the beginning, the agents then have to improve the distance part. Therefore, each
agent communicates with its neighbors as visualized by the edges in Fig. 2.1, where
the two agents ¢ and j talk to their neighbors. If they find another agent that is
assigned to a different target, they check whether a target exchange would improve
the distance sum. For 7 and j in the given example, such an exchange clearly results
in a locally smaller distance sum. Hence, both agents will change their targets. This
process is repeated in every time step such that the distance sum is improved over
time. Give sparse communication graphs, small neighborhoods, or settings with
obstacles, deadlocks may occur in the sense that useful target exchanges are not
carried out because they first would lead to a worse distance value before they finally
improve it. In order to avoid such deadlocks, agents may decide to swap targets with
some “flip” probability pg;, even if the exchange would not improve the distance
value.

Fig. 2.1 Example for a target exchange that improves the solution quality.
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In general, ETS is not guaranteed to find optimal solutions, e.g. due to random
initialization. Furthermore, several worst case scenarios can be created. The com-
municative overhead should also not be neglected, as each agent in every time step
communicates with each of its neighbors. In [KemOS8], we propose to ignore requests,
if two interacting agents are assigned to the same target. By doing so, the commu-
nicative overhead is decreased without obtaining worse solution qualities. Besides
these issues, ETS has been proven to be able to find (very) high quality solutions on
average and in rather short time.

Goebels [Goe07] investigates ETS not only in the static OPP setting but also
considers agents that move towards their currently selected target. The results have
been positive in the sense that movement is equal to changing neighborhoods. In
particular, the agent is able to interact with more agents, which leads to “larger’
neighborhoods. Accordingly, new exchange opportunities arise that have a positive
effect on the solution quality.

The second approach that will be used in this work is the exact algorithm for two
targets as described in [Goe(07, Sect. 3.2.2]. We will refer to this algorithm as the Two
Target Optimal (TTO) approach. The basic idea of this central instance algorithm is
to sort all agents ascending in a list according to the distance difference with respect
to the two targets. In detail, the distance difference for two targets 73,75 of an agent
i is defined by A(¢) = 6(¢,71) — 0(i, T»), where & returns the distance between an
agent and a target. Initially, all agents are assigned to their nearest target, before an
iterative process is started. Let us assume that more agents have selected target 77 .
Then, the algorithms selects the agent from the list which has the smallest positive
distance difference, i.e. an agent that is assigned to 75 because it is closer to it than
to 77. At the same time, that agent is also the nearest to target 77 compared to any
other agent that is assigned to 7%. This agent then is reassigned to 77. Accordingly,
the distribution objective is improved but the distance objective becomes (slightly)
worse. If the resulting solution quality is better than before, then this reassignment
step is repeated until the solution became worse for the first time. Given the latter
case, the algorithm stops and returns the previous assignment as optimal solution. In
[Goe07], Goebels proves that this approach calculates an optimal partitioning.

In the area of the OPP, mainly static scenarios with fixed agent positions have been
considered. In contrast, this work will focus on scenarios with (frequently) changing
agent positions. Also, we will briefly investigate one setting with changing target
positions. Accordingly, our agents have to deal with a sequence of different OPP
instances rather than with a single instance. Concerning the algorithms, this work
will extend the Exchange Target Strategy by incorporating additional coordination
media located in the environment in order to improve efficiency in our dynamic
settings. Furthermore, we will dive deep into the area of multiagent reinforcement
learning and thus explore a class of approaches that has not been considered in this
context until now.

s

2.3 Multirobot Task Allocation

The considered iterative partitioning problem is also related to the area of multirobot
task allocation (MRTA). MRTA deals with the question of how to distribute a set of
robots to a set of task, i.e. “which robot should execute which task” [GMO04]. Gerkey
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and Matari¢ [GMO04] present a taxonomy of MRTA problems with independent tasks.
The taxonomy categorizes MRTA problems along three dimensions:

1. Robots are able to either perform one task at a time or multiple tasks at once.

2. Tasks may either require one or more robots to be accomplished.

3. The amount of information available, e.g. about tasks: is there knowledge about
future tasks or the entire task set such that planning is possible, or are robots
forced to decide based on instantaneous information.

In the context of this work, approaches for robots that perform one task at a time and
tasks that typically require more than one agent are of interest. This follows directly
from the definition of our (iterative) partitioning problem, where agents can only
select one target at a time.

Two such approaches are presented by Ducatelle et al. [DFDCGO09]. They consider
a problem that is closely related to the (non-iterative) Online Partitioning Problem
with obstacles. However, their problem contains tasks that require different numbers
of robots instead of a equally many. In detail, they consider a scenario that contains
two different types of robots: flying robots and so-called footbots that move on the
floor. The flying robots have to identify possible tasks in the environment and an-
nounce these tasks to the footbots. Ducatelle et al. present a simple reactive approach
that uses light signals to attract robots. In a second approach, they implement a gossip
based protocol (see e.g. [JVGT07]) that disseminates knowledge about the tasks via
local communications. Simulations of these approaches show that the gossip-based
approach works well in complex scenarios with obstacles but has problems concern-
ing scalability and robustness. In simple environments, the light-based approach
also performs well. In contrast to our problem domain, the work of Ducatelle et
al. only considers a one-time distribution of agents to targets instead of repeated
partitionings. Also, they deal with tasks that require different numbers of robots
instead of a uniform distribution.

Recently, Elango et al. [ENT11] formally defined the so-called balanced multi-
robot task allocation problem (BMRTA) and proposed a three step approach. The
BMRTA is specified by a set of robots and tasks that are located in a Euclidean
environment. In addition, a cost function is given that returns the costs for moving
between two positions. The goal is to find an allocation of robots to tasks such that
a) the idle times of the robots are minimized and b) the costs for traveling between
assigned tasks for each agent are minimal. In the first step of the proposed approach,
the task set is clustered based on a modified K -means approach. The clusters are cre-
ated such that distances between tasks in a cluster are minimized and such that path
lengths are balanced over all clusters. The second step calculates some costs for each
robot with respect to visiting one or more clusters. Finally, using an auction-based
approach, the third step creates the actual task allocation. Elango et al. evaluate their
approach in a simple setting with two simulated robots and conclude that there is a
necessity for a trade-off between minimizing the total costs and the workload of the
robots. Due to the second step, where exponentially many combinations have to be
evaluated, the proposed approach does not scale well to large problem instances. In
comparison to this setting, we require agents not to “visit” multiple tasks. Also our
approaches do not need to enumerate and evaluate all possible assignments (although
this corresponds to our search space, too). Instead, the agents construct a solution
and try to improve it by efficient and local search methods.

The general idea of adapting market-based approaches towards multirobot coordi-
nation has attracted many researches. Dias et al. [DZKS06] survey such approaches.
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Another related research area considers the problem of coalition formation [SK98]
[SA11]. There, the question is which agents should form groups, so-called coalitions,
such that a given set of tasks is completed most efficiently by the different groups.

2.4 Swarm Intelligence

Inspired by biological swarms, including social insects like ants, termites, bees,
wasps, or social animals like fish schools or flocks of birds, Swarm Intelligence
(SI) in its current form is investigated since the late 1980s, whereas a large number
of fundamental work was accomplished during the 90s [BDT99]. According to
Engelbrecht [Eng05, p.2], a group of mobile agents (or robots) that work together in
a local environment and which interact directly or indirectly can be considered as a
swarm. A swarm usually has many members which only possess limited abilities.
Due to the large number of agents and their interaction patterns, complex (global)
behaviors can emerge from simple local actions that lead to surprisingly robust
distributed problem solving behaviors.

Besides other directions, particle swarm optimization and ant algorithms may
be the most prominent models used in the area of swarm intelligence [Eng05]. Ant
algorithms, or to be more precise the ant colony optimization (ACO) metaheuristic
has successfully been applied to a large amount of problems as diverse as routing in
networks, vehicle scheduling, the well-known Traveling Salesmen Problem, graph
coloring, scheduling, or classification (see [DS04, Table 2.1] for further examples
and references to relevant literature). The basic idea of ACO is related to a concept
called stigmergy that was originally described by Grassé [Gra59]. He investigated
the nest building behavior of termites and stated that

“L’ouvrier ne dirige pas son travail, il est guidé par lui.”
(engl.: “The worker does not direct his work, he is guided by it”)

Accordingly, stigmergy describes how behaviors of swarm members are influenced
or stimulated by the results of labor, i.e. by the modifications of the environment
through the work carried out by the individuals. To put it differently, stigmergy can
also be understood as some kind of indirect communication by modifications in the
environment and reactions to those changes (cf. also [HM99],[BDT99]).

In ant algorithms, so-called (artificial) pheromones realize the concept of stig-
mergy. In natural ant societies, pheromones are a chemical fluid that is deposited
and smelled by ants. For instance, in foraging, agents place pheromones along their
path between the nest and a food source. In a probabilistic decision based on the
pheromone concentration, ants either follow an existing pheromone trace or explore
a new path. The higher the pheromone concentration on a path, the more likely this
path is chosen. During the course of time, pheromones evaporate if they are not
reinforced. Since more ants can travel a short path than a long path in the same time,
the pheromone concentration on a shorter path will likely be higher after some time.
This in turn stimulates more and more ants to follow the shorter path. Due to the
probabilistic decision making and the explorative behavior, ants are able to find short
paths in a complex network of possible paths. Since this is also a common problem in
computer science, e.g. in routing packets through a network, the idea of pheromones
builds the basis for the Ant Colony Optimization metaheuristic.
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Given an appropriate model that decomposes the solution space of an optimization
problem into linked components, one could build a so-called construction graph. A
construction graph G = (C, L) uses the set of components C' as nodes which are
fully connected by a set of edges L. The graph then is used in the ACO metaheuristic
to find (hopefully near optimal) solutions. Dorigo and Stiitzle [DS04] describe the
general approach using the following three steps, that could be realized in parallel or
any other ordering, depending on the actual problem:

o The first step is about using artificial ants, or agents, to construct solutions. Ants
randomly walk around in G¢ and, by doing so, they incrementally build solutions.

e In the second step, components and/or edges are furnished with artificial phero-
mones. That is, either new ones are added or old ones are updated.

e The third step is optional and deals with centralized actions that cannot be accom-
plished in a decentralized way. For instance, evaluating a current solution in order
to decide whether or not and how pheromones are changed.

Since ACO is a metaheuristic, it generally cannot guarantee to find optimal solutions.

The approaches presented in this work will mainly focus on reinforcement learning
in order to solve a multi-objective optimization problem. In contrast to ACO, our
main learning approach is guaranteed to converge to optimal solutions under some
assumptions. Nevertheless, there are also similarities to ACO since agents and
(artificial) ants work together in order to construct a common solution. Though the
underlying techniques generally differ from each other, we will also investigate one
reinforcement learning approach that is combined with a pheromone-based strategy.

The second important model in swarm intelligence is particle swarm optimization
(PSO) [KE95]. The basic idea of PSO is to use a set of particles (the swarm), each
representing a solution candidate. Particles are distributed in the environment and
update their positions based on their own knowledge and on the knowledge resp.
positions of either the entire swarm or of particles in a specified neighborhood.
Various aspects and variants of PSO are described in detail in [Eng05, Part III].

Somehow similar to PSO, some of our approaches also use knowledge from
neighbored agents. However, this is the only slight similarity to PSO. Conceptually,
our methods differ in the way that only a single solution is maintained rather than a
set of solution candidates.

2.5 Transfer Learning

In this section, we introduce Transfer Learning (TL), which is a recent topic in the Al
community [TS09] [TS10] and up to now is mainly applied in single agent systems.
The basic idea of TL is to learn a complex task not from scratch but instead to first
learn to solve a simplified yet related task. The acquired knowledge is used as basis
for learning in the complex task. The simplified task is usually referred to as source
task, the complex one as rarget task. By reusing the knowledge of a source task, the
goal of TL mainly is to improve the speed of learning in the target task. As simulation
results show, besides an improved learning speed, TL also leads to higher solution
levels compared to learning from scratch in the goal task (e.g. [BTS10] [TSWM10]).
Note that in general there could also be more than one source or target task.



2.5 Transfer Learning 19

Asymptotic
Performance

Time to Threshold-»]  ..ee=**" -
1

P(‘,l‘f()l'lll}lll(i(?

Transfer Learning

I.'I-('l'mpstart
2 No Transfer Learning

>
>

Time

Fig. 2.2 Metrics for measuring the success of Transfer Learning (reproduced from [TS09])

In order to measure the success of TL, different metrics can be used as visualized in
Fig. 2.2. In detail, Taylor and Stone [TS09] and Torrey and Shavlik [TS10] identified
and agreed in the following:

Jumpstart/initial performance: This metric describes the initial performance
increase that results from using the knowledge of a source task compared to
settings without TL.

Asymptotic performance/final performance: The difference between the final
convergence levels in settings with and without TL.

Time to threshold/time to fully learn the target task: The time that is required
to reach a certain performance level.

Furthermore, Taylor and Stone also consider the fotal reward as metric, since faster
learning and/or a higher performance level can also lead to a larger total reward
compared to not using TL. According to them, another metric is the transfer ratio
which refers to the ratio between the total reward accumulated by a TL-based agent
and the total reward of an ordinary agent. Clearly, these five metrics are not exhaustive
and many additional metrics can be considered, too.

Another important factor for evaluating the success of TL can be found in the
time spent for learning in the source task. Depending on the goals of an approach,
one could either include that time or neglect it. Then, one can conclude how much
“faster” a TL-method is compared to a method without knowledge transfer.

Since TL deals with different yet related source and target tasks, one important
question is how to transfer the knowledge between different tasks. In the simplest
case, state and action spaces are equal or the source task’s spaces represent subsets
of the target task’s spaces. If this is not the case, then additional mappings have to be
provided to the agent, e.g. by human experts as in [BTS10] or [TSWM10]. Another
possibility is to learn such inter-task mappings, which in itself constitutes a research
area [ATTW11]

The idea of transfer learning is not restricted to particular learning techniques.
Hence, it can be found in a variety of different research areas, including inductive
learning, classification, or reinforcement learning. Torrey and Shavlik [TS10] provide
a detailed survey on TL in these areas. Due to the focus of this thesis, the remainder
will only consider TL in the area of reinforcement learning.

Torrey and Shavlik [TS10] distinguish between five different types of how transfer
can be realized in reinforcement learning: Starting-point methods basically use the
final value function of a source task to initialize a value function in the target task. In
imitation-based methods, the idea is to use the learned source task policy from time
to time during exploration in the target task. By doing so, the exploration might be



20 2 Background and Related Work

guided towards better solutions more quickly compared to random and undirected
exploration. Hierarchical methods split a target task into smaller tasks. Afterwards,
these are considered as source tasks and their solutions help to solve the actual target
task. Another class of methods is known as alternation methods. These methods use
source task knowledge to modify the state or action space or the reward function
of the target task. For instance, by abstracting states in the target task and mapping
those states to source task states. Finally, the last class consists of approaches that
directly incorporate source task knowledge as an inherent part.

As one can see from the above classifications, several approaches have been
followed in the literature. For instance, in [BTS10], transfer learning is applied on
a physical humanoid robot that should learn to hit a ball as far as possible. The
source task is less complex than the target task as it contains only five instead of
nine actions and only four instead of eight possible observations. It was shown that
transfer learning is not just feasible in simulations but can also significantly improve
the speed of learning and lead to better behaviors in a source task if learning is carried
out on a real robot. Another TL approach that is related to some methods considered
in this work is presented by Torrey et al. [TSWMI10]. Their TL approach is based
on advices. Therefore, an agent learns skills in a source task. These skills then are
mapped, by human intervention, to rules that can be applied in the target task. A
rule then basically advices the agent to take a certain action in the target task if its
conditions are met. Torrey et al. investigated their approach in a RoboCup scenario
and showed that it leads to significant speed up in learning.

Due to its success in single agent systems, TL more recently is also investigated
in multiagent domains. For instance in [PT09], value function knowledge is trans-
ferred between tasks that involve different numbers of agents. Also, in [BPV12]
and [VDHNI11], source and target tasks differ not only in the task’s complexity but
also in the number of agents involved. Accordingly, the consideration of multiple
agents comes with additional challenges. These include, e.g., the question of how to
transfer source task knowledge if the target tasks contains more agents, or how to pre-
serve usually distributed problem solving knowledge during the transfer (individual
agent strategies define joint strategies which constitute a solution for a cooperative
problem).

Later in this thesis, we will present different approaches that are to some extent
related to TL. These approaches will use external storage media or pheromones in
order to transfer learned knowledge between different agents in a dynamic environ-
ment. By doing so, mobile agents can benefit from knowledge of other agents if
they have entered new regions in the environment. Since changed agent positions
in our formal model lead to new games, one may consider each game as a different
task. Since these games in the context of our problem domain are closely related,
the knowledge gained in a previous game basically plays the same role as source
task knowledge in TL. Related to [TSWM10], some of our region-based heuristics
(in which agents select actions based on the region they are located in) can also be
considered as approaches that give advices to agents. In contrast to general TL, our
work does not just deal with one source and one target task but with a sequence of
tasks. In that sequence, each target task becomes a source task for the next target task.
Hence, by exploiting the knowledge of the related tasks, our agents should learn to
solve an abstracted problem that is described by the task sequence over the course
of time. Another difference to existing works can be found in the number of agents
involved, as we consider several thousand agents instead of just a small number of
agents.
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2.6 Optimization

Based on Chapter 2 in Engelbrecht’s book [Eng05], we next briefly discuss some
general aspects of optimization.

An optimization problem can be defined with the help of a tuple (S, f, Q) [DS04]
[Eng05]. Here, S is a set of solution candidates, f(s,t) a time-dependent objective
function (indicated by time parameter ¢) that evaluates a solution s € S, and 2 is a
set of constraints, that could change over time. Note that constraints usually divide
the set of all solutions into feasible and infeasible ones. Depending on the nature of
the problem, the goal is to find a feasible solution that maximizes or minimizes f
under the given constraints.

According to Engelbrecht [Eng05], optimization problems can be classified along
several dimensions:

Number of variables: An optimization problem is univariate (multivariate), if its
objective function is influenced by a single (by multiple) variable(s).

Type of variables: The domains of the considered variables determine this dimen-
sion. For instance, problems where all variables are real numbers are called con-
tinuous. Problems with integers are called discrete (or integer) problems. Those
problems with continuous and discrete variables are known as mixed integer
problems. Finally, combinatorial optimization problems deal with permutations
of integer variables.

Degree of nonlinearity: The degree of nonlinearity is defined by the correspond-
ing property of the objective function, e.g. linear problems consider linear objec-
tive functions.

Constraints: A problem can be constrained, i.e. subject to one or more constraints,
or unconstrained otherwise.

Number of optima: A problem with multiple optima is called multimodal, a prob-
lem with a single optimum is said to be unimodal.

Number of optimization criteria: Here, one usually differentiates between single-
and multi-objective problems.

On the other hand, optimization methods can mainly be divided along three
dimensions. The first distinguishes between local approaches that try to improve
a solution by searching its environment, and global approaches that use global
knowledge and explore the complete set of candidate solutions. The second dimension
classifies approaches into deterministic and stochastic methods, whereas the latter
contain some random element that determines their behavior. Finally, the third
dimension considers the problem to be solved. Hence, a method could be an (un-
)constrained, a multi-objective optimization, a multi-solution, or a dynamic method.
The properties of approaches for the first three classes can be directly inferred from
the names. Multi-solution methods search for and provide more than one solution,
whereas dynamic methods are able to deal with changing optima in the course of
time [Eng05].

The agent-based learning method that we will develop in this work to solve a
multi-objective optimization problem can hence be classified as a stochastic, multi-
objective, constrained, and dynamic method that uses either global or semi-local
knowledge to search for good solutions.






Chapter

Reinforcement Learning

In this chapter we present some basics about reinforcement learning in single and
multiagent systems which are required as background knowledge in later chapters.
By doing so, we also implicitly introduce the notations and terms that are used within
the remainder of this work.

The chapter is structured as follows. In Sect. 3.1, we briefly classify reinforcement
learning and present its idea. Then, in Sect. 3.2, we formally describe necessary
details, models, and approaches for single agent settings. Thereafter, we consider
multiagent reinforcement learning in Sect. 3.3 and a technique known as reward
shaping in Sect. 3.4. Finally, we conclude this chapter in Sect. 3.5.

3.1 Introduction

According to Russell and Norvig [RN10]

an agent is learning if it improves its performance on future tasks after making observations
about the world.

Russell and Norvig point out that there are different types of feedback that can be
used to let an agent learn from observations. They mainly classify learning into three
categories. First, in unsupervised learning an agent does not get any feedback but
learns patterns contained in the input data. Second, if the agent learns to map inputs to
outputs from a set of given input-output pairs, then they speak of supervised learning.
The third class is established by reinforcement learning (RL). In such settings, the
agent learns how to behave solely based on rewards or punishments, without hints on
the best action. Accordingly, the agent obtains less information than in supervised
learning, where it is told which action would have been best, but more than in the
unsupervised case, where it obtains no feedback at all.

Figure 3.1 visualizes the main idea of RL. The basic framework is kept simple:
at time ¢, the agent perceives the state of its environment s;, selects and executes
an action a; which in turn modifies the environment. Then, the agent observes the
resulting environment state s;;; and a numerical reward p;11, which in a sense
reflects how “good” it was to execute action a; in s;. Throughout this work, and

23



24 3 Reinforcement Learning

goal:
maximize accumulated
rewards over time

L —
—
S
reward
Pt
agent
state .

S action
St ar

S t+1

Pt+1 environment

Fig. 3.1 Idea of reinforcement learning (based on [SB98]).

as common in literature, we assume finite state and actions sets and consider only
bounded rewards.

The goal of the agent is to maximize not just the immediate reward obtained for
executing an action but the long term accumulated reward that results from a sequence
of actions. Hence, it has to learn a mapping which determines the action that should
be executed in every particular state. Obviously, there is a close relation between
the behavior of the agent and the reward function. Thus, the reward function shall
return rewards such that maximizing them also leads to the desired goal behavior.
This means that a reward function rather determines what is to be achieved than
stating how to achieve it [SB98]. Since the reward is the only available feedback
for learning, the agent has to collect information about which state action pairs lead
to which rewards. This is done by following a trial-and-error approach, i.e. the
agent has to explore its environment. However, too much exploration might lead to
low accumulated rewards, which contradicts the agent’s goal of maximizing that
value. Accordingly, a good tradeoff between exploration and exploitation of learned
knowledge is required. A simple yet powerful and frequently used approach is the
e-greedy action selection. It chooses the best action with probability (1 — ¢) and a
random action otherwise.

In the remainder of this section, we present a formal view on this general idea
and describe different approaches from literature, for both, single and multiagent
reinforcement learning.

3.2 Single Agent Reinforcement Learning

In the previous section, we introduced the basic idea of reinforcement learning (RL).
In this section, we describe that idea formally. Based on [SB98], Sect. 3.2.1 provides
a basic definition of the reinforcement learning problem, introduces Markov Decision
Processes, and discusses optimal solutions. Then, Sect. 3.2.2 describes basic solution
methods. With Q-Learning, Sect. 3.2.3 introduces the most influential RL algorithm
of the past for deterministic and non-deterministic settings. Section 3.2.4 briefly
introduces a model for partially observable environments and finally, Sect. 3.2.5
concludes this section with a short discussion.
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3.2.1 The Learning Problem

In this section, we formally state the reinforcement learning problem and define all
required terms. Therefore, the section is mainly based on the book of Sutton and
Barto [SB98]. Further surveys on RL include, e.g. [KLM96] or [Szel0].

As stated earlier, the goal of an agent is to maximize its (expected) return over
time. Assuming that an agents learns for some fixed number of time steps 7', the
overall return starting form time step ¢ becomes

Rt = pti1+ pry2+ prys+ ...+ pr

However, if the learning task is continuous, i.e. ' = oo, the above sum clearly can
become oo as well. In order to overcome this problem, the concept of discounting is
required. A discount rate (or factor) v € [0, 1] is introduced which determines the
importance of future rewards. The discounted return then is defined as

o0
Ri="pii1 + 7' pro2 + ¥ pips + . = Z’ykp”k“
k=0

Accordingly, a reward py, that is observed “k steps in the future is worth only ~*~!

times what it would be worth if it were received immediately” [SB98]. Given a
discount factor of v = 0, we thus obtain an agent that only maximizes the immediate
reward and discards future rewards. This might be desirable but generally can also
obstruct higher returns. Note that R, = ZZ:O ¥ ps 4141 can be used to express the
overall (discounted) return for a finite horizon and for a continuous problem, if we
assume that in the former case an absorbing state is introduced for which always a
reward of O is obtained. Then, either 7' = oo or v = 1 has to be allowed such that
the sum remains defined. We will use this notation later in this work.

The RL task is usually described as a Markov Decision Process (MDP). Before we
provide a formal definition for MDPs, we first have to specify the Markov property.
In general, the probability of transitioning to state s, and observing reward p;1
after action a; was executed in state s; can depend on the entire history of past states,
actions, and rewards. Formally, this probability is given by

PT(3t+17,0t+1 ‘ Sty Aty Pty St—1, Qt—1,5 Pt—15-+ - 807(10700) (3.1)

The same probability may also depend only on the last state and action, i.e.

Pr(sii1, peg1 | 5¢,a¢) (3.2)

According to Sutton and Barto [SB98], an environment is Markovian or said to
have the Markov property, if both equalities are equal for all states, actions, and
rewards. Russell and Norvig [RN10] provide a more general definition of this Markov
assumption by demanding that the second probability depends on a finite fixed
number of previous observations instead of just the last state and action. Based on
their understanding, Russell and Norvig would consider Sutton and Barto’s definition
as the simplest case and refer to an environment that fulfills the corresponding
condition as first-order Markov Decision Process. Based on the Markov property, we
now define a MDP as follows:
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Definition 6 (Markov Decision Process). A Markov Decision Process (MDP) is
described by a tuple M = (S, A, §, p, ), where the finite set S contains all environ-
ment states and the finite set A denotes all agent actions. A state-transition function
4 : 8 x A — II(S) returns a probability distribution of transitioning to state s’ € S
after action @ € A in state s € S was executed. The actual state s’ is derived accord-
ing to that probability distribution. The reward function p: S x A x § — R gives
an immediate payoff for action ¢ € A in state s € S and transitioning to s’ € S. The
factor v € [0, 1) is used for discounting the cumulative reward.

For simplicity, we may write d(s, a, s’) to denote the probability for reaching state
s’ after a was executed in s. Note that in a deterministic MDP, the state transition
function reduces to 6 : S x A — S, and hence the reward function can also be
simplifiedtop: S x A — R.

Although MDPs can be defined over infinite, e.g. continuous, state and action sets
as well (see e.g. [GW99] or [Bus08]), we will only consider finite sets in this work.
Furthermore, we assume bounded rewards. These common assumptions allow us
to concentrate our investigations on the learning itself instead of dealing, e.g., with
issues that follow from using infinite sets. Note also, that we included the discount
factor into the formal definition of the MDP, although it determines how much future
rewards are appreciated by a particular agent. By doing so, we have clearly defined
the values that can be achieved by a learning agent. This approach does not limit
the general model. Note that this kind of definition is found less frequently in the
literature (e.g. in [NHR99] [Lit01]) than definitions which exclude the discount factor
but consider it when it comes to concrete calculations of values (cf. [KLM96] [SB98]
[Wei99] [HMLIRO7] [PTT10] [RN10] [BBDS10]).

The goal of the agent is to learn a behavior that maximizes the return over time.
Therefore, most methods consider a so-called state-value function which determines
the “attractiveness” for an agent to be in particular state in terms of the (expected)
return that can be achieved from this state. Clearly, this value depends on the agents
behavior which is expressed by a (stochastic) policy 7 : S x A — [0, 1], where
7(s,a) denotes a probability for executing action a in state s. On the other hand,
a deterministic policy m : S — A returns a particular action for each state. Since
the deterministic case is a special case of the stochastic one, we will continue our
description with the more general case. The value V™ (s) of a state s € S under a
policy 7 then is defined by the expected return the agent will achieve if it starts in
state s and follows policy 7 in each time step ¢ [SB9S], i.e.

V™(s) = Ex|R: | st = 8] = Ex

Z’YthJrkJrl | St = S] ) (3.3)

k=0

where E[-] denotes the expected value under policy 7. Similar to (3.3), we can
define a state-action value function Q™ (s, a) for executing action ¢ in state s under
policy 7 by

Q7 (s,a) = Ex[R: | st = s,ar = a] = By

o0
k
E YV Pt4k+1 \StZS,atza .
k=0

(3.4)

Note that the value function (3.3) can also be expressed recursively, whereas (3.5) is
known as the Bellman equation for V™:



3.2 Single Agent Reinforcement Learning 27

V™(s) = Ex[R: | st = $]

oo
Z'Ykpt+k+1 | St = 8‘|

k=0

:Eﬂ,

:ETr

oo
pPt+1+ Y Z'Vkpt+k+2 | st = 81

k=0
= Z m(s,a) + Z 5(s,a,s)

a€A ses
oo
k !
D> AV prikra | s =
k=0

= Z (s, a) Z 5(s,a,s") [p(s,a,s") +yV7(s")] (3.5)

acA s'eS

: [p(sa a, S/) + ’YETF

Basically, the Bellman equation states that the value for a state is determined by
the expected immediate reward plus the expected discounted value of the successor
states weighted by their probability. Note that there is a set of Bellman equations, i.e.
one for each state. Also note that the value function V'™ is the unique solution to this
set of equations.
Based on the above definitions, the optimal state-value function is given by
V*(s) = max V7(s),Vs €S

and since a policy 7 is better than or equal to a policy 7’ if and only if V™ (s) >
V7™ (s) forall s € S, an optimal policy 7* is formally defined as

7 =argmax V"™ (s),Vs € S

Accordingly, the optimal action-value function for all s € S and a € A is given by
Q*(s,a) = max Q™ (s, a)

which can be expressed depending on V* as shown in (3.6) since its value denotes
the expected immediate reward plus the discounted expected return for following an
optimal policy afterwards:

Q*(s,a) = Elpry1 + YV (s141) | 5t = s, a4 = a (3.6)

Since the optimal value V*(s) of a state s is determined by executing the action
which results in the best expected immediate reward plus the best expected value that
can be obtained afterwards, it holds that [SB98]:
V* — T
() = max Q™ (s,.)
= E * = =
Igleaf‘( o (Rt | st = s,ar = a

oo
k
= max F E Ypeshyr | St =500 =a
a€A pard
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o0
k
= meajlcEﬂ* Pey1 + § Y ptikt2 | 5t =5,a: = a
a
k=0

= rgleach [Pt+1 + 7V (5041) | 8¢ = 5,0, = a]

= max d(s,a,s")[p(s,a,s") +~yV*(s')] 3.7
e s'eS
Equation (3.7) is known as Bellman optimality equation for V*. Transfered to the
state-action function, the Bellman optimality equation for Q* is given by [SB9S]:

Q*(s,a) =FE {pt+1 + VgggifQ*(Stﬂ,al) | 5t = 5,0 = a]

- Z 5(s,a,s") [p(s, a,s’) + 7 max Q* (¢, a’)} (3.8)

s'eS

Finally returning to the learning task of an agent, we can state that the agent’s
goal is to learn an optimal policy 7* that satisfies the Bellman optimality equations.
Having learned the optimal Q*-values, for instance, an optimal policy can easily be
obtained by choosing the action with the maximum -value in each state.

Given complete model knowledge on transition probabilities and rewards, one
may solve the set of Bellman equations in order to solve the reinforcement learning
problem. However, this quickly becomes infeasible, for instance due to large state
and action spaces or due to the lack of model knowledge. In the following subsection,
we will describe different techniques for finding (near-)optimal solutions.

3.2.2 Basic Methods

As of the previous section, an optimal policy 7* describes a solution to a Markov De-
cision Process. Finding such an optimal solution can be accomplished in various ways.
Reinforcement Learning algorithms can mainly be classified in model-free and model-
based. In a model-based approach, the dynamics of the MDP, i.e. state-transition and
reward function, are known and used in Dynamic Programming algorithms. Model-
free approaches initially have no knowledge about the MDPs dynamics but gather
information from interacting with the environment. Model-free approaches include
Monte Carlo and temporal difference methods. Based on [SB98] and [OW12], the
core ideas of these three kinds of algorithms can briefly be summarized as in the
following list. Additional introductory literature includes [KLM96] and [RN10].

Dynamic Programming: Dynamic programming (DP) based algorithms require
a perfect model of the considered MDP, i.e. state transition function ¢ and reward
function p. Given such a model, the idea is to calculate the value function in
order to construct an optimal policy. Having this model knowledge, the Bellman
equations describe a set of |S| equations with |S| unknowns. Although one
might solve these equations with different mathematical techniques, fundamental
algorithms iteratively construct a solution. Therefore, a policy evaluation step
iteratively approximates the state-value function V™ for a policy 7 by turning the
Bellman optimality equation into an update rule. Given a specified approximation
quality, the policy evaluation step stops and returns the (approximated) value
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function. Knowing this value function, one can try to improve the underlying
policy. Therefore, the policy improvement theorem is used. It roughly states that
for a given policy , if deviating from that policy in any state s by choosing an
action a # (s) and then following 7 results in a higher value than V7 (s) then
this new policy is better than 7. In that case, one evaluates the new policy using
another policy evaluation step. Again, the resulting value function can be used
for a policy improvement step and, thus, in the long run, one iteratively improves
the policy until an optimal policy is found. The latter happens, if deviating from a
policy does never lead to better values. Basically, this approach is known as policy
iteration. Another approach that avoids unnecessary updates of the value function
is known as value iteration. It mainly differs from policy iteration in the way how
and when policy evaluation and policy improvement steps are interleaved and
carried out.

DP methods like policy or value iteration can quickly become inefficient as either
the policy evaluation process becomes expensive or the number of required itera-
tions increases. Further details on the complexity of these approaches can be found
e.g. in [OW12] and the references therein. More details on the aforementioned DP
methods and even more approaches that fall into this category, including formal
descriptions and results, can be found in [SB9S§].

Monte Carlo: Different from DP, Monte Carlo (MC) methods do not require a

full model of the MDP. Instead, these approaches learn from interaction with an
environment. The key idea is to consider the expected return as a random variable
and to learn its expectation value from average returns that are obtained from
samples [OW12]. By the law of large numbers, and given enough samples, it
can be expected that the average return obtained for starting in a state and then
following a policy will converge to the true value of that state for the given policy.
Since the policy is fixed, maybe not all state-action transitions will be visited.
Thus, exploration is an important issue in MC methods. One approach to overcome
this problem can be found in exploring starts [SB98], which demands that each
state-action pair becomes the starting point of a return-generating episode with
a non-zero probability. In particular, MC methods are considered for episodic
tasks since they require reaching a terminal state in order to calculate proper
returns. Accordingly, this step corresponds to the policy evaluation process found
in DP methods. The difference is that MC methods estimate V™ rather from
“experiments” than from model knowledge. Given the state-value or state-action
value function of 7, this policy can again be improved like in DP algorithms.
Repeating both steps finally allows MC methods to converge to optimal policies.
Note that this general schema of interacting policy evaluation and improvement
steps is known as generalized policy iteration (cf. [SB98, Ch. 4]).
Although Monte Carlo methods do not require model knowledge, one drawback of
these methods is that they potentially may require many episodes for convergence
to optimal solutions. In contrast to DP approaches, MC-based algorithms do not
rely on updating estimated values based on other (older) estimates.

Temporal Difference Learning: Methods from this category try to combine the
advantages of Monte Carlo and Dynamic Programming methods. In detail, they
try to combine learning from small experiences with updating values based on
previous estimates [OW12] [SB9S], i.e. they use state, action, and reward tuples
(8¢, at, pr+1) instead of learning from the experience (return) obtained after a
whole episode.
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Accordingly, and different from MC-based approaches, Temporal Difference (TD)
methods can deal with continuous tasks and are able to learn online, i.e. while
interaction with the environment takes place. A further advantage of TD methods
compared to DP is that they do not require a model of the considered MDP. Like in
MC methods, exploration is of key importance in TD. Since Temporal Difference
learning was one of the main novel ideas in reinforcement learning, many different
approaches exist that we do not intend to discuss in detail. Instead, we refer to
[SB98] for a comprehensive and exhaustive overview.

From these basic approaches it is not surprising that the most influential reinforcement
learning algorithm of the past decades is a temporal difference method. It is called
-Learning and will be described in the next section.

3.2.3 Q-Learning

(-Learning [Wat89] is an off-policy approach! which iteratively updates estima-
tion @ of the state-action value function () for each state-action pair. In [WD92],
@-Learning is shown to converge to optimal Q* values under some conditions
that we will present shortly. We will consider two variants of (J-Learning, one for
deterministic MDPs and one for general (non-deterministic) MDPs.

We begin with the deterministic version and follow the description given by
Mitchell [Mit97]. In a deterministic MDP, state transitions and rewards are determin-
istic. Hence, the Bellman optimality equation (3.8) for @* is reduced to

Q*(s,a) = p(s,a) +7§3§Q*(8’,a’), (3.9)

where s’ = (s, a) is the state resulting from executing action a in state s. The idea
of @Q-Learning now is to iteratively approximate Q* (s, a) for all state-action pairs by
turning (3.9) into an update rule. The approximation is denoted by @ and its value
at iteration ¢ is QQ;(s, a). Although arbitrary values may be used for initialization,
the initial values usually are set to @0 (s,a) = 0,Vs € S,a € A. Now, in any
iteration ¢ the agent is in a state s; and executes a (random) action a; according to
some behavior policy [SB98]. In the next iteration, the agent then obtains a reward
pt+1(8t, ar) for its previous behavior. The Q*-value approximations then are updated
according to the following equation

@t(s,a) ,if s #£ sy ora # ay
prr1(se,ar) + 'ymai‘(@t(é(st, ay),a’) , otherwise.
a'e

@t+1(37 a) =

(3.10)

! An off-policy approach learns an estimation policy without executing it. The term estimation policy
reflects that the agent tries to estimate an optimal but unknown policy. While learning that estimation
policy, the agent follows a behavior generating policy which usually takes care of executing each
possible action in each state with a certain non-zero probability. In contrast, an on-policy approach
requires to follow the currently learned policy during the learning process. See [SB98] for further
details.
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For ¢t — oo, this update rule leads to convergence of @t(s, a) = Q*(s,a),Vs €
S,a € A, i.e. the agent will learn an optimal policy. This is proven, for instance, in
Theorem 13.1 in Mitchell’s book [Mit97]. Since we will later refer to this theorem,
we quote it using our notations:

Theorem 1 (Convergence of ()-Learning for deterministic Markov Decision
Processes). Consider a Q-Learning agent in a deterministic MDP with bounded
rewards (Vs, a)|p(s, a)| < c. The Q-Learning agent uses the training rule (3.10),
initializes its table Q(s a) to arbitrary finite values, and uses a discount factor ~y
such that 0 < vy < 1. Let Qt(s a) denote the agent’s hypothesis Q(s a) followmg
the t-th update. If each state-action pair is visited infinitely often, then Qt(s a)
converges to Q*(s,a) as t — oo, for all s, a.

The idea of the corresponding proof is the fact that the maximum error of the
estimations compared to the optimal values is reduced after every interval in which
each state-action pair was visited. Note that the convergence requirements hence
demand an infinite number of iterations. In practice, however, ()-Learning converges
much faster to optimal policies. In large state-action spaces, e.g. in continuous state
spaces, additional approximation techniques are required, which we will not consider
here but refer to surveys like [BEDSB11] or [vH12].

In a non-deterministic MDP both, state transition function ¢ and reward function
p, might have non-deterministic outcomes. Hence, given a (more or less) random
reward for the same state-action pair, the deterministic update rule will constantly
change (). This prevents convergence of deterministic ()-Learning to an optimal
policy in general non-deterministic MDPs [Mit97]. Accordingly, another update
rule for such settings is required. Watkins and Dayan [WD92] update the estimates
according to (3.11), where o denotes the learning rate at iteration ¢. The rule’s idea
is to calculate a “decaying weighted average of the current ) value and the revised
estimate” [Mit97].

@t(&a) ,if s # s ora # ay
Ousr(s,a) = (1= ap41)Qu(s, @) + apya
prr1(st, a) + vmai‘(@t(&(sh ai),a’)| , otherwise
a’ e

@3.11)

The correct choice of learning rates is important with respect to convergence issues.
In [WD92], Watkins and Dayan proved Theorem 2 that states conditions on learning
rates such that Q-Learning with the update rule (3.11) converges to an optimal policy:

Theorem 2 (Convergence of (Q-Learning). Let n(j, s, a) be the index of the j-th
time that action a is tried in state s. Given bounded rewards |p;| < ¢, learning rates
0<a, <1,and

> tnisia) = 00, Y [On(sia)]” < 00,¥s € S,a € A, (3.12)
: =~

then @(3, a) = Q*(s,a) as t — oo, Vs, a with probability 1.

A simple way to calculate such learning rates can be found in [Mit97]. He proposes

to use oy = ————————, where visits; (s, a) is a counter that indicates how often
14-visits (s,a) ’

the corresponding state-action pair has been visited until the ¢-th iteration.
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3.2.4 Partially Observable Markov Decision Processes

Up to now, we only considered approaches which require full observability, i.e. an
agent has to be able to observe the full system state. Clearly, this may not be practical
in every scenario, for instance, if a robot can only observe parts of its environment
due to limited sensor ranges. In that case, other models and techniques have to
be considered. One of these models is the Partially Observable Markov Decision
Process (POMDP). We quote its definition from Kaelbling et al. [KLC98] and adjust
the identifiers to match our notations:

Definition 7 (Partially Observable Markov Decision Process). A partially observ-
able Markov Decision Process can be described as a tuple (S, A, §, p, Q, O), where

e S, A 4, and p describe a Markov Decision Process;

e () is a finite set of observations the agent can experience of its world; and

e O:S8 x A — II(Q) is the observation function, which gives, for each action
and resulting state, a probability distribution over possible observations (we write
O(s', a, 0) for the probability of making observation o given that the agent took
action a and landed in state s’).

Accordingly, a POMDP basically describes a MDP in which the agent only makes
observations of the environment state and tries to maximize the expected return
over the long run [KLC98]. Figure 3.2 opposes MDP and POMDP. Due to partial
observations, an agent in a POMDP needs to work with belief states obtained from
a state estimator component (SE) instead of (environment) states. In order to solve
a POMDP, different techniques can be applied. Since we will mainly deal with Q-
Learning in fully observable settings, we will not present those details here. Instead,
we refer the reader to surveys like [Mon82], [Lov91], [Abe03], or the more recent
[Spal2].
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(a) Markov Decision Process. (b) Partially Observable Markov Decision Process.

Fig. 3.2 Two state-of-the-art models that are used for single agent RL [KKB11c].

3.2.5 Discussion

In this section, we have defined the reinforcement learning problem in a formal way
and briefly introduced ideas of fundamental techniques. In particular, ()-Learning
was presented in detail as it builds the core of the multiagent reinforcement learning
approach proposed in this work.
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Although @-Learning is proven to converge to optimal strategies, it has—Ilike
most approaches—some issues which might also be traced back to general aspects
found in RL. Since we just slightly touched some of them in the above descriptions,
let us now identify the main problems in the following list:

Credit Assignment: Since the agent only gets feedback in the form of an imme-
diate reward, it is hard to decide which action or (sub-)sequence of actions from
a longer interaction sequence was responsible for reaching a goal. That is, there
exists a delay between obtaining a reward and observing its effect. Hence, assign-
ing credit to actions may not be easy and is known as temporal credit assignment
problem.

Exploration-Exploitation Tradeoff: Clearly, an agent is interested in maximiz-
ing its return. Accordingly, it should on the one hand exploit actions that have been
found to result in good rewards. Sticking only to such actions, on the other hand,
may not be advisable since there might be other actions that could potentially lead
to even better rewards. Since the agent is usually not aware of the dynamics of its
environment, it is forced to interact with the environment in a trial-and-error man-
ner so as to explore its world and to obtain new knowledge. Too much exploration
is clearly also not advisable as this may result in a low return. Hence, the agent has
to find a good tradeoff between exploring its environment and exploiting learned
knowledge. Also note that the agent’s action choices, particularly in Monte Carlo
and Temporal Difference methods, influence the generated samples that are used
for learning.

Curse of Dimensionality: The curse of dimensionality refers to the exponential
growth of state-action spaces with an increasing number of variables. In particular,
since most approaches maintain a value for each state-action pair in a tabular form,
learning and storing all these values quickly becomes computationally expensive.

Partial Observability: The methods presented above rely on perfect observation
of states. In realistic problems, however, this assumption does often not hold.
Hence, a good policy might include actions that do not directly lead to the desired
goal behavior but are used to gather information on the state. In such cases, it is
hardly possible to reach the (theoretically) maximal returns.

We should also mention here that a large number of different approaches to deal
with these challenges exist. Since it is natural that one approach performs well
in some settings but (slightly) worse in another, it is hence left to conclude that
single agent reinforcement learning is powerful tool. In particular, its extension to
multiagent settings is interesting and will be presented in the next section.

3.3 Multiagent Reinforcement Learning

In this section, we describe the extension of single agent reinforcement learning
to settings with multiple agents, mainly based on [BBDS10]. In particular, we first
define the formal framework and the learning problem. Then, we provide a short
overview on algorithms for cooperative settings and give an in-depth presentation of
an algorithm called Distributed ()-Learning that is fundamental to our work. Finally,
we close this section with a short discussion.

Since the remainder cannot describe all works in detail, please consult recent
surveys on Multiagent Reinforcement Learning (MARL) for further information. In
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particular, have a look at [YG04], [HTPT06], and [BBDSO08] resp. its extended and
revised version [BBDS10]. Another survey focuses on learning in cooperative MAS
from a wider perspective [PLOS].

3.3.1 Stochastic Games

Single agent settings are usually modeled as Markov Decision Process. A natural
generalization of this model is a stochastic game [Sha53] (or Markov game), which
constitutes the framework for most MARL work (cf. [BBDS10]). In [KKB12], we
defined a stochastic game as follows:

Definition 8 (Stochastic Game). A stochastic game (SG) is defined by a tuple
I' = (50,5, A,U,0,{pi};c4). Where 5o € S is a start state from the set of states S.
A is a set of agents playing the game and U = X;c 4 A; is the set of joint actions,
where A; denotes the actions available to agent i € A. The state-transition function
0:8 x U xS — [0,1] returns the probability of transitioning to state s’ € S after
joint action u € U in state s € S was executed. The set of all reward functions is
given as {p; },. 4 having p; : S x U — R for all agents i € A.

Before we continue with a classification of stochastic games, we will first provide
an alternative perspective for their definition. Therefore, we consider the static game
(or stage game) that belongs to a particular state of a SG (cf. [SLB09]). Such a static
(stateless) game can be defined as follows:

Definition 9 (Static (Stateless) Game). A static (stateless) game is described by a
tuple G = (A, U, {p; }ica), where A denotes the set of agents, U = X ;.4 4; the set
of joint actions composed of the agent individual action sets A;, and p; : U — R the
reward function of agent ¢.

From that perspective, a stochastic game hence consists of a set of states and a
state transition function such that in each state a certain static game is played and
afterwards a state transition occurs.

To be more precise, a static game that is played in a state of a SG is usually
referred to as stage game. Since states in stochastic games tend to be visited more
than once, the same stage game is played repeatedly, which means that one may also
refer to a stage game as repeated game [BBDS10]. In general, stochastic games are a
unifying and powerful framework as they include MDPs, which are stochastic games
with a single agent, as well as repeated games, which are stochastic games with a
single state [SLB09].

To clearly distinguish between settings with states, i.e. general MDPs or stochastic
games, and stateless settings, i.e. static games or stage games, we will from now on
use the term strategy if we talk about a policy in a static game. An agent’s strategy
o; + A; — [0, 1] returns the probability of executing an action in a stateless setting.
In contrast, a policy 7; : S x A — [0, 1] always refers to settings with states. If not
mentioned otherwise, we will concentrate in this work on settings with deterministic
policies and strategies. A deterministic policy can be defined as 7; : S — A, and a
deterministic strategy reduces to executing a certain action, i.e. o; : @ — A.

Stochastic games can be classified into three categories depending on the reward
functions: fully competitive, fully cooperative (or collaborative), and mixed [BVO00],
[BBDS10]. To explain the first class, consider a SG with only two agents 41,2 € A
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(more agents are possible in general) and having p; = —p2 as reward functions.
Then, this zero-sum game is (fully) competitive as the win of agent ¢; is the loss of
agent i and vice versa. Given that all agents share the same reward function, i.e.
pi = pj, Vi, j € A, the stochastic game is called (fully) cooperative. In particular, all
agents obtain the same reward and thus try to optimize the same return over time, i.e.
they intend to reach the same goal. The third class, mixed stochastic games, does not
fall in any of the two aforementioned classes.

Different approaches for all categories exist. However, many algorithms try to
solve a SG by finding strategies for each stage game while their combination forms
a solution to the SG [BBDS10]. In the next section, we will provide some basic
approaches for cooperative games. Further details on other algorithms can be found
in relevant surveys like those listed in the introduction to this section.

Next, let us briefly discuss the learning goal in stochastic games. In competitive
games, it is often hard to state which policy is optimal since the agents’ returns
strongly depend on the behavior of all agents. Thus, multiagent reinforcement learn-
ing algorithms often search for equilibria, in particular, Nash equilibria. In a static
game, a Nash equilibrium [Nas51] basically describes a set of strategies such that
no agent can benefit by deviating from its strategy if all other agents stick to their
current strategy. To formally define such an equilibrium based on [BBDS10], let
¥; denote the set of strategies of agent i and let o_; = (01,...,04-1,0i41,--.0n)
describe a strategy profile of all agents except i. A best response o} of agent i to a
strategy profile o_; leads to the maximum expected reward p; that can be achieved if
all other agents follow the given strategy profile. Formally, for a best response o7 it
holds that:

Elpilo_;Uog)] < Elp; |o_iUo}],Vo; € 5. (3.13)

A joint strategy o* = (07,05, ...,0k), which solely consists of best responses, is
called Nash equilibrium (NE). In particular, a Nash equilibrium in a static game
reduces to a joint action that leads to the highest value [CB98].

Although there is an on-going discussion on the usefulness of NE as solution
concept in the context of MARL (cf. [SPGO07]), many algorithms seek for Nash
equilibria. In particular, if multiple NE exists, convergence to an “arbitrary” NE can
lead to suboptimal performance. Also, aiming for NE assumes rational agents with a
utilitarian behavior. In practice, however, agents (or humans) often do not act rational.
Furthermore, it is not yet clear how combined strategies for general stochastic games
which are composed of strategies that lead to NE in the stage games relate to each
other [BBDS10]. Besides convergence to equilibria, which basically expresses the
desire to find a stable solution, also the ability of an agent to adapt to other learning
agents is usually considered to be a goal in MARL [BBDS10]. A further discussion
on this issue is left out in this work since we focus on cooperative settings.

Other than in competitive games, the learning goal in cooperative stochastic games
is simpler. Here, the goal of all agents is to maximize the same expected (discounted)
return over time. In a cooperative static game with deterministic strategies, the agents
implicitly determine a Nash equilibrium while they try to find a joint action that leads
to the highest reward. Games in which agents try to reach a common goal are often
called common payoff or team games. In the next section, we will present some basic
approaches towards reinforcement learning in cooperative stochastic games.
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3.3.2 Algorithms for Cooperative Stochastic Games

As mentioned above, the goal of all agents in a cooperative SG is to maximize a com-
mon expected (and discounted) return over time. Note that joint actions are defined
through all individual agent actions and thus are responsible for the immediate reward
that is given to all agents. Based on this observation a simple learning algorithm can
be constructed to solve the problem by basically reducing the cooperative stochastic
game to a central instance Markov Decision Process. In detail, given a cooperative
stochastic game I' = (s, S, A, U,d,{pi};c4)» a discount factor -, and a central
instance, transform I into a Markov Decision Process M = (S', A, ¢, p',~') such
that:

S’ = 8, i.e. the MDP and the SG share the same state set.
The action set A is constructed by considering each joint action u € U to be an
atomic action a € A of a central agent.

e The dynamics of the state transition function § are preserved in §’ by defining the
latter such that performing an action a € A in a state s € S’ leads to the same
dynamics as performing the underlying joint action in the SG.

e Since all reward functions {p; },. , in the cooperative SG are equal, we can use
one of these functions to construct p’ such that it, depending on the states, returns
the same reward for an action a € A as for the corresponding joint action in the
stochastic game.

e +' =~,i.e. the MDP and the SG share the same discount factor.

Given such a transformed MDP, we can use any algorithm for single agent rein-
forcement learning, e.g. (Q-Learning, to solve it. The resulting policy then can be
decomposed into agent specific policies and transferred to the agents in the stochastic
game. We will refer to this approach as centralized (Q-Learning) approach. Note
that this procedure is not new and is already described e.g. in [LR0O] and [BBDS10].

Demanding a central instance is a strong assumption as agents are autonomous in
their decisions and, in particular, may not even be able to communicate with each
other. Also from a computational point of view, this approach suffers from huge
state-action spaces which grow exponentially in the number of agent actions and
agents. Hence, maintaining a central ()-table that holds values for all state and joint
action pairs soon becomes impractical. Accordingly, other approaches than the one
described above have been developed, and some of them will be presented in the
next paragraphs.

Before we do so, let us briefly classify MARL algorithms according to Claus
and Boutilier [CB98]. According to their work, one can consider an agent to be an
independent learner (IL) or a joint action learner (JAL). An independent learner
ignores the presence of other agents, for instance because it is simply not aware of
them or cannot observe the other agents’ actions. The agent then learns ()-values for
its own actions. Due to the influence of the other agents, a deterministic environment
hence can become non-deterministic from the individual agent’s point of view. A
joint action learner accordingly learns values for the joint actions, that is it has to
be able to observe the other agents. This is a strong assumption, especially in large
systems. Finally, there are also learners in between, i.e. those who consider only
actions of some neighbors or those who consider other actions only in states where
coordination is required.

In [GLPO02], Guestrin et al. present an approach that belongs to the latter class. It
decomposes the joint value function into independent local value functions such that
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they can only be influenced by a smaller number of agents in the system. That is, a
larger learning problem is split into several smaller independent problems which can
be solved more efficiently. The local results are used to derive an (optimal) joint policy
for the global problem. Therefore, the algorithm relies either on communication or
on a common observation. However, creating such a factorization of the problem is
not always possible.

Wang and Sandholm [WS03] have proposed the first algorithm that is—under
some assumptions on e.g. convergence rates—guaranteed to converge to optimal
solutions in general fully cooperative stochastic games. The core idea of the approach
is to eliminate suboptimal equilibria in each stage game by creating and playing a
virtual game that reflects the properties of the underlying stage game. Therefore,
those joint actions that lead to the highest reward in a stage game return a reward
of 1 in the corresponding virtual game, and all suboptimal joint actions return 0.
The approach, called Optimal Adaptive Learning (OAL), therefore does not even
need to know the game structure in advance. Instead, these virtual games are learned
simultaneously while they are used to determine an optimal policy of the actual game.
Though this approach is able to solve cooperative stochastic games, it produces high
costs and storage requirements due to the virtual games.

Kapetanakis and Kudenko [KKO02] present an independent learner approach based
on (Q-Learning that is called Frequency Maximum Q Value (FMQ). It uses experiences
in order to guide the agents towards choosing those actions that led to high rewards. In
detail, given a cooperative repeated game, FMQ uses Q-Learning with the Boltzmann
action selection that calculates a probability for executing a certain action using

EV(a)

e T

Pr(a) =

EV(a’) ?

Za’eAi e T

where 7' denotes a temperature that controls how random actions are selected and
EV(a) denotes the estimated value of an action. The heuristic itself defines how
the estimated value of an action is calculated. Kapetanakis and Kudenko use the
following equation

EV(a) = Q(a) + ¢ - freq(maxR(a)) - maxR(a) (3.14)

where maxR(a) reflects the highest reward obtained for executing action a and
freq(maxR(a)) gives the probability for observing the maximum reward whenever
action a was executed. The game-depending factor ¢ weights the influence of the
FMQ heuristic. Note that the )-value is calculated only for actions since the approach
deals with repeated games. It was shown experimentally that FMQ is able to converge
with almost 100% probability to an optimal joint action. FMQ is also able to find
optimal joint actions in games that contain some slightly random rewards. However,
this only works in restricted settings under specific assumptions. In games with
general stochastic rewards, FMQ performs poorly. Nevertheless, this approach has
shown that proper coordination techniques can help to improve the results of -
Learning in multiagent settings compared to basic settings like those considered in
[CBI9S]. In [MLFPOS], some experiments show that an extended FMQ heuristic is
able to slightly better deal with stochastic reward settings than the original heuristic.

In the next subsection, we will present another independent learner method called
Distributed @-Learning. A variant of it will build the core of our later presented
learning approach.
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3.3.2.1 Distributed Q-Learning

In [LROO], Lauer and Riedmiller proposed Distributed QQ-Learning (DQ), an algo-
rithm for fully cooperative deterministic stochastic games that provably converges
to optimal joint policies. The idea of this independent learner approach is based on
the so-called optimistic assumption, which means that each agent assumes that the
others play optimally. Instead of learning a global ()-table that contains values for
state and joint action pairs, like in the centralized Q-Learning approach described
above, DQ uses local tables. These tables are denoted by a lowercase qi, whereas the
superscript refers to an agent ¢ € A. Each agent learns local ¢-values for each state
and agent individual action, i.e. for all ¢‘(s,a),s € S,a € A;, such that the local
values for an action always capture the maximum value that would occur in a central
-table for that action. The update rule used by the agents contains a maximum
argument which ensures that the g-values are only updated on improvements, i.e.
if the new g-value estimation is higher than the previous one. In order to ensure
coordination towards the same joint action, agents change their policy only if a real
improvement is observed. Given bounded positive rewards, it can be proven that
Distributed -Learning converges to optimal joint policies. Based on [LR00], we
will present the formal details of this approach in the remainder of this section.

First, each agent initializes its local qi-table for all state-action pairs to zero, i.e.
qi(s,a) = 0,Vs € S,a € A;. After performing an action in a state at time step ¢,
the agent receives the common reward in the next time step and updates its table
according to (3.15):

qi(s,a) ,if s # s, ora # al
qzﬂ(s,a) = { max{qj(s,a),

pri1 (s, ug) + 'ymaj(qi(é(st, ug),a’)} , otherwise
a’€A;

(3.15)

where al € A; denotes the agent’s action and s; the state at time step t. Furthermore,
ug = (a?,...,al,...a}"") describes the joint action of all n agents at that time step.
By using the maximum operator, updates are only performed if the approximated
value for an action is improved. Given this update rule, Lauer and Riedmiller [LROO]
proved Prop. 1, which is reformulated to match the terms and notations used in this
work:

Proposition 1. Let I' = (s0,S,A,U,6,{p;i};c 1) be a deterministic cooperative
stochastic game with n = |A| agents and positive bounded rewards p(s,u) >
0,Vs € S,u € U, and let v € [0, 1) be the discount factor. Then for every time step
t, agent 1, state s, and elementary action a the following equation holds:

qi(s,a) = max Q:(s,u)
whereby Q¢-values are computed by the centralized Q-Learning algorithm and the

qi-tables are initialized to zero and updated according (3.15) with the same sequence
of current states s; and joint actions us.
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Given that each state action pair is visited infinitely often (like in single agent Q-
Learning) and by the above proposition, it follows that the local ¢*-values capture
the maximum value achievable for an action a in a state s.

As Lauer and Riedmiller point out, this result is not sufficient to learn optimal
joint policies in any cooperative game. In particular, if multiple joint actions lead
to the same highest return, then the agents might choose actions that belong to
different optimal joint actions. Hence, their combination could result in a suboptimal
joint action. Accordingly, a tie-breaking rule has to be established to ensure mutual
agreement on a particular (optimal) joint action. This is done by initializing the policy
7s(s) of an agent i for each state s € S with an arbitrary action from the agent’s
action set and then updating it according to (3.16):

)

O {”’?

if ((s,a) = f1 (5,
(s) ,ifs#szor max q;(s,a) max qi41(s,a) 3.16)

ay , otherwise

where al is agent i’s action at time step ¢ that is contained in joint action u; =
(a?,...,ak,...a?""). Clearly, the policy is only updated if a (real) improvement of
the local g-values is observed. It follows, that agents will stick to the first observed
optimal joint action, since all other optimal joint actions cannot result in a higher
value and, thus, never fulfill the required conditions for changing the policy.

Given this policy update rule, Lauer and Riedmiller prove the following, again
reformulated, proposition:

Proposition 2. Let I' = (s, S, A, U, 6, {pi},c 1) be a deterministic cooperative
stochastic game with n = |A| agents and positive bounded rewards p(s,u) >
0,Vs € S,u € U, and let v € [0, 1) be the discount factor. Then for every time step
t and state s it is:

Q: (s, (7 (s),..., " (s))) = max Q+(s,u)

ue

This means that the combination of the current policies (7?(s), ..., 71 ' (s)) com-

puted by the policy update rule (3.16) is greedy with respect to the non-distributed
Q-table created with the centralized Q-Learning algorithm with the same sequence
of current states s; and joint actions uy.

Finally, they conclude that Distributed (Q-Learning converges to optimal joint policies
due to Prop. 2 and the convergence of single agent Q)-Learning.

Lauer and Riedmiller also investigate their approach in a stochastic environment.
In this case, Distributed (Q-Learning, even for a g-value update rule that reflects
stochastic environments, is unable to converge to optimal joint policies. This follows
because the agents cannot distinguish the influence of stochastic rewards and that
of the other agents’ action choices. In a later work [LR04], Lauer and Riedmiller
provided another approach that can learn optimal joint policies in stochastic environ-
ments. That approach uses a special list data structure to enable agents to mutually
agree on joint actions without communication or observations on the other agents.
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3.3.3 Decentralized Partially Observable Markov Decision
Processes

While previously presented approaches and models dealt only with fully observable
environments, i.e. agents are able to observe the complete environment state, this
section briefly presents a model for partially observable environments.

In single agent settings, Partially Observable Markov Decision Processes (POMDP)
can be used to model partial observability. The generalization of this model in multi-
agent settings are cooperative partially observable stochastic games which generally
are known as decentralized partially-observable Markov Decision Processes (Dec-
POMDP). Based on [BGIZ02] (and influenced by [BHZ04] and [KKB11c]), we
define a Dec-POMDP as follows:

Definition 10 (Decentralized Partially Observable Markov Decision Process). A
decentralized partially-observable Markov Decision Process (Dec-POMDP) is de-
scribed by a tuple (S, A, U, J, p, 2, O), where

S is a finite set of states with an initial state sg.

A is the set of agents.

U = X;c4A; is ajoint action set, where A; denotes actions of agent .

d:SxU xS — [0, 1] is a probabilistic state transition function, where d(s, u, ")

denotes the probability of transitioning from state s to state s’ when joint action

u € U is executed.

e p:S8xU xS — Ris areward function, where p(s, u, s') denotes the reward
for executing joint action w in state s and transitioning to state s’.

o O = X;c49; is a finite set of observations, where €2; denotes the set of observa-
tions agent ¢ can make.

e O is a table of observation probabilities. O(s,u, s’, 0) is the probability of ob-

serving joint-observation o = (o1, ..., 0,) €  when executing joint action u in

state s and transitioning to state s’. Each agent ¢ only perceives the element o; of

the joint-observation o.

An interesting result for the complexity of solving Dec-POMDPs, i.e. finding joint
policies that maximize the expected cumulative return over time, is presented in
[BGIZ02]. Namely, for already two agents Dec-POMDPs with a finite horizon are
NEXP-complete. Algorithms for Dec-POMDPs can be found in the literature, e.g. in
[BAHZ09] or [YTO7].

3.3.4 Discussion

Despite lots of progress in (multiagent) reinforcement learning research in recent
years, several yet unsolved open issues and challenges exist. Some of them are
inherent to RL in general while others emerge in MARL only. According to Panait
and Luke [PLO05], Busoniu et al. [BBDS08] [BBDS10], and 't Hoen et al. [HTPT06]
the list includes the following:

Scalability: The problem of scalability can be found in many multiagent learning
algorithms and is not specific for MARL. The basic problem is that search spaces
grow too quickly. This follows from the increased number of agents since each
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agent adds its own actions to the joint strategy space that has to be explored. Also,
each agent, resp. its “state”, becomes part of the environment which leads to
larger state spaces, too. Since many algorithms focus on finite state and action sets
and use tabular representations for ()-values, large (or continuous) state-action
spaces quickly become hard to handle. This holds in particular, because most Q-
Learning based algorithms demand infinitely many visits of each state-action pair.
To produce relief, approximative techniques can be used (see e.g. [BEDSB11] for
a survey on approximate reinforcement learning). Another approach is to exploit
problem structures, e.g. by decomposition of larger problems [GLP02], or by
masking states as we will propose later in this work.

Exploration-exploitation tradeoff: Like in single agent reinforcement learning,
the question of exploring new knowledge or exploiting learned knowledge also
exists in MARL. One approach towards finding a balance in this tradeoff can be
found in Bayesian MARL. There, the expected gain of exploration is compared to
the costs by reasoning about other agents [CB03].

Coordination: Coordination in cooperative MAS can be defined as “the ability of
two or more agents to jointly reach a consensus over which actions to perform in
an environment” [KKO02]. As we have seen, there are algorithms like Distributed
@-Learning which can reach this goal under some assumptions in restricted
settings without communication. However, in general or in possibly partially
observable domains, mutual agreement can be hard to establish because an agent’s
action choice might also depend on the actions of other agents.

Dynamics of environment: Because multiple agents learn and act simultaneously
in the same environment, the learning environment becomes non-stationary. Thus,
the agents need to be able to adapt to a constantly changing goal. This is also
known as moving target problem.

Credit assignment: The credit assignment problem known from single agent RL,
can also be found in MARL. However, in MAS, the question goes even further
as it sometimes might be unclear which agent was responsible for reaching a
particularly high or low reward. This question is hard to answer in general and
many different approaches for giving credit have been investigated (see e.g. [PLOS,
Sect. 3.1] for a detailed overview).

Emergent behavior: Given complex problems and agents with many actions, the
outcome of certain joint actions could become unpredictable and potentially lead
to emergent behavior. Hence, the influence of such emergent behaviors to learning
becomes interesting and should be investigated.

Rationality: As we have discussed in the context of algorithms that search for
equilibrium solutions, e.g. Nash equilibria, the best “team” solution does not
necessarily correlate to such equilibria. Hence, rationality in cooperative systems
might be considered as being less important than achieving a good result for the
entire agent society.

Specification of MARL goal:  Also, the specification of a good MARL goal is not
easy. As we stated earlier, the two most important aspects include the stability of
the learning dynamics, e.g. by converging to stationary policies, and the ability
to maintain performance by adaptation to changing behavior of other agents. As
pointed out in [BBDS10], several different properties can be considered in order
to fulfill these aspects.

Convergence: Besides defining proper learning goals in MARL, convergence to
exact optimal solutions often is hardly possible, e.g. due to scalability issues.
Hence, several MARL approaches try to converge to near optimal solutions.
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Partial observability: In partially observable settings the agents are unable to
observe the full state and/or the actions of all other agents. Since the approaches
presented above rely on either of them, they cannot be applied and different
techniques and models are required. While solving POMDPs in single agent
settings is PSPACE-complete [PT87], the problem becomes NEXP-complete for
Dec-POMDPs, even in the two agent case [BGIZ02].

Heterogeneity: Many algorithms are evaluated in self-play and consider only
homogeneous agent sets. In more realistic settings, however, these assumptions
might not hold, e.g. due to specialized agents (robots with different abilities), or
because different manufactures are involved. These kinds of heterogeneity do
influence the learning behavior and hence should be investigated. One work that
deals with different learning algorithms is [KK04].

Design of reward functions:  Since most research deals with small or well-known
problems, the above cited works do not consider the aspect of designing reward
functions. Given a new problem, the design of proper reward functions is challeng-
ing and should be accomplished with care. Otherwise, agents might learn a (near)
optimal strategy, but the observed behavior does not match with expectations. In
particular, this becomes an issue if techniques like reward shaping (see Sect. 3.4)
are used (improperly).

As we can see from this list, there is still room for improvement in the research
area of multiagent reinforcement learning. This is also underlined by Shoham et
al. [SPGO7], who pointed out that “Learning in MAS is conceptually, not only
technically, challenging”.

3.4 Reward Shaping

Reward shaping is a technique which is intended to improve the learning performance
in single and multiagent reinforcement learning [NHR99] [DK11]. The basic idea
is to guide the learner by providing an additional shaped reward that comes in
combination with the true reward function such that a good—ideally optimal—policy
is learned faster.

Formally, the idea of reward shaping can be described as follows [NHR99]:
Assume a single agent MDP M = (S, A, 4, p,y) that should be solved. Instead of
dealing with M the agent is confronted with a different MDP M’ = (S, A, 4§, p', )
that corresponds to M but uses a new reward function p’ such that p'(s,a,s’) =
p(s,a,8')+ F(s,a,s"). Here, F : S x A x S — R denotes the additional shaped
reward function. This shaped reward should guide the agent in M’ towards states with
higher rewards more quickly. The learned behavior for M’ finally should correspond
to the desired (optimal) behavior for the original MDP M.

Although the influence of shaped rewards to learning has been unclear for some
time, reward shaping was successfully applied in different domains. However, there
also have been problems. One remarkable example mentioned in [NHR99] is the
work of Randlgv and Alstrgm [RA98], in which an agent was supposed to learn to
ride a bicycle from a starting position to a goal position. The authors state that in an
early stage of their research, they used a reward function that rewards the agent for
approaching the goal but does not include any punishment when the agent drove away
from the goal. In this setting, the agent learned to drive in circles of 20-50 meters
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around the starting position instead of driving towards the goal. Besides the reward
that can be gathered by this behavior, the agent was also performing good in terms of
learning to ride a bike, because circles build a physically stable formation. Hence,
the agent performed well with respect to the provided (shaped) reward function but
bad with respect to the original problem setting.

The question of how reward shaping influences learning an optimal policy for the
original MDP was investigated by Ng et al. [NHR99]. In particular, they identified
that if there are state sequences s; — S2 — ...S, — §1 — ... that can occur
repeatedly and which result in a positive overall shaped reward, i.e. F'(s1, a1, $2) +
coot F(Sp—1,an-1,8,) + F(8n,an, s1) > 0, then the agent might refrain from
learning the optimal policy for the original MDP and instead learns to run into this
circle. In order to avoid such settings, Ng et al. proposed to use potential-based
reward shaping functions and proved the following theorem:

Theorem 3 (INHR99]). Let any S, A, v, and any shaping reward function F' : S x
A xS — R be given. We say F is a potential-based shaping function if there exists
a real-valued function ® : S — R such that forall s € S\ {so}*,a € A,s' € S,

F(57a7 S/) = ’yq)(sl) - (I)(S)7 (317)

(where S\ {so} = S if v < 1). Then, that F is a potential-based shaping function
is a necessary and sufficient condition for it to guarantee consistency with the
optimal policy (when learning from M' = (S, A,0,p + F,~) rather than from
M = (S, A, 4, p,7)), in the following sense:

o (Sufficiency) If F is a potential-based shaping function, then every optimal policy
in M’ will also be an optimal policy in M (and vice versa).

e (Necessity) If F' is not a potential-based shaping function (e.g. no such ® exists
satisfying (3.17)), then there exist (proper) transition functions § and a reward
Sunction p : S x A — R, such that no optimal policy in M is optimal in M.

Accordingly, if a potential-based shaping function is used, then the agent will be able
to learn the optimal policy for MDP M from the “modified” MDP M’ with shaped
rewards. Some additional experiments conducted by the authors of [NHR99] also
support this theoretical result and showed improved convergence speed with reward
shaping compared to settings without this technique.

Which shaping function is used in a particular context usually depends on the
considered problem and can be a problem on its own, particularly in large and
complex domains. Mainly, heuristics that incorporate some domain knowledge are
used. A more recent approach applies planning techniques to automatically generate
potential-based shaping functions [GKOS].

Another interesting result in this context was presented by Wiewiora [Wie03]. He
proved that potential-based reward shaping is equivalent to initializing the (J-table
with the potential function ®, e.g. Qo(s,a) = ®(s).

Reward shaping was also applied in multiagent settings (e.g. in [BACLOS]) al-
though no formal proofs concerning the invariance of the learned policy with respect
to shaped rewards were known. Recently, Devlin and Kudenko [DK11] closed this
gap. They proved that the results of Wiewiora [Wie03] concerning the equivalence
of ()-table initialization and using potential-based reward shaping, can be extended

2 50 denotes the starting start of the MDP.
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to the multiagent case, too. The authors also proved that the set of Nash equilibria in
a stochastic game remains stable if (some or all) agents use potential-based reward
shaping. However, potential-based reward shaping influences the behavior of the
agents with respect to exploration and, thus, convergence to different (possible bad)
Nash equilibria may occur as demonstrated empirically in [DK11].

To conclude, it should be stated that reward shaping is a powerful technique to
improve convergence speed in single and multiagent RL on the one hand, but should
be used with care to avoid misguided coordination on the other hand.

Later in this work, we will consider learning under noised rewards. Comparable
to reward shaping, our noisy rewards are also a sum of the original reward and an
additional function. Hence, the result of Ng et al. will become useful in our setting,
too. Contrary to reward shaping, which tries to guide a learning agent, noised rewards
distract agents from learning correct behaviors.

3.5 Conclusion

In this section, we provided the necessary background for the learning parts of this
thesis. We established the notations and terms used throughout this work. In addition,
we presented both, a broad overview on the (multiagent) reinforcement learning
research area, its algorithms, and challenges, as well as detailed descriptions of the
most important algorithms and models used later on.

Finally, it should not remain unmentioned that reinforcement learning (RL) has
been applied successfully in a wide variety of real world problems. A well-known
example is that of Tesauro’s world-class backgammon program that is on par with the
best human players in the world [Tes95]. Another example is presented in [KS04],
where the well-known robot dog Aibo uses RL to learn a gait to move faster than with
any previously known hand-coded gait. Ng et al. [NCD"04] have used RL to control
a small usually radio-controlled helicopter. In particular, the helicopter has learned a
policy that allows it to perform an autonomous inverted hovering flight maneuver. In
the area of operations research, Abe et al. [AVAS04] applied reinforcement learning
in a customer relationship management tool in order to optimize mail campaigns,
which resulted in increased profits.

Clearly, this list of successful reinforcement learning applications is not exhaustive.
However, it provides reasonable evidence that RL is a particularly useful technique
that can be applied to different problem areas due its low requirements, e.g. concern-
ing learning feedback and the use of very general models.
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Chapter

Sequential Stage Games and
Engineered Rewards

This chapter presents two own contributions. The first result, described in Sect. 4.1,
is the definition of a special type of games for learning in multiagent settings. We
motivate this class and show that it constitutes an interesting subclass of stochastic
games which we will pursue in the remainder of this thesis.

The second contribution, presented in Sect. 4.2, is a conceptual model for re-
inforcement learning that we will use to develop an approach for learning in the
aforementioned novel game class. In this concept, only an engineered reward signal
is provided to a learning agent instead of a state and a reward signal. We prove that it
is equivalent to standard models with full observability in terms of expressiveness
and computational effort. However, we also show that the concept, compared to
standard models, adds more expressiveness in partially observable domains.

Both sections describe foundations for the main learning algorithms that we will
propose later in this work. The contents of this chapter have already (partly) been
published in [KKB11c], [KKB11a], and [KKB12].

4.1 Sequential Stage Games

In this section, we will introduce a novel subclass of stochastic games called se-
quential stage games (SSG). As the name already indicates, a sequential stage game
consists of a set of stage games that are played in a row one after the other. Stochastic
games, in contrast, consist of static games for each state and allow arbitrary proba-
bilistic transitions between these games, resp. states. Hence, the assumption on the
transition function in SSGs mainly distinguishes our class from stochastic games.
Figure 4.1 visualizes this difference.

Next, we motivate sequential stage games in Sect. 4.1.1 and provide a formal
definition in Sect. 4.1.2. Then, we relate the novel class to existing game classes in
Sect. 4.1.3. In Sect. 4.1.4, we conclude this section with a short discussion.
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Fig. 4.1 Structural difference between stochastic games and sequential stage games.

4.1.1 Motivation

Although there are many algorithms for learning in general stochastic games (see
surveys like [HTPT06] or [BBDS10]), convergence towards optimal joint policies is
still a challenge under general settings. Given that a subclass of stochastic games is
considered, e.g. cooperative stochastic games, one can construct algorithms that try
to exploit the special structures of the considered class.

In this work, we are interested in such a special game class. As shown in Fig.
4.1, our class makes an assumption on state transitions. In detail, we assume that
agents play one particular stateless game for a certain number of iterations which is
unknown to the agents. When a game is “over”, the agents are confronted with a new
game, which again is played repeatedly for some given timespan.

From our point of view, this special structure is highly interesting since it can
be found in various problem domains. For instance, in economic problem settings
where the market follows some defined rules for a given amount of time. The players
have to adjust to this setting, i.e. they have to learn how to best deal with the current
situation. From time to time, market rules change, e.g. if new players enter a market
or if new laws are established. In that case, the agents face a new situation to which
they have to adapt again.

Similar structures can be found in other dynamic systems like, e.g., distributed
control problems in production systems. During a work shift, a production plant
might only produce a single product A. Hence, the machines have to be adjusted to
this setting. Later—planed or unexpected—another product B has to be manufactured
and the machines have to be adjusted again. Such changes might be unpredictable,
e.g. due to changed customer demands or urgent orders. After a change, however,
the system will remain in a stable state for some unknown timespan before the next
change occurs.

According to these two (simplified) examples, it becomes clear that proper models
and well-tailored general methods for such sequential problem structures are an
interesting area in both, research and practice. Hence, the remainder of this section
will define a special class of games called sequential stage games that formalizes the
corresponding properties for simplified stateless games.
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4.1.2 Definition

As mentioned above, the core idea of sequential stage games is that agents consecu-
tively play a sequence of stage games. In particular, we assume that the set of agents
as well as the set of actions available to each agent in every stage game is equal. This
leads to a first definition of the set of common static games:

Definition 11 (Common Static Games [KKB12]). Let CSG(.A, U) denote the set
of static games that have the same agents .4 and the same joint action set U. We refer
to this class as common static games.

With the help of this set, we can now state the definition of sequential stage games:

Definition 12 (Sequential Stage Game [KKB12]). A sequential stage game (SSG)
is a game defined by I' = (A, U, G, (Go, no), g), where

o A is the set of agents

o U = Xx;c4A; is the set of joint actions, where A; denotes the actions available to
agenti € A

o G = {(Go,no),(G1,m1),...,{(Gm,nm)} is aset of m + 1 pairs (G;, n;), and
G; = (AU, {pZ tiea) € CSG(A,U) is a common static game that is played
repeatedly for n; > 1 times

e (Go,ng) € G describes the initial common static game Gy that is played ng > 1
times

e ¢ :G — @ is the game transition function that transitions from game G; to game
G 11 after G; was played n; times

Note that the common static games contained in the tuples of the game set G
usually are played repeatedly and thus can be referred to as stage games, too. Since a
stage game can be either cooperative, competitive, or a mixture of both, the same also
applies for sequential stage games. To be clear about terminology, a SSG is said to
be cooperative, resp. competitive, if all contained stage games are cooperative, resp.
competitive. It is a mixture of both, if it either contains more than one type of stage
games or if all stage games are a mixture. Since we will concentrate on cooperative
SSGs in this work, we introduce the abbreviation CSSG to refer to such cooperative
games.

Given this definition, we now describe what is considered to be an optimal joint
strategy in a cooperative SSG. In such a setting, a sequence of different cooperative
common stage games is played. It is easy to define an optimal joint strategy for
each of these stage games: An optimal joint strategy for a stage game G; leads to
the highest reward. Let us for a moment pretend that each stage game of a CSSG
describes a state. Under this assumption, an optimal joint policy for a CSSG can
be defined by using the optimal joint strategies for each state’s stage games. In
terms of the cumulative discounted reward, this definition describes the highest value
achievable for playing the cooperative SSG.

However, there is no formal state in a SSG. Thus, agents at any point in time only
have one strategy that they follow. This strategy has to be adjusted dynamically over
time to reflect the changing demands of the sequence of stage games. Accordingly,
it is hard to describe an optimal joint strategy formally, at least without adding an
artificial state (as above) or another form of time dependency. As a consequence,
when we will talk about an optimal joint strategy for a cooperative sequential stage
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game, we mean the (artificial) optimal joint policy described above. If we consider
the behavior of a learning approach in a particular stage game G, then we will
directly refer to the optimal joint strategy for G;.

4.1.3 Relationship to other Models

In this section, we relate sequential stage games to other existing models. The first
result provided in Prop. 3 has been published in [KKB12]. It shows the relation of
SSGs to stochastic games:

Proposition 3 ([KKB12]). Sequential stage games are a proper subclass of stochas-
tic games, i.e. SSG C SG.

Proof. In order to prove this proposition, consider the following construction. It
allows us to reformulate any sequential stage game as a stochastic game. Let I' =
(A, U, G, (Go,no), g) be an arbitrary sequential stage game. Then a corresponding
stochastic game I = (s¢,S, A", U’, §, {p}}ic.as) is constructed by:

o A/'=AandU’'=U.
e Recall the definition of the set of games G. Then let S be a set of 2 + Z;T"':O nj
states, i.e. S = {sp,s0,...,50%, s1,...,s7%, ..., 8] spm, S ). Here, s

s Sy e ey SIS
denotes the state that is obtained when game G; was played for the v-th iteration.

o The initial state sg corresponds to state sy, which is the state before the first game
is played. In addition, s, defines an absorbing state that will be entered when the
game sequence is completed.

o The state transition function J for any joint action u € U is constructed such that
it stays in stage game G; until it is played n; times and then transitions to the
next game Gj41. Therefore, the transition function has to ensure to iterate over
all states in the imposed ordering as indicated in the definition of S above. The
state transition function ¢ thus realizes the game transition function g of the SSG.
Formally, § is given by:

— Start:
§(sp,u,85) = 1A 6(sg,u,s) =0,8# s, Vu € U, s, 85,8 €S
— Play G for n; times:

5(5}’,u,5}-’+1) =1A0d(s%,u,5) = 0,5 # 5}’+1,Vu € U,s,s§+1 €S§,s] €

s
S\ ()}
— Transition from G to Gj41:
5(sy" u,85,0) =1A(s;" u,8) = 0,8 # s}, YueUs,” s s}, €S
— Enter absorbing state s, if all games are played:
F(sTm Uy So00) = LAO(8Tm 1, 8) = 0,8 # Soo, Vu € U, 87 8,55 €S
— Stay in absorbing state s:
0(S00s Uy So0) = LA (800, U, 8) = 0,8 # Soo, Vu €U, S, 800 €S

e The reward function p} of an agent 7 is given by p; : SxU — R, where the rewards
for all joint-actions u € U in state si’ € S correspond to the reward obtained when
playing u in stage game G, In addition let p(sp, u) = p}(sc0,u) = 0,Vu € U

! Contrary to this work, we wrongly defined the agents’ reward functions for the start and the
absorbing state in [KKB12] to return the rewards of the first, resp. last game in the sequence.
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By this construction, we have shown that each sequential stage game can be
transformed into a stochastic game. To prove that sequential stage games are a proper
subclass of stochastic games consider two distinct stochastic games I'4 and I' g with
disjoint state sets. Then let I'c be a SG that combines both games I' 4 and I' 5 such
that no connection from I' 4 to I' g exists in I'. Now choose the initial state sq of '
from say I" 4’s states. Accordingly, not all stage games in I' can be played. Since by
definition of SSGs, each stage game must be played at least once, not all stochastic
games can be translated into a sequential stage game. Together with the construction
above, Prop. 3 follows. O

This result is not surprising, since SSGs by definition are composed of the same
kind of games, namely static (or stage) games, as ordinary stochastic games. For
cooperative sequential stage games, we can show the following:

Proposition 4. Cooperative sequential stage games are a proper subclass of decen-
tralized partially observable Markov Decision Processes, i.e. CSSG C Dec-POMDP.

Proof. Let I be an arbitrary cooperative sequential stage game. Then, we can easily
reformulate T" as Dec-POMDP A = (S, U, 4, p, 2, O) by using:

e The same state set S and the same transition function ¢ as in the proof for Prop. 3.

e The same set of joint actions U'.

e A reward function p : S x U x § — R that returns for p(s, u, s") the reward
which corresponds to the reward obtained when executing joint action v in game
G of the CSSG corresponding to state s. Note that this step is only valid because
all agents share the same reward function in a CSSG.

e An empty set of observations €2 = {) and, thus, an observation function O that
maps to an empty observation for all inputs, as agents in the original CSSG can
neither observe each other nor the environment.

From an analog construction as for stochastic games, it immediately follows that not
every Dec-POMDP can be formulated as CSS G, which finally proves the proposition.
O

According to Hansen et al. [HBZ04], cooperative partially observable stochastic
games (coop. POSG) are known as Dec-POMDPs, which have been defined by
Bernstein et al. [BGIZ02].

In the end, Fig. 4.2 illustrates the relations of (cooperative) SSGs to other models.

cooperative
Dec-POMDP

Fig. 4.2 The relationships of (cooperative) sequential stage games.
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4.1.4 Discussion

Given the model of sequential stage games, we now can develop multiagent rein-
forcement learning algorithms that can benefit from the aforementioned structural
properties of this class. The relation of SSGs with respect to existing well-known
game classes is helpful in order to identify algorithms that might establish a basement
for novel approaches.

4.2 Engineered Reward-Based Models

As we have seen in Sect. 3.2, most models used for RL assume an agent to be able
to perceive at least two signals via its sensors: the state and the reward signal. In
this section, we present a different approach that combines both signals into an
engineered artificial reward. By doing so, an agent in our model does not need to
observe two, but only one signal. We analyze the properties of this concept and show
that it is equivalent to ordinary models in terms of expressiveness and computational
effort. We also point out that it has to be used carefully in order to avoid undesired
knowledge transfer from the central environment to the agent(s). The results presented
in the following subsections have already been published in [KKB11c].

4.2.1 Concept

The idea of the engineered reward-based model is to encode original state and reward
information of an underlying MDP into a single numerical value—the engineered
reward. This value is the only signal observed by an agent. Thus, the environment
does not need to offer directly visible state information, or to put it the other way
around, the agent can be “blind” and only needs to be able to observe the reward
signal. When the agent receives the engineered reward signal, it can decode the signal
and extract both, original reward and state information. Clearly, the time required by
the de- and encoding functions has to be polynomial.

Figure 4.3 visualizes the concept of engineered reward-based Markov Decision
Processes. In addition, it shows important components of a learning agent which
usually depend on the availability of a state and a reward signal. Given appropriate
de- and encoding functions, the approach maintains state and reward information
and, thus, all algorithms for ordinary MDPs can be applied in this model, too.

Next, we quote a slightly reformulated definition for engineered reward-based
Markov Decision Processes from [KKB11c]:

Definition 13 (Engineered Reward-Based MDP). Consider the Markov Decision
Process M = (S, A, 0, p,v). An engineered reward-based Markov Decision Process
(ERBMDP) is defined by a tuple E = (M, ENC, DEC). Here, ENC: R x § — Risa
polynomial time function that calculates an engineered reward which encodes original
rewards and states into a single real value. Agents can only observe the engineered
reward, and are able to decode these rewards using a polynomial time decoding
function DEC : R — R x S. It has to hold that DEC(ENC(p(s, a), s)) = (p(s,a), s).
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Fig. 4.3 Engineered reward-based model ((KKB11c]).

In order to realize an engineered reward-based Markov Decision Process, one
needs to specify a proper de- and encoding function. In [KKB11c], we presented
such a simple polynomial time approach that basically combines reward and state
information into a single string. Therefore, it uses a specific marker and prepends
the state information and appends the reward value to it. The resulting string is
converted to a real number, e.g. using the ASCII encoding. This number can be used
as engineered reward. The decoding function simply reverses this process. We skip
further details on these two functions here and refer the reader to [KKB11c] for a
detailed description and pseudocode, as that general coding approach should only be
a proof-of-concept for the realization of an ERBMDP.

Having proposed a simple coding approach, the next question deals with the calcu-
lation of the engineered reward. Therefore note that there are basically two different
approaches. The approach that is usually followed, e.g. in robotic applications, lets a
robot itself calculate a reward based on its observations. For instance, in a simple
navigation problem, it may punish itself whenever it collides with an obstacle and
rewards itself whenever it reached an identifiable goal position. The second approach
is to consider everything outside of the agent to be part of the environment. Thus, the
reward has to be calculated within the environment. Therefore, one can either think
of the environment as an external teacher that gives rewards as stated in [Mit97], or
as a central computational instance that has full information. From this point of view,
it becomes clear that the engineered reward could either be calculated “online”, i.e.
while the agent interacts with the (computational) environment, or “offline” during
the design of a system. Which approach should be used depends on different factors
like the complexity of the problem or the storage required to pre-calculate all possible
engineered rewards.

Later, when we will consider the proposed learning approach, we will investigate
both, a centrally calculated and engineered reward that ensures convergence to (near)
optimal solutions as well as a locally (i.e. on agent-level) calculated and transformed
reward.

4.2.2 Equivalence Results

In this section, we show that the concept of using engineered rewards has the same
expressiveness and complexity as state-of-the-art Markov Decision Processes. There-
fore, we follow the approach of Seuken and Zilberstein who proved several equiv-
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alence results for models used in MARL [SZ08]. Based on their work, we define
model equivalence as follows:

Definition 14 ([KKB11c]). Two models M; and M, are said to be polynomial time
equivalent if and only if My <, My and My <, M.

In order to prove the equivalence of MDPs and engineered reward-based Markov
Decision Processes, we need to recall that reinforcement learning basically is an
optimization problem seeking for an optimal policy that maximizes the cumulative
discounted reward. Tools for analyzing complexity, however, usually deal with
decision problems (cf. [GJ79] or [CLRSO01]). Thus, we have to construct decision
variants of our optimization problems. This can be done by adding a constant B to the
problem and by asking whether the optimized value exceeds bound B. Based on this,
we next quote our equivalence result from [KKB11c], which is slightly reformulated
to match the notations of this work:

Theorem 4 ([KKB11c]). Engineered reward-based Markov Decision Processes
(ERBMDP) and Markov Decision Processes (MDP) are polynomial time equiva-
lent.

Proof. We have to show that the decision problem variants are mutually reducible in
polynomial time, i.e. ERBMDP <, MDP and MDP <,, ERBMDP. To construct a
decision problem, we add the bounds B and B’ to the respective tuples.

1. ERBMDP <,, MDP: An arbitrary ERBMDP E = ((S, A, 6, p, v}, ENC, DEC, B)
can be transformed into an MDP M’ = (S’, A’ ¢, p’,~', B’} in polynomial time
by setting S’ =S, A" = A,6' =6,p' = p,¥' =, and B’ = B. The agents also
have to be allowed to observe the state signal. Since the encoding and decoding
function, ENC and DEC, are only required to construct the engineered reward and
because DEC(ENC(p(s,a), s)) = (p(s,a), s) holds by definition, these functions
have no influence on the expected return. Thus, whenever a policy in E results in
a return of at least B, this also holds for the constructed MDP M.

2. MDP <, ERBMDP: Let M = (S, A, 6, p, v, B) be an arbitrary MDP. Then, an
ERBMDP E = ((§', A, ', p’,~'), ENC, DEC, B’) can be obtained by forbidding
the agent to observe the state signal and by setting S’ = S, A’ = A,0' =
0,p" = p,¥ = v, and B’ = B. It remains to show that there are polynomial
time algorithms for encoding and decoding such that DEC(ENC(p(s,a),s)) =
(p(s,a), s) holds—this was discussed in Sect. 4.2.1. Finally, as before, a policy
for M that results in a return of at least B will result in the same return in E.

O

In [KKB11c], we argued that this equivalence result can easily be extended to
multiagent settings with full observability. Here, we formally state this result:

Theorem S. Engineered reward-based stochastic games (ERBSG) and stochastic
games (SG) are equivalent.

Proof. Again, we have to show that both decision problem variants are mutually
reducible in polynomial time, i.e. ERBSG <, SG and SG <,, ERBSG. Therefore,
note that an ERBSG basically is a SG with additional de- and encoding functions,
which do not influence the solution. Since state transitions and rewards in stochastic
games only depend on the state and the combined actions of all agents, the aforemen-
tioned general coding approach can also be used to deal with engineered rewards in
stochastic games in polynomial time. The theorem then trivially follows by the same
arguments as in the proof for Theorem 4. a
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4.2.3 Partial Observability

Having shown the equivalence of engineered reward-based models and their standard
counterparts with full observability, we now concentrate on settings with partial
observability. In Sect. 3.2.1, we gave a definition for partially observable MDPs
(POMDP) and visualized it in Fig. 3.2(b). Like in MDPs, an agent in a POMDP also
observes a reward signal. Contrary to MDPs, the agent however does not perceive
full state information but only makes (partial) observations. The reward is calculated
through the environment which possesses full state information. Thus, using the
coding approach from above, the environment can construct engineered rewards that
may contain state information which an agent is not able to obtain via its observations.
Accordingly, engineered reward-based POMDPs and ordinary POMDPs are not
equivalent and the former establishes a richer concept.
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Fig. 4.4 Decentralized POMDP with three agents.

In the context of multiagent systems, a decentralized POMDP (Dec-POMDP) as
illustrated in Fig. 4.4 (cf. also Def. 10) is one model that realizes partial observability
in cooperative games. In particular, each agent might make a different observation
in the same state, but all agents observe the same global reward signal. Since this
reward is calculated in the environment, which therefore formally has to know the
joint action and full state information, the concept of engineered rewards can be used
to exploit the system. For instance, one might include information on a joint action
as part of the state and encode it together with full state knowledge in the engineered
reward. With the help of such a rich reward, the partial observability assumption is
basically circumvented and the Dec-POMDP is reduced to a cooperative stochastic
game with full observability.

In order to avoid such undesired exploitation, we finally argue that the following
property should be mandatory for rewards in ordinary models with partial observabil-

ity:

Property 1 ((KKB11c]). Besides the true reward, reward signals in partially ob-
servable domains are not allowed to carry additional polynomial time decodable
information.
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4.2.4 Discussion

The equivalence of engineered reward-based models and their standard counterparts
with full observability is not surprising as no additional information can be supplied
to the agents by using an engineered reward.

In partially observable domains, however, the concept has to be applied with care.
Let us now, based on [KKB11c], further investigate this issue. In order to discuss the
risks and benefits of engineered rewards in such settings, let us consider the Iterative
Agent Partitioning Problem (IAPP, see Ch. 5) modeled as decentralized POMDP. In
detail, the corresponding Dec-POMDP is given by D = (S, A, U, ¢, p, 2, O), where
the elements are defined as follows:

e A state s € S describes the positions of all targets T € 7 and agents i € A as
well as their current assignments.

e Each agent i € A has one action a € A; for selecting each target; the joint action
set is given by U = X;c 4 4;.

e The state transition function ¢ is deterministic. It depends on the previous state,
the movement of agents, and on their joint action which, together, determine the
next state.

The reward function p returns the partitioning quality according to (5.2).

An agent’s observation is determined by its local perception of its environment. It
contains its neighbors and at least its currently selected target. The combination
of all agent observation sets then defines the joint observation set €2.

e The observation function O is designed such that each agent correctly observes
its local environment.
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Fig. 4.5 The Iterative Agent Partitioning Problem as Dec-POMDP.

Figure 4.5 visualizes an exemplary IAPP setting with access points that are connected
to a gateway. In this scenario, access points (targets) may gather information about
positions of mobile devices (agents) and current assignments. These information then
are processed by a (powerful) gateway machine to calculate the current partitioning
quality according to (5.2), i.e. to calculate the reward. The resulting value then is
distributed to the agents as learning feedback via the access points.

Now, let us consider how the gateway can help to circumvent the partial observ-
ability of the agents. Therefore note that the gateway has full information about the
entire system state, in particular about all agent and target positions. Based on that, it
can construct an engineered reward which encodes all these information. Hence, each
agent can also obtain full information by decoding the engineered reward. With the
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help of these information, it then can construct its own projection of the cooperative
multiagent problem. By considering joint actions as elementary actions, knowing
positions of all elements and evaluation function (5.2), it can simulate the cooperative
problem as MDP which can be solved using single agent learning techniques (e.g.
policy iteration or ()-Learning). Given that each agent calculates the same optimal
(joint) strategy, the cooperative problem is solved, too. This is a major departure from
the original Dec-POMDP which is known to be NEXP-hard even for two agents
[SZ08].

Clearly, such an approach demands high computational power and storage space
for each agent. However, this example impressively shows that engineered rewards
should be used carefully and thus strongly supports our proposed extension concern-
ing the properties of reward values in standard models (cf. Prop. 1).

Besides these risks, the concept also offers potential for the development of
efficient algorithms for learning in cooperative SSGs. A corresponding learning
algorithm will be presented in Ch. 8. Briefly, the advantages from using engineered
rewards in that algorithm are:

e Without encoding full state information, engineered rewards indirectly commu-
nicate global state changes, which enable the agents to continuously adjust their
current strategies to new settings.

e Since it is sufficient to know that a state transition at a global level has occurred,
there is no need to store any state information, and thus also no values for each
state-action pair have to be stored, which leads to a space efficient approach.

In the end, the proposed concept thus is a good means for our problem domain,
but it should be used carefully.






Chapter

The Iterative Agent Partitioning
Problem

With the definition of sequential stage games in the previous chapter, we introduced
an interesting class for learning in multiagent systems. This thesis will mainly deal
with the mentioned game class. In particular, we will propose several approaches and
strategies to solve cooperative sequential stage games.

In order to better evaluate these algorithms, we consider a distributed and dy-
namic multi-objective optimization problem that can be modeled as a cooperative
sequential stage game. This chapter motivates and formally introduces this problem,
the so-called Iterative Agent Partitioning Problem (IAPP). Besides the necessary
background, we present a concrete implementation of the IAPP that is similar to
the access point selection problem found in large wireless networks. We formally
analyze the problem’s properties, present a message based optimal algorithm for a
special case, and discuss its complexity.

5.1 Problem Motivation

The inherent structure of sequential stage games establishes an interesting area for
research on multiagent reinforcement learning. In detail, the key structure is that
different stage games are played for a fixed, but to the agents unknown number of
iterations, such that the games build a sequence. This structure can be found, for
instance, in dynamic systems where each situation can be considered as a special
game that models the current situation. When some basic conditions change, a new
situation will arise and thus also a new game will be played for some unknown
timespan until the situation changes again.

The Iterative Agent Partitioning Problem (IAPP) describes such a dynamic system.
In this problem, a set of mobile agents has to be repeatedly partitioned onto a set of
special target objects such that a global performance measure is optimized. Since the
situations, e.g. the agents’ positions, can change over time, the problem also contains
the structure found in sequential stage games. Besides this, the problem itself also

59
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describes an interesting domain. Consider, for example, the problems illustrated in
Fig. 5.1 and the subsequent descriptions:
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Fig. 5.1 Problems: a) access point selection b) task allocation c¢) robotics d) crowd evacuation.

Access Point Selection:  Consider a set of static access points that are distributed
in an environment. Each access point connects its registered clients to a network
and owns a certain amount of bandwidth that it can distribute among its clients.
In addition, consider a (large) set of mobile devices that are also located in this
environment. Each device intends to select one access point in order to access
the network. From a device’s perspective on the one hand, it would be best to
select the nearest access point as this would decrease the amount of power for
radio transmission. On the other hand, a device is also interested in a high speed
connection, which means that it wants to obtain a maximum part of the bandwidth
resources. Obviously, these requirements are contradictory in general and, thus,
a good trade-off must be found. Since devices are autonomous and no central
instance is available, they must find a good assignment on their own using only
local information. The problem is known as Access Point Selection Problem
in literature [JS02] [KKNO6] [NCC+06] [BHIT07] and clearly is much more
complex in reality than described above as, e.g., traffic patterns, physical effects,
and the distributions and movements of users must be taken into account.

Load Balancing: The load balancing problem is a basic problem in computer
science. It deals with the question of how to distribute workload to available
resources, for instance, the distribution of a set of computational jobs onto a
set of computing nodes in a datacenter. Such a distribution usually has to obey
different objectives which often are contradictory. The scheduling of tasks in a
multi-processor setting is another related problem.

Robotics:  Several scenarios, including search and rescue settings [SMY104],
exploration tasks on distant planets (cf. [Fer99, Ch. 1]), simple box pushing tasks
[WdS06], or mining resources on distant planets require the use of many robots
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to ensure robustness or to achieve a common goal that a single robot cannot
accomplish. These settings may include situations where many robots have to
access a set of resources that are distributed in the environment at the same time.
A simple example is the distribution of robots to charging stations, where different
constraints have to be considered and optimized. Such constraints may include the
minimization of the distance each robot has to travel to reach its charging station
as well as finding a uniform distribution to the charging stations.

Crowd control: Nowadays, there are several events like concerts or sport games
where many people meet in a rather small space. In case of an evacuation, those
people must quickly be guided towards emergency exits. It is, however, not
only important to guide them, but also to ensure that the available exits are not
overloaded due to a too large number of fugitives. In addition, pre-calculated
evacuation plans might not be applicable due to blocked or destroyed emergency
exists. Accordingly, an optimal assignment has to take all actually available
emergency exists and different, probably contradicting objectives into account.
Some works that deal with such crowd evacuation settings include [HWO05],
[PHDLO7], or [ZZL09].

Looking at these examples, we can observe that they all can be reduced to the
Iterative Agent Partitioning Problem (IAPP). This follows since solutions for all these
problems can be reduced to repeatedly finding a mapping from one set of objects
to another set of objects that optimizes some (possibly contradicting) objectives. In
addition, such a mapping should be determined in a distributed way using only local
information, either because no central instance and global information are available,
or because obtaining such information is too expensive in terms of time or comput-
ing power. Another important aspect of these kinds of distributed multi-objective
optimization problems is the possibility that settings change, e.g. by movement of
people, mobile devices, or robots.

Accordingly, the general question behind the Iterative Agent Partitioning Problem
and its match to the considered class of cooperative sequential stage games makes
this problem a good testbed for the approaches developed in this wok.

5.2 Formal Definition

The exemplary problems provided in Fig. 5.1 are related to the Iterative Agent
Partitioning Problem (IAPP), which basically is a (distributed) multi-objective op-
timization problem modeled as a multiagent system. In the IAPP, a set of mobile
agents has to be repeatedly partitioned onto a set of target objects. Agents and targets
are randomly positioned in an environment. Each agent works on a job at its position
for a certain number of time steps. Upon completion, agents are assigned to new jobs
at a random position, which leads to dynamically changing scenarios. The goal of the
agents is to find an assignment at any time step such that the considered objectives
are optimized over a finite but usually unknown number of iterations. In the context
of this work, we restrict the environment to a two-dimensional grid, although other
environments can generally be considered.
To formally define the problem, we first have to define its elements:
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Definition 15 (Environment). An environment £ is a rectangular two-dimensional
grid that contains a set of agents, targets, jobs, and other objects. A position in the
environment is defined by a tuple (x,y) € N x N.

Definition 16 (Target). A target T € T is a special object located in an environment.

Definition 17 (Job). A job j = (p,d) is defined by a position p € N x N in an
environment and a duration d € {dpin, - - . , dmax }, Where dmin, dmax € N denote
the minimum/maximum duration.

In Sect. 2.1, we already defined our general understanding of an agent. This definition
also holds in this problem context, but it is extended to include a specific position of
the agent in the environment. In detail, an agent’s position is determined by the job
that is assigned to it. The agent’s (internal) resources, its (internal) representation of
the environment, as well as its sensors and actuators are specified implicitly by the
algorithm that determines the agent’s behavior.

Definition 18 (Neighborhood). The neighborhood of an agent ¢ with communica-
tion radius r; is defined by the set of agents A; that are located within a radius r;
from the position p(7) of agent 7 according to some distance measure (e.g. Euclidean
or Manhattan distance). The k-neighborhood contains the k nearest agents to agent
i in the communication radius. If only k' < k agents are reachable, then these k’
agents are considered as neighbors. An agent is not part of its own neighborhood.

An assignment or partitioning of agents to target objects is defined as follows:

Definition 19 (Partitioning, Partition). Let p : A — 7 be a total function that
maps elements from .4 to elements from 7. Then a partitioning of two non-empty
sets A and 7 is defined as a multi-set S4 7 = {S1,S50,...,S)7} having S; =
{i € A| p(i) = T;}, i.e. each partition S; contains those elements from A that are
mapped to element T; € T.

The quality of a partitioning S4 7 is calculated via an evaluation function
f:Sar — [0,1], where S4, 1 denotes the set of possible partitionings for the
respective agent and target sets. Since we do not want to deal with Pareto optimal
solutions, the evaluation function combines different objectives into a single value.

Given these definitions, we can now formally define the IAPP:

Definition 20. The Iterative Agent Partitioning Problem (IAPP) is a multi-objective
optimization problem modeled as a multiagent system. The problem is defined
through the following elements:

e & is an environment

A denotes the set of n = |.A] agents

T is a set of m = |T| target objects

J is a set of jobs

k is the maximum number of considered iterations (time steps)

JoB : {0,...,k — 1} x A — 7 is a function that returns a job for every agent in
each iteration

O is a non-empty set of partitioning objectives

fo : Sa,r — [0,1] is a function that evaluates a partitioning according to the
objectives O
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The agents’ goal is to find a partitioning Sf477— in each iteration ¢t € {0, ...,k — 1}
such that the average partitioning quality

k—1

APQ = % F(S4r) (5.1)
t

Il
o

is maximized.

Note that we have defined the [APP in previously published works (e.g. [KKB10a],
[KKB11d], [KKB11b]) with two fixed objectives only. Although the above definition
generally allows arbitrary objectives, we also want to consider these two fixed
objectives in this work. In detail, we investigate an instance of the IAPP that is
related to a simplified access point selection problem. In particular, the objectives are
the same as in the (static) Online Partitioning Problem [GoeO7]:

1. create a uniform distribution, i.e. assign approximately % agents to each target,

2. minimize the sum of distances between agents and selected targets, and
3. minimize the costs that are produced according to a cost model.

For simplicity we will, hereafter, talk about the “TAPP” or “our instance of the IAPP”
to denote this restricted problem instance. We will explicitly refer to the general
problem whenever necessary. Figure 5.2 shows an exemplary setting of our IAPP
variant which uses a simple grid environment containing all objects.
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Fig. 5.2 Exemplary scenario of our Iterative Agent Partitioning Problem variant in a grid environ-
ment with n = 500 agents (circles) and m = 5 targets (boxes).

The quality of a partitioning Sf4’7— at iteration ¢ with respect to the first two
aforementioned objectives can be calculated in the same way as in the Online
Partitioning Problem (OPP) [Goe(7], i.e. according to
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IT 1sil S 6(i,7(i))

f(Sar) = ST | . |idA (5.2)
| (lA ) g > 6(i,p(i))
|T] ieA

In(5.2),8 : Ax T — RT returns the Euclidean distance between an agent and a
target, 7 : A — 7T returns the nearest target to an agent, and p is the current agent to
target mapping described by Sf477-. Note that the idea of the formula is to normalize
the first two objectives against theoretical optimal values such that, together with
the weights « + 8 = 1, a, 8 > 0, the overall partitioning quality will be in [0, 1]. If
not stated otherwise, we will use o = 3 = % in this work. Note that a higher value
of f (SQ)T) thus denotes a better solution, however, an optimal solution must not
necessarily have a value of 1.0.

The optimal value for the DISTRIBUTION! should be achieved if the same number
of agents is assigned to each target. This is modeled mathematically in (5.2) based
on the following proposition:

Proposition 5. If the sum of n positive numbers is C, i.e. > . x; = C and Vi :
z; > 0, then a function f(x1,22,...,x,) = [y z; is maximized if x1 = x9 =

Proof. The well-known inequality of arithmetic and geometric means as shown in
(5.3) holds for any n positive real numbers. One way to proof this inequality can be
found e.g. in [See73, p.223].

1 +Tog+ -+ Ty

> Vry-x0-... Xy (5.3)
n
Using Y7, ; = C it directly follows:
n
(a:1—|—a:2+ +xn> >T1Tg ... Ty 5.4
n
C n
() > Ty Ty ... Ty 5.5)
n
Obviously, the product becomes maximal ifand only if 21 = 20 = -+ =2z, = %
O

Regarding the third objective, it is worth mentioning that it is not formally captured
in (5.2). Given two equally valued solutions, we will in general consider the solution
that produces less costs according to a specific cost model to be the “better” one. We
will come back to the costs later in this work whenever it is reasonable.

Note that the IAPP, and in particular also the evaluation function (5.2), are based
on the Online Partitioning Problem (OPP) defined by Goebels et al. [GKBPWO05]
[GoeO7]. In contrast to our instance of the IAPP, the OPP only considers static
scenarios. Another related problem is the General Online Partitioning Problem as
defined in [Kem10], which allows obstacles and special regions in the environment.
Chapter 2 presents more details on these related problems.

! Throughout the thesis, we refer to the first objective as the “distribution” objective and to the second
as the “distance” objective. For better readability, we will write DISTRIBUTION resp. DISTANCE to
refer to either the objective itself or to the value of the objective.



5.3 Properties 65

5.3 Properties

Concerning the general characteristics of optimization problems as presented in
Sect. 2.6, our variant of the Iterative Agent Partitioning Problem is an optimization
problem that is

multivariate, as agents and targets influence the objective function,

discrete, since we basically search for a mapping of agents to targets,

linear, as the objective function is a linear combination of a set of objective
functions,

constrained, because there is a non-empty set of partitioning objectives,
multimodal, because there generally is more than one optimal solution, and

a multi-objective optimization problem, as there is a set of objectives to be
optimized at the same time.

In the remainder of this section, we will investigate some formal properties of the
used evaluation function and of partitionings.

5.3.1 Evaluation Function

The evaluation function (5.2) combines two different objective values which we
will analyze separately in this section. We begin with the DISTANCE objective that
evaluates m™ different assignments of n distinguishable agents to m targets. Its value
is hardly analyzable for general settings, as it strongly depends on the positions of
agents and targets, on the spatial distribution of both, and the partitioning itself. Since
the position related dependencies are obvious, we provide an example that underlines
the influence of the partitioning on the DISTANCE value. Therefore, consider the
exemplary setting sketched in Fig. 5.3. Given that all agents are assigned to target
T7, which is the closest target for all agents, the DISTANCE value will be 1.0. Since
the DISTRIBUTION value in this case is 0.0, we obtain an overall rating of 0.5 (using
a = 3 = 0.5 as weights). On the other extreme, assume an optimal distribution value
such that each agent selects the target on the outer circle that lies on a line connecting
agent and target 7} as indicated by the dotted lines. In this case, the DISTANCE value
becomes % since 77 is only 1 unit away from any agent, but the selected
targets of all agents (except agent %) are z units away for all agents. By assumption
z > 1 and thus the DISTANCE value will become 0 in the limit for z — oco.

In contrast to the DISTANCE value, the DISTRIBUTION objective value does not
distinguish which agents actually selected which target, but only rates the number
of agents per target. As agents in this case cannot be distinguished, the number
Nai(n, m) of all possible assignments is given by (5.6).

(5.6)

Nar(n, m) = (m +n— 1)

n

Since the DISTRIBUTION value evaluates to zero if at least one partition is empty,
i.e. at least one target is not selected by any agent, the likelihood of obtaining a
DISTRIBUTION of zero becomes interesting. With the help of the inclusion-exclusion
principle (cf. e.g. [Doh03, Ch. 1]), we can use (5.7) to calculate the number Ny(n, m)
of all possible assignments where at least one partition is empty.
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Fig. 5.3 Influence of the partitioning on the DISTANCE value.

Ny(n,m) = i(fl)"“ (’7) (m S 1) 5.7)

; n
=1
The likelihood Lo (n, m) to obtain a DISTRIBUTION of zero then is given by (5.8).

Ng(n,m)
L = —= 5.8
O(na m) Nall(na m) ( )
Figure 5.4 illustrates that likelihood for n € [64, 1000] agents and m € [2, 64] targets.
Figure 5.5 shows the agents per target ratio for the same number of agents and targets
as in Fig. 5.4. Matching both figures reveals that the larger the ratio between agents
and targets, the lower the probability of obtaining a DISTRIBUTION value of zero.

Lo(n,m)

Agents (n)

A 0
10000 g 50 40 30 20

Targets (m)

Fig. 5.4 Likelihood of a zero-valued DISTRIBUTION.
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Fig. 5.5 Number of agents per target in an optimal distribution.

Next, we investigate the behavior of the DISTRIBUTION value if the partitionings
deviate from the optimum. Therefore, consider Fig. 5.6, which exemplary shows the
objective value for settings with n = 333 agents and different numbers of m targets.
For the graphs, we assumed that m — 2 targets are assigned the optimal number
of agents (;-). The two remaining targets, say 71 and 75, in sum are assigned 2.+
agents. However, the number of agents  that are assigned too less to 77 are assigned
to T,. Formally, the figure thus visualizes the following function (5.9).

yo GGG o) (i)
Un,m (i) = o = —2 (5.9)
() ()
Consider the scenario with m = 111 targets where the optimal number of agents are
assigned to 109 targets (three agents per target) and only two targets are not optimally
selected, i.e. selected by 1 resp. 5 agents. Intuitively, one might consider such a
solution as “good” since it is close to the optimal solution as just two agents have to
be reassigned. However, this is not reflected by the DISTRIBUTION objective value
which is only 0.6 in this case. This effect obviously depends on the ratio between the
number of agents and targets as illustrated in Fig. 5.6 and it is less distinct in settings
with a higher agent to target ratio.
According to the above observations, it is important to keep in mind how the
evaluation function (5.2) is structured when one compares solution qualities, in
particular for different settings.

5.3.2 Properties of Partitionings

Next, we present and prove some properties of solutions for the partitioning problem.
We will refer to these properties in the remainder of this work. Parts of these results
have already been published in a technical report [KKB10b]. We start by considering
partitionings at a fixed iteration ¢.
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Fig. 5.6 Influence of deviation from optimal assignments.

Property 2 ((KKB10b]). In general, there can be more than one optimal solution.

Proof. We assume the opposite, i.e. the optimal solution is always unique. Figure
5.7 shows two different optimal solutions for the same scenario according to (5.2).
This is a contradiction to the assumption. a

o0
®
e

Fig. 5.7 Two optimal solutions for the same scenario with a partitioning quality of ~0.96.

Property 3 ((KKB10b]). Consider a setting with m > 2 targets and n > m agents.
Then an optimal solution according to (5.2), having o = 8 = % does not necessarily
imply an equal distribution.

Proof. We have to distinguish the following two cases:

Casel: n mod m =0,i.e. n = qgmforsomeq e N
Proof by contradiction. Assume an optimal solution under the given preconditions
always results in an equal distribution, i.e. ¢ agents are assigned to each target.
Figure 5.8 provides a counter example.

d=Cileeee

Fig. 5.8 Counter example used in case 1. According to evaluation function (5.2), this setting is an
optimal solution which has a distribution value of 0.8, and a distance value of 1.0.
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Case2: n mod m # 0.
Since each agent has to select one target, equal distributions cannot occur in these
settings.

Finally, the property is proven as it holds in both cases. a

Property 4 ((KKB10b]). An optimal solution does not necessarily imply a distance
function value of 1.0.

Proof. Figure 5.9 shows an optimal solution according to (5.2) having a distribution
value of 1.0 and a distance value of 0.875. a

O le0e

Fig. 5.9 Non-optimal distance value in an optimal solution.

We next investigate a worst case of how an optimal partitioning for iteration ¢ may
perform in iteration ¢ + 1.

Property 5. Let Sfém— be an optimal partitioning for iteration t. Assume restricted
movement of agents by at most one step per iteration. Then, the same partitioning is
not guaranteed to remain optimal in the next iteration t + 1.

Proof. Consider the optimal partitioning shown on the left side in Fig. 5.10. Assume
that ‘Sfél,T is also an optimal partitioning at iteration ¢ + 1, after both agents have
moved by one step. The right half of Fig. 5.10 shows a counter example. a

J O I7
) )

t t+1

Fig. 5.10 Non-optimality of partitioning 8;77- in iteration ¢ 4 1.

From these properties and from the analysis of the evaluation function in the
previous subsection, it follows that the value obtained from (5.2) should be carefully
interpreted. In particular, if solution values of different settings should be compared.

5.4 Message Based Optimal Algorithms

This section introduces a distributed, communication based approach for calculating
optimal partitionings in any iteration of our Iterative Agent Partitioning Problem with
two targets. The idea of the proposed algorithm is to realize Goebels’ Two Target
Optimal approach [Goe07, Sect. 3.2.2] with the help of a communication protocol.
Under some assumptions, we prove that our distributed variant maintains the ability
of calculating an optimal solution for two target settings. We prove that the approach
requires O(n) messages. Then, we also briefly discuss a (theoretical) distributed
approach for settings with arbitrarily many targets.
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5.4.1 Distributed Optimal Approach for Two Targets

In this section, we propose a distributed algorithm and prove that it finds optimal
partitionings for a fixed iteration of the IAPP in settings with two targets. Therefore,
the approach assumes the following:

1. To ensure coordination through a token message, the communication graph has to
be connected and communication has to be error-free.

2. Agents can be distinguished to ensure proper routing of messages.

3. Each agent knows the weight factors « and 3 as required by the evaluation
function (5.2).

The proposed distributed algorithm is inspired by the central instance TTO
algorithm of Goebels [Goe07, Sect. 3.2.2], as it uses the same idea of sorting agents
according to the distance difference to both targets. In contrast to TTO, which
initially assigns agents to their nearest target, our approach starts by assigning all
agents to one target, as this will simplify the presented proof.

5.4.1.1 Algorithm

Before we present the Distributed Optimal Approach for Two Targets (DOTT) in
detail, first consider a rough overview on the procedure, which can be divided into
five steps:

1. Using a communication-based sorting procedure, sort the agents ascending ac-
cording to their distance difference between the two targets.

2. Initially assign all agents to target 77 .

3. Use a communication protocol to collect some information required to locally
determine the current solution quality.

4. Use a token message to let agents consecutively, i.e. along the sorting criterion,
decide to switch to target 75 if this improves the solution. Information on the
solution quality stem from the token.

5. The algorithm stops if the first agent decides not to switch targets or all agents
have switched.

The key idea of the algorithm can be found in the sorting of the agents ac-
cording to the distance difference between the two targets (cf. [GoeO7, Sect.
3.2.2]). Formally, the n agents are sorted in a list £ = (ig, i1, ...,%,—1) such that
(S(ij, TQ) — 6(ij7 Tl) S 5(ij+1, TQ) — (S(ij+1, Tl), V] € [0, n— 2} From the distance
difference of an agent one can deduce if it could either improve (negative distance
difference), retain (no distance difference), or worsen (non-negative distance differ-
ence) the DISTANCE objective by switching to target T5. To stepwise improve the
solution quality by assigning agents to 75, the best way would be to increase the
DISTRIBUTION objective value by also improving the DISTANCE value. Or, if this is
not possible, to reduce the latter as little as possible until an optimal overall solution
is found. Accordingly, the best order of reassigning agents is given by the sorted list
L.

Next, we describe the algorithmic details. Based on the list £ as introduced above,
we define the ID of an agent as its position in /, starting with zero. Please note that
this ID can easily be calculated by the agents in a distributed manner using a simple
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message protocol. With the help of this ID definition, the basic idea of the algorithm
is as follows. First, all agents are assigned to the same target 77. Each agent knows
the total number of agents 7 in the system, as well as the sum of distances 502pt. over
all agents and their respective nearest targets. Note that these two values can easily
be calculated and distributed using an appropriate message protocol. With the help of
a token message the agents then iteratively determine the optimal solution. Only the
agent that currently holds the token is active. Initially, the agent ¢ with ID O obtains
the token tok and initializes the token’s values, which in detail are:

e tok.id: The ID of the last agent that held the token (initially 0).
o tok.distance: The current sum of distances of all agents that select target 77.

Note that the sum tok.distance can easily be calculated in the beginning while n and
JEPL are determined. In the ongoing procedure, it will be updated using only local
information of the currently active agent.

The agent ¢ that holds the token calculates the following two hypothetical values,
which are equal to the value of evaluation function (5.2), if the agent selects target
T1 (5.10) or T3 (5.11). Note that all these values are known to the agent either by

assumption or from the token message.

. . z
Wi T = o <(n — tok.id) ~tok.|d) s < Oopt. ) (5.10)

(@)2 tok.distance
2

BTy = o ((n — tok.id — 1) - (tok.id + 1))

(2)°

5.11)

5=
+ 6 . opt.
tok.distance — 8(¢, T) + 6 (i, T»)
Next, the agent compares the two values which results in one of the following cases:

1. h(i,T2) > h(i,T1): Selecting target T5 instead of 77 would improve the overall
solution quality. Thus, the agent assigns itself to 75 and updates the token:

e tok.id = ID(i), ID of this agent
o tok.distance = tok.distance — §(i,71) + 6 (i, T)

Finally, the agent sends the token message to the agent with the next higher ID.

2. h(i,T») < h(i,T1): In this case the agent cannot improve the objective function
value and thus sticks to target T7. Hence, the token is not sent to another agent
and the algorithm is terminated.

The algorithm resubmits the token until case two occurs or all agents have been
activated by receiving the token.

5.4.1.2 Optimality

The optimality of the approach follows from Theorem 6:

Theorem 6. Under the given assumptions, the Distributed Optimal Approach for
Two Targets terminates with an optimal solution.
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Proof. The algorithm terminates if the token message has been processed by all
agents, or if one agent is unable to improve the solution.

In the first case, it is obvious that all agents improved the solution by reassigning
from target 7} to 75. Then, since no agent can be reassigned, the solution is optimal.

The second case is more interesting. Let the agent with ID ¢ be the first to
experience that a target change from target 7} to T does not improve the solution
quality. Thus, all agents with an ID smaller than i clearly improved the overall
solution value by changing to 75. By construction of the algorithm, the agent with
ID i sticks to target 7. Then, it remains to show that there is no other agent with an
ID 5,4 < j <n — 1, which could improve the solution quality.

Therefore, let us assume that there is at least one agent with ID j that improves
the solution quality although agent 7 could not improve the solution. Since the
DISTRIBUTION objective part of the solution quality is the same, independent of
whether 7 or j change to target 75, the improved solution could only be attributed to
the DISTANCE objective. Thus we can neglect the DISTRIBUTION objective. Because
the weight factor [ is equal for all agents, we can transform the following DISTANCE-
related inequality to obtain (5.12).

hDISTANCE(j7 T2) > hDISTANCE(ia Tz)
b)) b
6optA > 60pl.
tok.distance — 6(j,T1) + 6(j,T») — tok.distance — (i, T71) + 8(i, 1)
tok.distance — 6 (i, 71) + 0(¢,To) > tok.distance — 6(5,71) + 6(j, 1)

8(i, To) — 8(i,T1) > 8(j, Ts) — 8(j, T1) (5.12)

ID(4) > ID(j)

As (5.12) reveals, the distance objective depends on the distance difference between
the two targets of both involved agents, and thus also on the ordering of the agent list
{ as described earlier. Next, consider the following cases for (5.12):

e ID(i) = ID(j): In this case, the DISTANCE objective value would be the same for
both agents if they switch to target 75. Since the DISTRIBUTION value is the same,
too, and because ¢ by assumption cannot improve the solution, this also holds for
agent j.

e ID(i) > ID(j): This is a contradiction to the definition of the ID by which
ID(i) < ID(j) holds. Accordingly, Apistance (7, T2) < hpistance (4, T2) holds, and
because agent ¢ cannot improve the solution, the same also follows for agent j.

Since no agent j with ¢ < 7 < n — 1 can improve the solution in both cases and due
to the optimality of the TTO approach [Goe07, Sect. 3.2.2] the theorem follows. O

According to this result the message-based realization of the TTO approach is
guaranteed to terminate with an optimal solution.

5.4.1.3 Complexity

In this section, we determine the number of messages of the algorithm. Therefore,
we assume that our approach runs at the application layer of the OSI model (see e.g.
[Zim80] or [TW11]), i.e. our analysis does not consider routing overhead etc.
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The runtime of the proposed approach depends on the implementations of the
mechanisms that determine the initial knowledge and the IDs. The number of agents
n, the sum of distances 6?1)1‘, and the initial distance sum when all agents are assigned
to target 71, can be determined using O(n) messages. In detail, such a protocol sends
one message from one agent to the next. Each agent updates the three values stored
in that message by adding its own information. The final message is forwarded to
each agent and the required information are stored locally.

A simple protocol for determining the IDs can also be implemented using O(n)
messages. Again, one message is send from one agent to the next. Each agent
calculates its distance difference and appends this information to the message before
retransmission. Finally, when all agents appended their information, the list is sorted
and the resulting IDs are distributed by sending a message to each agent. Note that
this approach leads to message sizes in O(n). Smaller messages can be achieved if
IDs are determined consecutively by first determining an agent with ID n, i.e. the
largest distance difference, and then restarting the protocol to find an agent with ID
n — 1 and so on.

The actual process of determining the optimal solution requires at most 7 mes-
sages. In the end, the approach hence requires O(n) messages in total.

5.4.2 Distributed Approach for Many Targets

The optimal central instance approach for arbitrary numbers of targets m and agents
n with runtime O(m™) proposed by Goebels [Goe07, Sect. 3.2], can theoretically be
implemented by a distributed algorithm. Therefore, such an algorithm would require
error-free communication and a connected communication graph. Furthermore, one
agent must be able to act as central instance and execute Goebels’ algorithm. The
required information about partitioning qualities can be obtained using O(n) mes-
sages. Also assignment commands calculated by that super-agent can be submitted to
each agent, again involving O(n) messages. Thus, the number of messages involved
in such a distributed version of the algorithm grows exponentially in O(m"*1), as
O(n) messages are required to test each of the m™ possible partitionings.

5.4.3 Discussion

We proposed a distributed, message-based algorithm that provably calculates an
optimal solution for a fixed instance of the IAPP with two targets. The algorithm
basically realizes Goebels’ [Goe07] central instance algorithm for two targets as
a distributed variant. We provided detailed descriptions for the approach and the
message structures. The ability to find optimal solutions is proven formally. We also
showed that the approach requires @ (n) messages in total. In the end, we discussed
briefly how Goebels’ brute force approach could be implemented using messages.
A connected network is an essential assumption that is required to allow proper
routing of messages to any node in the network. Routing itself can be realized using
different algorithms, as they are developed for wireless sensor or (mobile) ad hoc
networks (e.g. AODV [PR99]). The knowledge of the weight factors could either
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be hard-coded into the agents or published to all agents using sophisticated efficient
broadcast algorithms in wireless networks (e.g. [LHO6]).

Both algorithms intend to find an optimal partitioning for a particular iteration of
the IAPP. Thus, their applicability under dynamic settings involving moving agents
is restricted due to the time required to realize communication. In particular, the
sketched approach for many targets in large systems is impractical even for a single
iteration.

5.5 Complexity

This section addresses the complexity of our IAPP variant. Therefore, we concen-
trate on solving the partitioning problem at a fixed iteration ¢. We start with the
consideration of two extreme cases for the weight factors in evaluation function (5.2):

Casel (aw=0and 5 =1): Fora = 0and S = 1 the problem is trivially solvable
in polynomial time as it is reduced to assigning each agent to the nearest target.
Therefore, each agent simply needs to know the distance to each target, sort the
distances and select the nearest target.

Case2 (¢« = 1and 5 = 0): In this case, the problem is reduced to finding a par-
titioning with equally sized subsets. This obviously can be accomplished in
polynomial time as well, e.g. by assigning | /- | (randomly chosen) agents to each
target and, in case of an odd number of agents, assigning the remaining agents
to one distinct target each. An example for this approach is the ID-Dependent

Strategy proposed by Goebels [Goe07].

Note that approaches for both cases can be realized either using a central instance or
in a distributed way if the agents know the distances to all targets (case 1) or have
unique, consecutively numbered IDs (case 2).

For general weights and settings with two targets, Goebels [Goe07, Sect. 3.2.2]
proposed the central-instance Two Target Optimal algorithm, that is proven to termi-
nate with an optimal solution (see also Sect. 2.2). Hence, the problem can be solved
in polynomial time for up to two targets if a central instance is available. In Sect.
5.4.1, we provided a distributed message-based variant of TTO that provably finds
an optimal solution under some assumptions.

The partitioning problem with three targets at a fixed iteration is related to sev-
eral N"P-complete problems (e.g. Graph Partitioning [GI79, Problem ND14], 3-
Dimensional Matching [GI79, Problem SP1], or Exact Cover by 3-Sets [GI79, Prob-
lem SP2]). Due to this relatedness, we strongly assume the problem to be at least
NP-hard. This conjecture is underlined because all aforementioned problems are
solvable in polynomial time for “two”—as it is the case in our problem—but become
NP-complete for “three”. A proof for this conjecture, however, remains an open
issue. The only known central instance algorithm that provably finds an optimal
solution in general settings is a brute force approach proposed by Goebels [Goe07,
Sect. 3.2], whose runtime is in O(m™).

Table 5.1 summarizes the above complexity results for finding a partitioning in a
fixed iteration ¢ of our IAPP variant. The complexity of the general IAPP is omitted
in this work, as it depends on the used set of objectives.
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Table 5.1 Overview on algorithms and complexity results for finding a partitioning in a fixed
iteration ¢ of our IAPP variant.

central weight  number of approach complexity
instance factors  targets
indifferent « = 0, arbitrary select nearest target time (per agent for sort-
B=1 ing): O(mlogm)
indifferent o« = 1, arbitrary ID-based random target selection time (per agent): O(1)
B8=0
yes arbitrary 2 TTO [Goe07] time: O(nlogn)
no arbitrary 2 DOTT (see Sect. 5.4.1) messages: O(n)
yes arbitrary arbitrary brute-force algorithm [Goe07] time: O(m™)
no arbitrary arbitrary message-based distributed brute- messages: O(m™11)
force algorithm (cf. Discussion in
Sect. 5.4.2)

5.6 Summary

The presented Iterative Agent Partitioning Problem in its general form constitutes an
interesting research area. Due to its open definition with respect to the considered
objectives, it can be used to formally model a wide variety of different problems. In
addition, the variant that we will consider in this work is easy to understand but not
trivially solvable.

Since the IAPP represents a problem that can also be modeled as a cooperative
sequential stage game (see Sect. 9.2 for details), the problem is a good means to
evaluate the learning approaches developed in this work.






Chapter

Storage Media

The previous chapter introduced the Iterative Agent Partitioning Problem (IAPP)
which, as discussed, could be used, for instance, to realize the distribution of robots
onto a set of charging stations. In such settings, robots might be unable to communi-
cate with other robots due to their spatial distribution and limited communication
radii. If a robot (agent, hereafter) has gathered useful knowledge in a particular region
but moves to another area in the environment, then its knowledge is lost due to the
movement if the agent cannot communicate it.

The concept of storage media that are located in an environment can help to deal
with such situations. Agents can access these media within a limited communication
radius and write or read information. In general, this concept hence enables agents to
coordinate their behavior via indirect interaction through the media. Additionally,
the media decouple agent interaction from time and space. Later in this work, we
will successfully combine storage media with the proposed distributed multiagent
reinforcement learning approach (Chapter 11). Also, we will show how the media can
be used in the context of the IAPP with a communication intensive state-of-the-art
algorithm (Chapter 12).

Therefore, the purpose of this chapter is to introduce this concept as one foundation
of this work and to discuss its benefits and challenges, and to present related work
(Sect. 6.1). In addition, the chapter is used to discuss some related aspects. Section 6.2
investigates the strategic positioning of media and proposes an approach which could
help to optimize the number of media required in our variant of the Iterative Agent
Partitioning Problem. Then, in Sect. 6.3, we theoretically investigate the influence
of a single obstacle on the communication coverage of a storage medium. In Sect.
6.4, we present and analyze a greedy storage media placement algorithm. Finally, we
summarize the obtained results in Sect. 6.5.

Parts of this chapter have been published in [KKB10a].

6.1 Concept

The idea of externally storing information and knowledge is not new but well estab-
lished in human societies: For hundreds of years, we use books as external storage.

71
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Basically the emergence of writing systems, like the Egyptian hieroglyphs, enabled
the humans to externally store information. In particular, this concept allowed us to
transfer knowledge without the need of direct communication and thus, decouples
information passing from time and space.

In the context of multiagent systems, we decided to model such external storage as
devices that are located in an environment [KKB10a]. Before we discuss the concept
in more detail, let us first give a formal definition of a storage medium:

Definition 21 (Storage Medium). A Storage Medium (SM) is a passive object lo-
cated in an environment £ of a multiagent system. It can be described by a tuple
M = (p,rn,cap,read, write), where

e p is the position of the medium in the environment,

e ry; € Rt is the medium’s communication radius,

e cap denotes an (abstract) storage capacity,

e read, write are actions for reading resp. writing information to/from the medium.

The set of all storage media is denoted by M.

By this definition, storage media are passive which means that they do not actively
issue any actions. Together with the fixed position attributed to a medium, these two
facts mainly distinguish media from agents. Since actuators and sensing abilities of
agents are also restricted to certain radii (cf. Def. 3), it follows from the definition of
a storage medium, that it can be used by an agent if and only if they can mutually
reach each other within the respective radii.

Storage media in MAS offer several of opportunities:

Extended memory: In MAS with agents that have a limited internal memory, the
storage media can be used as an extended external memory. In [KKB10a], we
investigated the DISTANCE objective of the IAPP in capacity-constrained MAS. In
that MAS, agents in an extreme scenario were only able to store two information
items internally. We showed that the media enabled the mobile agents to solve the
problem successfully.

Indirect communication: Agents can indirectly communicate with each other
through storage media by reading and writing information. On the one hand, a
medium hence can act as mediator by enabling communication between agents that
can interact with the same medium, but which are too far away from each other to
communicate directly. On the other hand, the indirect communication can also be
used to realize the concept of stigmergy [BDT99], i.e. indirect communication by
modifying the environment. For instance, the media can store artificial pheromones
as they are used in ant colony optimization algorithms [BDT99].

Persistence of data: In general, mobile agents will frequently be confronted with
new situations, which require them to rebuild their knowledge-bases. In case
of limited storage capacities the agents might be forced to forget, i.e. to over-
ride, previously obtained knowledge. By storing data on storage media that—by
assumption—have higher capacities than single agents, once gained knowledge
can be preserved, e.g. for later use by other agents.

Location-based knowledge: From the previous point, it also follows that location-
related knowledge can be preserved in regions where it is applicable, even if the
agent that originally gathered the knowledge has left the region. Since knowledge
acquisition processes like learning often require a long time, agents thus can
significantly profit from such externally available knowledge.
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Shared memory: By using storage media as extended and external memory,
agents that access the same medium obtain a shared memory. Such shared memory
then can be used to cooperatively construct solutions for complex tasks.

The usage of storage media in MAS, and thus also the challenges that have to be
addressed, highly depend on the system and problem characteristics. In general, we
can identify the following issues:

Strategic positioning:  Since agents and media interact via communication in a
limited range, the positioning of the media plays an important role. We will come
back to this question in Sects. 6.2 and 6.3.

Number of media: This issue is closely related to the previous item. In problems
where agents only have to coordinate in so-called coordination locales, i.e. in
a subset X of all possible states, it might be sufficient to use O(|X|) many
media. Such problems can be modeled as Distributed POMDPs with Coordination
Locales [VKTT09]. In Sect. 6.2, we will also present an idea of how the number
of media in the IAPP can be determined.

Content: A core question deals with the kind of items that should be stored on the
media. Possible contents include gathered information, region-specific knowledge
or strategies, and learned knowledge, e.g. in the form of ()-tables for (J-Learning
based approaches. Clearly, the content depends on the considered approach and
settings.

Additional element: Since media introduce an additional type of objects to deal
with, one should consider the question of whether or not the usage of such an
additional element is required. Whether there are benefits from using the media
again depends on the considered settings. As we will see in this work, storage
media offer a good means for coordination in highly dynamic settings with mobile
agents.

Access: One question in this context is, when should agents interact with a
medium? As more than one agent at the same time may try to interact with the
medium, techniques that ensure proper read/write access are required to ensure
data integrity.

Accordingly, storage media are an interesting concept for multiagent systems as
they offer various benefits. However, using such media also comes with new issues
that have to be considered carefully. In this work, we intend to provide some first
results and propose ideas for applying the concept in our IAPP variant. This chapter,
in particular, will focus on the general concept of storage media, and only in some
subsections relate to the IAPP. Later, in Ch. 11 we will provide some results for the
combination of learning algorithms and storage media. In addition, in Ch. 12, we will
provide an approach that uses external storage media in a state-of-the-art algorithm
for the IAPP.

6.1.1 Related Work

In this section, we review two concepts from the literature that are related to storage
media: blackboard systems (Sect. 6.1.1.1) and the Agents & Artifacts meta-model
(Sect. 6.1.1.2).
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6.1.1.1 Blackboard Systems

We adopt the terminology of the “Blackboard Systems” book edited by Engelmore
and Morgan [EM88]. They define a blackboard model as a problem-solving model
composed of a blackboard and a set of independent knowledge sources (domain
experts). Based on this, a blackboard framework specifies or implements the com-
ponents of a blackboard model. Hence, a blackboard application, which usually is
constructed based on a framework, is intended to solve a particular problem using
domain-specific knowledge sources. The term blackboard system is used as a generic
term for blackboard frameworks and applications.

Knowledge Source Component

Knowledge Source 1

| Inference Knowledge
| Engine Base
o
Knowledge Source 2
Blackboard
Inference Knowledge
Component Engine Base
o

Knowledge Source n

Inference Knowledge
Engine Base

Fig. 6.1 Basic blackboard model (based on [EM88]).

Based on [EMS88, Ch. 1], we now introduce the general and basic blackboard
model, which consists of two components as shown in Fig. 6.1. The Blackboard
itself can be regarded as shared working memory, i.e. a global database that holds the
current state of the problem solving procedure, input data, partial or final solutions,
hypotheses or control information. The knowledge stored in the blackboard is often
organized in a hierarchy of different abstractions. A knowledge source (KS) usually
is an expert for one (or more) abstraction levels. It consists of an inference module
and a problem-specific knowledge base. A KS is able to contribute partial solutions
to a certain level of the hierarchy. The internal knowledge representations of the
knowledge sources may be different, however it is required that they use a common
format when reading and writing to the blackboard. Knowledge sources in general
are independent from each other. In particular, they only communicate indirectly
by reacting to changes on the global blackboard. The domain knowledge needed to
solve the considered problem is partitioned among the KSs.

It is particularly noticeable, that the blackboard model—other than the general
architecture of blackboard frameworks—does not explicitly define a control module.
This is due to the fact, that the blackboard model itself only describes a problem-
solving model, i.e. it defines a general scheme for solving problems. However, a
control mechanism that selects the next activated KS to be executed is also considered
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as an inherent part of each blackboard-based system [DJIBS89]. Accordingly, control
can be located at one or more different locations, for instance within the KSs, in a
separate controller, or on the blackboard itself.

Problem solving in the context of a blackboard model is accomplished in an
opportunistic fashion: a knowledge source applies its knowledge as it fits to the
current problem-solving state on the blackboard. Thus, it creates a new hypothesis
which may trigger other knowledge sources to apply their knowledge and so forth
until one or more solutions are incrementally constructed on the blackboard.

In order to realize a blackboard system, the model’s components have to be
specified in more detail. According to the general blackboard framework presented by
Engelmore and Morgan [EM88, Ch. 1], a blackboard framework contains knowledge
sources, a blackboard, as well as a distinct control component.

Since the blackboard is a component that is accessed by a set of different knowl-
edge sources, that architecture seems to be closely related to the storage media
concept in MAS. However, there are several key differences that distinguish the two
concepts from each other. Table 6.1 summarizes these differences based on properties
that are mainly deduced from [EM88, Ch. 1] and [Cor03].

Property Blackboard System Storage Media

Blackboard global database local(ly accessible) database

active: may provide a KS trigger mech- passive: storage object
anism

Solution constructed on blackboard coordination artifact

Agent/KS KS provides (expert) knowledge Comparable to KS, agents provide (lo-
cal) knowledge, but they also extract
and store knowledge from the black-
board

static knowledge in KS agents may have dynamic, state de-
pended knowledge

Communication “Blackboard systems prohibit direct in- direct communication between agents,
teraction among modules, as all com- or indirect via SM
munication is done via the blackboard.”
[Cor03, p. 6]
Allowing KS activations to talk di-
rectly “is a major departure from the
blackboard-system model” [Cor03]

Control Control component is independent Agents act autonomously (in particular
from KSs there is no external control unit)

activated by  scheduler/focus-of- autonomous agents
control-DB or by control KSs

KS may provide separate control autonomous agents
knowledge to control shell

centralized de-centralized

Parallelism traditional blackboard systems execute fully parallel working agents
only one KS activation at a time

Table 6.1 Differences between blackboard systems and MAS with storage media.
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6.1.1.2 Agents and Artifacts Meta-Model

The Agents and Artifacts (A&A) meta-model [ORVO0S8] provides an approach for
agent-based software development. In particular, in open MAS where agents can join
or leave a system at any time, some kind of organizational infrastructure is required to
keep such a dynamic system up and running. The basic idea of the A&A framework
is to divide the system into three conceptually different entities [ORVO08]:

1. Agents, as usual, are those entities that autonomously work in a given environment
(one or more workspaces) so as to reach their design objectives.

2. Artifacts are a conceptual means that realize tools, functions, or represent resources
which can be used by the agents. In particular, artifacts are not autonomous but
might show reactive behavior.

3. A workspace basically defines an environment and contains agents and artifacts.

Given proper descriptions and documented interfaces for artifacts, programmers can
create agents which interact in an open MAS that is realized based on the A&A
meta-model.

With respect to the concept of storage media considered in this work, we are
mainly interested in artifacts. Artifacts can be used by agents in various ways. In
an early work, Omicini et al. [ORV04] introduce coordination artifacts. This
type of artifacts provides an organizational means for indirect communication so
as to enable coordination through the environment. Cognitive artifacts [ORVO0S]
[PRO9] are supposed to be used in the cognitive process of the agents. Thus, they
influence the design of agents since they have to be aware off e.g. the existence and
functionality of artifacts. In [PR09], Piunti et al. consider cognitive artifacts in the
form of log artifacts in a simple simulated robotic room cleaning task. The logs
contain information about recent cleaning operations. These information can be taken
into account by the agents when they have to decide whether they should enter and
clean a room.

The A&A meta-model, resp. the artifacts, are also used in and have inspired
different models. For instance [KBHRO8] uses artifacts to incorporate organizational
infrastructures in MAS, e.g. by using artifacts to model functions of organizations on
the one hand, and agents as (organizational) decision makers on the other hand. In a
recent work, Ricci et al. [RPV11] show how artifacts can be used from a software
engineering point of view by introducing the notion of environment programming. In
their framework, for instance, artifacts might realize shared data objects or resources
and communication or coordination services. By doing so, the re-usability of MAS-
based software can be increased.

The concept of storage media is closely related to artifacts. In fact, a storage
media can be considered to be an implementation of an artifact. In general, however,
artifacts can realize arbitrarily complex functionalities. Our storage media instead
are supposed to “store” and provide knowledge rather than realizing other complex
behaviors. Further differences result from the focus of the A&A meta-model, which
is MAS-based software development. Artifacts in the A&A meta-model can be part
of various workspaces at the same time and mainly are considered to be “programs”.
In contrast, our storage media are supposed to be located in a (simulated) physical
environment where they should support robots (agents) by providing the ability to
store knowledge outside of the agents.
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6.2 Strategic Positioning

A first application of the storage media concept is found in [KKB10a]. There, we
used the media in our IAPP variant to optimize the DISTANCE objective, i.e. we
want the agents to select the nearest target depending on their position. We briefly
investigated the influence of randomly and regularly positioned storage media. In
the latter case, media are aligned on a regular grid such that, besides some boundary
agents, all agents can interact with at least one medium independent from their
current location in the environment. Besides storing “suitable” knowledge on the
“right” storage media', we identified that media can make a remarkable contribution
to the success of the system as a whole, given that all agents are able to interact with
the media.

Accordingly, the strategic positioning of storage media in an environment is one
important factor for a successful application of the concept. Before we next sketch
one approach for the positioning of media in our IAPP variant, note that what is
considered to be a good strategic positioning clearly depends on the considered
problem domains and settings.
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Fig. 6.2 Strategic positioning of storage media to reflect target regions.

In Chapter 12, we will identify that high quality solutions for our IAPP variant
usually contain regions. There is one region for each target. If an agent selects the
target with respect to the region it is located in, we are likely to observe high quality
solutions. Figure 6.2 illustrates these regions in a simple example. With this property
in mind, it seems unnecessary to place a large number of media on a regular grid as
mentioned above. Instead, it would be sufficient to just place one media per region
such that, whenever the agent is in a particular region, the agent will interact with
that particular medium. On the right side of Fig. 6.2, we sketched such a beneficial
placement. It corresponds to a Voronoi diagram that uses the media as generating
sites. Hence, whenever an agent asks its nearest medium for advice, it will obtain the
best action with respect to its location. Note that the media positions, which generate
the Voronoi diagram, depend on the targets’ positions. However, these positions

! In the setting investigated in [KKB10a], knowledge about the nearest target to a medium should
be stored on every medium. Due to the spacial relation, the “right” medium for a knowledge item
on a target 1" then is located closer to 7" than to any other target.
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usually differ because otherwise we would optimize only the DISTANCE objective
while the DISTRIBUTION could become arbitrarily bad.

In general, however, those target regions can have arbitrary shapes or might not
even be connected (cf. Prop. 8 on page 192). Also, agents usually have limited
communication radii and thus may be unable to reach any medium at all. Accord-
ingly, more sophisticated strategies for placing the media are required. It would be
beneficial, if the agents learn where to best place the media while they learn to solve
the partitioning problem.

In this work, we do not intend to provide such a placement approach in every
detail, as this is an interesting research question on its own. Instead, we just briefly
sketch a promising idea based on a work of Baumann and Kleine Biining [BKB11].
Considering an agent position as a state, one can reinterpret these target regions as
a set of related states that all require the same action, namely selecting the same
target. In [BKB11], the authors propose an approach that identifies such similarities
between states and automatically generates a state-space abstraction while learning
to solve a simple grid-based shortest path problem. The general idea of that approach,
called GNG-Q, is to combine )-Learning with growing neural gas (GNG, [Fri95]).
GNG-Q uses units called neurons as representative for a set of similar states and
learns Q-values for these neurons. New neurons are added if the learning process
indicates a too coarse abstraction, e.g. when policy changes occur too frequently.
Neurons might also be deleted, if they become unnecessary, due to changes in the
topology. In the end, the approach can come up with regions like those shown in
Fig. 6.2, whereas the learned neurons’ positions would be equal to the storage media
positions. Since the approach autonomously learns how to aggregate states, the
resulting regions can also have arbitrary geometric forms. Hence, placing storage
media at the learned neuron positions seems to be a good approach.

media for the
same target region

agent
\ °

agent j

@)

Fig. 6.3 Agent ¢ is unable to communicate with the single media that represents the target region for
the agent’s location. Adding additional media in the region, however, also influences the boundaries
of the other target regions as indicated by the dashed lines. Adding the shown media, for instance,
would mislead agent j. Accordingly, it needs to be elaborated how to position media under limited
communication radii and under more complex geometric shapes. Furthermore, additional media are
required within the regions.
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Up to now, GNG-Q is applied only “within” an agent, i.e. to create a representation
of the actual environment for the learning algorithm. Hence, it needs to be adapted
to support multiple agents which at the same time have to learn and to agree on a
common state-space abstraction. Then, external storage media have to be placed or
moved according to the learned neuron positions. Also, as indicated in Fig. 6.3 and
discussed in the figure’s caption, limited agent communication radii have to be taken
into account. Besides their positioning, the number of media required becomes an
issue, too.

Finally, we believe that a self-adaptive learning approach, which is based on the
above sketched idea of using neurons generated by GNG-Q as basis for determin-
ing storage media positions, could lead to good results in our IAPP variant. The
realization of such an approach, however, is left for future work.

6.3 Influence of Obstacles

In this section, we will briefly discuss the influence of obstacles on the communication
of agents. We will show in how far a single storage medium can be used to enable
communication between two agents on different sides of an obstacle. Figures 6.4 and
6.5 visualize the considered setting schematically.

obstacle

A
agent 1

Fig. 6.4 Area that is shadowed by the obstacle.

The gray shade in Fig. 6.4 highlights the area that is said to be shadowed by the
obstacle for a particular agent ¢ with communication radius r. The term shadowed
means that all agents which are located in the gray area cannot be reached by
agent 7 due to the obstacle. The area of the shadowed region can be calculated
by decomposing it into smaller regions as indicated in the figure. Based on these
identifiers, the shadowed area hence is given by A (A) + A (B) — (A (D) — A (Q)),
where A (X)) denotes the area of region X.

Given that an agent is located below such an obstacle, the question is where to
place a single storage medium such that it can help to reduce the influence of the
obstacle on the agent’s communication to a minimum. Therefore, it is assumed that
the medium acts as a mediator, i.e. agents indirectly communicate via the media. Due
to limited communication radii of the agent and the medium and because the goal is
to enable agent ¢ to communicate with as many agents as possible that are located in
the shadowed area, only the (light) gray areas (Z and U) in Fig. 6.5 describe possible
locations for a medium. In that figure, M denotes the position of the medium and the
dashed circle describes the medium’s communication range.
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obstacle

= (@M, ym)

Fig. 6.5 Agent and obstacle alignment setting considered in this section.

Under some assumptions, e.g. on the positions, obstacle dimensions, or commu-
nication radii, we were able to prove that the best position (z, yas) for a medium
M is given by the intersection of the visibility line ¢ and the circle described by the
communication radius of the medium centered at the agents position (cf. Fig. 6.5).
Formally, this position can be calculated by the agent using

r2 a r2
(xopt.ayopt.): \/ - 23\/ - Q)a
L+ (3)" PV 1+ (5)

where the agent is assumed to be placed at position (0, 0) and only needs to know
the position (b, a) of the bottom right corner of the obstacle, and the medium’s com-
munication radius 7. Given that medium M is placed at this position, the coverage
through M is maximized, i.e. the area that is accessible by indirect communication
via M compared to the area shadowed by the obstacle is maximized.

Due to the geometric nature of this placement problem, the corresponding proof
involves several different cases that can be reduced to basic geometric arguments.
We skip the details on this proof here and refer the reader to Appendix A. There, a
detailed description on this placement problem can be found.

. storage |

T medium |

Fig. 6.6 Setting in which no agent benefits from the storage medium.

Given the optimal position for the maximum coverage, it is easy to see that storage
media cannot totally undo the shadow effect introduced by obstacles. Figure 6.6
depicts a simple worst case, in which the medium cannot reach any of the shadowed
agents although it is placed at the optimal position. Accordingly, the benefits from
using storage media as means for indirect communication in settings with obstacles
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can be quite small. This, however, does not subvert the general benefits of storage
media as listed in Sect. 6.1, but it should be kept in mind when designing storage
media-based algorithms in scenarios with obstacles.

6.4 Greedy Placement Strategy

In this section, we will present a simple greedy storage media placement strategy for
settings with obstacles that aims at maximizing the number of indirectly reachable
agents.

Algorithm 1 presents the Greedy-Placement-Strategy (GPS), which is executed
by each agent :. Its idea is to systematically evaluate all possible positions for a
new storage medium, i.e. all positions p with d,(p0s(%), p) < min{r;, ras}, where
r; (rpr) is the communication radius of the agent (storage medium), and d, is a
function that calculates the sensor distance between two positions w.r.t. obstacles
(see Appendix A). Each position is assigned a value that indicates the number of
additionally reachable agents by indirect communication through the storage medium.
The media is then placed on the position with the highest value. If several positions
are rated with the same highest value, the first found position will be selected.

Algorithm 1 Executed by each agent ¢ located at pos(i).

1: procedure GREEDY-PLACEMENT-STRATEGY

2: Pbest < null > best position
3 Gbest < 0 > best gain
4 P={} > set of possible medium positions
5: D < set of directly reachable agents in communication radius 7;

6 r + min{r;,ram}

7 Ptmp ¢ positions in radius r > ordered from top left to bottom right
8: foralli € {1,2,...,|Ptmp|} do > Determine possible medium positions
9: if 50 (POS (i), Ptmpli]) < r then
10: P =PU{Pimpli]}
11: forall: € {1,2,...,|P|} do > Find best placement position
12: value <— EVALUATE(P[3], D)
13: if value > gpe s+ then
14: gbest < value
15: Dbest < P[i]
16: if ppest 7 null and ppesy is free then
17: place storage medium on ppest
18: else
19: refrain from placing storage medium

20: procedure EVALUATE(position p, set of directly reachable agents D)
21: if p is free then

22: place storage medium M on position p

23: C'pr < set of agents that can interact with M within radius r s

24: Ci <~ Cu\D > indirectly reachable agents
25: remove M

26: return |C} |

27: else

28: return —oo
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6.4.1 Analysis

For the analysis, we assume time O(1) for placing a medium and for determining
the number of agents reachable within a distinct radius.

First, consider the EVALUATE subroutine. It requires time O(|D|), because each
directly reachable agent in D has to be considered to create the set of indirectly
reachable additional agents.

Next, consider the main procedure. Creating the set of possible medium positions
P requires time O(|Pymp)), as the distance to each position must be calculated.
(Note that this assumes constant time for determining the distance.) Now, since each
position in [P has to be evaluated using EVALUATE, time O(|Pymp||D|) is required to
find the best position, as |P| is bounded from above by |Ptyp|. The remaining steps
can be performed in constant time.

Thus, the overall runtime of the Greedy-Placement-Strategy is in O(|Pymp|| D).
The cardinality of both sets depends on the radii of the agent and the medium. With
Tmax = max{r;, 7y} as maximum radius, a bounding box with 4rr2nax positions is
an upper bound for the positions/agents in both sets. Thus, GPS requires at most
O(rd ..) time.

Since the algorithm evaluates all possible placement positions and has to store the
set of directly reachable agents D, the space required for this algorithm depends also
on the used radii and is in O(|D| + |Pymp|), i-. in terms of the maximum radius in

O(rax)-

6.4.2 Number of Media

Having analyzed the runtime and space requirements, we now consider the number
of media placed by the strategy.

In principle, GPS is able to find optimal solutions as shown in Fig. 6.7. There,
no agent is able to communicate with any other agent since either their distance is
larger than the communication radius (e.g. agents 0 and 2), or the line of sight is
intersected by a sensor obstacle (e.g. agents 0 and 1). As the figure shows, indirect
communication via a storage medium can be realized. In this particular example, this
is the only valid placement position for both agents since it is the only position where
a medium can be accessed by both agents. Independent from synchronization issues,
both agents in the GP-Strategy will find that position, but only one is able to place
a medium. The other agent will observe an occupied position and will thus refrain
from placing a medium. The optimality of this solution follows because agents closer
to different obstacles can not be connected by a single medium.

Next, we consider a worst case scenario shown in Fig. 6.8. Therein, the number
of storage media placed by GPS is n for n agents. The construction of this worst
case scenario for an arbitrary number of agents n > 2 is as follows. To restrict the
placement of media to the area below the vertical sensor obstacles, a long horizontal
obstacle is placed on top of the regularly located vertical obstacles. Hence, [ %]
vertical obstacles are placed at regular distance to each other. From left to right, each
obstacles is one cell longer than the preceding one. The initial length as well as the
distance between the vertical obstacles depend on the medium’s interaction radius.
In the next step, we sort the agents by IDs ascending and place one agent after the
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Fig. 6.7 Best case. The large circles indicate the agents’ communication radii radii; the small circle
illustrates the medium’s interaction radius.

other; always two agents per indentation in a row. The first agent with ID 0 is placed
such that the first best placement position, when traversing possible positions in GPS
from top left to bottom right, is at the end position of the right vertical obstacle.
Agent 1 is placed one cell below agent 0. The remaining [ % | — 1 indentations are
filled with two agents in the same manner, starting at the y-coordinate of the second
agent placed in the previous indentation. Therefore, we obtain the stair-like structure
shown in the figure. Note that for an odd number of agents, the last indentation will
only contain one agent. However, this still leads to n placed media in the worst case.
A similar worst case for n = 2 can be created by placing the agents on the positions
of agent 1 and 3 in Fig. 6.8.

o
; . ®
H_ge
C D \..
—@

Fig. 6.8 Worst case. The lines connect each medium to its owner. The circle with radius r,,
centered at the position of agent 6 visualizes the media interaction radius.

The worst case of placing n media occurs, if the agents place their respective
medium one after the other sorted by ascending agent IDs. First, let us consider
the inner indentations 2 to [ | — 1, using agents 6 and 7 as examples. The lines in
Fig. 6.8 connect each storage medium with its owner, i.e. the agent that placed it.
As indicated by these connections, the upper agent 6 will place its medium at the
end of its right sensor obstacle at position D. Position A is not considered, as the
agent would be unable to communicate with a medium placed there. With a gain of 2,
position B would offer the same as D. However, B is already occupied by agent 4’s
medium. Finally, position C is not selected due to a lower gain of 1. Agent 7, will
place its medium at position A, as it offers a gain of 2, C' only a gain of 1, and B and
D are already occupied. Thus, both agents will place a medium.
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Next, we have to consider the remaining two indentations, i.e. the first and the
last one. Agents 0 and 1 have no agents on their left side. Since the gain on position
E for agent O is 1, but 2 on G, agent 0 will place its medium at position G. Agent
1’s gain at position F is 1, and since G is already occupied and F’ offers a gain of 2,
agent 1 will place its medium on F'. In the last indentation, agent 10’s highest gain is
possible at position I as a medium on H would not be reachable and J is already
occupied by agent 8’s medium. Finally, agent 11’s medium is placed on H as this is
the first time when the highest possible gain of 2 is reached.

The worst case for two agents as described above is easily comprehensible, and
for n = 1 agent no medium results in a positive gain. It follows that we can always
construct a worst case where n media are placed if n agents are involved.

6.5 Summary

In this chapter, we introduced the concept of storage media in multiagent systems
and presented related work. We discussed opportunities and challenges that come
along with this concept. In particular, we presented some insights into the strategic
positioning of media in the context of the IAPP. Furthermore, we investigated the
influence of simple rectangular obstacles to the application of storage media as
mediators for indirect communication. We proved an optimal positioning of a medium
that ensures the maximum coverage from the perspective of a single agent. Finally,
we proposed and analyzed a simple greedy approach that allows each agent to place
exactly one storage medium in environments with obstacles. However, this greedy
strategy was shown to place up to one medium per agent in the worst case.
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Chapter

Reinforcement Learning with
Noisy Rewards

In this chapter, we investigate the influence of randomly noised rewards on learning
in deterministic environments with one agent. Although we are mainly interested in
multiagent reinforcement learning (MARL), the insights provided by this chapter
for single agent settings with noise will become helpful when we will consider our
novel MARL approach (cf. Ch. 8) under noise.

We define noise robust rewards and noisy Markov Decision Processes in Sect. 7.1
and prove that an optimal policy obtained under noise is also optimal for the underly-
ing original noise-free process. Section 7.2 shows that deterministic ()-Learning is
unable to converge to such an optimal policy under noise—even if rewards are noise
robust. Beside these contributions, we give the main results of this chapter in Sect.
7.3. We adopt an optimistic update rule from MARL and prove that it requires one
assumption on the noise distribution in order to ensure convergence to an optimal
policy under noise. By counterexample, we also show that noise robust rewards can-
not replace the assumption on the noise distribution. Finally, in Sect. 7.4, we discuss
the obtained results and relate them to learning in non-deterministic environments.

7.1 Basic Definitions

The model that we will use for learning with noisy rewards is presented in Def. 22.

Definition 22 (Noisy Markov Decision Process). Let M = (S, A, 4, p,7) be an
ordinary MDP. A noisy Markov Decision Process is defined by a tuple M =
(M, p,ND, #). The agent in M does not observe the original reward according
top: S§xA — R, but anoisy reward given by p : § x A — R having
p(s,a) = p(s,a) + 1dp(p(s,a)),Vs € S,a € A. Here, pudp, : R — R denotes
a noise generating function such that ;. (v) returns a random value from [—8v, 6]
drawn according to a random distribution ND, where 6 € [0, 1) is a noise rate.

From the above definition, it is clear that a noisy MDP basically is an ordinary
MDP which uses rewards that are augmented with an additive random noise. The

93
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interval of the noise is determined by a percentage of the respective clear reward. Due
to random noise, a noisy Markov Decision Process is said to be semi-deterministic,
if the state transition function § is deterministic; it is nondeterministic if § is prob-
abilistic. Let us concentrate on the semi-deterministic case hereafter. Recall, that
throughout this work, we assume finite state and actions sets and consider only
bounded rewards.

The consideration of randomly noised rewards requires a closer look to what is
considered to be an optimal solution. Let all rewards be noised such that the respective
maximal positive noise value is addeqv to the clear reward. Given such rewards, we
define the optimal ()-values QK7I for M according to the Bellman equations for all
state action pairs (s, a) as

QI\L/[(Sv a) = [p(s,a) +0p(s,a)] +v 1111’121}45 Qi’/{(é(sv a), a/)

= " (s,a) + max Q5 (s, a") (7.1)

For brevity, we will use p™**(s,a) = p(s,a) + 0p(s,a) to denote the maximal
positive noised reward value for a state-action pair, and we define s’ = (s, a) as the
state resulting from executing action a in state s. If the context is clear, we skip the
index and write Q™ if we refer to Qﬁ Based on these equations, an optimal policy
corresponds to a greedy policy. B

Note that, according to this definition of Q}/I, an optimal policy for M is also
optimal for the underlying MDP M and vice versa. This follows from Lemma 1,
since p™*(s,a) = p(s,a) + 0p(s,a) = (1 + 0)p(s,a) and (1 + 0) is a constant
factor.

Lemma 1. An optimal policy ©* for a Markov Decision Process M = (S, A, 0, p, )
is optimal for another MDP M’ = (S, A, 8, p/, ), having

p'(s,a) = Tp(s, a)
for all state action pairs (s, a) and a constant factor & > 0.

Proof. Consider an optimal policy my; for MDP M, i.e.

my = argmax V™ (s),Vs € S

> Von | W] Vs€S

k=0

= argmax
s

Since the policy selected via the arg max operator remains the same if the values of
all policies are multiplied by the same constant ®, we get

TN = arg max OF

> 7| ﬂ] VseS

k=0
=argmax E @kapkhr] Vs e S
" k=0
=argmax kaq)pkhr] Vs e S
k=0
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o0
> Vo | ﬂ] Vs€S

k=0

= argmax F
™
= WR/I/

Clearly, this result also holds for deterministic MDPs, since the value function for
following a policy mr starting in s is determined by V™ (s) = Y72 7* px. O

Accordingly, an algorithm that learns an optimal policy for M under noisy rewards
also finds an optimal policy for the underlying noise-free MDP M.

An interesting property of rewards concerns their relations with respect to a given
noise rate:

Definition 23 (6-Noise Robust Rewards). Two clear reward values u, v are said to
be robust under noise rate 6 € [0,1) if

[(1-=0)u,(1+60)u]N[(1—0)v,(1+80)v]=0. (7.2)

In this case, we say that u, v are 8-noise robust. Given a reward function p : S x A —
R, the function is said to be 8-noise robust, if for each state s € S condition (7.2)
holds pairwise for all distinct reward values that can result from executing an action
in state s.

Note that we will repeatedly return to noise robust rewards in the following two
chapters, as they seem to establish an interesting property that probably could help to
ease learning under noised rewards.

Let us now proceed in the following section by considering the influence of noise
to deterministic ()-Learning.

7.2 Deterministic Q-Learning with Noisy Rewards

The way how we create noisy rewards, i.e. by adding a noise value to the true reward,
technically corresponds to the approach followed in reward shaping as explained
in detail in Sect. 3.4. However, the aim of reward shaping differs from our goal.
In reward shaping, the idea is to guide the learning process of an agent by adding
additional rewards to the actual reward, i.e. using p’ = p + F as reward function,
where F' denotes the shaping reward. The shaping reward is supposed to improve the
agent’s speed of learning and to guide its learning. Contrary to this, our goal is to
enable agents to learn from noisy rewards. That is, rewards are observed only with a
certain precision through possibly erroneous sensors. In particular, the noisy rewards
do neither guide nor speed up the agent’s learning but instead exacerbate it.

Ng et al. theoretically analyzed reward shaping ([NHR99], see also Sect. 3.4).
They showed that only potential-based reward shaping functions, i.e. functions in the
form F'(s,a,s’) = y¢(s') — ¢(s), where ¢ : S — R is a potential function and ~ a
discount factor, are guaranteed to preserve optimal policies in general MDPs. Ng et
al. also pointed out that additional knowledge on the state transition and/or reward
function would be required in order to allow other shaping functions to preserve
optimal policies.

Since reward shaping and noisy rewards both modify the original reward in the
same way, i.e. by adding a value to the true reward, the results of Ng et al. also hold
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in our noisy setting. Accordingly, it follows that noisy rewards prohibit the agent to
learn an optimal policy, as the noise generating function pgy, (cf. Def. 22) returns
a random value, and thus does not satisfy the aforementioned condition of being a
potential-based reward shaping function.

The remaining question is, whether noise robust rewards are a game-changer, i.e.
if the usage of noise robust rewards in deterministic ()-Learning leads to convergence
towards optimal policies. Unfortunately, this is not the case as shown in the following
simple example.

Example 1. Consider a simple noisy MDP as shown in Fig. 7.1 using the discount
factor v = 0.9 and the noise rate 0 = 0.3. At any time, the agent either selects and
executes action left or right. The agent should learn that action right is best, as it
results in the largest immediate reward of 2 compared to 1 for the left action. Note
that these rewards are 0-noise robust. Furthermore, assume that the agent learns
using deterministic Q-Learning (cf. Sect. 3.2.3), i.e. it updates its Q-values according
to Q(s,a) = p(s,a) + ymaxgeca Q(s',a).

left i ght

Fig. 7.1 Simple learning task.

Given noise rate 0 = 0.3, the maximal positive noised reward for state s and going
right becomes p™®* (s, right) = p(s, right) + 0p(s,right) =2+ 0.3-2 = 2.6. The
maximal positive noised reward for going left hence is p™**(s,left) =14+0.3-1 =
1.3. Based on these values and using techniques like, e.g., policy or value iteration
as described in Sect. 3.2.2, one can solve the Bellman optimality equations:

Q(s, right) = 7™ (s, right) +  max Q(s, a')
a/
= [;'m

Q(s, left) (s, left) + ymax Q(s, a’)
The resulting optimal QQ-values for state s are Q* (s, right) = 26 and Q* (s, left) =
24.7, as they form the unique solutions to the Bellman optimality equations:

Q(s, right)

= p(s, right) + vy max Q(s,a’) = 2.6 + 0.9 max {26, 24.7} = 26

Q(s,left) = pm* (s, left) + ymax Q(s,a’) = 1.3 4+ 0.9 max {26,24.7} = 24.7
Assume that we interchangeably execute action left and right, and that we obtain
the maximal noised rewards 1.3, resp. 2.6. Then, the Q-estimates Q) according to the
used update rule will have the same values as the optimal ones after 510 iterations'.
Thereafter, assume that the agent goes right and observes the minimal possible noised
reward of 2 — 0.3 x 2 = 1.4. Then Q(s,right) = 1.4 4+ 0.9 max {26,24.7} = 24.8.
Going right and observing the reward 1.4 again, we obtain @(s, right) = 1.4 4+
0.9max {24.8,24.7} = 23.72. Clearly, at this point in time the greedy action is
going left, and thus not optimal.

! Feel free to use your favorite spreadsheet program to verify this statement.
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Based on this plot, it is easy to see that one can construct alternating Q-values
where once going right and once going left is optimal. Accordingly, the learning
process will not stabilize in the sense that it converges to the optimal action.

The key to that example is that the @-values lose the property of being monoton-
ically increasing if noisy rewards are used. Since the exemplary rewards are noise
robust for the used noise rate § = 0.3, as [0.7,1.3] N [1.4,2.6] = 0, it also follows
that noise robust rewards are not a game-changer with respect to the results of Ng et
al. as discussed above.

In the next section, we will slightly adjust the update rule and show under which
conditions the resulting algorithm then converges under noisy rewards.

7.3 Q-Learning with Noisy Rewards and Optimistic Updates

The update rule for deterministic Q-Learning is given by Q(s,a) = p(s,a) +
~Ymaxg e A @(s’, a') (cf. Sect. 3.2.3 or [Mit97, (13.7)]). As we have argued in the
preceding section, this update rule is unable to deal with noisy rewards. In order to
deal with such rewards, we thus propose to adopt the optimistic assumption as stated
in (7.3).

Q(s,a) = max {@(s, a),p(s,a) +~ max Qs a’)} (7.3)

The optimistic assumption was originally proposed by Lauer and Riedmiller
[LROO] in the context of multiagent reinforcement learning in cooperative determinis-
tic games. In this setting, its idea is to take care of capturing the maximum value that
is obtained by a single agent for executing its actions as part of a joint action. Note
that the outcome of an individual agent’s action might be different depending on
the actions of the other agents. Thus, from an individual agent’s perspective without
knowledge about other agents, the obtained rewards seem to be stochastic. Since this
basically corresponds to noisy rewards, we will show that the provided update rule
(7.3) in a noisy setting can

1. not ensure convergence to optimal policies in noisy MDPs, neither in general (see
Example 2) nor in settings with noise robust rewards (see Example 3), but

2. is guaranteed to find an optimal policy for a noisy MDP—and by Lemma 1 also
for the underlying original MDP—if the maximum positive noised rewards occur
with a non-zero probability (Lemma 2, Theorem 7, Corollary 1).

Before we continue to show these results, we want to be clear about the assumptions
made throughout this section. They are summarized as follows:

Assumptions 1 :

We consider a semi-deterministic noisy Markov Decision Process.

The original rewards are bounded non-negative values.

All Q-estimates () are initialized to zero.

Each state-action pair is visited infinitely often with a non-zero probability.

The noise distribution ND is stationary, i.e. the probability of observing a certain
value does not change over time.
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To see that the adoption of the optimistic assumption alone cannot ensure conver-
gence to an optimal policy, have a look at the following simple example:

Example 2. Consider the settings shown on the left hand side of Fig. 7.2, where an
agent should learn to move to the right. This scenario is the same setting as described
in detail in the preceding Example 1. In contrast to the first example, we set the noise
rate to § = 0.9. Now, assume that the reward for going right always occurs with
maximum negative noise, i.e. p(s,right) = 2 —6-2 = 0.2. Also assume the opposite
Sor going lett, i.e. always add maximum positive noise, p(s,left) =1+6-1=1.9.

left right left right

assumption on
noise distribution

Fig. 7.2 Simple learning task, where the assumed noise distribution changes the optimal action.

Under these assumptions on the noise distribution, the noise clearly changes the
optimal action, as the suboptimal action left always leads to a higher reward than
going right. Accordingly, the optimistic update rule cannot learn the optimal policy
for the underlying original MDP.

Although this example shows that the optimistic update rule in general cannot
lead to convergence to an optimal policy for the original MDP under noise, it will
do so with high probability under less artificial noise distributions. In particular, it
has to be ensured that the maximum positive noise value will be experienced with a
non-zero probability, as it is the case, e.g., if the noise is distributed according to a
uniform or normal distribution. To prove this, we first show the following lemma:

Lemma 2. Under assumptions Al, consider QQ-Learning with update rule (7.3) and
an arbitrary state-action pair (s, a). Let t denote a time step for which the maximum
positive noised reward p™**(s,a) = p(s,a) + 0p(s, a) is observed. Then, the Q-
estimates are updated according to

Quii(s,a) = P (s,a) +ymax Qy (s, o). (7.4)

Proof. Before we prove the lemma note that the ()-estimations @ are monotonically
increasing. This follows from update rule (7.3) and because rewards are non-negative
and all Qo(s, a) are initially 0. Without loss of generality, we consider one state-
action pair (s, a) and prove (7.4) by contradiction.

According to update rule (7.3), the estimate for (s, a) after iteration ¢ is updated
by

Qi41(s,a) = max {@t(s, a), P (s, a) + 7y max Qu(s, a’)} . (7.5)

Assume the maximum argument in (7.5) evaluates to @t(s, a), i.e.

~

Qi(s, a) = p"*(s, a) + v max Qi(s',d). (7.6)



7.3 @Q-Learning with Noisy Rewards and Optimistic Updates 99

Let ¢’ < ¢ denote the iteration after which the last update to (s, a) occurred for a
non-maximal positive noised reward, i.e. when

pro(s,a) +ymax Qu (s’ a/) = Qrsa(s,0) = Quals.a) = ... = Qul(s, ).

Accordingly, (7.6) can be rewritten as follows

~max

pur(s,0) + 7 max Qo (s, ') = p™(s,a) + ymax Qu(s', ). (17)
a’€A a’€A

By construction, py (s, a) < p™**(s, a) holds. Further, from the monotonicity of the
estimates it follows that

ymax Qu(s',a') < ymax Qu(s', a').

Accordingly, the right hand side of (7.7) is larger than the left hand side. This
contradicts the assumption that the maximum argument in the update rule (7.5)
evaluates to (Q;(s, a). Thus,

Brs1(s.a) = max {éxs, @), 77 (5,0) + 7 max Qs a')}
__ ~max A )
=P (s,0) + ymaxQu(s', o)
and the lemma follows. O

Using this result, we now are able to prove the aforementioned statement:

Theorem 7. Under assumptions Al, let M = (M, p, ND, 6) be a noisy Markov Deci-
sion Process. If the maximal positive noised reward for all state-action pairs (s, a)
is observed with a non-zero probability, i.e. if Pr(p(s, a) = p(s,a) + 0p(s,a)) > 0,
then QQ-Learning using update rule (7.3) converges to Qﬁ/{ (s,a) for all (s,a) as
defined in (7.1).

Proof. Without loss of generality, consider an arbitrary but fixed state-action pair
(s,a). By assumption there exists an infinite sequence of time steps T(, ) =
{71, 72,...}, where the maximal positive noised reward p™**(s,a) = p(s,a) +
0p(s, a) is observed.

If p™**(s, a) is observed, we know from Lemma 2 that the corresponding Q-
estimate is updated according to

@T+1(S7a) = ﬁmaX(S’ CL) + ’Y(Izl}gﬁ @T(Slv a/)

where 7 € T, q).

Note that this update rule corresponds to the one used in deterministic Q-
Learning (cf. Sect. 3.2.3). Considering the sequence of maximal positive noised
reward observations 7, ,) and because p™**(s,a) is fixed, the convergence of
Q-(s,a) — Q5;(s,a) as 7 — oo follows from the convergence of deterministic
@-Learning for deterministic MDPs (cf. Theorem 1 on page 31; a convergence proof
is presented in [Mit97, Theorem 13.1]).

Because all Q* values are optimal values based on p™**(s,a) and due to the

monotonicity of the Q-estimates, no other rewards can lead to convergence to values
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larger than Q*. Thus, the convergence of (Q-Learning using update rule (7.3) in noisy
MDPs follows. a

From Lemma 1, we immediately obtain the following result:

Corollary 1. Under assumptions Al, let M = (M, p,ND, 6) be a noisy Markov
Decision Process. Given that the maximal positive noised reward for all state-action
pairs is observed with a non-zero probability, then QQ-Learning with update rule
(7.3) applied in M converges to an optimal policy for the original noise-free Markov
Decision Process M.

Before we continue, note that one might generalize Theorem 7 to show the
convergence to C,/Q: (s, a) values that are defined over the maximal positive noised
reward observed with probability greater than zero for each (s, a).

Given noisy rewards, we just have seen under which conditions convergence to an
optimal policy can be achieved. Next, we want to conclude this section by returning
to Example 2. From that example, one might assume that using noise robust rewards
can avoid such problems and can ensure convergence to optimal policies. Clearly,
this holds for the simple setting considered in that example, as basically a single state
has to be examined. However, noise robust rewards are not a general means to ensure
convergence to optimal policies as shown in the third example:

Example 3. Consider the simple MDP illustrated on the left side of Fig. 7.3 and
assume a discount factor v = 0.9. The agent should learn to reach goal state so.
Then, the optimal QQ-values can easily be calculated as follows:

Q*(s0,a) = p(s0,a) +~v-maxQ*(s1,a’) =1+0.9-20 =19
a/

Q*(s0,¢) = p(s0,¢) + v -maxQ*(sg,a’) =204 0.9-0 =20

Q*(s1,b) = p(s1,0) + v - max Q*(s2,a’) =20 +0.9-0 = 20

Thus, the optimal policy is given by 7*(so) = c and 7*(s1) = b.

noise rate
0=0.9

Fig. 7.3 A simple learning task, where the assumed noise distribution changes the optimal action.

As it can immediately be inferred from the gray intervals shown in the figure,
the reward values in this example are noise robust for 0 = 0.9. The black values
presented on the right side of of Fig. 7.3 quantify the maximal positive noised rewards
observed in this noisy MDP. Hence, by Theorem 7, QQ-Learning with the optimistic
update rule and noisy rewards will converge to the following values:



7.4 Conclusion 101

—

Q*(s0,a) = p(s0,a) + - maxQ*(sy,a’) = 1.2+ 0.9 - 38 = 35.4
a/

@*(s0,¢) = pls0,¢) +7 - max Q*(sz,a') =240.9-0 =2
a

Q*(s1,b) = p(s1,b) + 7 - H}lz}xé\*(s%a’) =3840.9-0=38

Accordingly, the greedy policy will be 7 (so) = a and 7 (s1) = b.

Since 7 (s) # 7 (s0), noise robust rewards cannot preserve the characteristics
of general MDPs under noise. Hence, using deterministic QQ-Learning with update
rule (7.3) plus having noise robust rewards, in general, does not ensure to learn an
optimal policy for the underlying MDP. Only if the condition on the noise distributions
stated in Theorem 7 are met, the approach will learn optimal policies. In that case,
however, we do require noise robust rewards.

Despite the negative results concerning noise robust rewards, we will reconsider
them later in this work. In particular, they will be useful when we deal with multiagent
learning in sequential stage games (see Sect. 8.6).

7.4 Conclusion

In this chapter, we investigated the influence of randomly noised rewards in determin-
istic environments. We provided a formal model for this and showed that an optimal
policy obtained under noise is also optimal for the noise-free process.

There are two main contributions in this chapter:

1. Noise robust rewards (i.e. rewards whose possible noised values do not overlap)
sound like a promising property for learning under noised reward perceptions.
However, we showed that this property cannot ensure convergence towards optimal
policies in deterministic ()-Learning with noised rewards.

2. Additionally, we proposed to use an optimistic (J-value update rule that is known
from multiagent reinforcement learning. Even under this update rule, noise robust
rewards do not lead to optimal policies. Instead, an assumption on observing
maximal positive noised rewards with a probability greater than zero is required
to provably converge to optimal policies under noise using the optimistic update
rule.

The assumption on observing the maximal positive noised rewards is not really a
limitation, as it is generally fulfilled by standard distributions like the uniform or the
Gaussian distribution. Accordingly, we proposed a simple algorithm that is able to
learn an optimal policy in deterministic MDPs under noised rewards.

A further interesting remark is the following. Although we dealt with noisy
rewards that are drawn from intervals, the results of this section do not depend on
the intervals as a whole. Instead the endpoints of the intervals determine the proven
properties.

Finally, we want to relate the provided convergence results for deterministic
Markov Decision Processes with noisy rewards to the well-known Q-Learning
algorithm for non-deterministic environments (cf. Sect. 3.2.3). Our approach en-
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sures convergence for probabilistic reward functions and deterministic state tran-
sition functions. In contrast, @)-Learning for non-deterministic environments en-
sures convergence for MDPs with probabilistic reward and state transition functions
[WD92, Tsi94, Mit97]. Thus, the latter algorithm may also be used in our setting.
However, as explained earlier in Sect. 3.2.3, it requires some assumptions on the
learning rate (cf. (3.12)), which one has to take care of. In detail, the rate has to
be decayed over time such that the sum of learning rates approaches infinity and
such that the sum of their squares is a finite value. Besides this, the way how the
learning rate is decayed also strongly influences the convergence speed. Even-Dar
and Mansour [EDMO3] showed, for instance, that the convergence speed may vary
between a polynomial and an exponential, both depending on ﬁ, where ~ denotes
the used discount factor. Contrary to that, our approach does not require a learning
rate. As future work, it seems to be interesting to compare the convergence speeds of
our approach with that of non-deterministic ()-Learning.



Chapter

Distributed Stateless Learning

In Chapter 4, we motivated and introduced a novel class of games, called sequential
stage games. A sequential stage game consists of a set of stateless games that are
played repeatedly, one after the other, each for a certain but to the agents unknown
number of iterations. Accordingly, the term stage game reflects that a stateless game
is played repeatedly for some time period. Figure 8.1 shows a simple example for
two agents.

C\v Stateless game 1 C\V Stateless game 2 C\v Stateless game 3
300x 100x 500 x
Al Al Al

Bl Cl B1 Cl Bl Cl
A, 11 -30 0 :’> Ay 10 0 -10 'i> Ay -10 0 10
By -30 7 6 By 0 2 0 By 0 2 0
Cs 0 0 5 Cy -10 0 10 Cy 10 0 -10

Fig. 8.1 Simple cooperative sequential stage game with three stateless games for two agents (agent
i can execute actions A;, B;, C;) . The stateless games are played repeatedly for 300, 100, resp.
500 iterations before the next game in the sequence is played.

Such kinds of games are interesting because of their particular structure: agents face
a special situation only for some time during which they have to learn how to deal
with it in the best possible way. Afterwards, they will be confronted with a new
situation for some time, to which they have to adapt again. In general, strategies for
previous situations become useless, if consecutive stateless games have different
characteristics. Also, it is highly unlikely to be confronted with the same situation
for more than one time period in more complex games, e.g. in the Iterative Agent
Partitioning Problem. This means, that storing old strategies is needless as this mainly
produces costs that won’t pay off because they most likely won’t be used again.

In this chapter, we present an approach towards distributed learning in such
stateless game sequences, i.e. in cooperative sequential stage games. The idea is to
adopt Lauer’s and Riedmiller’s Distributed )-Learning [LROO] to stateless settings
and to combine it with engineered rewards that are transformed from a sequence
of stage games. We describe the approach in detail and analyze it theoretically
and experimentally. In addition, we formally investigate its behavior under noised
rewards.

103
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The main contributions of this chapter are as follows:

e We present the first multiagent reinforcement learning (MARL) approach tailored
to cooperative sequential stage games. It is space and time efficient, as agents
ignore other agents and only have to store one value for each action. Also, they
only store one strategy that is adapted in an online manner to changing conditions.

e We prove convergence properties of our approach, i.e. we show that the approach
converges under some assumptions to (near-)optimal solutions. The theoretical
convergence results are underlined by empirical evaluations.

e We investigate the conditions for learning in scenarios with noised rewards and
prove several convergence results.

This chapter is organized as follows. In Sect. 8.1, we start with an introduction
and briefly present the idea of the proposed approach. The approach itself will be
introduced in Sect. 8.2, followed by a formal analysis in Sect. 8.3, and an empirical
evaluation in Sect. 8.4. Then, Sect. 8.5 discusses the time and space complexity
of our approach and compares it to other algorithms. Section 8.6 considers our
learning approach under noised rewards and provides some formal convergence
results. Finally, we conclude this chapter with a discussion in Sect. 8.7.

Parts of this chapter are based on and have already been published in [KKB12],
which is an extended and revised version of [KKB11a]. One additional result has been
published in [KKB11b]. In particular, the presented details (e.g. lemmas, theorems,
proofs and algorithms) in the first half of this chapter originate from those publications
and are (partly) reformulated or extended.

8.1 Introduction

In this chapter, we present the Distributed Stateless Learning (DSL) approach for
cooperative sequential stage games. The approach is an online learning technique, in
which agents adapt their strategies to constantly changing settings that are defined
through the sequence of stage games in a cooperative SSG. Figure 8.2 illustrates the
keystones that are used in the DSL approach.

The proposed approach deals with cooperative sequential stage games (CSSG),
which have been introduced and defined formally in Sect. 4.1. The first keystone is
the Distributed @Q-Learning (DQ) algorithm. It was already introduced in detail in
Sect. 3.3.2.1. Recall that it converges to an optimal joint strategy for deterministic
cooperative stochastic games with positive rewards. Therefore, it uses an optimistic
assumption and updates values and strategies solely on improvements. The second
keystone, the concept of engineered rewards, was presented in detail in Sect. 4.2. It
basically allows constructing rewards that may encode (additional) information such
that it is sufficient to observe only the engineered reward rather than a reward and a
state signal. Finally, the third keystone describes a transformation of a cooperative
sequential stage game using the concept of engineered rewards. This transformation,
which we will describe later in this chapter, ensures that the optimal joint strategy is
the same in both games, the original CSSG and the transformed one. In addition, the
transformation has to ensure one condition on the relations of rewards for consecutive
stage games. Details on this will follow in the next paragraph.

Based on these three keystones, the basic approach can be described as follows:
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Distributed Q-Learning
Engineered rewards
Transformation

Fig. 8.2 Basement and keystones of the Distributed Stateless Learning (DSL) approach.

1. Consider an arbitrary cooperative sequential stage game I" with a set of consecu-
tively played stage games G = {(Go,no), (G1,71), ..., (Gm,nm) }, where each
game G is played n; times. Using a universal transformation function that we
provide later on, this game set can be transformed into a set of engineered stage
games G’ = {(G{, no), (G1,n1),...,{(G,,,"m)}. The term “engineered stage
game” reflects that the stage games are constructed such that the lowest reward in
a succeeding stage game with index j + 1 is larger than the largest reward in a
preceding stage game with index j. Note that a transformation that creates such
engineered games has to ensure that the sets of optimal joint strategies are equal
for G and G'.

2. Instead of playing the original game I' with set G, play the transformed game
with game set G’. Therefore, use a variant of the Distributed Q)-Learning (DQ)
algorithm which does not store ¢(s, a) values for each state action pair but only
q(a) values for each action. Since, by construction, each reward in a succeeding
stage game is larger than the largest reward in any preceding stage game, it is
ensured that the optimistic update of DQ is able to adopt the agents strategies. By
this argument, and because of the convergence properties of DQ, convergence
towards (near-)optimal joint strategies for each stage game in G’ follows. Since
the sets of optimal joint strategies are equal for G and G’, the agents also behave
optimally in the original game.

Note that the concept of engineered rewards and the transformation, which main-
tains optimal joint strategies, are key requirements to enable learning in a cooperative
SSG based on the Distributed Q-Learning algorithm. This follows, because the
ordinary Distributed ()-Learning algorithm without these two concepts is unable to
converge to (near-)optimal joint strategies in cooperative SSGs. The reason therefore
can be found in the fact that values, and thus also strategies, will not be updated if a
previous stage game has led to larger values than a succeeding stage game.

Since our approach adjusts agent strategies online, and hence does not need to
distinguish explicitly between different states, it is also more space efficient than
other approaches for general cooperative stochastic games.

Accordingly, the DSL approach is well tailored to the considered class of games.
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8.2 Approach

As stated in the preceding section, the Distributed Stateless Learning (DSL) approach
consists of two main steps. Given an arbitrary cooperative sequential stage game I,
this game first has to be transformed into an optimal joint policy equivalent game
I”. Then, a variant of the Distributed Q-Learning algorithm is used to play the
engineered game I, In this section, we will present the transformation function and
the pseudocode of that algorithm, both mainly based on [KKB12] and an earlier
version of that paper [KKB11b]. In order to concentrate on the approach itself, we
shift its analysis to a separate section.

Let CCSG(A, U) denote the set of cooperative common static games with the
same set of agents A and joint actions U (cf. Def. 11). Since the approach deals with
cooperative SSGs, the considered stage games are also cooperative and hence from
the set CCSG(.A, U). For brevity, we will write CCSG if we refer to CCSG(A, U).

In [LROO], Lauer and Riedmiller defined the optimistic assumption for cooperative
deterministic stochastic games using individual, local g; tables for each agent 7. In
detail, they use

qi(sua’) = max Q(Svu)
U=(aQ,- s @fsesapy 1)
a;=a
where (s, u) corresponds to the (-table in the centralized @)-Learning approach,
that reduces the stochastic game to a MDP with actions that correspond to joint
actions (cf. Sect. 3.3.2). Since we consider CSSGs, there is no state signal and our

local ¢ values reduce to

We now begin with the presentation of a transformation function t for two consec-
utively played cooperative common static games [KKB12]:

Definition 24 (Transformation function t). Given two arbitrary consecutively
played games G; = (A,U, pg,) and Gj11 = (A, U, pg,,,) from CCSG. Then,
transformation function t, based on G/, transforms G4 into a new game G;- 11
Formally t(G;, Gj41) = G, where G, = (A, U, pgy,, ) uses reward function
PG, which is calculated according to

pay, , (w) = max {|pg, (u)| } + max {1pG, (W)} + PG, (u) 8.1

i+ u' €U

Based on two games G, G;+1 € CCSG, the transformation hence returns a new
game G;« 11 € CCSG for which all rewards are greater or equal to the largest reward
in G;. Furthermore, the set of optimal joint strategies for G;11 and its engineered
counterpart G; 1 are equal, as we will prove later on. Based on the transformation
t, we can define a function T that transforms a complete cooperative sequential
stage game, such that the aforementioned properties hold for any consecutively
played pair of stage games. Since it is necessary to clearly distinguish between
the transformation of two (cooperative common) static games using transformation
function t and function T that applies t to transform an entire cooperative sequential
stage game, we will hereafter refer to T as “CSSG-transformation function”:
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Definition 25 (CSSG-Transformation Function T).

LetI' = (A, U, G, (Go,ng),g) € CSSG, and let G(G) = {G; | (Gj,n;) € G} de-
note the set of cooperative common static games contained in the tuples (G, n;) of
G. Furthermore, define a cooperative common stage game 1¢ = (A, U, p'), having a
constant reward of 1, i.e. p'(u) = 1,Vu € U. Then, the CSSG-transformation
function T : CSSG — CSSG applied to I' calculates a new game IV =
<~A’ U, g/’ <G67 ’/l0>, g>’haVing g = {<G6’ n0>7 < /15 n1>7 <Gl23 n2>a RS <G;nv nm>
with Gj = t(1g, Go), and G = (G, G;), G _; € G',G; € G(G),7 > 1.

Different to an earlier definition of T in [KKB12], the above defined function is
refined so as to transform the first game, too. In particular, it uses a special stage
game 1, which returns 1 for any joint action, in order to transform the first stage
game. As we will see later, this construction enables our approach to be applicable
in stage games with arbitrary bounded rewards—particularly also negative rewards,
which are not allowed in DQ-Learning. Therefore, using a game that always returns
0 would also have been sufficient. However, we will extend our approach to deal
with noisy rewards like those considered in the previous chapter. It is then required
to have positive bounded rewards that are greater than zero. Accordingly, we decided
to use 1 right from the start in order to avoid confusions later on.

Let us return to the approach itself. A cooperative SSG that is obtained from
the CSSG-transformation T serves as input for the Distributed Stateless Learning
algorithm as specified in Alg. 2. As before, v € [0, 1) denotes the discount factor
and A; the set of actions of agent 4. The iteration limit ¢, is the sum over all n;
of the CSSG. As one can see, the algorithm basically corresponds to a simplified
Distributed (Q-Learning, which does not take a state signal into account. Figure 8.3
shows a flowchart for the DSL approach.

optimal strategy
equivalent
cooperative SSG

Distributed Stateless
Learning

CSSG-transformation solve with

T

cooperative SSG

Fig. 8.3 An arbitrary CSSG is transformed using T. The resulting game with its engineered rewards
is used as input for the DSL algorithm.

In the remainder, if we talk about the DSL algorithm, we mean the pseudocode
presented in Alg. 2. If we talk about the DSL approach, we refer to the entire
approach including engineered rewards and transformed games. In the next section,
we will formally analyze the properties of the presented approach.

8.3 Formal Analysis

We start our analysis with a simple, yet important property of transformation function
t that will be used later in this section:

Lemma 3. Let game G| = t(G;,Gj11) € CCSG be the result of the transfor-
mation function t as defined in Def. 24 for two CCSGs G; = (A, U, pg,) and
Gi1 = (AU, pg,.,). Then all rewards in game G, = (AU, pg: ) are non-

negative, i.e. 'DG;'+1(U) >0,Yu e U.
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Algorithm 2 DSL (executed by each agent i € A) [KKB11b]

Input: Cooperative SSG obtained via CSSG-transformation T
1: procedure DISTRIBUTEDSTATELESSLEARNING

2: t<0

3 Va € A; : qi(a) « 0 > initialize local g-function
4: o; < choose arbitrary action from A; > initialize strategy
5: while (t < tiax) do
6.
7
8

Select action al € A; (e.g. e-greedy selection)

Execute action a? > leads to joint action uy

: Observe reward py (u+) > reward of joint action u¢
9: maxq} < maxaeca,{q(a)} _
10: a4 (a) < gi(a),Ya € A; \ {a}}
1 Gi 1 (a}) = max{qi(a}), pe(ur) +7 - maxa}}
12: if g 1 (ay) > maxq} then
13: 0 + choose a} > update strategy
14: t<—t+1

Proof. Recall (8.1) of transformation t:

!/ !
pay,, (@) = max {|pg, (W)} + max {|pc, . (W)} + pa; . ().
Clearly, the first maximum argument leads to a value > 0. The second part of that
equation, max,/cy |pg,,, (') + pg,,, (u), is also > 0 since adding any (negative)
reward pg, , , (u) to the largest absolute value of the same game is at least 0. O

We continue by proving Lemma 4, which states that the rewards in a transformed

stage game obtained from transformation t are greater than or equal to the largest
reward in the preceding stage game. This property will be required to show the
convergence of the DSL approach later on.
Lemma 4 ((KKB12]). Ler game G;-H =t(G,,Gj+1) € CCSG be the result of the
transformation function t as defined in Def. 24 for two games G ;,G ;11 € CCSG.
Then all rewards in game G; 41 are greater than or equal to those in game Gj,
Jormally pe: | (u) > pa, (u),Vu € U.

Proof. Recall (8.1) of transformation t:

pay,, (W) = max {|pg, (W)} + max {[p, . ()|} + p6,.. (u).

’
Jj+1 w' el

Let us assume there is one u € U for which pg/ | (u) < pa, (u) holds, then:

max {|pa, (u)| } + max {1pc, . (W)} + pa,.. (1) < pa; (w).

This can be transformed to

max {|pq; ,, (W)} + pa,. (1) < pa, (u) — max {|pe; (W)} 8:2)

>0 <0

which clearly is a contradiction, since the left side even for negative rewards evaluates
to > 0 and the right side to < 0 since max,cv {|pc, (v')|} is the largest absolute
reward value in game G ;. Hence, the lemma follows. a
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Since the proposed approach plays a game with transformed, i.e. engineered
rewards, it is important to assure that the learned (near) optimal strategies are also
(near) optimal in the source game. This property is proven in Lemma 6. For that
proof, we need to show that an optimal joint strategy remains optimal if a constant
value is added to each reward. This is done in Lemma 5.

Lemma 5 ([KKB12]). An optimal joint strategy o* for a game G remains optimal
if a constant value is added to all rewards.

Proof. Since a joint strategy in a static stateless game defines a particular joint action,
let us agree for the course of this proof that p(s, o, s”) corresponds to the reward that
follows from executing the joint action defined by the joint strategy o in state s and
transitioning to s’.

By definition, an optimal joint strategy o* maximizes the summed discounted
rewards, i.e. for any optimal joint strategy o* it holds that

o0 [o ]
> Ap(s,0%,8) =D y'p(s,0,8),Vo € 2,
t=0 t=0

where - is the discount factor, p the reward function, and 3 the set of all joint
strategies.

Let us assume that an optimal joint strategy o* becomes suboptimal if a constant
value is added to all rewards. Hence, there must be another joint strategy o’ that
maximizes the summed discounted rewards:

D A pls, 0%, 8) +0) <Y A p(s, 0, 8) + o)
t=0 t=0

o0 o0 oo oo
Z vip(s,a*,s) + Z’ytc < th,o(s, o' s+ Zwtc
=0 =0 =0 =0

o0 o0

> Apls,e%,s) <> 4p(s, 08

=0 =0

The lemma follows since the above inequality is a contradiction to the assumption
that o* was an optimal joint strategy before the constant was added. a

Lemma 6 ((KKB12]). Ler game G;»Jrl =t(G,,Gj+1) € CCSG be the result of the
transformation function t as defined in Def. 24 for two games G ;,Gj+1 € CCSG.
Then any optimal joint strategy for game G ;11 is also an optimal joint strategy for
G’ 11 and vice versa.

Proof. Let ¢ = maxycu {|pg, ()|} + maxyev {|pa,,, (v)|}. Then, (8.1) of
transformation function t can be rewritten as pgr | (u) = c+ pg,;,, (u), where cis
constant for any two fixed games G and G/;.1. Thus, the reward function pg |
for game G’j 1 1s obtained by adding a constant to the rewards of game G 1. In
combination with Lemma 5, any optimal joint strategy o* for game G hence
is also an optimal joint strategy for game G;- 1 1- By the same arguments, the other

direction of the proof follows, as pg, ,, (u) = pcs,, (u) —c. O

Since the function T for transforming complete cooperative SSGs is defined based
on t, the optimal joint strategies for the sequence of stage games in a transformed
CSSG and its source game are obviously also identical.
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Let us now prove some convergence properties of our approach. First of all, We
show that it converges to an optimal joint strategy for the last stage game contained
in a CSSG. Therefore, consider Corollary 2 which follows from the convergence of
Distributed ()-Learning (DQ) in general deterministic cooperative stochastic games
with positive rewards:

Corollary 2 ([KKB12)). Distributed Q-Learning converges to an optimal joint strat-
egy for a cooperative common stage game that is obtained from transformation t, if
each action is performed infinitely often.

By demanding that the stage game in Corollary 2 is obtained via transformation t,
we fulfill the convergence requirement of Distributed -Learning regarding positive
rewards, as shown in Lemma 3. Clearly, we deal with “deterministic” stage games,
since there are no state transitions in a single stage game and the reward functions are
also deterministic. Hence, all assumptions for convergence made by DQ are fulfilled.
Using this corollary, we are able to prove our first convergence result for the DSL
approach:

Theorem 8 ([KKB12]). Let ' be a cooperative sequential stage game whose last
cooperative common static game G, is played n,, — oo times. Then, DSL for
IV = T(T') converges to an optimal joint strategy o* for G, if each joint action is
visited infinitely often.

Proof. Since ZT:O n; — 00 as n, — 00, each joint action is visited infinitely
often. From Def. 25 of the CSSG-transformation function T, we obtain game G/,
which is an optimal joint strategy equivalent game of G, according to Lemma 6.
From Lemma 4 and Def. 25, we know that the reward for each joint action in G/,
is greater than or equal to the rewards obtained in all previous stage games played
by DSL on I". Since this is a required condition for updating the strategies, the
convergence to an optimal joint strategy o* for GG, follows from Corollary 2. Since
G!, and G, are joint strategy equivalent games, the proof is completed. ad

Clearly, the goal of any approach for sequential stage games should be to find
optimal or at least near-optimal joint strategies for each stage game. The next theorem
proves such a property for the DSL approach in a transformed CSSG and states
some required conditions:

Theorem 9 ([KKB12]). Let IV = T(I') be the cooperative sequential stage game
obtained from a CSSG-transformation of a cooperative SSG I" with m + 1 stage
games. Then, for all stage games G;, 0 <j<mandVe,d > 0, there exists an
n;(e,9) : nj(e,8) < mj < oo such that DSL for T successively converges to an
e-optimal joint strategy o’} for each stage game G;- with probability > 1 — § if and
only if G; is played n; times and each joint action is visited sufficiently often.

Proof. From the application of T(I") we obtain I with the set of cooperative com-
mon static games G = {(G{,no), (G}, n1),...,{G,,nm)}. From Lemma 3 it
follows that we only deal with non-negative reward values. By Lemma 4 it follows
that all rewards in G; are greater than or equal to those of the previous game G;‘—1~
Accordingly, the algorithm is able to update the g-values and the strategy if any
optimal joint action in G;- is found, as the reward will be greater or equal than the
local g-value that emerged from previous games (cf. Alg. 2, lines 9-13). Hence, it is

sufficient to prove the above proposition for an arbitrary but fixed game G;-.
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Let g;(a) denote the local g-value for agent i and action a € A; in iteration ¢ of
the algorithm. In addition, and without loss of generality, let ¢*(j, a) be the optimal
g-value for a fixed stage game G} and action a.

Then, we have to show that for all ¢, > 0 there exists an n; (¢, §) such that if
nj > nj(e,d) (and n; < oo) then Va € A;,Vi € A:

Pr(lq;, (a) — ¢*(j,a)] <) > 1 -4

From [LROO], we know that the g-value update as performed in line 11 of the
DSL algorithm leads to monotonically increasing g-values for non-negative rewards
pi(a) > 0,Va € A;,Vi € A. Also from [LR0OO], we know that ¢; (a) with probability
1 converges to ¢*(j,a) as t — oo and given that each joint action is visited often
enough. By these two arguments, we can conclude the existence of an n; (e, ¢) that
meets our requirements. O

By Lemma 6 and Def. 25 of the CSSG-transformation function T, the sets of
optimal joint strategies for two CSSGs I' and T(I") = I' are equal. From Lemma
3, we know that the transformed CSSG only uses non-negative rewards. Thus, an
immediate conclusion from Theorem 9 is that the DSL approach is able to converge
to e-optimal joint strategies for any cooperative SSG, as stated in Corollary 3.

Corollary 3 ((KKB12)). Let d,& > 0, then the DSL approach converges with prob-
ability > 1 — § to e-optimal joint strategies for each stage game of any cooperative
sequential stage game T if played on the transformed cooperative SSG TV = T(T')
and if each stage game is played n; times with 0 < n;(¢,§) < n; < oo as in
Theorem 9 and such that each joint action is visited sufficiently often.

We just have shown the convergence properties of the described general DSL
approach. Now, let us briefly point out what basic requirements have to be fulfilled
such that convergence can be ensured, if the approach is realized with different
components. For instance, one could use different transformation functions or replace
the e-greedy action selection mechanisms (cf. Alg. 2, line 6) by more sophisticated
techniques as we will do in Ch. 9. In detail, the basic assumptions that have to be
fulfilled are:

Assumptions 2 Given a cooperative SSG T = (A, U, G, (Gy,ng), g), with the set
of stage games G = {(Go,no), (G1,n1), ..., {Gm,Nm)}. Then, the DSL approach
converges if the following holds:

1. Local q-values for all agent actions must be initialized to zero.
2. The transformation of T" to an engineered game I has to ensure that:

o All engineered rewards are bounded and non-negative for all stage games.

e For any pair of consecutively played (transformed) stage games G;, G;- 11, the
smallest reward in G; 1 has to be greater than or equal to the largest reward
in the preceding stage game G;.

3. All joint actions in each stage game have to be visited sufficiently often to ensure
convergence to -optimal joint strategies for each stage game (Corollary 3), or

4. the last stage game has to be played for n,, — oo many times and each joint
action has to be visited infinitely often to ensure convergence to an optimal joint
strategy for the last stage game G, (Theorem 8).
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Next, we investigate the update behavior of the agents. In particular, we will prove
that all agents simultaneously update their strategies. Therefore, we first show that
the maximal stored local g-value over all actions and agents is equal at any point in
time:

Lemma 7 ([KKB11b]). Let A denote the set of agents, A; the set of actions available
to agent i and q.(al) the local q-value at time t for agent i and action ai. If the
discount factor =y is equal for all agents i € A, then the maximum q-value maxqi at
time step t is equal for all agents. Formally, Vt,Vi,j € A : maxqi = maxqj.

Proof. We use an inductive proof over .

t = 0: Initially, all g-values are zero, thus, the induction hypothesis trivially holds,
i.e. maxq) = 0,Vi € A.

t~st41:Letu, = (aY,...al,...,a" ") denote the joint action of n agents
at time t, where a! is the action of agent 7. Without loss of generality select any
agent ¢ € A and consider the reward p;(u;) obtained at ¢ for that joint action. The
g-values for all actions other than aj remain: ¢; ., (a) = ¢;(a),Va € A;\ {at}. Thus,
maxq’ 11 can only be changed if the g-value of action aj is updated by

qi41(ap) = max{q;(ay), pe(ue) + v - maxqj }. (8.3)

Due to the induction hypothesis, maxq? is equal for all agents. Additionally, by
the assumption on v and since p;(u;) is a common reward, it follows that p; (ug) + -
maxq! is equal for all agents as well. Note that ¢¢(a?) < maxq: holds by definition
of maxq!. Let us now consider the following three cases regarding (8.3):

L. pi(ur) + - maxq; < maxqj: Since gf(a;) < maxqj, the g-value g;_; (a;) might
become larger than qt(at) but will remain < maxq;. Hence, maxq; ; = maxq;.

2. pi(ug) + v - maxqi = maxq:: Since ¢i(al) < maxql, the new g-value be-
comes ¢; +1(at) = pe(ue) +7- maxq; and thus the maximum value remains,
i.e. maxqgj,; = maxq;.

3. pe(ug) + - maxq; > maxq¢: Since ¢f(al) < maxqt, the new g-value becomes
q H(at) = pe(ug) + v - maxqt and thus the maximum value is increased to

maxqi, = p¢(ug) + v - maxq;.

All agents will update their maximum values according to one of these three cases.
Since maxq; and p;(us) 4 7 - maxq; are equal for all agents as explained before, all
agents will perform the same update. Thus Vi, j € A : maxqu = maxqg_H. a

Hence, we can conclude that all agents update their strategies simultaneously:

Corollary 4 ((KKB11b)). If the discount factor vy is equal for all agents, then all
agents update their strategies simultaneously.

Proof. The statement follows immediately from the strategy update condition in line
12 of the DSL algorithm and Lemma 7. a

Note that this insight will become valuable later on, as it allows us to reduce the
computational effort in a coordination technique proposed in Ch. 9.

In the next section, we will empirically evaluate the approach in a simple two-
agent setting.
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8.4 Evaluation

In order to underline the theoretical convergence properties of our approach, we
performed several experiments and analyze the observed results in this section.
We use the same exemplary CSSG as in [KKB12], but provide a broader analysis.
In addition, this section differs in the engineered reward values due to the slight
extension of the CSSG-transformation function T described earlier.

We investigated a cooperative SSG with three alternating static games that
build a sequence of nine stage games. The Climbing Game (CG) and the Penalty
Game (PG) are taken from [CB98], and the Mirrored Penalty Game (MPG) corre-
sponds to a mirrored version of the PG. Tables 8.1-8.3 show the rewards of these
three two agent games. The game set of the considered CSSG is described by
G = {{CGO,ng), (PG1,n1), (MPG2,n3), (CG3,n3), (PG4,n4), (M PG5, ns),
(CG6,ng), (PGT,n7), (MPG8,ng)}, and those games that contain parameter k
use £ = —30. Note that learning optimal joint strategies for each stage game in this
sequence involves hard turnarounds. For instance, the optimal joint action (A1, As)
in PG becomes the worst joint action in MPG. There, in contrast, the previously
worst joint action is the optimal one. Also, the transition from MPG to CG involves
such a hard turn. Accordingly, the considered CSSG demands high standards of the
learning algorithm.

Table 8.1 Climbing game Table 8.2 Penalty game Table 8.3 Mirrored penalty

(k<0 game (k < 0)

A1 Bl Cl A1 Bl Cl Al Bl Ol
Az 11-30 0 Az 10 0 k Az k 010
B> -30 7 6 By 0 2 0 By 0 2 0
Cy 0 0 5 Cy k 010 Cy 10 0 k

To run our experiments, we first need to apply the CSSG-transformation T. In
order to clarify the transformation process, we shortly describe its beginning. Recall
from Def. 25 that T defines a special game 14, which returns a reward of 1 for each
joint action. Consider the transformation of the first stage game C'G0 based on 1.
The engineered reward for joint action (A, A2) according to (8.1) becomes:

poco ({(A1, A2)) = max {lp1e ()]} + max {locco(u)|} + poco((Ar, A2))
=1+ max{| — 30|, | — 30|,11,7,6,5,0,0,0} + 11
= 42.

The engineered reward for (B1, A2) becomes:

poco ((Bi, As)) = max {|p1g (u)]} + max {|pcco(w)[} + peco((Br, A2))
=1+ max{| — 30|,| — 30|,11,7,6,5,0,0,0} + (—30)
=1
Thus, the transformation eliminated the negative value and, as shown in the final

reward table 8.4, all values are greater than or equal to the values of the (artificial)
previous game 1. The stage game PG’ is obtained from transformation of CG(0/
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Table 8.4 Transformed Table 8.5 Transformed

stage game C' G0’ stage game PG1’
Al Bl Cl A1 Bl Cl
Az 42 1 31 Ag 82 72 42
By 1 38 37 By 72 74 72
C2 31 31 36 Cy 42 72 82

and PG1,i.e. PGl = t(CG(0’, PG1). Table 8.5 presents the engineered rewards,
whose values follow since the maximum absolute reward in CGO0’ is 42, and the
maximum absolute value in PG1 is 30.

We performed experiments with the transformed CSSG, e-greedy action selection
using € € {0.05,0.2,0.5}, a discount factor of v = 0.8, and repeated each setting
1000 times. The number of iterations for each of the first eight stage games has been
n; € {100, 200, 500, 10000}. The last stage game M PGS’ was always played for
10000 iterations. Figure 8.4 visualizes the simulation results.

In general and independent from e, convergence to an optimal joint strategy
for the last stage game M PGS’ can be observed with probability 1. This result
strongly underlines Theorem 8, which states that this behavior will be observed with
probability close to 1 if the last stage game is played often (n,,, — 00, to be precise).

Now turn your attention to Theorem 9, which states that, if each stage game is
played long enough and thereby also each joint action is executed often enough, then
convergence to near optimal joint strategies for each stage game will be reached with
probability close to 1. This theoretical insight is supported by our experiments as
shown in Fig. 8.4(b). The figure reveals that given an increasing number of iterations
per stage game, the likelihood of converging towards an optimal joint strategy in
each stage game also increases. The reason for this is that an optimal joint strategy is
more likely to be played under such settings.

Finally, let us focus on the likelihood of convergence in each stage game with
respect to different e-greedy strategies. Here, Fig. 8.4 indicates that the likelihood
of convergence increases if more exploration is performed—i.e. for larger € values.
This is not surprising, since the exemplary game involves only nine joint actions.
Thus, executing an optimal joint action by chance in settings with low numbers
of iterations per stage game is more probable with increased exploration (cf. Figs.
8.4(a) and 8.4(c)). However, DSL is built for maximizing the agents performance
during runtime rather than returning an optimal joint strategy in the end. This
desired behavior originates from the inherent property of CSSGs, where optimal
joint strategies are only valid for a certain timespan and get replaced by new strategies
for new situations later on. Accordingly, it is interesting to investigate the average
reward per iteration during the course of playing a CSSG. Table 8.6 shows the
corresponding values. It is clear that, although the likelihood of convergence to an
optimal joint strategy in any stage game is increased with larger ¢, the average reward
per iteration is higher if less exploration is performed. Accordingly, the tradeoff
between exploration and exploitation is a particularly important issue in the DSL
approach and also in CSSGs in general. We will dedicate Ch. 9 to this topic, where
we will propose and investigate different coordination strategies that should help to
quickly find optimal joint strategies and, once found, to stick to them.

Having evaluated our approach, we want to briefly examine why using the FMQ
heuristic [KKO02] (see also Sect. 3.3.2) instead of Distributed ()-Learning as basis for
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(c) e-greedy action selection with e = 0.5.

Fig. 8.4 Simulation results for the DSL approach in an artificial cooperative sequential stage game
with different e-greedy selection probabilities and different numbers of iterations per stage game.

Table 8.6 Average reward per iteration.

€ n;
100 200 500 10000

0.05 347.06 33536 30830 199.89
0.20 34353 331.94 305.15 196.00
0.50 337.68 326.10 29931 189.98
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our approach would not be successful in general. Recall that FMQ, in contrast to DQ,
is able to deal with stochastic rewards to some extent, which potentially could result
in an extended applicability of DSL. However, the success of FMQ with respect to
converging “almost certainly” to optimal joint actions comes at a price, namely a
game-depending weight factor within the heuristic. Since the agents in our settings
can only indirectly learn from a game transition due to the lack of a state signal, they
also can hardly determine when to change such a game-depending weight parameter.
In addition, the next problem would be how to set the weight parameter, if no a priori
knowledge about the game is available. Also, our approach would properly lose its
convergence properties. Hence, FMQ can hardly be applied in the DSL approach.

In the next section, we will consider the time and space complexity of our ap-
proach.

8.5 Complexity

This section is partly based on [KKB12] and will briefly analyze the time and space
complexity of the DSL approach.

For the runtime analysis let us assume that we use a hash table to store the g-values.
Then, accessing the values requires time O(1) on average under reasonable assump-
tions (cf. [CLRSO01] for details). The initialization of the local g-values requires time
O(]4;]), since each action value has to be set to zero. A single iteration of the “while”
loop in line 5 of Alg. 2 strongly depends on the action selection mechanism and the
used data structures. Let us assume a simple e-greedy action selection procedure. Its
runtime is in O(1), since it only involves some simple operations like if-statements,
or access to g-values, and the generation of a random number. With the help of a
poly-time initialization method, the generation of such a random number can be
accomplished in constant time according to [Vos91]. Executing an action is assumed
to take constant time, as an action in terms of this analysis is just a concept. The same
applies for observing the reward. Since maximum values can also be determined in
constant time, the overall runtime for one iteration of the loop under our assumptions
is in O(1). As the loop is executed for ¢,y iterations, we obtain an overall runtime
in O(]A;| + tmax) for the DSL algorithm.

Besides the runtime of the DSL algorithm, we also need to consider the runtime
of the transformation. The transformation of a single stage game requires time in
O(|U]). This follows because each joint action u € U is assigned a reward p(u) that
has to be transformed using transformation t, whose complexity is determined by
twice finding a maximum value in the set of all rewards. Since CSSG-transformation
T transforms one sequential stage game consisting of m stage games, the whole
transformation process hence requires time in O(m/|U]|). Note that this transformation
has not to be performed by the agents, but it is part of a preprocessing or done at
runtime within the environment.

Concerning space complexity, we can state that the algorithm on a single agent
only requires space in O(]A;|). It has to store one g-value for each agent action
a € A;, and requires constant space for the observed reward, the maximum ¢-value
maxd, and the current strategy.

The space required in the environment to store the sequential stage game remains
unchanged by the transformation and is in O(m|U| 4+ m), because for each of the m
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stage games, we need to store rewards for all possible joint actions plus the space
required for the game transition function.

Now, let us briefly compare our approach to ordinary algorithms for cooperative
stochastic games. Consider the construction used in Prop. 3 on page 50 to show
that SSG C SG. Given such a stochastic game that corresponds to a sequential
stage game, we observe much higher space requirements. In detail, because each
iteration of any stage game of the SSG corresponds to one state in the stochastic
game, the space for storing the game structures increases from O(m|U| + m) to
O35 n|U| + 3772 n;). Given such a cooperative SG, the space required by an
agent in Distributed Q-Learning is in O (37" n;| Ai| + >°7L, ny), as it has to store
g-values for each state and action pair plus a strategy for each state. Agents in joint
action learners like OAL [WSO03] require even more space, since they need to store
values for each joint action. Despite the large space requirements, DQ for instance,
is unable to converge to optimal joint strategies in the constructed SSG-equivalent
stochastic game since each state action pair is visited only once.

8.6 Distributed Stateless Learning with Noisy Rewards

In this section, we provide some insights into the behavior of the Distributed Stateless
Learning (DSL) approach under noisy reward perceptions by the agents. Therefore,
we extend the results of Ch. 7 for ()-Learning with randomly noised rewards to the
multiagent case.

We first define a corresponding multiagent model, where agents can observe
individually noised rewards (Sect. 8.6.1). In Sect. 8.6.2, we investigate DSL under
different settings with noisy rewards. Finally, we conclude this section with an
overview and a discussion of the results in Sect. 8.6.3.

8.6.1 Definitions

Let us begin with the definition of the model that is used for learning in a cooperative
sequential stage game under noisy rewards:

Definition 26 (Noisy Cooperative Sequential Stage Game). Consider an ordinary
cooperative SSGT' = (A, U, G, (Go, no), g). The corresponding noisy cooperative
sequential stage game (NCSSGQG) differs from I" in the reward perception of the
agents. In detail, each agent 4 has an individual noise rate §; € [0, 1). In a cooperative
stage game G; = (A, U,{p]}ic.a), an agent perceives a random value as noised
reward for joint action u € U from the interval [p? (u) — 0;p7 (u), p! (u) + 0;p) (u))].
The random value is drawn according to an agent specific noise distribution ND;. A
cooperative stage game where agents perceive such noised rewards is called noised
cooperative stage game.

Given that all agents ¢ € .4 have a noise rate 6; = 0, the noisy CSSG reduces to
an ordinary CSSG. Note that the above definition also explains, why we decided
that the general CSSG-transformation function (cf. Def. 25) is not allowed to return
zero-valued rewards, since a reward of O would remain zero under noise as defined
above.
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Analog to the definition of an optimal policy in a noisy MDP (cf. Ch. 7), we need
to define optimal strategies for a noisy cooperative sequential stage game, too. Since
such a NCSSG consists of a set of noised cooperative stage games, we can condense
the definition to optimal strategies for that class of stateless games.

As each agent makes its own noised observation of the common reward p(u), the
optimal local ¢;-values are agent specific, as indicated by the index. Analog to noisy
MDPs, the Bellman optimality equations for a single agent ¢ in a NCSSG become:

g; (a) = max { [pi(u) + Oipi(u)] 4 v max q;(a/)}
u=(aq,..., @iy ap_1) a’€A
= max {[)“;mx(u) + vy max g} (a’) } (8.4)
w=(ag, - ,aq,an 1) a’'€A

For brevity, we will use pj"**(u) = p;(u) + 6;p;(w) to denote the maximal positive

noised reward value for a joint action observed by an agent. If the context is clear,
we might also skip the agent index and write ¢* if we refer to ;.

Based on the ¢} values, the optimal joint strategy for a noised cooperative stage
game is defined by * = (ag,a1,...,a,—1) having a; = arg max,ec 4, ¢f(a). An
optimal joint strategy o* for a noised game is called globally optimal joint strategy,
if it corresponds to the optimal joint strategy for the noise-free stage game.

8.6.2 Convergence Results

In this section, we provide some insights into the behavior of the DSL approach
under noisy rewards in cooperative stage games. We proceed stepwise and, first of
all, show that DSL learns optimal joint strategies, if a common and globally noised
reward is used. Furthermore, we prove that DSL cannot learn optimal solutions if
agents observe individually noised rewards under the given assumptions. Given the
property of noise robust rewards, as introduced in the single agent settings, we then
show that DSL under noise is able to learn optimal solutions for games with a single
optimal joint action. A general method to create such noise robust rewards for any
cooperative stage game is presented. Finally, we propose an extension that allows
DSL to learn even if multiple optimal joint actions exist.

8.6.2.1 Globally Noised Common Rewards

Let us begin with a rather simple case in which a common global reward is augmented
with noise, which results in a noised reward that is distributed to all agents.

Proposition 6. Consider a noised cooperative stage game G with positive rewards.
The DSL approach converges to a globally optimal joint strategy for G if:

1. at any time step t the observed noised reward is equal for all agents, i.e. p;(u;) =
ﬁj(ut)uvzmj € Avl 7é j’

2. all agents use the same discount factor -,

3. each joint action is executed infinitely often, and
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4. the maximal positive noised reward p***(u) = p;(u) + 0p;(u) is observed with
probability > 0 for each joint action v € U.

Proof (Sketch). Note that DSL uses the same optimistic g-value update rule as the
single agent )-Learning based approach in Ch. 7. That approach was shown in
Theorem 7 to learn optimal strategies under noise by assuming that the maximal
positive noised reward is observed with non-zero probability. Also, the definitions
of optimal ¢-/Q)-values are similar. Due to this analogy, we can re-use this result as
shown in the following proof sketch:

e The ¢ update function used in the DSL algorithm ensures monotonically increas-
ing q; values.

e The non-zero probability of observing the maximal positively noised reward
together with demanding infinitely many visits to each joint action leads to
a sequence of maximum noised reward observations. Accordingly, the local g;
values for each agent will converge to ¢g* as defined in (8.4) by the same arguments
as in Theorem 7.

e [t remains to show, that all agents agree on the same globally optimal joint strategy.
This follows from the convergence to optimal ¢ values and from the simultaneous
strategy updates of all agents on improvement as proved in Corollary 4, given that
all agents observe the same reward and use the same discount factor.

O

8.6.2.2 No Convergence under Individually Noised Perceptions

The above covered case of a “globally noised” common reward is not very realistic
due to agent individual perceptions. However, given that agents have such individually
noised perceptions, DSL cannot guarantee convergence to optimal joint strategies. To
prove this statement, we first have to consider the following example. It demonstrates
that agents—which actually play the same cooperative stage game—individually
might believe to play different stage games due to their individual reward perception:

Example 4. First, recall that a noised reward is a random value from [(1 — 0)p, (1 +
0)p), where 0 € [0, 1) denotes a noise rate and p a clear reward value.

Next, consider the sample game shown in Tab. 8.7. It is played by two agents with
IDs I and 2. The reward sensors of both agents have a noise rate of 0 = 0.1. While
playing that sample game, let us assume that agent I always observes noised rewards
from the noise intervals shown in Tab. 8.8, and agent 2 those shown in Tab. 8.9. It is
easily verified that both tables are valid according to the noise rates of the agents’
sensors and given a corresponding noise distribution. In particular, the intervals
show all noised rewards that are observed with a non-zero probability. (Clearly, this
noise distribution is artificial, but nevertheless valid.)

In this setting, agent 2 then considers the joint action (By, B2) to be optimal,
because it always leads to the highest reward according to its perception. By the same
arguments, agent 1 considers (A1, As) to be the optimal joint action. Accordingly,
this example has demonstrated that agents, which play the same cooperative stage
game, actually play different stage games due to their individual noisy reward
perception.
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Table 8.7 Sample game: re- Table 8.8 Possible reward Table 8.9 Possible reward

ward function p intervals for agent 1. intervals for agent 2.
Al Bl Al Bl Al Bl
Az 10 1 Az [10.0,11.0] [0.9,1.1] Az [9.0,9.5] [0.9,1.1]
By 1 9 By [0.9,1.1] [8.1,9.9] B; [0.9,1.1] [9.6,9.9]

Having this example in mind, we can next state the following:

Proposition 7. Consider any noised cooperative stage game and assume that agents
only know their action resp. the joint action and their individual (noised) reward.
Without additional knowledge, no deterministic MARL algorithm, which learns an
optimal joint strategy by maximizing the (expected cumulative discounted) reward,
can converge to an optimal joint strategy in general.

Proof. Without loss of generality, consider an arbitrary noised cooperative stage
game G with two agents, agent 1 and agent 2, and an arbitrary deterministic MARL
algorithm Alg as described in the proposition that is executed by both agents.

Let us assume, that the noised rewards observed by agent 1 describe a game whose
optimal joint action, i.e. the joint action with the highest reward, corresponds to the
optimal joint action of the actual game G. Since Alg identifies the optimal joint
action by maximizing the (expected cumulative discounted) reward, we can assume
that algorithm Alg converges to that optimal joint action. Now, from Example 4, we
know that agents individually might perceive different “games” due to their noised
perception. Thus, we can assume that agent 2 observes noised rewards which lead to
a different optimal joint action than for agent 1. To be perceived as an optimal joint
action, that joint action has to lead to the highest reward for agent 2. Since algorithm
Alg on agent 1 finds the optimal joint action by identifying the action which leads to
the highest reward, the algorithm has to do so on agent 2, too. Accordingly, Alg on
agent 2 considers another joint action to be optimal than on agent 1.

As we have seen in Example 4, the combination of individual actions according to
different learned joint actions can lead to a suboptimal joint action for the actual game.
It follows that Alg cannot be guaranteed to converge to an optimal joint strategy for
the actual game G.

By assumption, Alg is a deterministic MARL algorithm and only has access to
inputs consisting of (joint) actions and individual rewards. It also has no additional
knowledge on the game or the behavior of the other agents. Thus, the algorithm cannot
behave differently on both agents, i.e. it cannot once select as optimum the joint action
which led to the highest reward on agent 1, and at the same time choose on agent
2 a suboptimal joint action that did not lead to the highest reward. Accordingly, no
deterministic MARL algorithm, which learns an optimal joint strategy by maximizing
the (expected cumulative discounted) reward, is able to learn an optimal joint action
in general for noised cooperative stage games, if no addition knowledge is available.

O

From this general result, we hence can conclude that DSL is unable to learn
an optimal joint strategy under agent-individual noised rewards if no additional
properties hold.
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8.6.2.3 Games With Unique Optimal Joint Action

In this section, we consider such an additional property on rewards that was discussed
before. Definition 23 in Ch. 7 introduced noise robust rewards, i.e. rewards whose
noise intervals do not intersect. This property, however, was shown to be insufficient
for learning optimal policies under noise in the considered general single agent
settings in the same chapter. Nevertheless, given that only a single state is considered,
noise robust rewards can become useful as one could deduce from Example 2 on
page 98. Since we deal with stage games in our multiagent context, we will next
investigate the influence of noise robust rewards on DSL.

In particular, we argue that noise robust rewards allow DSL to converge to an
optimal joint strategy under agent-individual noise perceptions if there is only a
single optimal joint strategy. In order to prove this, first consider the following
lemma, which states that #-noise robust rewards preserve game characteristics under
agent individual noise rates, if 6 corresponds to the largest individual noise rate over
all participating agents:

Lemma 8. Ler © = {0y, ...,0,_1} be a set of n different agent-individual noise
rates, and let 0™** = maxgycg 0 denote the maximal noise rate. Given a cooperative
stage game G = (A, U, p) with |A| = n agents and 0™**-noise robust rewards.
Furthermore, assume that each joint action is executed at least once.

Then, the game characteristics observed by each agent i € A under its individual
noise rate 0; correspond to the original game. Formally, let p(ug) < p(u1) < ... <
p(uy) define an ordering over all joint actions in U according to the noise-free
reward. Then, each agent can deduce the same ordering from its noised reward
perception.

Proof. Let R = {p(u) | u € U} be the set of all distinct reward values, which by
assumption are §™#*-noise robust. Without loss of generality, consider an arbitrary
agent i € A.

Let p € R be an arbitrary reward, and let I = [(1 — 6™2%)p, (1 4+ 6™2*)p] denote
the interval of possible values under the maximum noise rate. Then the interval
denoting all possible noised perceptions of p for agent 7 under its individual noise
rate 0; is fully included in I, formally:[(1 — 6;)p, (1 + 6;)p] C I. Figure 8.5 gives
an example for this using R = {1, 3, 8,20}, a maximum noise rate of 6™** = (.4,
and an agent with noise rate §; = 0.2.

1 3
elnax:0.4 E.HH_H[

(S 9]
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Fig. 8.5 Influence of different noise rates on an agent’s individual noise perception.

Thus, independent from the actually observed noised reward, each agent can
construct the same ordering of joint actions as defined in the noise-free game, if it
observes each joint action at least once. a

Based on this result, we can show the mentioned convergence result:
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Proposition 8. Given a cooperative stage game G = (A, U, p) with 0™**-noise
robust rewards, where 0™2* is the maximal noise rate over all agent individual noise
rates. Then, the DSL approach converges to a globally optimal joint strategy if:

1. the stage game G has only one optimal joint action, and
2. each joint action is executed infinitely often.

Proof (Sketch). From the perspective of any agent ¢ € A4, it seems that ¢ plays a
single state noisy MDP. This follows a) from the fact that the agent has a noised
reward perception and b) because the observed noised reward also depends on the
actions of other agents that agent ¢ is not aware off. According to the results for
single agent learning in noisy MDPs, using the same update rule as in DSL, it
hence follows that agent ¢’s g-values will converge to the optimal g-values that are
determined by the maximal noised observed rewards for each action (cf. Theorem
7 and its implications mentioned on page 100). Since the rewards are §™?*-noise
robust, even the lowest noised reward value for the unique optimal joint action, i.e.
that joint action that results in the highest reward, is larger than any other noised
reward for any other joint action for each agent. Thus, each agent 7 finds its best
action a*, i.e. the action that it has to execute according to the unique optimal joint
action' in the game, it believes to play according to its individual noised reward
perception.

Despite these individual game perceptions, we know from Lemma 8, that all
agents agree on the same game characteristics, i.e. the ordering of all joint actions
will be the same for all agents with respect to the achievable reward.

The proposition directly follows from these arguments and the fact that each joint
action is played infinitely often.

To clarify the outlined argumentation, consider the example game with two agents
shown in Tab. 8.10 and assume the noise rates to be #; = 0.4 and 65 = 0.2. Note
that, these rewards are 0.4-noise robust (cf. Fig. 8.5).

Table 8.10 Stage game G.

A1 By
A 1 3
Bs 8 20

Table 8.11 shows the possible noised reward observations according to the corre-
sponding noise rates of both agents. Under the (extreme) assumption that all rewards
occur only maximal positive noised except for the reward of the optimal joint action,
which occurs with the maximal negative noised value only (12 resp. 16), Tab. 8.12
shows the resulting maximal observed individually noised rewards for all agent’s
actions. From the convergence results of single agent ()-Learning in noisy MDPs,
and by using the optimistic update rule, i.e. the same rule as used in DSL, both
agents will converge to the optimal action B. Obviously, the agents agree in the same
game characteristics, i.e. both prefer action B over A. Hence, DSL converges to the
unique optimal joint action under agent-individual noise. a

! Recall that an optimal joint strategy in a stateless setting reduces to an optimal joint action.
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Table 8.12 Maximal noised
rewards observed by the
agents for their individual ac-

Table 8.11 Possible noise intervals for agent specific tions in stage game G shown
actions in stage game G shown in Tab. 8.10. in Tab. 8.10.

Action A Action B Action A Action B
Agent 1 [0.6,1.4] U [4.8,11.2] [1.8,4.2] U [12, 28] Agent1 11.2 12
Agent 2 [0.8,1.2] U [2.4,3.6] [6.4,9.6] U [16,24] Agent 2 3.6 16

Accordingly, DSL can learn to solve a single cooperative stage game with an
unique optimal joint action if rewards are noise robust. Given that we apply the ordi-
nary CSSG-transformation function to create engineered rewards for a cooperative
sequential stage game, DSL is able to learn in such cooperative settings, if each stage
game contains an unique optimal joint action.

However, rewards in general are not noise robust. Hence, it is necessary to create
such noise robust rewards based on the original rewards without changing the game
characteristics. A simple general approach therefore is proposed in the following
definition:

Definition 27 (Noise Robust Reward Creator). Consider a reward function p :
U — R that maps each joint action v € U to a real valued reward and a list L of all
distinct reward values sorted in ascending order. Let § € [0, 1) be a noise rate and
z > % be a constant value. The mapping function INDEX : R — N returns the
index of a reward value p(u) € R in L starting at 0.

The 6-noise robust reward creator function pg : U — R then is defined by

po(u) = 2P vy e U

Obviously, the relations between the original rewards sorted in list L and the created
noise robust rewards are preserved. This follows due to the increasing power value.
Next, it is left to prove that this creator function actually produces #-noise robust
rewards. This is done in Lemma 9.

Lemma 9. Let 6 € [0, 1) be a noise rate, z > }—fz be a constant value, and L =
(20,21, ..., 2" 1) be a list of n values that are powers of z. Then for noise rate 0
and any pair of values 2, 27 € L with i # j it holds that the noise intervals of both
values do not intersect, formally

[(1—0)2", (1+0)2]N[(1—0)27,(1+6)27] = 0.

Proof. First note that any two intervals of succeeding values 2%, z*T! have an empty
intersection if and only if 2 + 02* < 2! — @2¢+1 If the intervals for 2* and 2**!
for 0 < ¢ < n—1 do not intersect, then there can also be no intersection for any other
two values. Thus, it is sufficient to prove the property for an arbitrary succeeding
value pair 2%, 2t! € L.

Without loss of generality, select an index ¢ with 0 < ¢ < n — 1 and subse-
quently consider the two values z*, 2°*1 € L. Under the assumption on z as stated
above, assume additionally that the noise intervals intersect. Then the following
transformations hold, where the last step follows since 6 € [0, 1):
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284020 > T — gt

24020 > 2t — 02

1+0>2—06z
14+60>2(1-0)
1+0

LA
1-9-°

Accordingly, the two intervals only intersect if z < %g. However, z > %‘; holds as
a precondition and, thus, the two intervals never intersect. The proof is completed

since this is a contradiction to the assumption. a

An immediate conclusion from this lemma is that the noise robust creator function
presented in Def. 27 creates noise robust rewards.

8.6.2.4 Reward Class Extension

The assumption that a cooperative stage game only has a single optimal joint action
is quite restrictive and quickly becomes unrealistic in large games. Thus, we next
briefly present a concept that enables DSL to learn in general cooperative stage
games with multiple optimal joint actions.

The basic idea is based on reward classes. That is, if an agent perceives a noised
reward, then the value’s order of magnitude allows the agent to unambiguously
decide to which class this reward belongs. Instead of learning from the noised reward,
the agent learns from a numerical class identifier. Since these identifiers are crisp
values, the usual convergence results for DSL hold. Before we clarify this approach
using a simple example, we first present some more technical details.

In particular, we assume that rewards are obtained via the noise robust reward
creator method defined in Def. 27. Given any resulting reward z*, the corresponding
reward class is described by the value of ¢. Given that an agent ¢ observes a noised
reward p € [(1 — 6;)z%, (1 + 6;)z%], the reward class extension of DSL enables
the agent to infer £ from p. Then, the agent uses ¢ as reward value and applies the
ordinary DSL approach. Note that, in order to calculate £ from p, different techniques
can be applied. A simple approach would assume that each agent knows z, such that
each agent i can determine the corresponding reward class ¢ from p by iteratively
calculating a value v(¢) = (1 — ;)2 by increasing £ until v(¢) < p < v(£ + 1).

Consider the following example to clarify the presented idea:

Example 5. Assume two agents, 1 and 2, with noise rates 01 = 0.4 and 65 = 0.2
and the game shown in Tab. 8.13 that contains two optimal joint actions ({A1, As)
and (Ba, By)). Table 8.14 shows a stage game that is obtained from G using the
robust reward creator method defined in Def. 27 with z = 3. Note that z > %
holds, i.e. the created rewards are robust for the largest considered noise rate.
Furthermore, assume that the agents play any action, e.g. w = (A1, B2) which
results in a crisp reward of 3. Due to the agent individual noise perception, agent 1
might observe a noised reward p1(u) = 1.98 € [(1—61)-3,(1+61)-3] = [1.8,4.2]
and agent 2 a reward of pa(u) = 2.78 € [(1 — 03) - 3, (1 + 62) - 3] = [2.4,3.6]. As
the agents infer the reward class from their observation, consider for instance agent
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Table 8.14 Created stage

Table 8.13 Original stage game with noise robust re- Table 8.15 Assumed stage
game G wards using reward classes. game with reward classes.
A1 By Ax B A1 Ba
A2 5 2 A29:Z21:ZO AQ 2 0
By 3 5 By 3=2'9=22 By 1 2

1 and assume that it uses the proposed iterative approach. The agent then calculates
the following values:

v(0)=(1-0.4)-3°=06
v(l)=(1-04)-3' =18
v(2) = (1-04)-3* =54

Accordingly, the reward class is ¢ = 1 as v(1) < p1(u) < v(2) holds. The other
agent will come to the same conclusion. Hence, both agents assume a crisp reward
of p(u) = 1 as shown in Tab. 8.15.

It follows that the agents assume to play the game shown Tab. 8.15, which has
the same set of optimal joint actions as the original game presented in Tab. 8.13.
The convergence to optimal solutions then trivially follows from the convergence
behavior of DSL, because the assumed game is an ordinary cooperative stage game.

Finally, we want to highlight that noise robust rewards alone are not sufficient.
The key additional idea is to use a special structure within the noise robust rewards,
i.e. each reward has the form 2%, such that all agents at the same time can deduce the
same reward class from their individually noised observations.

8.6.3 Summary

In this section we investigated the behavior of the DSL approach under noisy reward
perceptions. We basically showed that DSL is able to learn optimal or near-optimal
solutions in cooperative stage games with agent-individual noised rewards under
some assumptions. A comprehensive overview on the obtained results is presented in
Tab. 8.16.

In some settings, noise robust rewards and particular structures are required
to ensure convergence to optimal solutions. These properties can be obtained by
applying special reward transformation functions. If these functions are applied as
part of the CSSG-transformation function, the presented convergence results can be
extended to cooperative sequential stage games, too.

8.7 Discussion

The main contributions of this chapter are a novel multiagent reinforcement learning
approach for a new class of cooperative games with a special structure and its theo-
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Table 8.16 Overview of the results for convergence towards optimal joint strategies in the DSL
approach under noised reward perceptions. (Legend: v'= yes, X=no, O=irrelevant)

Same, Noise Reward Convergence properties Reference
globally robust classes
noised rewards

reward

v © ©) converges, if maximum positive noised re-  Proposition 6
wards occur with non-zero probability

X X ©) no convergence to optimal joint action in  Proposition 7
general

X v X converges, if the stage game has only one  Proposition 8
unique optimal joint strategy

X v v convergence to optimal joint strategy under ~ Example 5

usual assumptions

retical analysis, including settings with noised rewards. In detail, the contributions
include the following:

e We presented the Distributed Stateless Learning (DSL) approach for learning in
cooperative sequential stage games (CSSG).

e We proved that DSL converges to optimal joint strategies for the last stage game
of a CSSG, if each joint action is played infinitely often.

o It was shown that near-optimal solutions can be expected for each stage game if
played sufficiently long.

e We provided several results for the behavior of DSL under agent-individual noised
reward observations. It was shown that noise robust rewards allow agents to find
(near-)optimal solutions if there is only one single optimal strategy. Given noise
robust rewards with a special structure, we also showed that learning in general
cooperative stage games under noise is feasible.

e We analyzed the space and time complexity of the proposed approach and showed
its efficiency.

e The theoretical convergence properties have been underlined with an empirical
analysis.

With the help of the DSL approach, we allow the agents in a cooperative MAS
to learn a (near-)optimal joint strategy for the current situation without the need of
observing all actions of the other agents. Since the approach realizes the concept
of engineered rewards, our agents can further recognize new (global) situations
without having to observe the entire system. Hence, the agents are able to adjust their
strategies to any new situation without observing other agents or the system’s state
and to learn solely from the supplied global reward value. Under some assumptions,
even a noised reward perception does not hinder the approach from learning optimal
solutions. Given that the agents basically ignore their environment as well as other
agents and solely learn from observed rewards, the DSL approach is highly flexible.
For instance, it allows to drastically changing important parameters of a problem
scenario, e.g. the number of agents, without the need of manually notifying or
adjusting the learners. Also, because the agents do not maintain values for specific
situations but only for the current situation, the approach is very space efficient.

Despite these positive properties of the DSL approach, we also want to point out
the following two issues. First of all, the approach is able to learn in consecutive stage
games due to the engineered rewards which ensure that rewards in a new situation are
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always larger than any other previously seen reward. In general, this special reward
structure usually is not given a priori but has to be “engineered”, for instance, by
using the described reward transformation functions. However, their application can
become impractical, e.g., because the joint action space grows exponentially in the
number of agents. Hence, one might decide to perform the transformation during the
learning process, e.g. through a reward-giving central instance, instead of creating
the engineered rewards as part of a preprocessing. Another approach would be to let
the agents locally decide when to transform the rewards—an idea that we will pursue
later in Sect. 9.2 and evaluate in Sect. 10.4.2 in the context of the IAPP.

The second issue is concerned with the speed of convergence. Given small problem
settings as those evaluated in this chapter, the agents quickly will agree on an
optimal joint action. However, in a large MAS that involves several hundreds or even
thousands of agents, the number of possible joint actions grows too quickly. In that
case, additional coordination techniques are required in order to improve the speed
of convergence. We will present some techniques and evaluate them in Chapters 9,
10, and 11.

According to the results of this chapter, it is finally left to state, that DSL is a
promising multiagent reinforcement learning approach for large cooperative systems.






Chapter

Coordination in Sequential Stage
Games

Besides learning itself, coordination is another important aspect in multiagent sys-
tems (MAS). According to e.g. [V1a07, Ch.4] and [Bou99], coordination techniques
in cooperative MAS can be based on social conventions (or laws), roles defined
by subsets of actions, coordination graphs which decompose complex problems,
communication, or learning.

The coordination strategies proposed in this chapter extend the learning approach
introduced in the previous chapter. The goal of those strategies is to direct the agent
individual action selection in order to quickly find a good joint action. All coordi-
nation strategies presented in the following sections can be used in any cooperative
sequential stage game. However, some strategies need to be adjusted to match prop-
erties of the considered problem domain. We will investigate the proposed strategies
in our Iterative Agent Partitioning Problem (IAPP) variant. In order to apply the
Distributed Stateless Learning (DSL) approach in this context, we will also show
how to model the IAPP as cooperative sequential stage game and propose three
different ways of calculating a reward that can be used for learning.

The main contributions of this chapter are as follows:

e We propose and discuss five different coordination strategies.

e By showing how the IAPP can be modeled as sequential stage game, we provide
a first useful and large-scale example for that class of games.

e We present three different reward concepts:

— Rewards that are calculated and transformed by a central instance.
— Rewards that are calculated and transformed locally, i.e. within the agents.
— Rewards that are calculated by a central instance, but transformed locally.

e We show that locally calculated rewards, in our concrete IAPP implementation
and also in general, cannot guarantee convergence to (near) optimal solutions.

The rest of this chapter is organized as follows. Section 9.1 introduces the devel-
oped coordination strategies in detail. Section 9.2 models the IAPP as cooperative
sequential stage game and discusses the different reward calculation concepts. Finally,
Sect. 9.3 briefly concludes this chapter.

129
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9.1 Coordination Strategies

In this section, we provide detailed descriptions of the proposed coordination tech-
niques. These methods realize coordination by influencing the action selection pro-
cess within the DSL approach. Figure 9.1 illustrates some general characteristics of
action selection strategies and classifies the proposed strategies.

action selection

agent level

communication

no communication communication

[ history ] [simpliﬁcation][C()mpletely I“dnd()lniZP(l] vee [ direct ]
Previous-  Reduced-Action- e-greedy Random-From- [ simplification Pheromone-Based
Strategy Sets Neighborhood

Seed-Based

Fig. 9.1 Characteristics of the proposed action selection strategies.

The ideas of the following coordination strategies have been published in
[KKB11b]. In contrast to that work, we provide a more detailed description in-
cluding pseudocode and analysis. Furthermore, the three communication based
strategies (Random-From-Neighborhood, Seed-Based, Pheromone-Based) are ex-
tended compared to those in [KKB11b] by exploitation of local knowledge after
movement.

In order to ensure convergence according to the theoretical results in the previous
chapter, the coordination strategies have to ensure that assumptions A2 (cf. page 111)
are fulfilled. Assumptions A2.1 and A2.2 are not influenced by the action selection
procedure and hence do not have to be considered here. In order to fulfill assumptions
A2.3 and A2.4, it must at least be ensured that each action is selected with a non-zero
probability. Otherwise, one neither can execute an action sufficiently often (A2.3)
nor infinitely often (A2.4).

9.1.1 Pheromone-Based Strategy

The Pheromone-Based Strategy (PHEROMONE) is inspired by social insect colonies
like termites and ants, or to be more precise, by a concept called stigmergy that can
be found in such societies and which is often realized using so-called pheromones.
In Sect. 2.4, we already provided a detailed overview on stigmergy and pheromones.
However, the next paragraph briefly repeats necessary foundations to make sure that
this section is consistent in itself.

The idea of stigmergy is to coordinate individuals via indirect communication
through modifications in the environment [BDT99]. Ants, for instance, use this
concept in order to find shortest paths between a nest and a food source. Each ant
randomly wanders around and searches for a path to the food. Along its way it
deposits a substance which is called pheromone. If an ant smells a strong pheromone
trail it follows that trace with a higher probability compared to a trace with weaker
pheromones. Besides reinforcing traveled paths, it is also important to note that
pheromones evaporate over time. Since a shorter path can be traveled more often
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in the same time span than a longer path, there will be more reinforcements on the
shorter path. Thus, the pheromone concentration on that path increases, which in
turn attracts more agents to follow that path. In the long run, the pheromones on
longer paths will disappear and the ants will find a shortest path to the food. Thus, by
modifying the environment and by reacting to changes, ants can agree on a shortest
path without direct communication.

Inspired by this general idea, artificial pheromones stored in an environment in or-
der to direct decision making have been intensively used in Ant Colony Optimization
(ACO) algorithms (see e.g. [BDT99] or [DS04]). The proposed Pheromone-Based
Strategy adopts the idea in the context of DSL. It introduces one pheromone type
for each agent action. In contrast to the above described approach, pheromones
do not evaporate automatically, but are decreased manually by agents (a similar
local pheromone update is used in [DG97]). If an agent decides to place/update
pheromones within a certain area of its environment, it reinforces the pheromone that
corresponds to its lastly executed action by adding a constant value to the existing
pheromone. All other pheromones are weakened according to a decay rate. The
action selection of an agent is a modified e-greedy approach, where the own strategy
is followed with probability 1 — €. With probability ¢, the agent executes a random
action that is determined using a proportional selection procedure (e.g. Roulette
Wheel Selection [Eng05]) based on the different pheromone concentrations sensed
at the agent’s position. If the agent cannot sense any pheromones then it falls back
and executes a nested e-greedy action selection. Given that an agent has moved to a
new position, it relies on the pheromone knowledge in the environment to choose its
next action. Therefore, it follows the same process as in the aforementioned € case.

According to the above general description, it can be concluded that the approach
combines the individual learning process and the commonly influenced artificial
pheromones in order to direct the exploration of the agents. Algorithm 3 summarizes
this general approach.

Algorithm 3 Pheromone-Based Strategy (executed on each agent i € A)

Input: selection pressure c, probability € € (0, 1]
Output: an action a to execute

1: procedure PHEROMONEBASEDSTRATEGY

2 if random value € [0, 1] < € or agent has moved then

3 PI < get pheromone information at agent position

4 if P1 # () then

5: return ROULETTEWHEELSELECTION(«, PI)

6 else > use ordinary e-greedy strategy if there are no pheromone information
7 action a < o;

8 if random value € [0, 1] < € then

9: a < random action
10: return a
11: else
12: return o; > current strategy

The exact way of how and where pheromones are stored and updated depends on
the considered problem. In the context of our IAPP variant, we use a grid environment
and thus consider a location based approach as shown in Alg. 4. In detail, there are
different pheromone types ,, one type for each target selection action. Agents
initially place pheromones for each of their own actions within a radius r around
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their position. The initial strength (or value) of a pheromone (, for action a € A; at
position p is set to v(©q4, P) = Pinit > 0. Whenever an agent updates pheromones,
it reinforces the pheromone value for the lastly executed action a by adding a
constant value ¢ € R to v(¢p,, p) on all positions p within radius 7. At the same
time, the pheromone values of all other—not executed—actions & € A; \ {a}
are weakened using a decay rate A € [0, 1), such that the new value becomes
v(pa,p) = (1 — A)v(pa, p). This update process corresponds to the generic ACO
update rule as described for example in [DZMBO02].

Algorithm 4 Pheromone update strategy (executed on each agent i € A)

Input: initial pheromone value pinis > 0, reinforcement value ¢ € RT, pheromone decay rate
A€l0,1)

1: procedure UPDATEPHEROMONES

2: P < all positions p within radius r around the agent

3: for all position p € P do

4: PI « get pheromone information at position p

5: if PI = () then

6: foralla € A; do

7: V(Pa,P) < Pinit > place initial pheromone ¢, for action a
8: else

9: for all ¢, in PI do
10: if action a decoded by ¢, corresponds to o; then
11: V(Ya,p) < V(pa,p) + ¢ > reinforce current strategy’s pheromone
12: else
13: v(Ya,p) < (1 — A)v(pa,p) > decay other pheromones

The action probabilities required to realize the Roulette Wheel Selection in line 5
of the general approach (Alg. 3) are calculated based on the pheromone information
at an agent’s position. In detail, an agent located at p calculates a probability for each
of its actions a € A; for which pheromone information are available. The probability
is calculated according to (9.1), where « is a parameter that influences the selection
pressure.

v(#a, p)*

Pr(a) = —PuP)T
NS ST

9.1

We have not yet exactly stated when pheromones are placed or updated. An
obvious approach is to update pheromones in every iteration which results in a large
overhead. Another approach is to perform updates only in special situations, e.g. if a
better (joint) strategy is found. In the context of the IAPP, we know from Corollary
4 that all agents simultaneously perform strategy updates under some assumptions.
Since the idea of using pheromones is to guide exploration towards good strategies,
pheromone updates on improvements seem to be a good alternative compared to
permanent updates. In [KKB11b], we compared the outcome of using updates only
on improvement to updates in every iteration and found no significant difference in
solution qualities. However, the number of updates in that work could in average be
reduced from 45000 to 867, i.e. a reduction by 98.07%. Hence, we will only consider
the “update on improvement strategy” in this thesis.

It is left to show that PHEROMONE fulfills assumptions A2.3 and A2.4. This
follows, because all agents initially place pheromones with strength pi,;; > 0 for all
their actions. Due to the a decay rate A € [0,1), and a non-negative reinforcement
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¢ € RT, pheromone values always are > 0. Thus, there is a non-zero probability for
each pheromone (action) of being selected in the Roulette Wheel Selection. Since
€ > 0, there also is a non-zero probability of using pheromones or executing an e-
greedy action selection. Accordingly, the assumptions required to ensure convergence
are fulfilled.

The idea of using pheromones in reinforcement learning is not new. For instance,
Chang [Cha04] proposes a pheromone-based exploration-exploitation strategy for sin-
gle agent reinforcement learning. In contrast to our PHEROMONE approach, Chang’s
single agent creates virtual ants which walk through a graph-based model of an MDP
and then backtrack to update the exploration-exploitation behavior of the agent.

9.1.2 Reduced-Action-Set Strategy

One way to reduce the search space during learning is to neglect actions that most
probably will not be part of any optimal solution. The Reduced-Action-Set Strategy
(RAS) realizes this idea by using a heuristic H that determines, which actions can
be neglected. Based on the obtained reduced action set, the agent then executes an
e-greedy action selection. The frequency of using heuristic H to reduce the action
set depends on the considered problem and can be controlled by firing an event.
Algorithm 5 summarizes this approach.

In the context of the IAPP, we investigate a simple heuristic that reduces an agent’s
action set of size | 4;| to some number N < |A;|. Therefore, only the N actions
that correspond to selecting the /N nearest targets to an agent are part of the reduced
action set. The action set can be refreshed with different frequencies in dynamic
settings with movement. We will evaluate one approach that refreshes the action set
whenever an agent has moved.

Algorithm 5 Reduced-Action-Set Strategy (executed on each agent i € A)
Input: heuristic H, probability € € (0, 1]
Output: an action a to execute
procedure REDUCEDACTIONSETSTRATEGY
if not initialized then
ARAS + H.GETREDUCEDACTIONSET(A;) > initialize reduced action set

1:
2
3
4: if refreshOnEvent and agent has moved since last call then

5: ARAS + H.GETREDUCEDACTIONSET(A;) > update reduced action set
6

7

8

9

action a < o;
if random value € [0,1] < eor a & ARAS then
a < random action from ARAS

return a

In contrast to the other coordination strategies in this chapter, the RAS strategy
cannot ensure convergence to optimal solutions in general. Obviously, this follows
since the neglected actions might be part of an optimal solution and also because the
formal requirements, i.e. a non-zero probability of being executed, are not fulfilled
for those neglected actions.

Conceptually, using only a subset of actions is related to assigning roles to agents.
Designing such explicit roles can be used to facilitate the decision making process
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given that agents know about the roles of other agents [V1a07, Ch. 4.3]. The RAS
approach, in contrast, does not model such explicit roles, but simply reduces the
number of actions.

In a student’s work [Swal0] under our supervision, a similar strategy in the context
of the (static) Online Partitioning Problem was considered. Like in RAS, the idea in
that work also was to consider reduced action sets. In contrast to RAS, the action sets
have been reduced dynamically, depending on the learning process. The obtained
results indicate that dynamically adjusted action sets can help to improve the speed
of learning.

9.1.3 Seed-Based Strategy

The Seed-Based Strategy (SEED) tries to stabilize the learning environment by
allowing only a subset of all agents to explore, i.e. to try different actions, while
the rest follows a fixed strategy. In detail, SEED is a communicative, phase-based
approach. At the beginning of a phase, each agent decides to become a “seed agent”
with probability pseea € (0, 1]. During the course of a phase, all non-seed agents do
not explore by (randomly) executing different actions. Instead, they stick to their
strategy to stabilize the learning environment. On the other hand, seed agents explore
the learning environment by following the e-greedy action selection method. Shortly
before the end of a phase, which lasts phasep,,. iterations, all non-seed agents
try to contact an arbitrary seed agent in their communication radius. If they can
communicate with a seed, they request the seed’s current strategy and execute it.
Otherwise, they follow their own strategy again. Note that there is one case in which
we allow all agents, in particular also non-seed agents, to change their behavior
during a phase, namely if an agent has moved. In that case it behaves as if a phase is
over and tries to follow the strategy of a seed agent nearby. Algorithm 6 summarizes
this idea.

Algorithm 6 Seed-Based Strategy (executed on each agent i € A)

Input: number of iterations in a phase phasepuyy., probabilities pseea € (0, 1], € € (0, 1]
Output: an action a to execute
procedure SEEDBASEDSTRATEGY
if begin of new phase then
become seed agent with probability pseed > Synchronized with other agents

1:
2
3
4 if agent has moved or is not a seed agent then

5: if is last iteration of phase or agent has moved then > Phase lasts phasepy,,. iterations
6 j < arbitrary seed agent within communication radius

7 if j 7 NULL then

8

return o; > Follow strategy of a random reachable seed agent
9: return o; > Follow own current strategy if no seed reachable or phase not over
10: else > If seed agent, then use ordinary epsilon greedy strategy
11: action a < o;
12: if random value € [0, 1] < € then
13: a <+ random action

14: return a
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The communicative overhead of this strategy can be influenced by the length of a
phase phasep,,,. and the number of seed agents which depends on pgeeq.

Clearly, SEED fulfills assumptions A2.3 and A2.4, because there is a non-zero
probability that each agent can become a seed agent, and because seed agents perform
an e-greed action selection procedure with € > 0.

9.1.4 Random-From-Neighborhood Strategy

The Random-From-Neighborhood Strategy (RFN) is an extended e-greedy action
selection mechanism. Like in the ordinary e-greedy strategy, each agent selects a
random action with probability e. Different to the ordinary e-greedy strategy, an agent
in RFN follows its own strategy with a probability of p(1 — ¢€), and in the remaining
cases, i.e. with probability (1 — p)(1 — €) or if the agent has moved, it follows a
strategy from a random reachable neighbor. If no neighbor is reachable, or if the
neighbor also just has moved, then the agent again relies on its own strategy.

Hence for small e, the probability p € [0, 1] influences the communicative over-
head and lets the agent either trust in its own strategy (p — 1) or follow a neighbor’s
strategy (p — 0). Given p = 1, the strategy is reduced to the ordinary e-greedy
strategy. Algorithm 7 gives a detailed overview on RFN.

Algorithm 7 Random-From-Neighborhood Strategy (executed on each agent i € A)
Input: probabilities p € [0,1], ¢ € (0,1]

1: procedure RANDOMFROMNEIGHBORHOOD

2 rnd < random value from [0, 1]

3 if rnd < (1 — p)(1 — €) or agent has moved then

4 if there are reachable neighbors in communication radius then

S: for all reachable neighbor j do

6: if j has not just moved then > rely on “static” agents
7 return current strategy of j

8 return o; > follow own strategy if no or no “static” neighbors reachable
9: else if rnd < (1 — ¢) then
10: return o; > current strategy
11: else
12: return random action

Since € > 0, agents will execute random actions with a non-zero probability.
Accordingly, RFN fulfills assumptions A2.3 and A2.4 and hence preserves the
convergence properties of the DSL approach.

9.1.5 Previous-Strategy

The Previous-Strategy (PS) is based on an observation made in the IAPP context.
Let us consider Fig. 9.2 to briefly pinpoint that observation. As illustrated in Fig.
9.2(a), device A selected the red access point which is also the closest to A. Some of
its neighbors, however, selected the blue access point, although it would be better to
choose the red one according to the objectives of the IAPP. Now, consider the next
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time step shown in Fig. 9.2(b). When A decided to deviate from its previous decision,
the neighbors selected the best access point by coincidence. According to the IAPP
objective function, the partitioning in this time step nevertheless is better than before.
Thus, the DSL algorithm will force all agents to update their strategy. Particularly,
the strategy of A will change from choosing the red access point to choosing the
blue access point. Clearly, it changes from a globally optimal action to a suboptimal
action, which just seems to be better due to the changed behavior of the other devices.
In such situations, it hence can be beneficial to stick to the previous strategy with
some probability. In that case, A might select the red access point in the next iteration,
which might lead to further improvements. Hence, sticking to the previous strategy
with some probability is the main idea behind the proposed strategy.

However, the success of this strategy is questionable. Although sticking to the
previous action for A makes sense in the above scenario, its neighbors probably will
do so, as well. Accordingly, the success of this strategy does not only depend on the
likelihood of such scenarios, but also on the used probabilities.
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(a) Iteration t. (b) Iteration ¢t + 1.

Fig. 9.2 Uncoordinated action selection.

In detail, each agent stores its previous strategy before it changes its strategy to the
last action that led to a strategy update. This previous strategy is executed with a high
probability (e.g. p = 0.9), given that a previous strategy already exists. Otherwise,
with probability 1 — p, a e-greedy action selection is executed and the agent follows
its current strategy with probability 1 — € and a random action with probability e.
Algorithm 8 summarizes this strategy.

Clearly, PS fulfills assumptions A2.3 and A2.4, sincep < 1 and e > Oleadto a
non-zero probability for executing a random action.

Algorithm 8 Previous-Strategy (executed on each agent i € A)
Input: previous strategy &;, probabilities p € [0, 1), € € (0, 1]
Output: an action a to execute
1: procedure PREVIOUSSTRATEGY
2 if random value € [0, 1] < p then
3 if 5; # NULL then
4: return 7; > return previous strategy
5
6
7

if random value € [0, 1] < ¢ then
return random action
return o; > current strategy
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9.2 Modeling the IAPP as Sequential Stage Game

Modeling an instance of our Iterative Agent Partitioning Problem (IAPP) variant
as cooperative sequential stage game I' = (A, U, G, (Gg, ng), g) is straightforward.
Each agent i € A has one distinct action to select each target, i.e. A; = {select}, |
VT € T}, from which the joint action set U follows. The set of games G contains all
games that occur within the k iterations of the IAPP. In detail, a new game occurs
whenever the evaluation function for the same partitioning results in a different value,
e.g. due to moving agents or if, e.g., target positions change. Accordingly, the number
of repetitions of each stage game can be derived, e.g., from the length of the agents’
jobs in the IAPP, and/or the frequency of changing settings. Based on this, the game
transition function g follows. Note that any joint action realizes a partitioning p as
defined in Def. 19 on page 62. Thus, the global common reward for any joint action
in any stage game can easily be calculated using evaluation function (5.2).

It has to be ensured, that rewards are transformed such that the convergence
requirements (see assumptions A2.2) are fulfilled and DSL can work correctly. In
general, a preprocessing in order to generate engineered rewards like the transfor-
mation function proposed in Ch. 8 may be impractical in large systems like the
IAPP. Instead, it would be nice to create engineered rewards that possess the desired
properties online, i.e. while the agents are learning. Therefore, we will propose,
discuss, and evaluate three different approaches in the remainder of this section.

9.2.1 Rewards

In this section, we identify and describe different concepts that can be used to generate
rewards for learning in DSL. Although we describe these concepts in close relation to
our IAPP variant, the general concepts can also be applied in other problem domains.

First, in Sect. 9.2.1.1, we propose a simple central reward calculation and trans-
formation approach that preserves the theoretical convergence properties of DSL.
We briefly discuss how a common global reward can be calculated given that there
is no central instance that corresponds to the environment used in the schematic
view on MARL. In Sect. 9.2.1.2, we present an alternative reward that is calculated
individually by each agent and that relies only on (semi-)local information. Finally, in
Sect. 9.2.1.3, we propose another approach that uses the globally calculated, but not
transformed rewards, such that agents individually transform these rewards according
to their own local observations.

9.2.1.1 Global Reward

The concept of a global reward is defined by a central instance that is able to calculate
and transform a common reward that subsequently can be observed by all agents.
In our IAPP variant, a concrete implementation of this concept looks as follows.
Given a partitioning SZ’T at iteration ¢. Assume a central instance that is capable of
calculating the partitioning quality f (SfA’T) in each iteration according to equation
(5.2). This partitioning quality value can be used as reward for the joint action which
led to the partitioning. In order to fulfill the convergence requirements, however, the
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reward must be transformed to reflect changing scenarios that occur if agents move.
Let L = (to, t1,t2,...) be alist of iterations at which at least one agent has moved.
The transformed reward p; at iteration ¢t with t, < ¢ < t.41 and t.,t.41 € L is given
by pr = f (SfL\,T) + ¢+ ®, where ® > 1 is a positive transformation additive. Hence,
the basic idea of the transformation is to increase the original partitioning quality
value using an additive value that grows with every new scenario (resp. stage game).
Since f(SY ) € [0,1], we will use ® = 1 in the empirical evaluation presented in
Ch. 10.

This globally transformed reward preserves the convergence guarantees of DSL,
as it fulfills the assumptions stated in A2.2: First note that all agents observe the
same bounded positive reward for any sequential stage game with less than infinitely
many stage games. Secondly, this reward is engineered such that the actual reward in
any stage game is larger than any other reward observed in a previous stage game
due to its additive construction.

Generally, however, there is usually no computational central instance in a MAS
that could calculate a global reward. Thus, a decentralized approach is desirable.
One way to obtain a locally calculated global reward is to use a simple yet intensive
communication protocol. Therefore, each agent broadcasts its current assignment and
its target distances to all other agents. With the help of these information, each agent
can calculate the (real) global reward value by itself. However, this strategy makes
several assumptions, e.g. arbitrarily large storage capacity at each agent or a fully
connected communication graph, which might be hard to realize. More sophisticated
communication based protocols can help to estimate the global partitioning quality.
In a bachelor’s thesis under our supervision, we evaluated different communication
protocols that might be used to estimate the partitioning quality [Kli10]. Based on
this evaluation, the student implemented two different algorithms and evaluated
them in a static IAPP scenario. The hypothesis of the first approach states that the
partitioning quality can be approximated if each agent has information from a well
chosen randomly distributed subset of agents. In order to realize this approach, a
gossip-based protocol is used as these protocols can generate such random local
subsets (cf. e.g. [KDGO03] [JGKvS04] [JTVG+07] [KvS07]). Depending on different
factors, like the actual distribution of agents, the simulation results revealed a good
approximation quality which showed a constant deviation from the real partitioning
quality. The second approach uses a sophisticated hierarchy-based protocol inspired
by the work of Heinzelman et al. [HCBOO]. In this approach, agents determine cluster
heads and submit their partitioning information to these cluster heads. The latter in
turn compactly summarize these information and submit them to a (central) cluster
head. This super-agent calculates the overall partitioning quality and submits the
resulting approximation value to the cluster heads, which finally redistribute the
value to all agents. The empirical evaluation showed an optimal approximation of the
actual partitioning quality. Since both protocols still are communication intensive and
have several requirements, we do not want to go into detail here. Instead, we refer the
reader to [K1i10]. However, it has to be noted that one might lose the convergence
guarantees of the DSL approach if approximated solution qualities are used as basis
for rewards.
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9.2.1.2 Local Reward

The concept of a local reward is defined by agents that calculate and transform an
individual reward based on their own local observations.

An implementation of this concept in our IAPP variant is presented next. It requires
each agent to communicate only with its current target, rather than to interact with
other agents. First, an agent ¢ € A calculates a local approximation f;’oc (S84.7) of
the partitioning quality for a partitioning Sfém- described by partitioning function
p': A — T according to

.ﬁoc.(sfél,T) = o - DISTRIBUTION(p' (7)) + /3 - DISTANCE(p' (1)) 9.2)
using the same weight factors «, 3 as in the globally calculated reward and having

# agents at target p(7)

DISTRIBUTION(p' (7)) = 1 Al 9.3)
as local DISTRIBUTION objective value and
6 . t .
DISTANCE(p' (7)) = 1 (6P’ (7)) 9.4)

e 006, T)

as local DISTANCE objective value. In order to calculate the distribution value, it
has to be ensured that each agent registers itself at its currently selected target, such
that the target has information about the number of clients. It is also required that all
agents know the total number of agents in the system.

The approximated distance value can be calculated since each agent knows its dis-
tances to the targets. Furthermore, (9.4) directly represents the DISTANCE objective,
since the closest target to agent ¢ will result in the highest reward. The approximated
distribution value, in contrast, requires more knowledge on the global state in form
of the number of agents that are registered at the agent’s current target. Note that this
information is quite abstract because it only describes the number of agents at one
target and does not include any additional global information (e.g. which agent se-
lected this target, or how many agents selected other targets)'. From (9.3), it follows
that each agent would obtain the highest DISTRIBUTION value if it is the only client
at its target. Indeed, all agents have to select a target, which implies that the highest
DISTRIBUTION value for each agent is achieved if agents are equally distributed to
the targets. Accordingly, the proposed local approximation of the partitioning quality
reflects the properties of the global evaluation function (5.2) in a good way.

Based on this local approximation of the partitioning quality, the agent can con-
struct a reward for learning. Therefore, and in order to properly enable learning using
the DSL approach, it should additionally ensure to transform the reward if a new

! In general, we argue that one cannot optimize the DISTRIBUTION objective without additional
knowledge on the current system state. Hence completely locally calculated rewards are implausible.
Instead, one should speak about semi-local rewards in order to reflect the required abstracted
global distribution knowledge. This corresponds to observations in real life situations. Consider,
for instance, the task of dividing a group of pupils into equally sized teams in a sports class. In this
case, each pupil does not necessarily have complete knowledge about the actual numbers, but he
gets an impression on the different team sizes. This abstracted global knowledge helps him to select
a group to join. Without this abstract distribution knowledge, pupils can hardly manage to estimate
the current team sizes.
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stage game arises. For this transformation, we adapt the same approach as described
in the previous section for the global reward. The only difference is that each agent
1 maintains its own transformation additive ®; and increases it by 1 whenever the
agent itself has moved.

Since we will use this local reward calculation in the upcoming experiments in
Ch. 10, let us briefly show that the DSL approach loses its convergence guarantees
under such rewards. Therefore, have a look at the following example:

Example 6. Consider the scenario shown in Fig. 9.3. Let us assume weight factors
a = B = 0.5 for the global reward function according to (5.2), a discount factor of
v = 0.0, and that we use DSL in its basic form with the e-greedy action selection.

The resulting local DISTANCE values are shown in Tab. 9.1. Table 9.2 presents
the local DISTRIBUTION values and also the resulting local rewards for all possible
partitionings.

2.5

Fig. 9.3 Scenario.

Table 9.1 Local DISTANCE(p(4)) value for the example shown in Fig. 9.3.

Agenti p(i) = Ty p(i) = To

1 0.50 0.50
2 0.71 0.29
3 0.50 0.50
4 0.29 0.71

From the bold values in Tab. 9.2, one can deduce the following list of optimal
actions for the agents according to their maximum local rewards:

Agent 1: Ty, T,
Agent 2: T
Agent 3: 11, T,
Agent 4: Ty
From this list, four different joint actions can be constructed, among which only

two are optimal according to the global reward function. Table 9.3 shows these joint
actions.
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Table 9.2 Local DISTRIBUTION(p(4)) value for all possible assignments (states) in the exam-
ple of Fig. 9.3. For brevity, DB(7) stands for DISTRIBUTION(p(%)) and state (1,2,3,4) =
(T», Ty, Ty, T1) means that agent 1 is assigned to Target T, agent 2 to 77, etc. ffoc_ stands
for the local reward (according to (9.2)), that agent ¢ gets for the respective state using the distance
values from Tab. 9.1. Rows marked with % correspond to optimal solutions according to (5.2).

State ¢ Agent 1 Agent 2 Agent 3 Agent 4 Global reward
W23 B fl, DB fi DBE) R DB@ i 0
(Th, Ty, Th,T1) 0.00 025 000 036 0.00 0.25 0.00 0.14 0.36
(T1,Th,Th,T2) 025 038 025 048 025 038 0.75 0.73 0.88
(Th,Th,T2,T1) 025 038 025 048 0.75 0.63 025 0.27 0.74
(T1,T1,T2,T2) 050 050 0.50 061 050 0.50 0.50 0.61 1.00 *
(Th, T2, Ty, Th) 025 038 075 052 025 038 025 027 0.66
(T1,T2,Th,T2) 05 05 05 039 05 05 0.5 0.61 0.86
(Th, T2, T2, Ty) 05 05 05 039 05 05 0.5 039 0.79
(T1,T2,T2,T2) 075 0.63 025 027 025 038 025 043 0.74
(T, Ty, Th,Th) 075 0.63 025 048 025 038 025 027 0.74
(T»,Th,Th,T2) 050 050 050 061 050 0.50 0.50 0.61 1.00 *
(T2, Ty,T>,Ty) 050 050 050 061 050 0.50 050 0.39 0.86
(T»,Th,T2,T>) 025 038 075 073 025 038 025 043 0.88
(T2, T>,Ty,T1) 050 050 050 039 050 0.50 050 0.39 0.79
(T2, T2, Th,T2) 025 038 025 027 075 0.63 025 043 0.74
(T2, T>,T>,T1) 025 038 025 027 025 038 075 052 0.66
(T2, T>,T>,T2) 0.00 025 000 0.14 0.00 0.25 0.00 0.36 0.36

Table 9.3 Possible joint actions.

Joint action  Global reward

(Th, Th, T1,T>) 0.88
(Ty,Th, T2, To) 1.00
(T2, Th,T1,T>) 1.00
(T2, Ty, T2, To) 0.88

To which joint action DSL converges depends on the order of experiencing the
maximum local reward at each agent. Accordingly, this example has shown that DSL
is not guaranteed to converge to an optimal solution under the constructed local
rewards.

Basically, this example illustrates the inherent coordination problem in learning
MAS. This problem also occurs if a common reward function is used by a set of
agents as described, e.g., in [BBDSO08].

Besides from the above stated specific example, the loss of the convergence
properties under general (semi-)local rewards follows indirectly from Proposition 7.
To clarify this, note that agents that use such a (semi-)local reward most probably will
observe individually different rewards at some points in time. The same argument
also holds under the settings stated in Proposition 7. Only the reasons for observing
individually different rewards differ, once it is due to noised rewards and once due to
local reward calculation.
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9.2.1.3 Locally Transformed Global Reward

The concept of locally transformed global (LTG) rewards is based on a central
instance that calculates a common global reward, which is observed by all agents.
The agents use this common reward and individually decide, based on own local
observations, when and how to create an engineered reward from the given global
value. The advantage of this method is that the environment can calculate an ordinary
reward and does not need to realize the transformation, which is solely a part required
by the DSL approach. Accordingly, this concept requires fewer assumptions on the
environment.

In our concrete implementation, we use the same global reward as described in
Sect. 9.2.1.1, i.e. we use evaluation function (5.2) to calculate a common global
reward. This value is not transformed and given unmodified to the agents. Agents
locally transform the received value to reflect changes according to their own local
perceptions. Therefore, like in the local reward approach in the previous section,
each agent uses a constant that is added to the clear global reward value. If the agent
has moved, the additive is increased by 1.

By the same arguments as in the previous section on local rewards, DSL loses its
convergence guarantees under locally transformed global rewards.

9.3 Summary

The purpose of this chapter was the presentation of different coordination techniques
that can be used for action selection in the Distributed Stateless Learning approach.
We described the ideas of five coordination techniques and presented detailed pseu-
docodes for each of them. In addition, we provided a first large-scale application of
the cooperative sequential stage game model by presenting a concrete implementa-
tion of our IAPP variant. We also proposed three general concepts for the calculation
of rewards in the context of DSL and provide concrete implementations for our IAPP
variant. Furthermore, we showed that locally calculated rewards cannot preserve the
theoretical convergence guarantees of the DSL approach.
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Empirical Analysis

In this chapter, we empirically' analyze the Distributed Stateless Learning (DSL)
approach and the proposed coordination techniques in the context of our Iterative
Agent Partitioning Problem (IAPP) variant.

The main contributions of this chapter are as follows:

e We provide an exhaustive empirical analysis of the DSL-based approaches pre-
sented in Ch. 9.

e DSL-based approaches do not only work well in small problems with two agents,
but can also successfully be applied in large MAS involving thousands of agents
with huge joint action spaces.

e Additional coordination techniques can significantly improve the performance of
the basic learning approach. Particularly, communicative strategies are successful.

e Although sequential stage games “remove the state” from the learning system,
DSL still suffers from the (conceptual) curse of dimensionality in the sense that it
can be found in joint action spaces rather than in state-joint-action spaces.

e Simulations confirm the theoretically proven convergence properties of DSL.

o Although locally calculated rewards cannot guarantee convergence to (near) opti-
mal solutions in general, we show that they still result in high quality solutions in
practice, which seem to be at least close to optimal in the considered settings.

e We showed that, in order to enable learning in large dynamic systems, agents
require, besides time, a learning environment that is somewhat stable in the sense
that not too many agents explore it at the same time.

e DSL-based approaches are able to outperform a special purpose state-of-the-art
algorithm in the IAPP domain.

The chapter is organized as follows. In Sect. 10.1, we present the general settings
used for the simulations if not stated otherwise. We analyze the BASIC DSL approach
in our IAPP variant with many agents in Sect. 10.2. Section 10.3 provides some
insights into the coordination techniques proposed in the previous chapter. It then
follows Sect. 10.4, which analyzes the coordination techniques under three different
reward concepts and under three different job generation patterns. Finally, some
selected experiments in different scenarios are presented in Sect. 10.5, before we
conclude this chapter in Sect. 10.6.

! The simulation tool is available for download [Kem12].
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10.1 Settings

Clearly, an empirical analysis can only provide hints on how the subject under inves-
tigation behaves in general. Nevertheless, appropriate settings should be investigated
to obtain valuable insights. Based on lots of manual experiments, we hence decided
to use the following settings as a basis for our investigations. The chosen parameters
reflect a non-trivial setting that is already large, but which does not require too much
computational time. For instance, since the problem can be solved for two targets but
no efficient algorithm for three targets is known, we decided to consider at least three
targets. In addition, we will extend this basic scenario to investigate other settings
whenever we believe it to be appropriate.

In detail, and if not stated otherwise, we will use the following basic parameter
values. We consider n = 500 agents, m = 3 targets, a grid environment with 50 x 50
cells, weight factors a = [ = 0.5 for the evaluation function (5.2), & = 6000
iterations, and a discount factor v = 0.0. Each agent ¢ considers the nearest k = 8
agents within its communication radius r; = 5 as neighbors. Random numbers are
chosen uniformly at random from their corresponding intervals. The presented results
are mainly average values over 30 repetitions for each experiment with different
random seeds. We will usually provide graphs based on these averages and do not
provide additional confidence intervals or error bars. Based on our experience, we
can state that the averages over 30 repetitions already well reflect the properties
of the curves. More repetitions mainly lead to smaller confidence intervals. As an
example consider Fig. 10.1, which illustrates confidence intervals for BASIc DSL
with different numbers of repetitions.

In our empirical analysis we will combine different reward calculation strategies
with different job generation patterns. The latter can basically be divided into two
classes:

1. Random (R): Jobs are created at random positions in the environment.
2. Circle (C): Given an agent’s old job at position p, the agent’s new job will be
located at a random position within a circle with radius r centered at p.

Let R(z, y) describe a random job generation with jobs that have a random duration
drawn from the interval [z, y], and let R(z) denote the random strategy, where all jobs
have a duration of z, i.e. dnin = dmax = . Identifiers for the circle job generation
approach are defined correspondingly. Throughout the evaluation, we will use a
radius of = 5 for the circle job generation strategy.

Due to the vast number of possible parameter combinations that arise from dif-
ferent scenarios settings (e.g. number of agents, targets, job generation strategies)
and algorithm related parameters (e.g. reward types, probabilities, pheromone values,
etc.), a comprehensive analysis is a time consuming and tedious task. Thus, we
constructed a set of different scenarios which we believe to lead to an appropriate
analysis of the DSL approach and the different coordination strategies. We will
compare our results to the state-of-the-art Exchange Target Strategy (ETS) and to
a simple approach called Random Target Strategy (RTS) [Goe07], in which every
agent in each iteration simply selects a random target.

For the simulations, our framework assures that agents execute their actions in
a random order in each iteration. This assumption reflects characteristics of real
distributed systems better than a fixed ordering, which might even be harder to
realize in large systems. This particularly holds for communicative strategies, as
there generally is no guarantee for receiving messages in a predefined order.
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Fig. 10.1 Influence of the number of repetitions to the graph for BASIC DSL. Gray areas correspond
to confidence intervals with confidence level of a = 0.05.

10.2 Basic Distributed Stateless Learning

We begin our evaluation with the standard BASIC DSL approach that uses the e-greed
action selection and the global reward transformation.

10.2.1 Exploration Probability

As we have already seen in Fig. 8.4 in Sect. 8.4, the performance of BASIC
DSL in a simple two-agent CSSG depends on €. To determine the impact of
in our IAPP setting, we investigate the basic approach for e € {0.001,0.01,0.02,
0.03,0.05,0.1,0.2,0.3,0.5,0.7,0.9}. Therefore, we will consider the behavior in a
static scenario without changing jobs and another slightly more dynamic setting that
uses R(10000) for the creation of jobs.

Clearly, given too high e values, the learning environment will be unstable, as
there is a high probability for many agents to execute a random action instead of
following their current strategy. Accordingly, we expect low solution qualities for
high € values. However, with decreasing e values this instability should diminish
due to a smaller number of exploring agents. In that case, many agents will stick to
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their currently best strategy and, since only a small number of agents explores, the
probability of finding a better joint strategy should increase.

The results shown in Figs. 10.2 and 10.3 support these hypotheses and outline the
importance of e. In particular, it has a strong impact on the convergence speed. Also,
it seems to influence the level of convergence.

Although the results show the highest solution quality (not the highest average
solution quality) for ¢ = 0.001 in Fig. 10.2, one can see a disadvantage of this
quite small value in dynamic settings like those evaluated in Fig. 10.3. A smaller
e-value leads to a slow increase in solution qualities, which leads to a low average
partitioning quality. Thus, we will use e = 0.01 for all further experiments, since
it quickly results in higher values than e = 0.001, but still achieves a comparable
maximum solution value.
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Fig. 10.2 BAsic DSL with varying e values in a single stage game with 30000 iterations.
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Fig. 10.3 BAsic DSL with varying € values and random movement at the end of each 10000
iteration lasting stage game.
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10.2.2 Discount Factor

In general MARL approaches, the discount factor +y is used to rate the value of future
rewards, i.e. receiving a future reward is worth only parts of what it is worth on
immediate reception [SB98]. In a sequential stage game, however, agents do not
know when a stage game ends. Accordingly, they can be myopic and try to maximize
their immediate reward (y — 0).

Figure 10.4 shows the development of solution qualities for a single stage game
with fixed agent positions and varying discount factors v € {0.0,0.1,0.5,0.7,0.9}.
As we can see, a low discount factor leads to a better average partitioning quality.

Based on this result, and since agents in general do not know how long a stage
game lasts, we will set the discount factor to v = 0.0 in all upcoming simulations.
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Fig. 10.4 Influence of the discount factor in a static scenario (APQ(100)2).

10.2.3 Robustness

In this section, we intend to show that BASIC DSL is able to learn good solutions
under settings, where state-of-the-art ETS performs poorly. In detail, we consider
scenarios with different agents per target ratios using n = 100 agents and m €
{5,10, 15,20} targets. As we have already seen in the analysis of the solution quality
function in Fig. 5.6 in Sect. 5.3.1, a low agent per target ratio leads to quickly
declining distribution values for non-uniform partitionings. Thus, we can expect
decreasing solution qualities for an increasing number of targets. For ETS with
random target initialization this means that, due to the low agents per target ratio,
there is a high probability of having a non-uniform partitioning. Since ETS does not

2 As a tradeoff between information gain and computational time, some of the average partitioning
qualities values (APQ) and the graphs are not based on the partitioning quality of every single
iteration. Whenever not each iteration is considered, we mark the corresponding results with a short
hint in the form of APQ(z), where x denotes that only every z-th iteration was used to calculate
the APQ-value, resp. to plot the graph.
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change the initial distribution value, as it only optimizes the distance, it will most
likely result in low quality solutions under such settings.

Figure 10.5 shows our simulation results. There, we compare our approach to
the ordinary ETS with random target initialization and to an ETS variant proposed
in [Goe07] that uses an ID-dependent initialization strategy (IDS). Note that IDS
ensures an optimal DISTRIBUTION value, but it requires consecutively numbered
agents which is a non-trivial problem in large systems (cf. e.g. [DAVBFR09] for
the unique ID assignment problem in Wireless Sensor Networks). As we can see
in the figure, our learning approach finds significantly better partitionings than
ordinary ETS. DSL also finds better solutions compared to ETS-IDS for m €
{5,10,15}. Given 20 targets, ETS-IDS outperforms DSL within the simulated
number of iterations. But, from our theoretical analysis, we know that DSL will be
able to find a solution as least as good as ETS-IDS given more iterations. In contrast
to ETS-IDS, however, our approach does not require consecutively numbered agents.
Thus, it is more robust if the agent set is changed during runtime, e.g. if agents break
down or new ones are added.
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Fig. 10.5 Influence of different agents per target ratios using n = 100 agents and m €

{5,10,15,20} targets.

10.2.4 Dynamic Scenarios

Next, we consider the behavior of BASIC DSL in dynamic settings with e = 0.1. We
use R(5,100) and C(5, 100) to generate jobs, such that it is almost certain to have at
least one moving agent per iteration after the first five iterations are over.

Table 10.1 shows the resulting average partitioning qualities and compares them
to the Random Target Strategy (RTS). Apparently, our approach is unable to learn in
such highly dynamic settings. The reason for this behavior is obvious: since there is at
least one moving agent per iteration, each iteration corresponds to a new stage game.
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Due to the global reward transformation, all rewards are larger than the rewards in
the previous game. Thus, no matter which action an agent performs, it will obtain
steadily increasing rewards. Accordingly, the learning degenerates to a random action
selection. Support for this argument can be concluded from the corresponding results
of the RTS approach.

Table 10.1 Average partitioning qualities of BASIC DSL and RTS in highly dynamic scenarios.

Approach Job Generation APQ

BAsic DSL  C(5,100) 0.80975
R(5,100) 0.81045
RTS C(5,100) 0.80994
R(5,100) 0.81054

10.2.5 Changing Number of Agents and Target Positions

In this section, we investigate how BASIC DSL behaves when the number of agents
changes from stage game to stage game and, in addition, targets also change their
positions. Therefore, we consider a scenario with 30000 iterations that changes
significantly every 10000 iterations. During the first 10000 iterations, only 100
agents and three targets are located at fixed positions in the environment. In iteration
10000, 300 additional agents are added to the system and the targets swap their
IDs, i.e. all targets change their positions. After another 10000 iterations, another
additional 200 agents are added and the targets again change their positions by
swapping IDs. Note that once an agent has been placed in the environment, it
is not allowed to move. We investigated this scenario with BASIC DSL and a
globally transformed reward. Furthermore, we also considered the behavior of the
algorithm using an untransformed reward, i.e. the pure partitioning quality according
to evaluation function (5.2). Figure 10.6 visualizes the average solution qualities over
30 independent runs per setting.

As the figure reveals, BASIC DSL with globally transformed rewards is able to
learn high quality solutions in each of the three strongly different consecutive IAPP
stage games. In particular, all “old” agents can adapt to settings that occur if “new”
agents are added to the system, because the observed rewards are guaranteed to be at
least as big as the maximum reward observed in the preceding stage game.

Without globally transformed rewards, however, only newly added agents are able
to learn since their local g-tables are empty. As old agents already observed larger
rewards than those that typically occur at the beginning of a new stage game, they
most probably will not change their strategy. In extreme cases, where the maximal
reward value is smaller than a previously received reward, agents even cannot learn a
(near-)optimal solution. Accordingly, this experiment also underlines the importance
of transformed rewards for enabling agents to adapt to changing scenarios, i.e. to
changing stage games.

Now, let us briefly discuss one question that arises from this experiment: If “old”
agents are unable to learn due to “old” g-values, shouldn’t they simply reset the g-
tables at the beginning of a new stage game? The answer to this question is manifold.
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Fig. 10.6 Influence of global reward transformation to BASIC DSL in setting with changing
numbers of agents and changing target positions.

First of all, note that a global transformation of rewards is related to resetting g-values.
In detail, by assuring that the smallest reward in a new stage game is at least as large
as the largest reward in the preceding stage game, each agent is able to update its
g-values and thus also its strategy. This follows due to the “optimistic” update rule,
that changes values and strategies only on improvements. Accordingly, resetting the
g-tables and the transformed (engineered) rewards are equivalent with respect to
enabling agents to learn in changed settings.

However, in order to enable an agent to decide on when to reset its g-table,
the agent requires additional information, e.g. about the duration of each stage
game, or, as an alternative, it needs to be able to observe the entire system state. In
contrast, when using the framework of cooperative sequential stage games and the
DSL approach with engineered rewards, agents are neither required to observe the
environment nor do they need to know the structure of the played game. Instead,
the transformed rewards automatically enable adaptations to new settings. This
is particularly beneficial in large MAS, because agents cannot observe the full
environment, but obtain a common reward that is calculated by a central instance.

10.2.6 Summary

As we have shown in this section, the DSL approach is able to deal with large
sequential stage games like the IAPP. DSL was also shown to be able to learn in
open systems with varying numbers of agents. Accordingly, the results of this section
support theoretical and empirical results given in Ch. 8. Although we investigated the
discount factor and the robustness only in a single stage game, the results also hold for
sequences of consecutive stage games like those obtained from using R(10000). This
follows, since the transformation provably enables the agents to adapt to new settings
given enough time. It is particularly noticeable that the standard DSL approach in its
most basic form already is able to find partitionings with a higher quality than the
state-of-the-art ETS. In addition, DSL does neither need inter-agent communication
nor the ability of calculating distances to arbitrary targets. Since both is required in
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ETS, DSL is more efficient, and hence also optimizes the third not formally captured
cost objective of the IAPP.

However, we also observed that the basic approach is unable to learn in highly
dynamic settings if globally transformed rewards are used. As part of Sect. 10.4, we
will show that DSL in its basic variant can also learn in such dynamic settings when
different (non-global) reward calculation strategies are used.

10.3 Strategy Specific Simulations

Having analyzed the BASIC DSL approach in our IAPP variant, we use this section
to analyze different properties of the proposed coordination strategies. If not stated
otherwise, the simulations are carried out according to the aforementioned settings
and using the standard values shown in Tab. 10.2.

Table 10.2 Standard parameter settings that are used in this evaluation.

Strategy Parameter (variable identifier) Value
PHEROMONE  pheromone disposition radius (r) 5
reinforcement (c) 20
pheromone decay rate (A) 0.1
selection pressure (o) 2
initial pheromone value (pinit) 100
pheromones only on strategy update TRUE
€ 0.6
PS probability for previous strategy (p) 0.9
SEED seed probability (Pseed) 0.1
phase duration (phasepuyy.) 10
RAS number of actions (V) 2
refresh on movement TRUE
REN probability (p) 2
ETS flip probability (ps1ip) 0.1

Clearly, not all possible parameter values and variations shall be evaluated here, as
this quickly would become tedious. Instead, we focus on some of the most interesting
issues that we have discovered while working with the strategies. We provide a short
summary for each strategy, and use the last subsection to briefly enumerate the most
interesting conclusions.

10.3.1 Pheromone-Based Strategy

In the PHEROMONE strategy, multiple parameters can influence the solution quality.
In addition, good parameter values are hard to define for general settings because
they strongly depend on the considered scenario. For instance, a too low pheromone
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evaporation rate in a highly dynamic scenario can lead to problems as pheromone
traces may be unable to reflect environmental changes in time. In less dynamic
settings, on the other hand, slowly changing pheromones might be desirable, as they
might enable DSL to cope with small perturbations efficiently. Accordingly, we
do not intend to analyze all dependencies in detail as this quickly becomes tedious.
Instead, we will show that the parameter values chosen for the experiments in Sect.
10.4 are a good tradeoff for the considered scenarios.

As we will see in Fig. 10.19(a) on page 162, the PHEROMONE approach constantly
improves over three different stage games in a setting with global reward, and finally
also outperforms the state-of-the-art ETS approach—at least in terms of the solution
quality in the last iteration. Here, we show that PHEROMONE can do even better
than this. Therefore, parameters values have to be adjusted compared to the standard
values given in Tab. 10.2. Figure 10.7 shows the simulation results for varying decay
rates and using € = 0.05 instead of the standard value e = 0.6. Compared to Fig.
10.19(a), we observe an almost immediate increase in solution qualities, and hence
also the APQ-values for all decay rates are larger than the one reached by ETS.
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Fig. 10.7 PHEROMONE with different decay rates in a setting with three stage games, each lasting
10000 iterations, having 3 targets and global rewards.

In order to obtain statistically significant results for the influence of the decay rate
on the convergence speed, more than 30 independent runs per experiment would be
necessary. From the experience made during this thesis, however, we can state that
the characteristics shown in the figure should be preserved under more experiments.
Hence, we argue that an increased decay rate leads to quicker convergence.

Next, consider using € = 0.05 in settings with locally transformed global rewards
and frequently moving agents. From experiments presented later in Figs. 10.22(b) and
10.22(c), we can conclude that PHEROMONE with standard parameters is able to learn
in such scenarios. Figures 10.8 and 10.9, however, indicate that using € = 0.05 in
the same settings leads to a poor performance. Since the value for € is comparatively
small, agents will seldom use pheromones to select actions. Hence, they cannot
benefit in the same way as they do with the standard value ¢ = 0.6.

From these examples and from comparison to experiments conducted in the
following sections, it becomes clear that PHEROMONE is a powerful approach that
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Fig. 10.8 PHEROMONE with varying decay rates in a setting with locally transformed global
rewards and job generation pattern R(5, 100).
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Fig. 10.9 PHEROMONE with varying decay rates in a setting with locally transformed global
rewards and job generation pattern C(5, 100).

is able to deal with various settings. However, its performance strongly depends on
properly chosen parameter values which depend on the considered scenarios.

10.3.2 Reduced-Action-Set Strategy

In this section, we investigate the influence of the heuristic that reduces the number
of actions in the Reduced-Action-Set strategy (RAS). Table 10.3 compares RAS
with different numbers of actions, BASIC DSL, and the Random-Target Strategy
(RTS) in terms of the average solution quality in the last (10°-th) iteration of stage
games with different numbers of targets.

For an action reduction heuristic that results in N = 2 actions, RAS performs
comparable to BASIC DSL in the three target setting, but it tends to become worse
with increasing numbers of targets. Considering a heuristic that allows selecting the
three nearest targets (/N = 3), we observe a significant increase in the final solution
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Fig. 10.10 Development of solution qualities of RAS with different heuristics.
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Table 10.3 Comparison of the average solution qualities in a fixed stage game after 10 iterations.

Targets Strategy Heuristic Avg. Quality Diff. to BASIC

3 RAS N =2 0.96898 -0.00710
RAS N=3 0.97607 -0.00001
BAsIC 0.97608
RTS 0.80923

5 RAS N =2 0.93506 -0.01370
RAS N=3 0.95065 +0.00189
RAS N=5 0.94836 - 0.00040
BAsIC 0.94876
RTS 0.73407

7 RAS N =2 0.90197 -0.02788
RAS N=3 0.93537 + 0.00552
RAS N=5 0.93519 + 0.00534
BAsIC 0.92985
RTS 0.67935

10 RAS N =2 0.84399 -0.04717
RAS N=3 0.90327 +0.01211
RAS N=5 091218 +0.02102
BAsIC 0.89116
RTS 0.62056

16 RAS N=2 0.75172 - 0.04293
RAS N =3 0.85027 + 0.05562
RAS N=5 0.87730 +0.08265
BAsIC 0.79465
RTS 0.52180

quality compared to the former heuristic. The N = 3 heuristic achieves even better
solutions than BASIC DSL in settings with many targets. Adding even more actions,
i.e. N = 5, again leads to an increased performance compared to N = 3. The
improvement, however, is smaller compared to the step from using N = 3 instead of
N = 2 actions.

Accordingly, it seems unnecessary to allow agents to choose between all possible
targets in order to find a high quality (possibly optimal) solution. Instead, depending
on the number of targets, a significantly smaller action set is sufficient to find good
solutions. Clearly, one reason for this can be found in the properties of our IAPP
variant. Since targets and agents are distributed uniformly at random, there is a
high likelihood for each agent, that choosing any of the /N nearest targets should
not prohibit the agents from finding an optimal solution. Support for this statement
also comes from comparing the performance of, e.g., RAS with N = 2 in the 16
targets case to the results of the random strategy RTS. Here, we can conclude that the
heuristic—although being quite restrictive—does not lead to arbitrarily bad solutions.

A further observation can be made by considering the development of solution
qualities in the above experiments over time, as visualized in Figs. 10.10 and 10.11.
The time needed for convergence increases with the number of actions available to the
agents. Compared to BASIC DSL, however, all three RAS heuristics show a quicker
convergence to their final solution quality. This higher speed of convergence even
improves the average partitioning quality, such that RAS can become competitive to
BaAsic DSL in terms of the APQ-value, although the latter reaches a higher solution
quality in the end.
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Fig. 10.11 Development of solution qualities.

To conclude, note that the heuristic should be chosen carefully depending on the
number of targets in the system. However, as a rule of thumb, a relatively low number
of actions is a good starting point.

10.3.3 Seed-Based Strategy

One key parameter of the SEED strategy is the phase duration phasep,,.. Figure
10.12 visualizes the influence of this parameter. As we can see, learning takes longer
for increased phasep,,. values, since in a longer phase less agents compared to a
shorter phase are allowed to explore.

The second strategy specific parameter is the seed probability pgeeq, Which basi-
cally determines the number of seeds during any phase. For high values, more agents
can be expected to become seeds than for lower values. Figure 10.13 captures the
influence of this parameter. In the figure, we plot the behavior in a single stage game,
because consecutive stage games behave identically. From the results, we can observe
that the seed probability mainly influences the convergence speed. Additionally, it
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Fig. 10.12 Influence of the phase duration parameter in the SEED strategy.
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Fig. 10.13 Influence of different seed probabilities in a single stage game with a phase duration of
10.

slightly impacts the level of convergence. Given too low or too high seed probabilities,
i.e. Pseed € {0.001,0.01} or pseea € {0.7,0.9}, we observe a slower improvement
compared to more moderate probabilities like pseea € {0.05,0.1,0.3,0.5}. Since
the speed of reaching a high quality level also influences the average partitioning
quality, the same relations as for the speed can be found in the APQ values as shown
in Fig. 10.14. Clearly, given a too high seed probability, the strategy reduces to the
Basic DSL approach which explains the simulation results. On the other end, if a
too low probability is used, only a small number of agents will be able to learn, i.e.
to explore, which can explain the observed slower improvement.

In order to statistically underline the results given in Figs. 10.13 and 10.14,
additional repetitions would be necessary. From our experience, however, we argue
again that the characteristics shown after 30 iterations correspond to those found in
simulations with more repetitions.

To conclude, a short phase duration as well as a moderate but small seed prob-
ability should be chosen. On the one hand, this combination creates a more stable
learning environment because not too many simultaneous learners are present within
each phase. On the other hand, a short phase duration increases the probability for
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Fig. 10.14 Influence of the seed probability to on the average partitioning quality.

each agent to become a seed from time to time, and thus enables it to explore the
search space and to find better solutions.

10.3.4 Random-From-Neighborhood Strategy

Besides the size of the neighborhood, the probability p of following a neighbor’s
strategy also influences the performance of the RFN strategy. We will focus on that
probability in this section. Recall that p — 0 lets the agents mainly follow strategies
of their neighbors, whereas p — 1 lets them behave more like in BASIC DSL, i.e. it
lets the agents follow their own strategies.

Figure 10.15 shows some simulation results for p € {0.1,0.3,0.6,0.9} in a
setting with three stage games and global rewards. Apparently, the APQ-value
increases when more agents follow their own strategy. This is not surprising, since
randomly following a neighbors strategy in a long lasting stage game either does not
change anything, e.g. if all neighbors already follow the same strategy, or leads to
perturbations as the learning environment becomes more unpredictable.
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Fig. 10.15 Development of solutions for RFN in settings with three targets and global rewards.

As we will see in upcoming experiments described in Sect. 10.4.2, RFN performs
well in highly dynamic environments with local rewards and job generation pattern
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R(5,100). Accordingly, we investigate the influence of probability p in such settings.
The results shown in Fig. 10.16 indicate that p has no significant influence on the
average partitioning quality and also almost no influence on the speed of reaching
the final solution quality level. We only observe a slightly lower convergence speed
if a neighbor’s strategy is followed too often (p = 0.9).
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Fig. 10.16 Development of solution qualities of RFN in a setting job generation pattern R(5, 100)
and local rewards.

Based on these experiments, we finally conclude that a low probability is a good
starting point in settings with local rewards and frequently changing agents, as
the additional communicative overhead for higher probabilities does not lead to
better solutions. In settings with little or no movement and global rewards, a higher
probability results in an improved performance. Since too high probabilities lead to a
lot of communicative overhead, choosing p = % seems to be a good tradeoff for the
considered settings. In general, however, the best choice for p should be evaluated

depending on the considered scenario.

10.3.5 Previous-Strategy

The only variable parameter in the PS approach is the probability of sticking to the
previous strategy. Figure 10.17 visualizes our results for p € {0.1,0.3,0.7,0.9}. As
we can see, the standard value p = 0.9 performed worst. For decreasing probabilities
we obtain an increased performance. However, as p — 0, the approach “degenerates”
to BAsic DSL.

Accordingly, this strategy does not offer any benefits for learning as it can only
become as good as the basic learning approach.

10.3.6 Summary

From these simulations, we draw the following conclusions:
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Fig. 10.17 Influence of probability p in PS.

PHEROMONE is able to quickly find high quality solutions, but its performance de-
pends on properly chosen parameters that may differ for different (job generation)
scenarios and reward types.

If global rewards are used, RAS does not degenerate to a random strategy, even
if the number of possible actions is very low compared to the number of targets.
The choice of the heuristic is important, but a small number of actions is a good
starting point in our IAPP setting.

SEED finds high quality solutions in general, but the speed of convergence and the
solution quality level depend on proper parameter values. Short phase durations
and low seed probabilities are a good trade-off.

In settings with local rewards and frequently changing agent positions, RFN finds
high quality solutions for all investigated neighborhood-interaction probabilities.
Thus, small probabilities should be used to reduce the communicative overhead.
In global reward settings, higher values are required to achieve good results.

PS behaved best for parameter values that degenerate the strategy to BAsic DSL.

In general, the strategy specific simulations showed that parameter values strongly
influence the results. Thus, all parameters should be chosen carefully.

10.4 Reward Types and Coordination Strategies

In this section, we will analyze the performance of the proposed coordination strate-
gies. Therefore, we will compare them to each other and to ETS and RTS. Again,
we will use the standard parameter values presented earlier in Tab. 10.2.

First, we consider a setting with globally transformed common rewards and a

single stage game lasting 30000 iterations. Figure 10.18 shows the results from which
we can observe that:

1.
2.
3.

All strategies are able to learn a good partitioning given enough time.

Strategies show different convergence speeds.

Despite PHEROMONE, all strategies finish with a partitioning quality higher than
ETS.
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Fig. 10.18 Given enough time, all coordination strategies are able to reach approximately the same
level compared to ETS.

Particularly the last observation is interesting since we know from our theoretical
analysis that all strategies but RAS are guaranteed to converge to optimal solutions.
In the above experiments, however, RAS performs even better than PHEROMONE.
Basically, we can explain the good results of RAS by noting that not selecting the
most distant target is not a hard restriction in a setting with only three targets. The
suboptimal performance of PHEROMONE follows from the used standard parameter
values, which are designed to slowly create a stable pheromone distribution. In
preceding experiments (see Sect. 10.3), we have already seen that PHEROMONE can
reach very high solutions qualities significantly faster.

In the following, we will mainly investigate the different strategies according to
the previously introduced reward concepts in three different job generation scenarios.
The motivation of using R(10000) is to show how well the strategies perform given
enough time for adaptation to randomly generated new stage games. Although agents
in the second job setting with R(5,100) most probably are also faced with new
stage games in each iteration, this job generation pattern still provides some sort of
stability through the longer lasting jobs. However, worse solution qualities can be
expected, since agents may not have the time to learn a good action. By considering
C(5,100), we intend to further increase this stability. Note that this job creation
pattern intends to make use of IAPP domain knowledge, since we already know from
other experiments that good solutions contain regions, in which agents select the
same target to optimize the partitioning quality. By restricting the movement area to
a (small) circle around the last position, a previously good target selection is likely
to remain optimal. Thus, we expect slightly better results in C(5, 100) compared to
R(5,100).

10.4.1 Global Reward

Figure 10.19 shows the results obtained from simulations with a globally transformed
common reward in the three job generation settings. In Fig. 10.19(a), we can see
for R(10000), that all coordination strategies perform significantly better than the
Random Target Strategy (RTS). Although ETS is by far the fastest strategy that also
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(c) Job generation setting C(5, 100).

Fig. 10.19 Performance of the different strategies given a globally transformed common reward.
(Details on the DISTRIBUTION and DISTANCE objective values can be found in the appendix in Figs.
B.1 and B.2.)
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converges at a high level, it does not lead to the best partitionings. Except for PS, all
other coordination techniques achieve a comparable partitioning quality at the end
of each stage game. The SEED and the PHEROMONE approaches even converge at
higher levels. Note that, except for PHEROMONE, all coordination strategies basically
restart in each stage game at the same level and then develop in the same ways as in
the previous stage games. Indeed, the PHEROMONE strategy is the only approach
whose solution quality improves continuously and almost independently from the
two game transitions. This behavior follows from the fact that agents can use already
existing pheromones at their new positions after movement. As we have seen in
Sect. 10.3, the PHEROMONE approach can also converge at higher levels than ETS if
different parameter values are used.

In contrast, let us now consider the dynamic settings with R(5,100) in Fig.
10.19(b) and C(5, 100) in Fig. 10.19(c). We observe that no coordination strategy can
outperform a random target selection. Indeed, PHEROMONE, SEED, RAS, and RFN
perform even worse than RTS. To explain this behavior, note that a new cooperative
stage game arises in almost each iteration, because there is at least one agent that has
moved with a high probability in both dynamic job generation scenarios. Recall, that
in this case, the global transformation function will always return a higher reward for
the new stage game compared to any other previously observed value. Accordingly,
it does not matter which joint action was executed. Indeed, each agent will always
believe its action was good since it has obtained a higher reward. Consequently,
this problem prevents any learning. The additional results shown in Fig. 10.20 for
C(2500, 2600) as well as in Fig. 10.19(a) for R(10000), emphasize this statement,
as both cases allow learning since the stage games last “long enough”. After a
while, however, agents in the C(2500, 2600) setting will also be confronted with
stage games that change in every iteration, which follows due to unsynchronized job
generation processes.

Although we do not intend to discuss every curve in detail, we want to explain why
PHEROMONE particularly suffers from those too short stage games. Since all agents
place pheromones for their lastly executed action within radius » = 5 in almost every
iteration, and due to the high probability of following the pheromones (¢ = 0.6), one
pheromone will quickly dominate all others. To obtain such a dominating pheromone
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Fig. 10.20 Agents can learn good partitionings in long lasting stage games (C (2500, 2600)) with
globally transformed rewards.
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it is sufficient if some neighbored agents select the same target by coincidence. Then
their updates will increase the probability for other agents in their vicinity to also
take this action and so on, until all agents select the same target. Given that all agents
select the same target, one clearly obtains a DISTRIBUTION value of zero as shown
in the corresponding Figs. B.1(b) and B.1(c) in the appendix, which finally leads to
the low observed overall partitioning qualities.

For the SEED and RAS strategies, we observe a better performance in the circle
scenario. This can be expected, since movement within a restricted area leads to
slower changing overall settings compared to completely random movements.

10.4.2 Local Reward

Figure 10.21 summarizes the results for the local reward calculation strategy in
different settings. In Fig. 10.21(a) with the R(10000) job setting, we observe a signif-
icantly improved convergence speed for all coordination strategies compared to using
global rewards. However, local rewards also lead to lower maximum partitioning
qualities. Since it is hard to deduce this from the figures, have a look at Tab. 10.4,
where we present the average reward over the last iterations of all three stage games
for both reward settings. Note that the last iterations must not correspond to the best
solutions obtained in each stage game, but they are at least an indicator that support
the statement. Furthermore, it is worth noting that PHEROMONE quickly achieves a
very high solution quality and then basically stays at this level, such that it results
in a higher APQ-value than in the global reward setting. In general, the results for
the considered R(10000) setting hence support the local reward as an appropriate
replacement for a global reward, although we lose the convergence guarantees.

Next, consider the dynamic settings R(5, 100) in Fig. 10.21(b) and C(5, 100) in
Fig. 10.21(c). Comparing these results to the corresponding figures for the global
rewards (Figs. 10.19(b) and 10.19(c)) reveals a significant difference. In particular, in
the C(5, 100) setting all strategies are able to learn better solutions than the RTS. In
addition, the three communication-based strategies (PHEROMONE,SEED, and RFN)
achieve the same level as ETS. In R(5,100), all strategies, except RAS and PS,
result in better average partitioning qualities than RTS. In addition, PHEROMONE
and RFN even outperform the state-of-the-art ETS.

Table 10.4 Influence of global/local reward on partitioning qualities at the last iteration of each
stage game. The ALI reward denotes the average reward over the last iterations of the three stage
games, i.e. the average reward over partitioning qualities at iterations 9999,19999, and 29999.

Approach ALI Reward
global  local
BaAsic 0.96934 0.96888
PS 0.94607 0.95766
SEED 0.97808 0.97093
RAS 0.96955 0.95969
RFN 0.96903 0.96874
PHEROMONE 0.96749 0.97130
RTS 0.81127

ETS 0.96819
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(c) Job generation setting C(5, 100).

Fig. 10.21 Performance of the different strategies given the local reward setting. (Details on the
DISTRIBUTION and DISTANCE objective values are given in the appendix in Figs. B.3 and B.4.)
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Next, we explain the shift in behavior for the dynamic settings compared to the
global reward scenario. First, note that an agent does not increase its transformation
additive whenever any other agent moves. Second, each agent learns independently
using its own local reward. Thus, as long as the agent does not move, it basically
plays a single agent game with non-deterministic rewards for its own actions.

In that single agent game (“stateless MDP”), the learning process is less influenced
and disordered by other agents compared to the globally transformed reward settings.
This follows, since all agents’ decisions and movements in the global reward setting
influence the DISTANCE and the DISTRIBUTION value. In contrast, the local reward
is much more stable for two reasons. First, changed positions of other agents do not
influence the local distance reward. Second, although agents most probably create
different partitionings in each iteration, only the number of agents assigned to the
currently selected target is interesting from a single agent’s point of view. As one
can expect from the properties of the local distribution approximation function as
discussed in Sect. 9.2.1.2, the corresponding value will stabilize close to an equal
distribution. Figures B.3(b) and B.3(c) support the latter statement as the (global)
DISTRIBUTION objective value according to (5.2) close to 1 in average. Accordingly,
by trying to maximize its own local reward, each agent also maximizes the global
solution quality.

Recall the theoretical results on single agent ()-Learning with optimistic updates
in settings with noisy rewards, as presented in Sect. 7.3. From Corollary 1, we know
that single agent deterministic (Q-Learning with the same optimistic update rule as
DSL, converges to an optimal policy if the maximum (positively noised) reward is
observed “often enough”. Additionally, notice that in case of a locally calculated
reward, an agent basically plays such a noisy MDP with a single state. This holds
because noisy rewards are related to non-deterministic ones, as agents in both cases
observe different values for repeatedly executing the same action in the same state. It
follows, that we can transfer the result of Corollary 1 to our locally calculated reward
setting. Thus, we can expect that each agent will learn the action that maximizes
its local reward. Due to this and due to the aforementioned properties of the local
reward function, we then can expect a high solution quality according to evaluation
function (5.2).

Finally, be reminded that DSL loses its convergence guarantees under local
rewards. However, the transfer of the results from single agent (J-Learning with
noisy rewards to the local reward calculation settings at least helps to explain the
observed high quality solutions.

10.4.3 Locally Transformed Global Reward

Figure 10.22 shows the simulation results obtained when using the locally trans-
formed global reward (LTG). First of all, notice that the results for R(10000) corre-
spond exactly to those for the global reward in the same setting (cf. Figs. 10.19(a)
and 10.22(a)). Clearly, the reason for this is that all agents move at the same time,
and thus all agents locally perform the same transformation. The results for the
dynamic scenarios, which use R(5, 100) and C(5, 100) to generate of jobs, are more
interesting.
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(c) Job generation setting C(5, 100).

167

Fig. 10.22 Performance of the different strategies given the locally transformed global reward
setting. (Details on the DISTRIBUTION and DISTANCE objective values can be found in the appendix

in Figs. B.5 and B.6.)
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Compared to the global reward, we observe that in R(5,100) only RFN and
PHEROMONE are able to learn. BASIC and PS perform as good as the random
strategy and SEED performs slightly worse.

RAS attracts our attention due to its very low performance. A closer look at the
DISTRIBUTION and the DISTANCE objective values in the corresponding figures in
the appendix (Figs. B.5(b) and B.6(b)) reveals that its poor performance is rooted in
the low DISTRIBUTION value. Naturally, this observation is explainable, as there are
only three targets and just the two nearest ones can be selected through the agents.
Thus, we frequently have situations like the one sketched in Fig. 10.24(a). There, one
target can be selected by much more agents than the other two because it is at least
the second closest to all agents. After moving, an agent will execute its previously
best action with a probability of 1 — € = 0.99, if that action still is part of its updated
action set. In that case, it will obtain a higher reward than before due to the nature of
the local transformation. Now assume that, after a move, the previously best action is
not available anymore, then, by line 7 in Alg. 5, a random action will be executed.
Since there is one target action which is available for most agents, the probability of
executing that action by coincidence is higher under the random choice compared
to the remaining actions. Again, executing this action will result in a high reward
because of the movement. Due to the low exploration probability ¢, many agents
will stay with that strategy, which finally leads to declining DISTRIBUTION values.
In order to support this explanation, i.e. the influence of €, we conducted additional
experiments with different e values. The results are presented in Fig. 10.23, and
indicate that RAS can avoid such declining DISTRIBUTION values with increasing e
values. However, it then degenerates to a random strategy.

In addition, situations like the one illustrated in Fig. 10.24(b) can also explain
low solution qualities in some settings, because it may happen that a single target,
or more generally, some targets are covered by other targets and thus are seldom
considered to be valid actions.
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Fig. 10.23 RAS behavior under varying e rates.

After this excursion, let us return to the analysis of the LTG reward in the circle
setting C(5,100) as shown in Fig. 10.22(c). Here, RAS is able to learn since the
above described effect of randomly selecting an action, because the previous strategy
is not available anymore, does not occur after every movement. Furthermore, all
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strategies are able to learn, but none of them reaches the same level as ETS. The
strategies also do not exhibit the same convergence speed and also not the same
average partitioning quality as in the local reward scenario.
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(a) Agents consider the middle target T4 (b) Only some agents will consider target
as possible choice, which leads to bad T4 atall.

DISTRIBUTION values as stated in the

text.

Fig. 10.24 RAS is likely to result in bad DISTRIBUTION objective values in the sketched scenarios.

Comparable to the locally calculated reward setting considered in the previous
section, the LTG reward also leads to a “single agent MDP” with only one state.
Contrary to the local reward, however, the influence of other agents on the common
reward is much stronger for LTG rewards. In detail, the decisions of all agents and
the movement of any agent influence the global reward, and hence the LTG reward,
too. Accordingly, the used LTG reward for learning, compared to the local reward, is
much more volatile on the one hand. On the other hand, compared to the globally
transformed reward, it is less volatile. Altogether, this explains the results, which
are in the middle between globally transformed reward settings and local reward
calculation.

10.4.4 Summary

Let us briefly summarize the behavior of DSL and the coordination strategies in
different reward and job generation settings. For clarity, we only list the main results:

e In order to enable learning in large dynamic systems, agents require, besides time,
a learning environment that is locally stable, resp. shows a low dependence on
actions of other agents.

o Using globally transformed rewards and given enough time for each stage game,
all coordination strategies reach high quality solutions (cf. Figs. 10.18 and
10.19(a)).

e If a global reward is available, it should not be transformed in the environment,
since this leads to low solution qualities in dynamic settings. Instead, it should be
locally transformed by the agents. This maintains the guaranteed convergence to
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e-optimal solutions in each stage game in settings like R(10000), and allows at
least some learning in more dynamic settings.

e Although the proposed local reward implies the loss of convergence guarantees,
most strategies still perform very well with that reward. This follows, because
the setting becomes comparable to single agent learning in noisy MDPs, for
which convergence results exist. In particular, our strategies either outperform the
state-of-the-art ETS, or reach the same level and produce less costs thereby.

e Opverall, the PS coordination strategy was not convincing due to low convergence
speed and degeneration to random target selection in dynamic settings.

e Communicative coordination strategies are the most successful approaches.

Finally, we have to clarify that these results may be limited to our variant of the IAPP
in the considered scenarios. In other problem domains or scenarios, the strategies
might behave differently. To get further insights, the next section will present some
additional experimental results for various interesting scenarios.

10.5 Evaluation in Different Scenarios

Based on previous insights, we next investigate some selected DSL approaches in
settings that differ from the standard scenario used earlier. The goal is to develop an
even deeper understanding for the proposed learning methods, particularly including
their limitations.

As we have already seen, DSL is able to adapt to changing stage games in our
IAPP variant. Hence, we reduce the number of stage games to two instead of three,
in order to save simulation time in R(10000) job generation settings. If not stated
otherwise, we will re-use the standard parameter values from Tab. 10.2. Since the
focus of this section is on high level properties of the approaches, we will not discuss
strategy-specific parameter values. The used values have been chosen based on the
insights gained so far and are supported by preliminary manual tests.

10.5.1 Large Joint Action Spaces

Note that MARL algorithms in the past often have only been evaluated empirically
for small (repeated) games involving just two agents (e.g. [CB98] [LR00] [KKO02]).
In this section, we will evaluate our learning approach in a scenario with n = 10000
agents, m = 5 targets, global rewards, and a grid of 150 x 150 cells. All strategy-
specific parameters correspond to the standard values, except for some parameters
in PHEROMONE (pheromone decay rate A = 0.7, ¢ = 0.05) and RAS (number of
actions N = 3).

Figure 10.25 shows the results, and we can see that the PHEROMONE approach
is able to reach a higher solution quality than the state-of-the-art Exchange Target
Strategy (ETS). The SEED strategy shows a steadily increasing performance and
reaches a good solution quality level, too. The remaining strategies, in particular the
Basic DSL approach without additional coordination techniques do not perform
well.
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Fig. 10.25 Simulations with global reward for 10000 agents and 5 targets.

In order to understand this behavior, recall that the size of the joint action space is
heavily increased from 3°°° in the standard scenario to 5'°" possible joint actions in
this large setting. Hence, the algorithms have to search a tremendously large joint
action space in order to find a high quality solution.

From its theoretical properties, we know that BASIC DSL would find an optimal
solution given enough runtime. However, since only the e-greedy action selection
will “steer” the search process, the approach will quickly become impractical. As
we have seen in previous experiments, too small exploration rates will lead to a
slow performance increase, which will even be lower here due to the large joint
action space. Too high exploration rates, however, would lead to an unstable learning
environment and convergence to lower solution qualities. Assuming knowledge
about the game structure, i.e. the duration of each stage game, one could consider
to use techniques like the Boltzmann exploration (see e.g. [CB98]), that adjust
the exploration rate e over time. Since we do not have such knowledge in general
cooperative sequential stage games, this approach will not be applied here. Instead,
we rely on the proposed coordination strategies.

As the above results indicate, some coordination techniques are able to deal with
the increased joint action space. However, as we will show in the next experiments
visualized in Fig. 10.26, they also suffer from the general curse of dimensionality.
We reuse the same 10* agent setting, but we increase the number of agent individual
actions, by considering m € {5, 10, 16, 32} targets.

The comparison of DSL-based results with those achieved by ETS shows that
their performance decreases with increasing numbers of targets, i.e. with larger joint
action spaces. It is, however, worth noting, that PHEROMONE for m = 5 and m = 10
targets reaches a higher solution quality than ETS, and also shows an increasing
solution quality for 16 targets. For 32, however, PHEROMONE is even worse than
the basic approach. This behavior is rooted in the pheromone radius, the parameter
values, and the scenario settings. For instance, if too many targets are too close to
each other, their pheromone regions will probably overlap, which results in more or
less random pheromone-based agent decisions.

In the end, we hence conclude that the general curse of dimensionality found in
MARL is, unfortunately, also part of our approach. However, additional coordination
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(b) Results for settings with m = 16 and m = 32 targets.

Fig. 10.26 Simulations with global reward for 10000 agents and m € {5, 10, 16, 32} targets.

techniques and proper parameter values can help to deal with larger settings, at least
to a certain extent.

10.5.2 Hotspot Distributions

Up to now, we have only investigated uniformly at random positioned agents. In the
next experiments, we investigate the standard scenario with 500 agents and three
targets, but we use a Gaussian distribution in order to create agent positions around
a “hotspot” centered in the environment. The target positions remain uniformly
distributed. Figure 10.27 shows an exemplary setting.

The results for this setting are shown in Fig. 10.28, and indicate that the DSL-
based approaches are able to reach the same or a higher quality level than ETS. In
particular, even the basic approach achieves higher solutions qualities. The reason
for this behavior is that the DSL-based approaches are not fixed to a certain DISTRI-
BUTION objective value as it is the case in ETS. Hence, the learning approach can
better balance both objectives, and thus reaches a better overall solution.
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Fig. 10.27 Exemplary hotspot scenario: agents are visualized as circles, targets as black boxes.
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Fig. 10.28 Simulation results for three targets, globally transformed rewards, and 500 agents that
are randomly positioned around the middle of the environment according to a Gaussian distribution.

One exception is the RAS strategy, which allows the agents to only select between
the two nearest targets. Due to the spatial distribution, this restriction prevents the
algorithm from optimizing the DISTRIBUTION objective.

According to these results, we can state that DSL is a flexible approach that
benefits from not incorporating assumptions on “optimal” solutions for the IAPP,
like “optimal” partition sizes, as in ETS, or “minimized distances”, as in the RAS
strategy.

10.5.3 Long Stage Games

In this section, we consider a setting with n = 1000 agents and m = 16 targets,
a 50 x 50 grid, global rewards, and a single stage game with 100 iterations. We
compare the behavior of BASIC DSL and PHEROMONE to ETS with respect to the
speed of improvement. Figure 10.29 presents the results from which we can see that
Basic DSL steadily improves, but the improvements become less the longer the
stage game lasts. In particular, even after 10 iterations, it still has not reached the
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solution quality found by ETS. The time required for reaching high quality or optimal
solutions hence clearly makes the approach impractical if no additional coordination
is conducted. On the other hand, PHEROMONE shows faster improvement and is able
find significantly better solutions than both, the state-of-the-art ETS approach and
the basic learning approach.

Solution Quality
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0 200000 400000 600000 800000 1000000
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Fig. 10.29 Single stage game with 1000 agents, 5 targets, and 1.000.000 iterations.

10.5.4 Summary

The different settings investigated in this section can be summarized as follows:

The curse of dimensionality also appears in the DSL approach. Hence, BASIC
DSL is unable to find high quality solutions in too large joint action spaces
efficiently. Coordination strategies like PHEROMONE or SEED are able to deal
with larger joint action spaces than the basic approach, but in the end they still
suffer from the mentioned curse of dimensionality.

DSL-based approaches are able to deal with non-uniformly distributed agents in
the sense, that they can find high quality solutions. In particular, the flexibility
that comes from using a general reward-based model allows to successfully apply
DSL without modifications to different scenarios, which might not hold for other
special purpose IAPP algorithms like ETS.

With increasing runtime, BASIC DSL is able to find better and better solutions.
However the speed of improvement decreases. With the help of additional coor-
dination techniques faster improvements can be achieved, such that the learning
approach is able to find solutions that might be close to optimal given enough
runtime.
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10.6 Discussion

This chapter presented a detailed empirical analysis of the basic DSL approach
and its coordination strategies in the context of our IAPP variant. Since we already
provided summaries at the end of each section, we only provide a high level view on
the main findings of this chapter:

DSL is able to find high quality solutions in MAS with huge joint action spaces.
The DSL-based approaches are applicable in various settings without adjustments,
including settings with changing numbers of agents, changing target positions,
different spatial distributions, as well as in settings with different agent to target
ratios, or in highly dynamic job generation settings.

e Although direct communication could help to improve the performance, it is not
necessary for finding high quality solutions in general.

e The used reward type influences the learning abilities of the agents. However, local
rewards frequently lead to high quality solutions, despite the loss of theoretical
convergence guarantees.

e Locally calculated rewards are comparable to learning in single agent MDPs with
noisy rewards. Hence, the convergence results from these single agent settings,
together with the inherent properties of our IAPP variant, can help to explain the
good results obtained from locally calculated rewards.

e Although sequential stage games formally do not consider a state, the DSL-based
approaches still suffer from the curse of dimensionality. However, this problem
only applies to the joint action space and not to the state-joint-action space, as it
would be the case in standard joint action learners for cooperative games. With
the help of coordination strategies, the border of feasible scenarios can be shifted
even further. This particularly holds for settings with large numbers of agents that
have only small numbers of agent individual actions.

e With the help of (semi-)local rewards, DSL is shown to learn without a central
feedback in several settings.

Besides these findings, it should also be noted, that globally engineered rewards are
quite useful if agents seldom change positions. But they may lead to no learning at
all if changes occur too frequently, e.g. in each iteration. In addition, proper scenario-
dependent parameter values are important, as the performance of the proposed
coordination strategies strongly depends on it.

Based on these results, we can conclude that DSL does not only work well in
small problems involving just two agents (cf. Sect. 8.4), but it can successfully
be applied in large multiagent systems. Due to the sequential stage game model
and the engineered rewards, the agents are also able to adjust their strategies to
changing settings without the need for a global state of the system. Given appropriate,
probably problem-specific, coordination techniques that steer the action selection at
an individual level, significant improvements with respect to the speed of convergence
and the solution quality level can be realized. Also, such strategies enable learning in
even larger joint action spaces. From our results in dynamic scenarios, we can further
infer that learning in large dynamic MAS requires not just time, but also some sort
of stability. By stability, we mainly mean that not too many agents should explore
their environment by performing random actions.

In the end, it remains to state that all DSL-based approaches have only been
evaluated in one particular problem, namely in our variant of the Iterative Agent
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Partitioning Problem. Like any other problem, our IAPP variant itself possess certain
properties that influence the behavior of the investigated strategies. Hence, different
problems might lead to different behaviors of the strategies. This investigation,
however, shall not be part of this thesis and is left for future work.
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Storage Medium-Based
Distributed Stateless Learning

This chapter combines the Distributed Stateless Learning (DSL) approach with
storage media placed in the environment of our instance of the Iterative Agent Parti-
tioning Problem (IAPP). In addition, it evaluates the proposed approach empirically.

In detail, we first present a generic approach that combines DSL and storage
media, and then we describe a concrete variant of the approach, that works with
simple media. Based on information provided by the agents, the media are able
to propose actions. Therefore, media simply count how frequently agents execute
different actions. An agent that asks a medium for advice, for instance if the agent
has moved to a new position, will get the most frequently used action as answer. We
empirically evaluate the proposed approach and investigate different aspects.

The main contributions and results of this chapter are as follows:

e We present a generic approach that combines externally stored information with
learning in large MAS.

e The approach is, to the best of our knowledge, the first one that uses transfer
learning in a large multiagent system with hundreds of agents.

e Storage media can help to allow learning in dynamic and open multiagent systems,
because they offer the ability to store and maintain knowledge at certain regions
in an environment, even when agents move to other regions.

e The concrete variant of the approach is evaluated exhaustively:

— It significantly speeds up learning compared to the BASIC DSL approach
without storage media.

— It allows agents to learn from global rewards in dynamic settings, which is not
possible in DSL without storage media.

— It allows transferring knowledge from smaller instances of the IAPP to larger
ones.

This chapter is organized as follows. First, in Sect. 11.1, we present the generic
approach as well as the concrete implementation. Furthermore, we provide a general
discussion of storage media in MARL. Then, Sect. 11.2 describes the considered

177
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simulation settings, provides an exhaustive empirical analysis, and gives a detailed
summary on the obtained results. Finally, we conclude the chapter in Sect. 11.3.

11.1 Approach

In this section, we propose the generic approach that combines DSL with external
storage media. Additionally, we present a concrete variant of that general approach,
which will be investigated later in this chapter.

The generic approach essentially corresponds to the DSL approach with embed-
ded storage media usage. Algorithm 9 shows the pseudocode of the media-based
algorithm and highlights differences to the ordinary DSL algorithm. The main differ-
ences can be found at the end of each iteration, when relevant information are stored
on a medium nearby (cf. Alg. 9, lines 21-23), and in using that external knowledge to
select actions if a corresponding condition is true (lines 6-12), instead of following
an ordinary action selection strategy.

Algorithm 9 Generic DSL with storage media (executed by each agent i € A)

Input: Cooperative SSG obtained via CSSG-transformation T
1: procedure DISTRIBUTEDSTATELESSLEARNING

2: t+0

3 Va € A; : gi(a) + 0 > initialize local g-function
4: 0; < choose arbitrary action from A; > initialize strategy
5: while (t < tmax) do
6
7
8

Action a} < NULL
if useMediumCondition then
Medium M < nearest storage medium

9: Action aps <+ M.getProposedAction() © get action proposed by the medium
10: if aps is set then

11: ai —anm

12: ifal # NULL then

13: al «+ Select action using standard methods (e.g. e-greedy)

14: Execute action a! > leads to joint action u¢
15: Observe reward pt (ut) > reward of joint action uy
16: maxqi « maxqea,{qi(a)}

17: i 11(a) < qi(a),Va € A; \ {a}

18: 941 (ay) < max{q;(a}), pe(us) + v - maxq; }

19: if ¢ 1 (a}) > maxq} then
20: o + choose al > update strategy
21: if storeOnMediumCondition then
22: Medium M < nearest storage medium
23: M store(t, pt(ut),al) > store relevant information externally
24: t—t+1

Concrete implementations of this generic approach have to specify the two con-
ditions, useMediumCondition and storeOnMediumCondition, and describe the
used storage media. In particular, a medium might not store all values specified in
the above pseudocode, or it might request different information. Also, the method
that returns a proposed action (line 9) could be designed differently and return, e.g., a
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probability distribution over possible actions. Furthermore, a concrete approach must
also consider aspects like strategic placement of storage media or their numbers.

In this chapter, we will investigate the following concrete variant of this generic
schema as a proof-of-concept approach. The media, which we consider, are called
Counting Media (CM). A CountingMedium only counts how often each action was
executed by agents nearby and returns the most frequently executed action whenever
getProposedAction() is called. Agents submit their played action to their near-
est medium at the end of each iteration. Hence, the storeOnMediumCondition
in line 21 of the algorithm is always TRUE. Concerning the second condition,
useMediumCondition, we decided to rely on storage media knowledge after move-
ment. This means that after an agent has moved to a new position it will follow the
most often played action according to its nearest storage medium. As general action
selection procedure, we use the basic e-greedy approach. Finally, the positioning and
number of storage media has to be defined. Therefore, we use a grid structure and
place one medium at the center of each grid cell. This is equal to an earlier placement
approach presented in Ch. 12 (cf. Fig. 12.7, page 199).

Since this concrete approach combines DSL with CountingMedia, we will refer
to it as Distributed Stateless Learning with Counting Media (DSLCM) approach.

11.1.1 Discussion

External storage media in the context of multiagent reinforcement learning can be
considered from different perspectives:

Coordination technique: Since external storage media mainly influence the ac-
tion selection process of agents, the above approach can be considered as an
additional coordination technique. However, the generic approach also allows a
combination of storage media and coordination techniques like RFN, RAS SEED
or PS (cf. Ch. 9). Furthermore, storage media can also be used to implement
the PHEROMONE strategy by providing a means for storing pheromones in an
environment.

Learning object: =~ With respect to the SEED approach, one may consider the stor-
age media as permanent seed agents, which do not move but constantly learn
using the DSL approach. However, by our definition of storage media, we want
the media to be passive objects that focus on storing information, rather than
executing a learning algorithm on their own. The same point of view also applies
to the RFN strategy, where storage media could be considered as some kind of
never moving agents that provide advices. Accordingly, taking storage media
into account in a learning MAS is related to using an additional special kind of
agents. Contrary to “real” agents, however, storage media have different properties
concerning e.g. storage or computational capacities and mobility.

Transfer Learning: In Transfer Learning (TL), there exist one source task and
one goal task. Agents learn to solve the usually simpler source task and use the
gained knowledge as basis for learning in the related goal task (see Sect. 2.5 for
more details on TL). Given an IAPP instance modeled as cooperative SSG, each
stage game corresponds to a different task. By initially using knowledge from
storage media, the agents essentially transfer learned knowledge from previous
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tasks to a current task. Hence, the usage of storage media in the proposed approach
can be considered as a kind of Transfer Learning, too.

In the following empirical analysis, we will investigate the proposed concrete
implementation of the storage media-based approach to highlight similarities to the
three above presented aspects.

11.2 Empirical Analysis

This section presents the empirical results for the storage media-based learning
approach'. Sections 11.2.1-11.2.6 investigate and discuss different aspects of this
approach and Sect. 11.2.7 provides a brief overview on all results.

Before we present the results, let us first briefly describe the considered scenarios.
These settings have been chosen based on previous experiences. Furthermore, the
problem is already complex enough on the one hand, but it does not require too much
computational time on the other hand. In detail, we simulate the proposed concrete
variant of the storage media-based approach for k£ = 12000 iterations using m = 3
randomly positioned targets and an environment with 50 x 50 cells. As usual, we use
the discount factor v = 0.0, e-greedy action selection with € = 0.01, and a common
globally transformed reward. We place one storage medium every tenth column and
row in order to create a regular media grid and center it in the environment (see Fig.
11.7 for a visualization of the grid). For simplicity, we refer to this media placement
as 10 x 10 grid. Agents can always interact with their nearest medium.

Contrary to previous experiments, we consider a setting that allows dynamically
changing the number of agents during a simulation. The first phase, called source
task (st), lasts for ks, = 3000 iterations and contains ng; € {100, 1000} agents. After
the source task is over, additional agents might be added to the system such that in
total ng; = 1000 agents are part of the subsequent goal task (gt). The goal task lasts
k — kst = 9000 iterations. The terms source and goal task are used with reference
to Transfer Learning. During the source task and during the first 3000 iterations of
the goal task, no agent is allowed to move. Afterwards, agents either move randomly
according to the R(3000) or R(5, 100) job generation pattern as described earlier in
Sect. 10.1. Accordingly, the source task is a single cooperative stage game and the
goal task a cooperative SSG with multiple stage games. Considering the entire game,
i.e. source and goal task together, we have a cooperative SSG with multiple stage
games and varying number of agents.

11.2.1 Storage Media as Coordination Technique

Before we investigate the approach in the source and goal task setting introduced
before, we first compare BASIC DSL and the storage media-based approach in a
simple cooperative stage game with three consecutive stage games, each lasting 3000
iterations. Figure 11.1 visualizes the results and shows that the storage media-based
approach performs exactly as BASIC DSL in the first stage game if no initial storage

! The simulation tool is available for download [Kem12].
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media knowledge from a source task is available. However, while BASIC DSL has to
restart learning in consecutive stage games, the proposed approach is able to benefit
from the knowledge on the storage media that was gained during the first stage
game. Accordingly, the overall solution quality is higher for the proposed approach
compared to the basic learning approach.
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Fig. 11.1 Storage media-based approach versus BASIC DSL in a cooperative SSG with three stage
games each lasting 3000 iterations, random jobs, 1000 agents, three targets, and ¢ = 0.01.

Next consider Fig. 11.2, which contains the two curves from the previous fig-
ure and two settings with source tasks that use ng, € {100, 1000} agents. As the
figure reveals, the storage media-based approach always leads to a better overall
performance compared to the BASIC DSL approach.
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Fig. 11.2 Simulation results that show the influence of storage media compared to not using them.

In order to better classify the solution quality of the storage media-based approach,
let us now focus on the first stage game of the goal task. Figure 11.3 shows the
performance of BASIC DSL with € = 0.01 in that first stage game played for 97000
iterations. There, we can see that the storage media-based approach, using a source
task with ngy = 100 agents, initially has a solution quality which BASICc DSL
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Fig. 11.3 Performance of BASIC DSL with e = 0.01 in the first stage game of the goal task shown
in Fig. 11.2.

barely reaches after approx. 24500 iterations. Also, during only 3000 iterations, the
storage media-based approach manages to reach the same solution quality as BASIC
DSL after 14500 additional iterations. Hence, the storage media can significantly
improve the convergence speed and coordinate the agents quickly towards high
quality solutions which underlines the media’s role as coordination technique.
Further influences of source tasks will be investigated in the next section.

11.2.2 Source Tasks

Figure 11.4 shows the development of solutions qualities given a source task with
100 agents and given no source task. The drop of the black curve at the beginning
of the goal task follows from adding 900 agents. These additional agents initially
follow the “strategy” learned by the 100 agents in the source task, simply by using
the knowledge found on the storage media. Without source task, it obviously takes
several iterations until agents manage to find better solutions (red curve). Accordingly,
the differences between both curves in the first stage game of the goal task can be
traced to the knowledge learned in the source task. In the following two stage games,
the difference between both curves becomes smaller, but it still remains significant.

Next consider Fig. 11.5, in which the green curve shows the development of
solution qualities if the source task also contains 1000 agents. The difference in the
first stage game of the goal task to the setting without source task is slightly reduced
compared to the source task with 100 agents (cf. also Fig. 11.6). For the two last stage
games, no difference in solution qualities compared to the setting without source
task is observable, i.e. the storage media propose the same targets after the first stage
game of the goal task.

Interestingly, there is a small but significant difference between using a source
task with 100 or 1000 agents as shown in Fig. 11.6. In particular, we can observe
a small but not significant difference in the first stage game of the goal task, but a
significant difference in the second and third stage game.



11.2 Empirical Analysis 183

o
S
—
z g
S o
(o4
P i
i)
5 o
= o
& o
—e— source task with 100 agents
E B —+—  no source task
(=} T T T T T T T
0 2000 4000 6000 8000 10000 12000
Iteration

Fig. 11.4 Behavior of DSLCM given a source task with 100 agents or no source task and a goal
task with 1000 agents. Average values over 1000 repetitions; gray shadows correspond to 95%
confidence intervals.
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Fig. 11.5 Behavior of DSLCM given a source task with 1000 agents or no source task and a goal
task with 1000 agents. Average values over 1000 repetitions; gray shadows correspond to 95%
confidence intervals.
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Fig. 11.6 Behavior of DSLCM give a source task with 100 resp. 1000 agents and a goal task with
1000 agents. Average values over 1000 repetitions; gray shadows correspond to 95% confidence
intervals.
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In order to understand why we observe a better goal task performance if a source
task with less than 1000 agents is used, consider Fig. 11.7. It shows targets (colored
boxes) and storage media (“‘S”) at the end of the source task in a randomly chosen
exemplary setting. The color of a storage medium corresponds to the color of the
“learned” target. Comparing both subfigures, one observes differences in the proposed
targets as highlighted in Fig. 11.7(b) by bold “S”-symbols. As we can see from the
figure, if the source task contained 1000 agents, then only a small fraction of storage
media propose the red target. Since agents will initially rely on the propositions
of the media a lower DISTRIBUTION value can be expected compared to the 100
agent source task setting. Accordingly, the initial goal task performance depends on
the performance in the source task since the learned behavior determines the initial
storage media proposals. Assuming a higher solution quality in the source task with
1000 agents, we would obtain better initial target proposals from the storage media
and thus a better performance in the goal task. This statement is supported by the
third stage game of the goal task in Figs. 11.4 and 11.5. There, the initial solution
quality is high, because the media already contain good proposals due to the higher
solution qualities in the preceding stage games.

S S
S S
o [m]
S S S S S S S S
S S S S S S S S S S
S Su S S S S Su S S S
[ | [ |
(a) nsy = 100 (b) ngt = 1000

Fig. 11.7 Storage media and their proposed target at the end of the source task.

11.2.3 Number of Media

As we have seen in the previous section, the media influence the solution quality
by their target proposals. Figure 11.7 also shows that the media themselves “learn”
to solve the IAPP in the sense that they build target regions like those discussed in
Ch. 12. Contrary to real target regions, the regions created by the discussed storage
medium-based learning approach cannot have an arbitrary form. Essentially, the
storage media describe a discretization of target regions. Hence, the approximation
quality depends on the number of media and, in general, also on their position.
Besides the tradeoff between the number of storage media and the expected solution
quality, one also has to consider the number of agents in a source task. This is
important, because if there is a large number of media and a low number of agents,
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then the probability of having media without target proposals increases. This follows
because maybe not each medium is the nearest medium to any agent.

S 5 5 § S5 S 5 5 5§ 5 5 5 5 S5 5 f

Fig. 11.8 289 storage media on a 3 X 3 grid at the end of a source task with 100 agents. Black
storage media (“S”) have no initial target proposal for the goal task.
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Fig. 11.9 Source task with 100 agents, goal task with 1000 agents and different media grids, where
x X z denotes a grid with a medium every z-th row and every z-th column.

That statement is supported by the target proposals shown in Fig. 11.8 and the
results provided in Fig. 11.9. For 289 media placed on a 3 x 3 grid, the initial solution
quality of the goal task is significantly lower than for all other situations that use
fewer media. With a decreasing number of media (e.g. 100 and 25 as in Fig. 11.9),
the initial performance is increased. However, if not sufficiently many media are
used, then the discretization becomes too rough and the solutions worsen again (e.g.
9 vs. 25 media in Fig. 11.9).
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Another important factor for the storage media approach is the number of targets.
Although we do not provide any simulation results for larger numbers of targets at
this point, it can be expected that solutions become worse if the number of storage
media and their placement does not allow to find well approximated target regions.

11.2.4 Influence of Source Task Solutions and Exploration

From previous experiments with BASIC DSL, we know that the development
of solution qualities strongly depends on the choice of ¢ for the e-greedy action
selection (cf. Fig. 10.2 on page 146). Hence, we next consider the influence of
e € {0.001,0.01,0.1} to the storage media-based approach. Figures 11.10 and 11.11
present the results for source tasks with 100 resp. 1000 agents.
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Fig. 11.10 Influence of € and the solution quality in a source task with nsy = 100 agents.
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Fig. 11.11 Influence of € and the solution quality in a source task with ng; = 1000 agents.
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Independent of the number of agents in the source task the figures show that the
final performance in the source task determines the initial performance in the goal
task, as well as the initial performance for the following stage games in the goal
task. It is particularly noticeable, that for e = 0.1 a short increase in the solution
quality can be observed when the knowledge of the media is used. However, the
solution quality declines immediately as too many agents explore at the same time.
Nevertheless, compared to the experiments with BASIC DSL and 500 agents in Sect.
10.2.1 Fig. 10.2, we observe a higher solution quality in the storage media-based
approach, i.e. the influence of a comparatively high exploration rate in the proposed
approach is smaller than in the basic learning approach.

In addition, these experiments indicate different performances in the goal task
for e = 0.001 (blue graphs), although the final solution quality in the source task is
comparable. The reason for this behavior can be explained by considering the target
regions approximated by the storage media. For 1000 agents, the regions are mainly
connected and reflect the target regions quite well. Contrary to that, in the 100 agent
source task, no proper regions can be established due to very little exploration.

11.2.5 Dynamic Settings

Next, we investigate the approach in a goal task, in which agents initially work on
jobs that last 3000 iterations. Afterwards, jobs with a random duration between 5 and
100 iterations located at random positions are assigned to the agents. Figure 11.12
summarizes the results.
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Fig. 11.12 Simulation results for a goal task with initially 3000 iteration long jobs followed by a
more dynamic job generation using R(5, 100).

As the figure reveals, during the dynamic phase of the goal task storage media
enable agents to find solutions that are significantly better compared to BAsic DSL
without storage media. Furthermore, the agents benefit from better initial target
proposals that are obtained if ng, = 100 agents are used in the source task.
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11.2.6 Locally Calculated Reward

Finally, this section investigates the storage media-based approach with locally
calculated rewards as described in Sect. 9.2.1.2. Figures 11.13 and 11.14 present the
results for different goal tasks, as described in the figures’ captions.
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Fig. 11.13 Locally calculated rewards in a goal task with three stage games.

Figure 11.13 shows that a source task with ng; = 1000 agents leads to the best
results, followed by a source with 100 agents. In particular, by using storage media,
there is no difference in the second and third stage game of the goal task, independent
of a possible source task. Without storage media, the agents in all stage games
achieve the same final solution quality, but they require much more time to do so.
Accordingly, the benefits from using storage media under locally calculated rewards
can be identified in faster convergence compared to BASIC DSL without storage
media. Also, a simple source task with fewer agents than in the goal task seems to be
a good tradeoff between improved performance and additional computational effort.
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Fig. 11.14 Locally calculated rewards in a dynamic goal task with frequently changing agent
positions.
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In the end, reconsider the goal task that creates jobs according to R(5, 100) after
the first “stable” stage game is over. The results for this setting are illustrated in Fig.
11.14 and basically are in line with the three stage game goal task discussed before.
In detail, the solution qualities under local rewards do not differ in the dynamic
phase if storage media are used. Contrary to BASIC DSL, the storage media-based
approach is able to deal with the dynamic phase and finds high quality solutions by
relying on the knowledge stored on the media.

11.2.7 Summary

The empirical findings presented in the preceding subsections considered various
aspects of the proposed storage media-based learning approach. Although further
experiments could be done, the most important characteristics have been considered.
In detail, the main results can be summarized as follows:

e Agents can benefit from learned and externally stored knowledge, in particular,
such knowledge enables the agents to quickly find high quality solutions.

e Using knowledge from a simplified source task significantly improves the overall
performance of the learning MAS. Furthermore, agents that can base their learning
on source task knowledge can improve the solution quality faster than agents that
learn without the help of such knowledge.

e If the source and the goal task do not differ in the number of agents, then agents
benefit only in the first stage game. In consecutive stage games no significant
difference is observable.

e Even though storage media do not actively execute a learning algorithm, the
statistic data that they gather from the learning agents enables them to approximate
target regions. However, the quality of these approximations depends on the
number of media, their positioning in the environment, as well as on the number
of agents.

e The performance of agents in the goal task is influenced by the solution quality
obtained in the source task because this determines the media’s initial target
proposals.

e The storage media-based approach is able to find better solutions under high
exploration rates than BASIC DSL.

e In dynamic settings, in which agents change positions in (almost) each iteration,
the proposed approach still finds high quality solutions (APQ = 0.9) using a
global reward, which does not hold for BASIC DSL that only reaches an average
partitioning quality of APQ =~ 0.8.

e Under locally calculated rewards, the benefit of storage media in a goal task with
three stage games is limited to an improved convergence speed. It does not lead to
a higher final solution quality. In highly dynamic settings with constantly moving
agents, however, the storage media-based approach with local rewards achieves an
APQ of approximately 0.95, whereas BASIC DSL without media only achieves
approximately 0.82.
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11.3 Conclusion

This chapter presented a novel generic approach towards multiagent reinforcement
learning in combination with knowledge stored outside of the learning agents. A
concrete implementation of that approach was analyzed empirically and shown to
possess several beneficial properties concerning convergence speed, speed of learning,
the achieved solution qualities, and the behavior under dynamic settings. Since the
preceding Sect. 11.2.7 already provides a summary on all these results, we won’t
repeat them. Instead, we discuss the obtained insights from a broader point of view.

First of all, consider the approach from the perspective of Transfer Learning.
Since TL in MARL is a relatively new research area, only few related papers have
been published so far. However, from these papers, e.g. [BPV12] or [VDHN11], one
can deduce that one difference between source and goal task in multiagent settings
can be found in the number of agents involved. This is also what distinguishes our
simplified source task with 100 agents from the goal task with 1000 agents. Since
the aforementioned works only consider small systems with two or three agents,
our approach—to the best of our knowledge—is the first one that considers transfer
of knowledge in large MAS with hundreds of agents. Contrary to [BPV12] and
[VDHNI11], our storage media-based approach also does neither transfer Q-values
nor strategies from source to target task, but it directly influences the action selection
by transferring statistical knowledge from the source task. In general, and also taking
the insights from the region-based heuristics in Ch. 12 into account, we can state that
storage media and knowledge transfer work well in our setting due to an inherent
property of the considered IAPP instance. The property we refer to is that of rarget
regions as investigated in Ch. 12. Given that agents are able to learn this underlying
structure, the resulting knowledge can be stored on media such that, independent of
actual agent positions and, to some extent, also independent of the number of agents,
high quality solutions are likely to be found when the media’s knowledge is used.

Accordingly, using storage media in the context of learning multiagent systems
can generally be considered as a coordination technique, too. In particular, the media
can be useful in dynamic systems with mobile agents or in open agent systems where
the number of agents changes over time. The key property is its ability to maintain
knowledge in an environment even if agents “disappear”.
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Region-Based Heuristics

In this chapter, we present some region-based heuristics for the IAPP instance
considered in this work.

The basic idea of the developed algorithms stems from an interesting observation
on high quality solutions for a fixed iteration of the IAPP. As illustrated in Fig. 12.1,
such solutions show connected regions of agents that select exactly the same target.
From this observation, we claim that such connected regions can be used as basis
for finding good solutions in all iterations of an IAPP instance, if the mobile agents
are always placed according to a uniform distribution. The basic idea is, to calculate
such regions and to let each agent choose the target belonging to the region the agent
is located in.

Fig. 12.1 High quality solutions for three IAPP iterations with same target but different agent
positions (m = 5,n = 500).

The remainder of this section is organized as follows. First, we define the regions
and formalize the above claim as an hypothesis. Then, we investigate the error
between using regions and optimal solutions in a two target IAPP setting. Afterwards,
we develop a local heuristic based on the Exchange Target Strategy (ETS) [Goe07]
and analyze the number of messages it sends. All the aforementioned parts have
already been published in [KKB11d], and as an extended version in a technical report
[KKB10b]. Hereafter, we will use the latter for reference purposes and basically
follow its structure. Finally, we also investigate Voronoi Diagrams as a special region

type.

191
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12.1 Target-Regions

First of all, we need to define the regions that are claimed to provide a good basis for
target selection:

Definition 28 (Target-Regions [KKB11d]). A Target-Region TR(T') for any target
T in a full grid environment is defined by a set of cells C. The set consists of target
T"s cell and all cells of agents that, in an optimal solution, are assigned to 7.

In a full grid environment all cells are occupied by agents or targets. Contrary to
a full grid environment, an environment with at least one free cell is called sparse.
One issue with the above definition is that the regions are based on optimal solutions,
and as mentioned earlier, calculating such optimal solutions is assumed to be at
least A"P-hard for general settings. Thus, we will have to use approximated Target-
Regions.

12.1.1 Properties

Before we investigate the expected solution qualities for TR-based algorithms, we
briefly state some useful properties. Due to Prop. 2 on page 68 we know that there is
more than one optimal solution for a fixed positioning in general. This leads to the
following property:

Property 6 ([KKB10b]). There can be different Target-Regions for the same full
grid environment.

Since each agent and target in our environment occupies one cell and because
optimal solutions according to Prop. 3 can have different partition sizes, Prop. 7
follows immediately.

Property 7 ((KKB10b]). Target-Regions do not necessarily occupy the same area.
Next, consider Fig. 12.2, which allows us to state Prop. 8.

Property 8 ((KKB10b]). Target-Regions may be unconnected.

Fig. 12.2 Optimal solution (f =~ 0.9347) with unconnected Target-Regions.

Finally, we can deduce Prop. 9 from Prop. 5 in conjunction with the Target-
Regions shown in Fig. 12.3, which illustrates the setting used in the proof of Prop.
5.

Property 9. Target-Regions used in a sparse environment, that resulted in an optimal
solution at iteration t, are not guaranteed to produce optimal partitionings in iteration
t + 1, if at least one agent has moved by at most one step.

We will refer to these Target-Region properties later on.



12.1 Target-Regions 193
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Fig. 12.3 Target-Regions.

12.1.2 Solution Quality

According to Def. 28, Target-Regions provide optimal solutions for all iterations
in IAPP instances that have a full environment. This follows because the solution
quality (cf. (5.2)) does not distinguish between different agents as it considers only
their distances and target assignments. Hypothesis 1 deals with the more interesting
question about the development of the expected solution qualities in sparse environ-
ments. It is particularly noticeable, that the hypothesis deals with expectations, since
Target-Regions by Prop. 9 are not guaranteed to lead to optimal solutions in the IAPP
with moving agents.

Hypothesis 1 ([KKB10b]) Consider the IAPP where agents create partitionings
based on Target-Regions. Then the resulting average partitioning quality according
to (5.1) is expected to be

1. high if agents are distributed uniformly, and
2. low if agents are distributed according to a normal distribution.

The solution quality further depends on the ratios between the number of agents,
targets, and the size of the environment.

In order to verify the expected high solution qualities in case of uniformly dis-
tributed agents, we conducted experiments that are described in detail in [KKB10b].
We used the TTO strategy (cf. Sect. 2.2 or [GoeQ7, Sect. 3.2.2]) to calculate opti-
mal solutions for a set of different scenarios. Afterwards, we compared the results
based on the pre-calculated Target-Regions with those obtained by using the TTO
approach in every iteration. As metric we considered the average error, i.e. the aver-
age difference over all iterations between the optimal solutions and those obtained
by Target-Regions. The investigated settings all involve two targets and different
numbers of agents as well as environment dimensions. We had to restrict these inves-
tigations to the two target case, as there is no known algorithm for settings with more
targets. Figure 12.4 visualizes the results with 95% confidence intervals, whereas
each value is averaged over 100 repetitions.

The visualized simulation results also support the second statement of the hypoth-
esis. To further clarify why solutions in settings with normally distributed agents are
expected to result in worse solutions consider Fig. 12.5. There, the solution quality
obviously is expected to be low since all agents are placed within a small part of
the environment determined by the normal distribution. Accordingly, neither the
DISTANCE nor the DISTRIBUTION objective values will be high. Extending this
example by considering a position in the middle of the environment as well as a large
standard deviation, however, leads to another conclusion. In such a setting the normal
distribution may roughly approximate a uniform distribution. This could result in
better solutions as agents may also benefit from Target-Regions.
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Fig. 12.4 Average error TTO vs. TTO-Target-Regions (from [KKB10b]).

positions

Fig. 12.5 Schematic Target-Regions with normally distributed agents.

Based on this empirical evaluation of Hypothesis 1, we conclude that Target-
Regions are a proper means to find high quality solutions for the IAPP if agents
are uniformly distributed. In the next section, we will describe an approach that
approximates Target-Regions for settings with m > 3 targets.

12.2 Approximation of Target-Regions

The Exchange Target Strategy (ETS) (cf. Sect. 2.2) is known for calculating high
quality solutions in static settings [Goe07]. However, it requires O(kn) messages in
each iteration, where k denotes the number of neighbors of an agent and n the total
number of agents. Since the solutions produced by ETS also show clear regions, we
will use it to approximate Target-Regions.

Definition 29 (ETS-Target-Region [KKB10b]). An ETS-Target-Region ETS-TR(T)
for any target 7" in a full grid environment is defined by a set of cells that consists of
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target T”s cell and all cells whose agents are assigned to 7" after the Exchange Target
Strategy has converged.

Definition 29 defines the approximated Target-Regions in a vague sense, as it
depends on the convergence of ETS. In practice, we mean by convergence that
no significant improvement can be observed after some x iterations of the ETS
algorithm.

In the remainder of this section, we continue by showing that ETS-Target-Regions
lead to high quality solutions in the two target case. Additionally, we provide a
general formula to estimate the expected solution quality (Sect. 12.2.1). Afterwards,
we propose a storage media-based algorithm to approximate ETS-Target-Regions in
sparse environments (Sect. 12.2.2).

12.2.1 Quality of ETS-Target-Regions

To investigate the expected solution quality of ETS-Target-Regions, we construct
the regions for a particular setting offline. Therefore, we consider a full environment
and execute the ETS algorithm for z iterations, where x must be sufficiently large to
ensure convergence in the considered problem setting. After x iterations, the agents
mark their position with their current target assignment. In a second step, we place
the desired number of agents in that environment and let them choose their target
based on the available ETS-Target-Region information.

In [KKB10b], we simulated the ETS-based approach in the same settings as in
the previous section. The regions where evolved over = 2000 ETS iterations, as
this always has led to convergence in preliminary experiments. Figure 12.6 shows
the resulting average error and 95% confidence intervals of the ETS-based approach
compared to the optimal algorithm for two targets.
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Fig. 12.6 Average error TTO vs. ETS-Target-Regions (from [KKB10b]).
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A comparison of these results to those for Target-Regions (see Fig. 12.4), reveals
slightly higher error rates. Nevertheless, given proper ratios for the number of agents
in an environment, the average error is around 1% or less. Thus, we conclude that
ETS-Target-Regions constitute a good means to approximate Target-Regions. Further
empirical results involving more than two targets will be presented in Sect. 12.2.2.

Based on [KKB10b], let us describe a formula to estimate the average partition-
ing quality that can be expected when using ETS-Target-Regions in settings with
uniformly distributed agents. The idea of the estimation is to combine an expectation
value for the DISTRIBUTION objective with the DISTANCE objective value obtained
in the last iteration of the ETS-Target-Region creation procedure.

In order to calculate the expected DISTRIBUTION value—and although we know
from Prop. 7 that this assumption does not hold for general settings—we assume equal
sized ETS-Target-Regions. In detail, in an environment £ that contains ¢ = |€| — |T|
possible agent positions, each region’s size is assumed to be -=. Furthermore, let
H,,(n) describe all possible partitionings of n non-distinguishable agents to m
distinguishable targets. Formally, define Hy,(n) = {h | 3 ;cy  ny hJ] = n}
to be the set that contains all tuples h with m non-negative integer values whose
components sum to n. With the help of a discrete random variable X over all possible
agent positionings, a discrete uniform distribution Pr(X) over X, and a function
d : X — [0,1] that gives the DISTRIBUTION value for a positioning as in evaluation
function (5.2), we can calculate the expected value F[d(X)] as follows:

Eld(X)]

3 d(a;)Pr(a)

(12.1)

nerrmm \ ()" ()

Given further information about region sizes, the approach above can also be used
to estimate DISTRIBUTION objective values for other Target-Region approximations.

In contrast to the DISTRIBUTION estimation, a general formula for determining
the expected DISTANCE value may not exist, as the value strongly depends on the
positions of agents and targets. Thus, the estimation formula uses the DISTANCE
objective value doj,s obtained in the last iteration of the ETS-Target-Region creation
process.

Equation (12.2) combines both estimates to calculate the overall expected average
solution quality over all iterations in an IAPP instance.

APQ = a - E[d(X)] + /3 - dojast (12.2)

We verified these formulas empirically for different settings. Table 12.1 shows
the results for the DISTRIBUTION estimation. From the low percentage difference,
we conclude a high precision in the investigated experiments. The overall estimated
solution quality, as presented in Tab. 12.2, also looks promising. Further details on
the experiments can be found in in [KKB10b].
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Table 12.1 Average distribution objective value (distr.) vs. expectation value E[d(X)] (taken from
[KKB10b]).

Grid 2% Agents 10% Agents 50% Agents
Size distr.  E[d(X)] diff. (%) distr. ~ E[d(X)] diff. (%) distr. ~ E[d(X)] diff. (%)

10x10  0.51510 0.50515 1.932  0.90836 0.90928 -0.101  0.98989 0.99010 -0.021
50x50  0.98040 0.98039 0.001  0.99644 0.99640 0.004  0.99961 0.99960 0.001
100x100 0.99508 0.99510 -0.002  0.99910 0.99910 0.000  0.99990 0.99990 0.000

Table 12.2 Overall estimated solution quality A/PB for n agents and m targets in a 50 x 50 grid
environment (taken from [KKB10b]).

m n  E[d(X)] doms APQ  APQ

2 250 0.99640  0.99582 0.99611 0.99616
3250 098922 0.99282 0.99102 0.98914
4 200 097261 0.97453 0.97357 0.97093
4 40 0.85884 097453 0.91669 0.92136

12.2.2 Storage Media-Based ETS-Target-Region Approximation

Since ETS-Target-Regions have been shown to provide high quality solutions in
the previous section, we next describe a storage media-based algorithm for sparse
environments. The basic idea of the Sparse-ETS-Target-Region (S-ETS-TR) approach
[KKB10b] is to execute the ETS approach in a first phase for jy,.y iterations. Af-
terwards, the resulting target assignment of each agent and the agent’s position are
stored on a storage medium nearby. At the end of phase one, each medium has a
detailed statistics on how frequently which target was selected at which position. In
the second phase, the agents stop to execute the Exchange Target Strategy, but request
a target assignment from a nearby medium. Since there are probably unevaluated
positions, a simple classification technique is used to find a proper assignment from
surrounding, evaluated positions.

Algorithms 10 and 11 describe the S-ETS-TR approach in detail. The classification
approach is presented in Alg. 12'.

We empirically investigated the S-ETS-TR approach ina 51 x 51 grid environment
with 9 regularly aligned storage media and different numbers of agents and targets.
Agents consider a 8-neighborhood and use a flip probability of 0.1 in ETS. Jobs
have a randomly chosen duration from 20 to 30 iterations and both phases of S-ETS-
TR last 500 iterations. Figure 12.7 illustrates this setting and provides an example
for the development of the ETS-Target-Region approximations by the S-ETS-TR
approach. The simulation results shown in Tab. 12.3 as well as in Figs. 12.8 and
12.9 are averaged over 100 repetitions. The average partitioning qualities refer to
the second phase of the approaches, only. The misclassification rate considers all
but the unclassified cells and denotes the percentage of differently classified cells in
S-ETS-TR compared to ETS-TR.

! Note that the classification process is realized through the media (cf. Alg. 12). Contrary to artifacts
in the A&A meta-model (cf. Sect. 6.1.1), however, storage media should not be able to realize such
computational functionalities. Nevertheless, for the sake of simplicity in our simulations, we decided
to not implement the classification within the agents, e.g. by requesting required information from
and storing the result on the media.
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Algorithm 10 ([KKB10b]) Executed by each agent i € A

1: procedure SPARSE-ETS-TARGET-REGIONS

2 M < nearest storage medium

3 if current iteration < jmax then > Phase 1
4 T < target assignment of an ETS iteration

5 M _.STORE-INFO(T', p(2)) > Store target and position information on medium
6: else > Phase 2
7.

8

9

0

1

T < m.CLASSIFY-POSITION(p(2))
if T is set then

assign agent to T’
else

keep last target assignment

Algorithm 11 ([KKB10b]) Executed on storage media.

1: procedure STORE-INFO(Target 7', Position p)

2 add T to known targets Tinown

3: rp < map p to relative position used in internal data structures (CA and TA)

4: CA(T)[rp.z][rpy]+ =1 > Increase counter for 7 at relative position
5 Tmax < argmaxre7,,... {CA(T)[rp.z][rp.y]}

> Determine most frequently selected target Ty ax at rp
6: TA[rp.z|[rp.y] < Tmax D Store Timax in target assignment array at relative position

Algorithm 12 ([KKB10b]) Executed on storage media.

: procedure CLASSIFY-POSITION(Position p)
: rp < map p to relative position used in internal data structure TA
if TA[rp.x][rp.y] is classified then
return TA[rp.z][rp.y] > Return most frequently selected target for that position

1
2
3
4:
5: Nrp < Moore neighborhood of rp in TA
6.
7
8

determine set of targets Tmax that are selected at most in N;p
if no element in Nrp is classified then

: return null
9: else
10: T < select random target from Tmax
11: store T in TA[rp.z][rp.y]
12: return T’

Table 12.3 Simulation results for S-ETS-TR ([KKB10b]).

Misclassification Confidence Unclassified Confidence

mn rate (%) interval cells (%) interval
2 100 5.376 [5.064,5.687] 19.881  [19.770,19.992]
2 500 6.363 [5.835,6.890] 0.008 [0.005,0.011]

5 100 11.743 [11.358,12.128
5 500 13.947 [13.291,14.603
16 100 21.861 [21.437,22.284
16 500 22.832 [22.159,23.505

19.714  [19.597,19.832]
0.007 [0.004,0.010]
19.607  [19.504,19.710]
0.010 [0.007,0.014]

—_ o=
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Fig. 12.7 ETS-Target-Regions (a) and the development of their approximations through the S-ETS-
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First of all, the results show that average partitioning qualities obtained in S-ETS-
TR are very close to those obtained using ETS-Target-Regions in four out of six
settings (cf. Fig. 12.8). Differences can be observed in the settings for m = 16 targets
(cf. Fig. 12.9). We argue that these differences are rooted in the agent to target ratio
as well as in the higher misclassification rates. However, it is unclear why the error is
more than twice as large for n = 500 compared to n = 100 agents. We conjecture
that this issue can be traced back to the properties of the evaluation function. Note that
misclassification of cells mainly occurs at region boundaries. Since a higher number
of targets also leads to more regions boundaries, the increasing misclassification rates
in Tab. 12.3 hence are not surprising.

10

difference (%)

=
2 targets 2 targets 5 targets Stargets 16 targets 16 targets
100 agents 500 agents 100 agents 500 agents 100 agents 500 agents

Fig. 12.9 Difference of S-ETS-TR APQ from ETS-TR APQ in percentage terms (based on
[KKB10b, Tab. 3]).

12.2.2.1 Analysis

Based on the analysis provided in [KKB10b], we next analyze the S-ETS-TR ap-
proach regarding the cost objective in terms of messages. The number of messages
per agent in the pure Exchange Target Strategy (without storage media interaction)
per iteration is bounded from above by 2k + 2, where k is the size of the agent’s
neighborhood”. This follows because an agent sends a request to and receives a
response from each neighbor. In addition, at most two messages are required to
actually initiate a target exchange.

Since every agent stores information on a medium in each iteration, the number of
messages in the first phase of S-ETS-TR over all n agents is jmax - - (2k +2 + 1),
where jnax 1s the number of iterations in the first phase. In the second phase, the
agents only interact with the media by sending a request and receiving a response
message. Hence, the number of messages for the second phase is bounded by (2 —
Jmax) - 2n, where ¢ denotes the total number of iterations. Accordingly, the upper
bound of messages in S-ETS-TR is given by

2 Contrary to [KKB10b], where we made no clear statement, we here assume that an agent is not
part of its own neighborhood. Hence, we explicitly have to consider two messages for initiating the
actual target exchange.
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Jmax -7 (2k 4+ 3) + (2 — Jmax) - 2n.

Since the pure ETS approach sends at most :n2(k + 1) messages during ¢ iterations,
it can be shown by basic transformations that S-ETS-TR becomes more cost effective

1
than ETS if ¢ > jmax - HT2 holds. For the experiments investigated in the previous
section, the storage medium based approach hence is more cost efficient in terms of
messages than the basic Exchange Target Strategy.

12.3 Voronoi Regions

The decomposition of a metric space into regions using Voronoi diagrams (VD) has
been studied exhaustively. A Voronoi diagram for a set of sites S in the Euclidean
space is defined by a set of Voronoi regions (VR) for each site s € S. These regions
are defined in such a way that each point p € VR(s) is closer to s than to any other
s' € S\ {s}. A special variant of Voronoi Diagrams is generated from sites that also
are the centroids, i.e. centers of mass of their corresponding regions according to a
given density function p. In this work, we assume a constant density function p = 1.
In literature, these variants are often called Centroidal Voronoi Tessellations (CVT)
[DFG99] or diagrams (CVD). For further information on Voronoi diagrams please
consult [DFG99], [Aur91], or [LWLT09].

In the context of the IAPP, we may use the target positions as generating sites for
Voronoi diagrams in order to approximate Target-Regions. By definition, Voronoi
regions will result in an optimal solution value for the distance objective. However, no
general statement on the distribution quality can be made, except for the worst-case
which is a distribution value of zero. This worst case can happen since region sizes
could differ significantly, which might leads to situations where the probability that
at least one agent is located within each region approaches zero.

Figure 12.10 shows Voronoi regions that approximate Target-Regions in two
different scenarios. Obviously, in a full environment for the setting shown on the
left hand side of the figure, the number of agents assigned to target 75 and T
will not fulfill the equal distribution objective. However, the Centroidal Voronoi
diagram on the right hand side of Fig. 12.10 calculates exact Target-Regions and,
hence, finds an optimal solution in a full environment. In general, Voronoi diagrams

Ty Ts
] ]

T3 Ty
[ [

Fig. 12.10 Voronoi diagrams.
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describe Target-Regions exactly whenever the considered scenario has the following
properties:

e The environment can be divided in m equally sized rectangles ;.
e Each target T; € T is located at the center of a region R;.
e The environment is full, i.e. all positions are occupied by agents or targets.

Note that all Voronoi diagrams in these settings are CVTs, i.e. targets are located on
the centroid of their corresponding Target-Regions. In general, however, (Centroidal)
Voronoi diagrams are unable to calculate Target-Regions as stated in the Lemma 10.

Lemma 10. Voronoi diagrams as well as Centroidal Voronoi diagrams can not
guarantee to construct optimal partitionings.

Proof. By definition, any Voronoi region for a site s contains those points that are
closer, according to the Euclidean metric, to s than to any other generating site
s’ € S\ {s}. It follows, that VR are always connected polygons. However, we know
from Prop. 8 that Target-Regions must not necessarily be connected. Obviously, the
lemma follows. a

Next, we consider a special IAPP variant in which only the number of targets is
given but not their position. We investigate this variant using Centroidal Voronoi
diagrams and investigate their performance if used as approximation technique.
First of all, there exist several approaches to calculate such CVTs; a frequently used
approach is the iterative method of Lloyd (see e.g. [DFG99]). It starts with a (random)
initial set of |S| sites for which a Voronoi Diagram (VD) is calculated. Then, the
centroids of the resulting Voronoi regions are determined and used as new sites for
the next iteration. The algorithm repeatedly calculates VDs and new sites until it
terminates due to some convergence criterion. Voronoi diagrams in two dimensions
can be calculated efficiently, e.g. in time O(|S|log |S|) using Fortune’s sweepline
approach [For87]. An introduction to Voronoi Diagrams and a survey on fundamental
techniques can be found in [GO04, Ch. 23], and [Aur91], for instance.

Inspired by Lloyd’s iterative approach, Voronoi regions in our special IAPP variant
are evolved for a given number of targets. Targets then are placed at the resulting
generating sites of the CVT. To investigate the solution qualities that can be expected
from this approach, we consider the following hypothesis:

Hypothesis 2 Let CVT(T) be a centroidal Voronoi diagram for a large number of
targets m — o< in a grid environment. If uniformly at random distributed agents in
each iteration of the IAPP select targets based on the Voronoi regions of CVT(T),
then the average partitioning quality is expected to be

APQ = E[d(X)] +8-1, (12.3)
where E[d(X)] is calculated as in (12.1) described in Sect. 12.2.1.

Proof. (informal) Gersho [Ger79] conjectured that Voronoi regions in an optimal
CVT are asymptotically congruent and their geometric form depends on the di-
mension of the point set. According to [LWLT(09], this conjecture remains open for
dimensions > 3. However, for our particular 2-dimensional case, the conjecture holds
and regions for m — oo sites converge to regular hexagons (see e.g. [Gru04] for
more details and references to proofs). Hence, in our 2-dimensional grid environment,
CVTs for m — oo sites result in Voronoi regions that have approximately equally
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sized areas. As this satisfies the assumption made for calculating the estimated distri-
bution objective value E[d(X)] in Sect. 12.2.1, the first part of (12.3) follows. In the
end, we obtain the hypothesis since Voronoi diagrams from their very nature provide
optimal solutions for the distance objective, too. O

At this point, it is important to note that CVTs in general are not unique [DFG99].
Figure 12.11 shows an exemplary CVT in a 500 x 500 grid environment with 128
targets after 120 Lloyd iterations. As one can see, the region sizes and shapes differ
between the border and the inner regions. This difference stems from the rectangular
shape of the environment and is not taken into account in the estimation above.
Accordingly, the formula should be used with care or the distribution of agents has
to be restricted to inner regions in order to obtain a good estimation.

Fig. 12.11 Centroidal Voronoi Tesselation. Black, gray, and white regions are border regions.

Finally, note that (12.3) can also be used to estimate the solution quality in setting
with fewer targets, if the targets are aligned as shown on the right side of Fig. 12.10
and described thereafter.

12.4 Discussion

This chapter introduced the concept of target regions to solve the IAPP. We developed
this concept stepwise by first comparing it empirically with optimal solutions for
settings with two targets. Then, we extended it to settings with more targets using a
more or less central approach to approximate target regions. As the empirical results
attributed high potential to these approximations, we continued with a distributed
approach that approximates regions using the concept of storage media as introduced
in Ch. 6. Finally, we also investigated Voronoi diagrams in the context of the IAPP.

It was shown for IAPP settings with two targets that target regions are able
to calculate near optimal partitionings in each iteration if agents are distributed
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uniformly at random. We also argued, and empirically underlined, that solution
qualities are expected to be worse if agents are distributed according to a Gaussian
distribution. The approximated regions, called ETS-Target-Regions, were empirically
shown to solve the two target instances with an error of approximately 1% or less for
appropriate settings. We deduced and evaluated a formula to estimate the expected
solution quality of ETS-Target-Regions if agents are distributed uniformly. Here,
the simulations showed a very good estimation quality in the investigated settings.
The simulations of the storage media-based approximation of ETS-Target-Regions
produced solutions that were at the same level than those of the centrally calculated
ETS-Target-Regions in most cases. We also proved the conditions under which the
approximation technique using storage media is more efficient than the ordinary
ETS approach in terms of number of messages. In detail, the media-based algorithm
becomes more efficient the longer the media are used by the agents to select a target.
In the end, we briefly showed that Voronoi diagrams are not suitable for solving the
IAPP in general, but they can be used for some specific settings that fulfill some
assumptions on the target positions and/or number.
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Conclusions and Future Work

Finally, this chapter briefly summarizes the main conclusions and research contribu-
tions of this thesis. We also provide an outlook on future work.

13.1 Conclusions

In this thesis, we considered multiagent reinforcement learning and coordination in
large cooperative systems. In particular, we focused on a special subclass of games
in which agents are confronted with a sequence of stateless games, whereas each
game is played repeatedly for a certain but unknown timespan.

We defined a formal game class for the aforementioned settings, named (coop-
erative) sequential stage games (SSG). Based on so-called engineered rewards, i.e.
reward values that in some sense encode states, we developed a multiagent reinforce-
ment learning approach called Distributed Stateless Learning (DSL). This approach
was theoretically analyzed and proven to learn (near-)optimal joint strategies for
each stage game contained in the sequence of cooperative sequential stage games.
DSL is based on the concept of engineered rewards and a special variant of the
Distributed Q-Learning algorithm of Lauer and Riedmiller [LR0O0]. We exhaustively
evaluated the approach in the context of a simple cooperative sequential stage game
as well as in the Iterative Agent Partitioning Problem (IAPP), which is a multi-
objective optimization problem in the form of a multiagent system. The results of
these experiments underlined the proven convergence properties.

Furthermore, we developed several coordination strategies that can improve the
speed of learning in large systems composed of several hundreds or thousands of
agents. We empirically investigated these strategies in various settings of the IAPP.
In particular, we showed that DSL, with the help of these additional coordination
techniques, can learn faster and also manages to find high quality solutions in
frequently changing settings.

Given that agents may employ sensors with limited accuracies, we examined
how learning under noised reward perceptions can be realized. In particular, we first
showed that deterministic Q-Learning is unable to learn under noised rewards. To
address this negative result, we proposed to adopt the optimistic update rule used

207
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in Distributed @)-Learning. Using this update rule, we proved that learning optimal
policies is possible in single agent settings with noised rewards. Additionally, we
examined so-called noise robust rewards, i.e. reward values that are so distant to each
other that they remain distinguishable under noise. Although this kind of rewards
seems to be promising, we proved it to be useless in settings with a single agent.
However, we showed that the DSL approach under agent-individual noised reward
perceptions can learn optimal solutions if rewards are noise robust and the game
contains exactly one optimal joint action. We argued that the approach can also be
extended to enable learning in general cooperative settings with multiple optimal
joint strategies, if the noise robust rewards have a special structure. Furthermore, we
proved that DSL learns (near-)optimal joint strategies if all agents obtain the same
noised reward values. Accordingly, learning from noised rewards is possible in our
approach.

As general coordination concept, we introduced storage media that are located in
the environment. Agents can use them to maintain (learned) knowledge externally,
such that all agents next to a medium can benefit from its stored knowledge, even
if the agent that gathered the original data has become unreachable. We combined
these media with the DSL approach and investigated it in the context of the IAPP.
The results indicated that storage media enable agents to reuse learned knowledge
from simpler settings to improve learning in more complex, resp. larger problems.

Since we focused our empirical evaluations on a particular variant of the IAPP,
we also provided general insights into that problem. Furthermore, we presented an
approach for the IAPP that combines a communication intensive state-of-the-art
algorithm with the concept of storage media. The results indicate that media can help
to significantly reduce the communication overhead of that approach. In addition, we
identified that high quality solutions of the IAPP show a special structure in the form
of regions which belong to targets.

In short, the main contributions of this thesis hence can be summarized as follows:

e We considered learning and coordination in multiagent problems that change

stepwise and remain stationary in between these steps.

A formal model for such sequential stage games (SSG) was developed.

We presented the concept of engineered rewards which, in a sense, encode state
information.

e Based on such encoded information, we elaborated a distributed and efficient
multiagent reinforcement learning algorithm for cooperative SSGs.

e We provided a careful theoretical analysis of the approach that includes con-
vergence results. Additionally, we investigated its behavior under noisy reward
perceptions, i.e. under stochastic rewards.

Several coordination techniques to improve convergence speed were proposed.
In the context of a large multi-objective optimization problem, we provided an
exhaustive empirical analysis of the approach and the coordination strategies,
and showed their ability to learn under various dynamic settings, including, e.g.,
frequent changes and different reward calculation methods. Also more general
insights into that problem were presented.

We showed how externally stored knowledge improves learning in large systems.
Learning under noisy rewards in deterministic ()-Learning was examined.

Finally, we can conclude that multiagent reinforcement learning and coordina-
tion in scenarios with sequentially changing settings is a challenging problem, but
nevertheless it seems to be feasible even in large systems.
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13.2 Future Work

As we have seen in the previous section, several interesting issues have been investi-
gated in this thesis. However, there still are various aspects and possible approaches
that are worth to be considered in future work. We want to point out some of them
briefly in the following:

We considered approaches for a sequence of situations that can be modeled as
stateless games. In many problems, however, situations are not stateless, but
they can only be described sufficiently by stochastic games, or other even more
complex models. Hence, it would be interesting to investigate approaches that
address learning in sequences of such games.

Also, we only considered cooperative SSGs. Thus, the proposed DSL approach is
not able to deal with competitive or mixed SSGs. Since several applications have
to deal with selfish and rational agents, such non-cooperative settings in general
are an interesting research area, too. Accordingly, learning in sequences of such
games should also be investigated in future work.

We concentrated our empirical investigations on a particular variant of the IAPP.
In future work, one could consider different variants, including even more dynam-
ically changing scenarios with respect to the number of agents or targets, as well
as settings where targets request different numbers of agents. Additionally, the
consideration of other more complex objectives could lead to interesting insights.
In general, it would be interesting to consider the proposed approaches and
concepts in completely different problem domains, which can also be modeled as
cooperative sequential stage games.
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Appendix

Medium Coverage

This appendix covers the details on the storage media placement problem discussed
in Sect. 6.3. In detail, we consider an environment with a single rectangular obstacle
that prohibits communication between agents located at different sides of the obstacle.
From a single agent’s perspective, we investigate where a storage medium should
be placed in order to allow indirect communication via the medium with as many
agents as possible that are located on the other side of the obstacle.

We start by developing a formula to calculate the coverage of a medium in Sect.
A.1. Section A.2 then proves a position that leads to the maximum coverage under
the assumptions stated below.

Since this placement problem depends on several parameters, e.g. the communica-
tion radii of agents and media, as well as the dimensions of the obstacle, we restrict
our investigations to settings that can be described by the following assumptions. Fig.
A.2 illustrates such a setting.

Assumptions 3 The investigated setting includes one agent © with communication
radius r;, one rectangular obstacle so, and a storage medium M with an interaction
radius of ;. Furthermore, we assume:

o The considered agent i is located at pos(i) = (0, 0).
o The sensor obstacle

1. is placed such that its bottom right edge is at position (b, a), with a,b > 0,

2. has height h > 0,

3. has a length > r; + b, such that we only have to consider the case in which the
medium is placed on the right hand side of the obstacle.

o To simplify the calculations and to reduce the number of (geometric) cases that
have to be considered, the medium’s communication radius has to be

1 2
ra S min g o, \/(a+h)2+ <b(a(—1|—h)>

The first part of the minimum operator allows us to neglect cases where agents

are located outside of the considered agent’s communication radius. The second

element follows from point (( M) ,a+ h), which is the intersection of the

a
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prolonged upper obstacle edge and a visibility line (¢, cf. Fig. A.2) that determines
the area shadowed by the obstacle.

A.1 Computation of Medium Coverage

First of all, we are interested in the area that is shadowed by a sensor obstacle for a
particular agent i. By shadowed we mean that direct communication between agent ¢
and any another agent is not possible due to the obstacle. Figure A.1 visualizes the
shadowed region as light gray area for agent i.

The shadowed area Ai’sc’ for agent ¢ with respect to obstacle so is defined by a
visibility line ¢ that connects the agent with the bottom right edge of the obstacle and
its intersection with the communication range of the agent. The latter is defined by
the agent’s position pos(7) and its communication radius ;. Under assumptions A3,
this area can be calculated using (A.1), where the variables are those shown in Fig.
A.land A (A),A (B),A (C),A (D)) denote the areas shown on the right hand side
of that figure. Note that the areas can be calculated using basic geometric formula
which we won’t discuss in detail.

Ay® =A(A)+A(B)-(A(D)-A(C)
Ta h g
:(rf(lgoo—smacosa))—f—( 5 6)

cr2 . 1 i
_ w — [ =. .T. 'Sin’}/'ri -sin e (Al)
360° 2 sing

sensor obstacle so

Fig. A.1 Area that is shadowed by the obstacle.

Before we can define the coverage of a medium, we have to specify the influence of
the sensor obstacle to the communication of agents. We assume that communication
between agents at two positions P and () is possible if and only if the line connecting
P and @ does not intersect with the obstacle and if the Euclidean distance between
the two positions is lower or equal to the agents’ communication radius r;. Formally,
this is modeled by using

00 ,PQnNso#0D

A2
|P— Q|2 ,otherwise (A2)

Jso(PaQ) = {
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as distance that takes obstacle so into account. Hence, agents located at P and () can
communicate if d5,(P, Q) < r; holds.

Next, we can define the coverage of a medium, which basically corresponds to
the percentage of the shadowed region than can be reached via the medium.

Definition 30 (Coverage). Let M be a storage medium located at position (z s, yar)
with communication radius r,;, and let Ai,’s° denote the shadowed region for agent 7
with respect to senor obstacle so. Furthermore, let A%*° (25, yas) denote the area
that is defined over all positions P € A%*® for which 8¢, (P, (257, yar)) < ras holds,
i.e. the part of Ai’s° where an agent can be placed such that it would be able to
interact with the medium at (a7, yar).

The coverage C'y;° of medium M with respect to obstacle so for agent 4 then is
defined by:

(A.3)

Ai,so , . .
o _ [T 8u0(pOS(i), (war,yar)) < s
M 0, otherwise

where ¢, denotes the distance function (A.2).

According to this definition, a positive non-zero coverage implies that agent ¢ is able
to indirectly communicate through medium M with any other agent i’ located in
AZ® (war, ynr)-

sensor obstacle so

' (v, w)

medium posiiliion
M = (. yir)

Fig. A.2 Setting considered in this section.

Due to the geometric properties of the medium placement problem, calculating the
covered area A% (57, yasr) involves several cases. In the remainder of this section,
we will thus restrict our investigations to a special case that is required for proving
the optimal position of a medium that ensures maximum coverage (Theorem 10). All
other cases can easily be constructed.

In the following paragraphs, we present a formula that can be applied if the
medium is placed within the light gray region U as visualized in Fig. A.2. Formally,
U can be defined over all positions (z s, yas) of a medium that satisfy the following
requirements:
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1. 2%, +y3, < r?, to ensure communication with agent .
2. (zpr — b)% + (yar —a — h)? < 72, to ensure that the triangle AABC is part of
the calculation, and thus v > b follows for point C' = (v, w).
. ym < $ap, to ensure that (27, yas) is below the visibility line £.
4. xpr > b, i.e. the medium is placed on the right hand side of the right border of the
obstacle.

W

In the following, let [PQ| = ||P — Q||2 be the Euclidean distance between
two positions P and Q. Consider Fig. A.2 and let C(zs,yas) be a function that
calculates point C' = (v, w), D(zps,ya) a function for point D = (z, y ), and
E(xpr,yn) a function for point E = (¢, ye). For a better readability, we will skip
the arguments and simply write C, D, or F if we refer to the corresponding functions.
We overload M to denote not just the medium but also the medium’s position with
M = (zpr,ynr). We will use z and n to refer to the help functions z(z s, yar) and
n(xar, yar ) defined below in (A.5) and (A.7).

Then, we can deduce from Fig. A.2 that the covered area of a medium placed at
(zar,ynr) € U under the assumptions above is determined by a combination of three
areas. This results in the following formula for A%*® (257, yas):

Ai’so (@M, ym) = Agector (@nr M) — Ancen (Taym) + Anape (@, ym)
(A4)

where A_ ., is the area of the sector defined by the position of the medium, radius
rar, and angle . The involved areas can be computed using the following set of
equations:

(s, yar) = 5 (h+ |AC] +|BC)) (A5)
Anapc (@arynn) = V(G — Wz —JACD(—[BC)  (A6)
n(war,yar) = 3+ |CE| + |CM]) (A7)
Ancey (@, ym) = V/n(n —r)(n — |CE])(n — [CM]) (A.8)
Agector (Tar,yn) = o (A.9)

360°

In these formulas, we use the elements shown in Fig. A.2, Heron’s formula, and
further basic geometric equations, which are all based on the agent’s position (0, 0),
the medium interaction radius 7, and properties of the obstacle.

Figure A.3 illustrates the area coverage according to (A.4) for varying medium
positions (7, yar) in an example with a = 1,0 = 2,h = 2,7y = 5. In this
example, the maximum coverage Cl,.x is obtained if and only if the medium is
placed at position M = (\/%, \/5)

A.2 Optimal Coverage

After we determined a way to calculate the coverage of a medium, the question about
the optimal coverage achievable by a single medium will be the focus in this section.
In particular, we search for the position of the medium that maximizes the coverage.



A.2 Optimal Coverage 217

Fig. A.3 Covered area for different medium positions in the given exemplary settings.

Again, consider Fig. A.2 which contains all elements used in this section. The
line ¢ is defined by y = 7 and the medium’s communication circle centered at
the agent’s position pos(i) = (0,0) is defined by (z — 0)% + (y — 0)2 = r2,. Note
that this circle denotes the general area where medium and agent could interact
without obstacle. Accordingly, an interesting intersection point of ¢ and the medium
interaction circle is given by (Zopt., Yopt. ), having

2

"M
Lopt. = a2
1+ (%)
and
_a | T
Yopt. = b\l 1 N (%)2.

In the remainder of this section, we prove that the coverage of a medium is
maximized if it is placed at (Zops., Yopt. ). Therefore, we concentrate on all possible
positions in region U as defined before. The basic steps of the proof are:

1. Show that the lowest gradient of line s and the maximum negative gradient of line
k are achieved if (x a7, Yas) = (Topt. ; Yopt.) (cf. Lemma 11 and 12).

2. Accordingly, angle «, which is defined by those two lines, is maximal for
(xar,ynm) = (Tops. Yopt.) (see Lemma 13).

3. Prove that the area of triangle AABC'is maximal for C(zar, yar) = (Zopt., Yopt.)
(see Lemma 14). ‘

4. Show that the coverage C;° is maximal for (zar,ynr) = (Zopt., Yopt.) (se€
Lemma 15)

We continue with stating and proving the aforementioned lemmas.

Lemma 11. Let s(xpr, yar) be a line defined by the positions (xpr,ynr) € U and
(x1, 1) as shown in Fig. A.2. Under the mentioned assumptions, the gradient of s is
cannot be smaller than the gradient of (, i.e. gs(xar,ynr) > ge = -
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Proof. To proof this lemma, we transform the inequality as follows:

gs(@ar, ynr) > ge
Yi—ym _ @
ry—xp b
a
Yi—Ym > g(évz —Zum)
a
Yy > g(xz —ZM)+ Ym-

By substitution of y; = §;, we then obtain:

a >a( )+
-z > —(r—=z
bl_b l M Ym
a _a a N
-z > -1 — —T

p TSy Ty I T YM

a

OZ—ZIEM-HJM

a

gxszM

Since yp < 7 holds as a precondition, gs(xnrr,ym) > ge follows. Thus, the
gradient of s(z s, yar) is greater than or equal to the gradient of £. a

Since (x;,y;) € ¢ and (z1,y;) € s(xar,yn), an immediate conclusion from
Lemma 11 is:

Corollary 5. The gradient for all lines s(x nr, yar) defined over (xpr, ynr) € U and
(w1, 1) € € is minimal if and only if ypr = 1.

Lemma 12. Let line k(x pr, yar) be defined by the positions (b, a+h) and (zpr,ynr) €
U as shown in Fig. A.2. The gradient gy (znr, ynr) = %%;h of line k(xpr,yar) is

maximal for Ty = Topy. and Ynr = Yopt.-

Proof. Based on the two positions (b, a + h) and (x 7, yas), we can describe line
k(z e, ymr) by

:yM*a*h ymw —a—h

T+ — x
Q?M—b L .Q?]V[—b M

Let (v, w) be the intersection of k(xas,yar) and £, using y = ¢ for line £. In
this proof, it is then sufficient to investigate line &’(v) defined by (b,a + h) and
(v,w) = (v, §v) as representative for all possible lines k(xnr, yas).

In brief, the idea of the proof is as follows. First we show that the gradient function
gr (v) of line K’ (v) is strictly monotonically increasing. From this monotonicity it
then follows that the maximal gradient can be found at the upper end of v’s domain.

Since w = §v, the gradient g/ (v) of line &’ (v) is given by

a
fv—a—h
)= —
gk ( ) v—b )
having v € (b, zopt.] according to our assumptions, i.e. since (zpr,ynr) € U.
To proof that gy (v) is strictly monotonically increasing, we have to show that
g (V1) < gr (v2) for v < vg:
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gr (v1) < gir (v2)
Tvr—a—nh Tv2 —a—h

Ulfb ’UQ*b
a a
(gvl—a—h) (v —0b) < (gvg—a—h) (v1 — D)
a a a a
gvlvg — avy — hvy — gvlb + ab + bh < Evlvg —avi — hvy — 5U2b+ ab + bh

—hvy < —hv;

Vo > U1

Since v; < vy holds as a precondition, the gradient function gy (v) is strongly
monotonically increasing. Accordingly, the maximal gradient is found at the end of
v’s domain. Hence, line £* defined over (b, a + ) and (Zopt. , Yopt.) has the largest
possible gradient. Note that the gradient is negative, as v > b holds by precondition.

As line k(zar, yar) only intersects £ at (Tops., Yopt.) if (v, w) = (xp,ym) =
(Zopt., Yopt. ), the lemma follows. O

Lemma 13. If the medium is positioned at (xpr,Ynr) = (Topt. Yopt.) € U, then
angle o between lines k(xar, yar) and s(xar, yar) as shown in Fig. A.2 is maximal

Proof. We prove this statement by contradiction. Let us assume that « is not maxi-
mized under the given preconditions at position (zar, Yar) = (Zopt., Yopt.)- As the
angle is defined by the two lines intersecting at (x 57, yas ), o depends on the gradients
of both lines. In Lemma 12 we showed that the largest negative gradient gx (s, yas)
of line k(zar, yar) is obtained if (xas, yar) = (Topt. ; Yopt. ). From Corollary 5 we
know that g,(zar,yar) is minimal if yps = $2as and, thus, especially also for
(@a,Ym) = (Topt. Yopt. ) AS (Zopt., Yopt. ) Maximizes gx (zar, yas) and minimizes
gs(xnr,ynr), no larger angle « is possible. This contradicts the assumption, the
lemma follows. a

Lemma 14. The area of triangle AABC defined by A = (b,a), B = (b,a+h),C =
(v, w) is maximized for (v,w) = (Zopt., Yopt. )-

Proof. Tt is well known that the area of a triangle given a base Ab and a height Ah
can be computed by %. For triangle AABC, as visualized in Fig. A.2, let AB
be a base with length |AB| = h. The corresponding height is v — b. Hence, the area
A A 4pc (v) of triangle AABC depending on v can be computed by

Aaapce (v) = w

Obviously, for any v1 < v9,v1,v2 € (b, Zopy.| it follows that Ap 45 (V1) <
Axapc (v2). Accordingly, Aa 4 (v) is strongly monotonically increasing and
thus the triangle’s area is maximal for v = zqp¢.. Since w = %v the lemma follows.

O

Finally, we show that the coverage of a medium is maximal at position (x s, yar) =
(Zopt., Yopt.) among all possible positions (xar, yar) € U:
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Lemma 15. Under the mentioned assumptions, and given a specific agent i and a
specific sensor obstacle so, we can use (A.4) to calculate the coverage C};° for
any medium M placed at a position (xpr,ynr) € U. The maximum coverage of M
occurs for

2, [ 2
(@M, ym) = (Topt., Yopt.) = (\/ TM,, 2” \/ Ma 2) ’
L+ (3) PV 1+ (3)

where 1 is the medium’s communication radius and (b, a) the bottom right edge
position of obstacle so.

Proof. For all considered positions (x s, yar) € U, the coverage according to Def.
30 is given by

2,50
Oi,so o Ac (va yM)
M Ai,so
s

Since the area A%*° shadowed by the obstacle is fixed for a given agent and a given
sensor obstacle, we only have to investigate A*° (zar, yar). Recall that the latter is
calculated by

A (a1, y0m) = Agector (@105 Yn1) — Apcpar (@ar ynr) + Apape (Tar,yar).-

To maximize the covered area, we thus have to maximize A, (Zar, yas) and
Anage (@a,yar), and at the same time minimize A A gas (Tar, yar). Since

2
Ty T Q&

Asector (xM7 yM) = 360°

the area of the sector is maximal if o is maximized under the given constraints.
Due to Lemma 13, we know that the angle is maximal for z3s = Zopt. and ypr =
Yopt.- According to Lemma 14, A 4o (T ar, yar) is also maximal for xps = opt.
and Yar = Yops.. Finally, it remains to show that Ao pas (€, yar) is minimal
at the same position. Assume M = (xopt.yyopt.)’ then C = M and therefore
Axcea (@ar,yar) = 0. The lemma follows. O

With the help of Lemma 15, we proved the position in region U that leads to the
maximum coverage. To show that no other position outside of U can lead to a higher
coverage, we again have to take a closer look at Fig. A.2. Obviously, except for
region Z, any other position will result in a coverage of zero. Hence, it is left to show
that the coverage for any position in region Z is smaller than the maximum found
above. We do not intend to provide the required proof in this work, as it immediate
follows from the tedious additional geometric cases that have to be considered for
determining A“*° (57, yas). Finally, we can conclude the following theorem:

Theorem 10. Given an agent at position (0,0) and a sensor obstacle so with its
bottom right position at (b, a). Under the assumptions mentioned before, a medium
M with communication radius v achieves the maximum possible coverage if it is

placed at position
a2’} a2
1+ (%) 1+ (3)




Appendix

Simulation Results

This appendix presents some additional simulation details on the performance of
the different reward calculation concepts investigated in Sect. 10.4. In particular, we
present the respective DISTRIBUTION and DISTANCE objective values.

The rest of this page is intentionally left blank.
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B.1 Simulation Details for Global Reward Settings

This section presents the development of the DISTRIBUTION and the DISTANCE
objective values that belong to Fig. 10.19 on page 162.
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Fig. B.1 Development of the DISTRIBUTION objective value for the different strategies given
globally transformed rewards.
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Fig. B.2 Development of the DISTANCE objective value for the different strategies given globally
transformed rewards.
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B.2 Simulation Details for Local Reward Settings

This section presents the development of the DISTRIBUTION and the DISTANCE
objective values that belong to Fig. 10.21 on page 165.
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Fig. B.3 Development of the DISTRIBUTION objective value for the different strategies given local
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B.3 Simulation Details for Locally Transformed Global Rewards

This section presents the development of the DISTRIBUTION and the DISTANCE

objective values that belong to Fig. 10.22 on page 167.
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Fig. B.6 Development of the DISTANCE objective value for the different strategies given locally

Simulation Details for Locally Transformed Global Rewards
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